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Abstract: The snowpack over the Mediterranean mountains constitutes a key water 

resource for the downstream populations. However, its dynamics have not been studied in 

detail yet in many areas, mostly because of the scarcity of snowpack observations. In this 15 
work, we present a characterization of the snowpack over the two mountain ranges of 

Lebanon. To obtain the necessary snowpack information, we have developed a 1 km 

regional scale snow reanalysis (ICAR_assim) covering the period 2010-2017. 

ICAR_assim was developed by means of ensemble-based data assimilation of MODIS 

fractional snow-covered area (fSCA) through an energy and mass snow balance model 20 
the Flexible Snow Model (FSM2), using the Particle Batch Smoother (PBS). The 

meteorological forcing data was obtained by a regional atmospheric simulation from the 

Intermediate Complexity Atmospheric Research model (ICAR) nested inside a coarser 

regional simulation from the Weather Research and Forecasting model (WRF). The 

boundary and initial conditions of WRF were provided by the ERA5 atmospheric 25 
reanalysis. ICAR_assim showed very good agreement with MODIS gap-filled snow 

products, with a spatial correlation of R = 0.98 in the snow probability (𝑃(𝑠𝑛𝑜𝑤)), and a 

temporal correlation of R = 0.88 in the day of peak snow water equivalent (SWE). 

Similarly, ICAR_assim has shown a correlation with the seasonal mean SWE of R = 0.75 

compared with in-situ observations from Automatic Weather Stations (AWS). The results 30 
highlight the high temporal variability of the snowpack in the Lebanon ranges, with 

differences between Mount Lebanon and Anti-Lebanon that cannot only be explained by 

hypsography with Anti-Lebanon in the rain shadow of Mount Lebanon. The maximum 

fresh water stored in the snowpack is in the middle elevations approximately between 

2200 and 2500 m a.s.l. Thus, the resilience to further warming is low for the snow water 35 
resources of Lebanon due to the proximity of the snowpack to the zero isotherm. 

Keywords — Snow, dynamical downscaling, data assimilation, fractional snow cover, 

Mediterranean mountains 
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1. Introduction 

The hydrological processes related to mountain areas are essential for the water supplies 40 
to a large part of humanity (Viviroli et al., 2007). Despite the relatively mild temperature 

of the Mediterranean climates, mountains there often exhibit deep and long-lasting 

snowpacks accumulating more than 3 meters and an average snow seson of 5 months at 

the summit areas (Alonso-González et al., 2020; Fayad et al., 2017b). Thus, as most of 

the annual precipitations falls during winter season (García-Ruiz et al., 2011) the 45 
mountain snowpack strongly reshapes the hydrographs to sustain high flows until the end 

of the spring , permitting better synchronization of water demand and availability during 

the dry season (García-Ruiz et al., 2011). Mediterranean snowpacks are characterized by 

a high interannual variability, which affect the amount and seasonality of river flows 

(López-Moreno and García-Ruiz 2004). Despite this variability, the thickness and high 50 
density exhibited by the snowpack in the Mediterranean climate (Fayad et al., 2017b), 

makes them an effective water storage system. In addition, high sublimation rates are 

associated with Mediterranean snowpacks (Fayad and Gascoin, 2020; Herrero et al., 

2016; Schulz and de Jong, 2004). The fact that snowpack conditions are close to 

isothermal during most of the snow season makes them highly sensitive to the current 55 
climate warming (Alonso-González et al., 2020a; López-Moreno et al., 2017; Yilmaz et 

al., 2019). 

The Lebanon mountains are a clear example of Mediterranean mountains, where snow 

exerts a key control on the hydrology and water resources are critically dependent on the 

interannual fluctuations of the snowpack (El-Fadel et al., 2000). Despite their importance, 60 
snow observations in the region are scarce (Fayad et al., 2017a), making the study of 

distributed snow dynamics challenging. Recently, Fayad and Gascoin (2020) have 

develop distributed snowpack simulations over key areas of Mount Lebanon, forcing the 

model by interpolating observations of the few existing Automatic Weather Stations 

(AWS) using the SnowModel by Liston and Elder (2006). They showed the importance 65 
of the liquid water percolation scheme given the isothermal condition of the snowpack 

and estimated the snow water equivalent over three key catchments in the windward 

western divide of Mount Lebanon. However, due to the lack of meteorological data 

outside this area, these simulations did not cover the whole mountain area of the country 

and were limited to three snow seasons. 70 

Remote sensing and numerical modeling have become reliable tools to generate useful 

meteorological information for mountain regions (Lundquist et al., 2019), and also to 

generate robust snow data worldwide. Atmospheric reanalyses are a valuable source of 

long term (multidecadal) climatological information, especially at planetary scales (e.g. 

Wegmann et al., 2017; Wu et al., 2018). However, spatially downscaling such products is 75 
mandatory to derive relevant snow information over complex terrain (Baba et al., 2018b; 

Mernild et al., 2017 among others). Dynamical downscaling has been shown to 

outperform statistically gridded products for meteorological variables in complex terrain 

(Gutmann et al., 2012). More specifically, high resolution fully dynamical meteorological 
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models can reproduce the snowfall patterns over complex terrain (Ikeda et al., 2010; 80 
Rasmussen et al., 2011). However, the computational cost of full dynamical downscaling 

solutions becomes prohibitive for large domains at high spatial resolutions. To reduce the 

computational cost, different solutions of varying complexity have been developed using 

statistical interpolations corrected with the topography or using simplifications of the 

atmospheric dynamics (Fiddes and Gruber, 2014; Gutmann et al., 2016; Liston and Elder, 85 
2006). In this way, energy and mass balance snowpack models have been coupled with 

atmospheric models to develop multidecadal snow simulations (Alonso-González et al., 

2018; van Pelt et al., 2016 among others). In addition, remote sensing products have been 

widely used to study the duration and variability of the snow cover (Gascoin et al., 2015; 

Saavedra et al., 2017; Yilmaz et al., 2019). Assimilation of remotely sensed snow cover 90 
observations has  shown considerable potential for improving numerical snowpack 

models outputs in both distributed (e.g. Baba et al., 2018; Margulis et al., 2016) and semi 

distributed simulations (Cluzet et al., 2020; Fiddes et al., 2019). These approaches are 

particularly promising in data-scarce regions to reduce the biases in atmospheric forcing. 

In this work, we have simulated the snowpack of the Lebanon mountains, as an 95 
alternative to sparse snowpack observations. We have generated a 1 km resolution 

snowpack reanalysis, using an ensemble based assimilation of fractional snow-covered 

area (fSCA) obtained from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) satellite sensor. More specifically, the ERA5 reanalysis  (Hersbach, 2016) was 

dynamically downscaled using regional atmospheric models in two steps. First, a 10 km 100 
resolution atmospheric simulation using the Weather Research and Forecast model 

(WRF) (Skamarock et al., 2008) was performed covering the period between 2010 and 

2017. Then, a finer 1 km simulation using the Intermediate Complexity Atmospheric 

Research model (ICAR) (Gutmann et al., 2016) was nested inside the previous WRF 

simulation covering the same time period. To improve the ICAR snowpack outputs, the  105 
simulated meteorological data was used to force an energy and mass balance snowpack 

model, the Flexible Snow Model (FSM2) (Essery, 2015), while perturbing the 

meteorological fields to generate an ensemble of snowpack simulations. Then, the 

Particle Batch Smother (PBS) (Margulis et al., 2015), a Bayesian data assimilation 

scheme, was applied to assimilate daily remotely sensed fSCA information. We tested the 110 
generated snow products in the mountains of Lebanon with independent observations. 

Finally, the dynamics of the snowpack in the mountains of Lebanon are studied from the 

generated multi-year snow time series. The objectives of this paper are: i) to explore the 

potential of a methodology to develop a snowpack reanalysis over data scarce regions 

and ii) to describe the main snowpack dynamics over the Lebanese mountains. This is the 115 
first use of ICAR for generating a snow reanalysis. 

2. Study area 

Lebanon is a country located on the eastern Mediterranean Sea between latitudes 33° and 

35° N. Its climatology typically Mediterranean (Peel et al., 2007) influenced mainly by 
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its proximity to the Mediterranean Sea and its complex topography (Figure 1). There are 120 
two main mountain ranges that run in parallel to the Mediterranean coast from North to 

South. These mountain ranges are the Mount Lebanon and Anti-Lebanon mountains, 

reaching 3088 m a.s.l. (Qurnat as Sawdā peak) and 2814 m a.s.l. (Mount Hermon peak) 

respectively. The Lebanese mountains are highly karstified encouraging the infiltration of 

rainfall and snowmelt. The land cover is mostly composed of bare rocks and soils with 125 
irregularly distributed patches of shrubland, as well as oaks and pine forest. 

Despite Lebanon having more available water resources than its neighboring countries, it 

is considered a water scarce region (El-Fadel et al., 2000), where droughts are frequent 

and are expected to increase due to climate change (Farajalla et al., 2011). The particular 

spatial distribution of its mountain ranges constitutes an effective topographical barrier to 130 
humidity advected from the Mediterranean sea, enhancing the winter precipitation as a 

consequence of orographic effects (Jomaa et al., 2019). In these mountain ranges,the 

combined effects of orography and Mediterranean climate results in yearly seasonal-

snowpack over a large part of the country  (Mhawej et al., 2014).  

It was estimated from satellite retrievals of snow cover that 31% of the spring discharge 135 
of Lebanon is associated with snowmelt (Telesca et al., 2014). In addition, the 

groundwater dynamics of Lebanon are mainly controlled by the snow melt as 

consequence of its karstic nature (Bakalowicz et al., 2008; El-Fadel et al., 2000). Thus, 

the water resource provided by the snowpack is crucial for the Lebanese society with this 

need becoming more acute during the recent drought in the Eastern Mediterranean (Cook 140 
et al., 2016). In addition, the water stress increased notably in recent years partially due to 

the increase in domestic water demand, agricultural water use, and the Syrian refugee 

crisis (Jaafar et al., 2020) but also due to the poor management of the water resources, 

and water pollution. 
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 145 

3. Data and Methods 

3.1 Regional atmospheric simulations configuration 

To generate the meteorological forcing, we used the ICAR atmospheric model nested 

inside a WRF simulation forced by the ERA5 reanalysis. The WRF model was used to 

generate a regional atmospheric simulation on a 10 km x 10 km grid, covering the eastern 150 
part of the Mediterranean Sea with 179 x 179 grid cells, centered over Lebanon’s 

mountains (Figure 1). In the vertical dimension, the domain was composed of 35 levels 

with the top set to 50 hPa, similarly to other studies over Mediterranean regions (Arasa et 

al., 2016). The simulation covers the period from 01st of January 2010 to 30th of June 

2017, using the first 9 months as spin-up period allowing for physical equilibrium 155 
between the external forcings and the land model (Montavez et al., 2017). We used the 

ERA5 reanalysis dataset at an hourly frequency as boundary and initial conditions of the 

WRF  (3.8 version) model. The ERA5 dataset is an atmospheric reanalysis, which 

replaces the widely used ERA-Interim reanalysis  (Berrisford et al., 2009). It has a spatial 

resolution of 30 km with 138 vertical levels with the top at 80 km. It has been shown to 160 
out perform ERA-interim in many climatological applications and as a forcing dataset for 

different modeling applications (Albergel et al., 2018; Tarek et al., 2019; Wang et al., 

2019 among others). The parametrization schemes used in the WRF simulation include: 

the Thompson cloud microphysics scheme (Thompson et al., 2008), the NCAR 

Community Atmosphere Model (CAM) scheme for both shortwave and longwave 165 
radiations (Neale et al., 2004), the Noah-MP scheme for the land surface physics (Niu et 

al., 2011), the Mellor-Yamada-Janjic scheme for the planetary boundary layer (Janjic, 

Figure 1: Atmospheric models domain configuration (left) and Lebanon Localization 
map (right). The red dots represent the AWS positions. 
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2002) and the Betts-Miller-Janjic scheme (Betts and Miller, 1986; Janjic, 1994) for deep 

and shallow convection. This WRF configuration has shown its consistency in previous 

studies simulating the seasonal snowpack over complex terrain (Ikeda et al., 2010; 170 
Rasmussen et al., 2011). In addition to the described parametrization, we applied the 

spectral nudging technique to satisfy the large scale atmospheric conditions at the higher 

altitudes, while allowing the model to have its own dynamics inside the planetary 

boundary layer (Von Storch et al., 2000; Waldron et al., 1996). The spectral nudging 

technique was applied for the wind vectors, temperature and geopotential with a wave 175 
number of one in each direction, based on the parameters recommended by Gómez and 

Miguez-Macho (2017), and nudging the waves above ~ 1000 km wavelength. 

Next, the ICAR model was used to obtain a finer 1 km x 1 km spatial grid atmospheric 

simulation nested in the aforementioned WRF simulation domain. This enabled us to 

significantly reduce the high computational cost compared to a long-term high-resolution 180 
WRF simulation. ICAR is a 4D meso-atmospheric model designed for downscaling 

purposes based on linear mountain wave theory. The linear theory allows ICAR to 

compute the main dynamical effect of topography on the atmosphere using an analytical 

solution, thus avoiding the need to solve the Navier-Stokes equations and reducing 

computational cost by a factor of 100. The center of the ICAR simulation was established 185 
in the center of the WRF simulation, using 179 x 179 grid cells in both latitude and 

longitude directions and preventing the boundaries from intersecting complex terrain. 

The model top was situated at 4150 m above the topography with 12 vertical levels, using 

the default model levels heights (Horak et al., 2019). The model configuration used: the 

Thompson cloud microphysics scheme (Thompson et al., 2008), the Noah land surface 190 
model (Chen and Dudhia, 2001) and the Multidimensional Positive Definite Advection 

Transport Algorithm (MPDATA) for the advection (Smolarkiewicz and Margolin, 1998). 

Convection schemes were not implemented for this simulation and the radiative fluxes at 

the surface were prescribed by WRF. The lack of convection could have some impact on 

the total amount of precipitation, and therefore on the seasonal snowpack. However, such 195 
deviations in the total amount of precipitation are partly compensated by the PBS (as 

described in section 3.3.2). 

3.2 Ensemble-based fractional snow cover assimilation 

3.2.1 MODIS fractional snow cover area data estimation 

For this study, we used satellite observations of fSCA, assimilated in an ensemble of 200 
snow simulations to improve the snow water equivalent products (SWE) of ICAR. The 

daily fSCA information was obtained by means of the MODIS sensor, which is orbiting 

the Earth on board two satellites, Terra and Aqua. We have chosen MODIS because of its 

daily revisit time combined with a spatial resolution of 500 m, which is higher than our 

ICAR simulation. More specifically, we have used the Normalized Difference Snow 205 
Index (NDSI) retrievals of collection 6 of the NASA snow-cover products MOD10A1 

(Terra) (Hall et al., 2006) and MYD10A1 (Aqua) (Hall and Riggs, 2016) distributed by 

the National Snow and Ice Data Center. To estimate the fSCA from the MODIS NDSI we 
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have used a linear function following Salomonson and Appel (2004). The coefficients of 

the function were optimized using a serie of 20 m resolution snow products from Theia 210 
Snow collection (Gascoin et al., 2019). The Theia Snow collection provides snow cover 

area maps derived from Sentinel-2 observations. The revisit period of Sentinel-2 is at 

most 5 days since the launch of Sentinel-2B (i.e. after march 2017). It can be shorter in 

areas where successive swaths overlap laterally. We downloaded 645 Theia Sentinel-2 

snow products acquired between 2017-09-03 and 2018-12-24 over Lebanon. For every 215 
Sentinel-2 image we can match a MODIS image since there is a MODIS image every day 

over Lebanon during the same period. Theia binary snow maps were resampled to 500 m 

fSCA in the same grid as the MODIS products by averaging the contributing pixels. By 

comparing these fSCA Theia maps with the MOD10A1 products we could find 5.84x104 

cloud-free pixels which corresponded to MOD10A1 snow-covered pixels on the same 220 
date. A subset of 40% of the NDSI-fSCA were used to fit the linear function using the 

least squares method. The optimized function was tested against the remaining data and 

yielded an fSCA RMSE of 11% and a mean absolute error of 5.7%. The same analysis 

was done with MYD10A1 (Aqua) products but we  opted not to use them in the 

remainder of the analysis because  they exhibited a lower agreement with the Theia 225 
Sentinel-2 snow cover products (RMSE of 21%). The lower agreement of MYD10A1 is 

likely due to degraded sensors (Wang et al., 2012) but may also be related to the 

difference between the overpass time of Sentinel-2 (10:30 local time) and Aqua (13:30 

local time), while Terra share the same overpass time as Sentinel-2. 

We reprojected the generated MODIS fSCA products to the spheroid datum (6370 km 230 
earth radius) Lambert conformal projection used in the ICAR simulation. To avoid 

artifacts as consequence of the data gaps of MODIS imagery caused by the cloud cover, 

we have performed the aggregation when the majority of the MODIS cells used to 

calculate each new resampled cell was cloud free (less than 25% cloud cover), otherwise 

the cell was considered empty missing for the scene in question. In previous studies, the 235 
MODIS fSCA products have shown to have a good performance retrieving fSCA 

information compared with field observations even considering its moderate resolution 

(Aalstad et al., 2020). Thus, they are a robust resource to use when developing regional 

scale snow reanalysis. 

3.2.2 Particle batch smoother implementation 240 

The assimilation procedure was implemented using the PBS scheme (Margulis et al., 

2015). The PBS assigns a weight to each ensemble member according to its agreement 

with the observations through Bayes theorem. The most obvious advantage of this 

technique is its computational efficiency, as it avoids the resampling step common in 

other assimilation algorithms. A complete description of the PBS can be found in 245 
Margulis et al. (2015). It is also summarized in Aalstad et al. (2018) and Fiddes et al. 

(2019). The PBS has been shown to perform well relative to other assimilation algorithms 

when used to assimilate fSCA information (Aalstad et al., 2018; Margulis et al., 2015), 

even though it can suffer from particle degeneracy as consequence of a highly 

inhomogeneous distribution of weights (Van Leeuwen, 2009). In this context, the PBS 250 
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has been successfully used to develop a series of snowpack reanalyses (Cortés et al., 

2016; Fiddes et al., 2019; Margulis et al., 2016). 

For the prior of the PBS implementation, we generated an ensemble of snowpack 

simulations forcing the FSM2 (Essery, 2015), with the ICAR predicted surface 

meteorology. The configuration of the FSM2 model includes an albedo correction as 255 
snow ages with time differently for melting and cold snow, and increases with snowfall 

with a maximum of 0.9. The compaction rate was calculated based on overburden and 

thermal metamorphism (Verseghy, 1991). The turbulent exchange coefficient was 

stability corrected based on the bulk Richardson number. The thermal conductivity was 

calculated based on snow density. Finally, the FSM2 configuration accounted for 260 
retention and refreezing of water inside the snowpack. Such a configuration has been 

shown to properly simulate the inter- and intra-annual variability of the snowpack 

dynamics over mountains with a similar Mediterranean climate (Alonso-González et al., 

2018). 

To generate the ensemble of forcing datasets, we perturbed the precipitation and the 2 m 265 
air temperature surface fields of the ICAR output using a log-normal and a normal 

(Gaussian) probability density functions respectively. We choose the mean of the 

probability functions from the averaged biases of the ICAR simulation, estimated form 

independent observations provided by three mountain AWS at the locations shown in 

Figure 1 (Fayad et al., 2017a). The variance of the probability distribution functions was 270 
calculated by doubling the variance of the errors  to increase the spread of the ensemble 

to cover the apparent uncertainty in the ICAR outputs. The precipitation phase had to be 

recalculated for the new synthetic temperatures for each ensemble member. Due to the 

strong dependency of the snowpack over Lebanon on precipitation phase, a simple 

temperature threshold based precipitation phase partitions are not recommended (Fayad 275 
and Gascoin, 2020). Instead, we have used the psychrometric energy balance method 

approach proposed by Harder and Pomeroy (2013), where the precipitation phase is 

estimated by means of the estimation of the temperature of the falling hydrometeor 

calculated form the air temperature and relative humidity. A total of 400 ensemble 

members per ICAR cell were independently generated by randomly drawing 280 
multiplicative time-constant parameters from the log-normal probability function for 

precipitation, and additive parameters from the normal probability function for the 2 m 

air temperature.  

To estimate the fSCA of each ensemble member we used the probabilistic snow depletion 

curve proposed by Liston (2004). This model simulates the subgrid peak SWE 285 
distribution using a lognormal probability density function. Then, the fSCA is diagnosed 

using the accumulated melt depth estimated from the energy balance outputs of the 

FSM2, the peak mean SWE, and the peak subgrid coefficient of variation (CV)of the 

lognormal probability density function, assuming a constant melt over the grid cell. The 

CV used in this model is strongly controlled by the characteristics of the terrain. We have 290 
included the CV parameter as part of the assimilation, perturbing its value inside the 

recommended values in Liston (2004) using a mean of 0.4 and a variance of 0.01 
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(Aalstad et al., 2018). The PBS was implemented over the fSCA ensemble over each grid 

cell and season independently, using the values of the melting season, corresponding to 

the months of March through June. Finally, the generated SWE products (ICAR_assim 295 
hereafter) were estimated from the weighted mean of the SWE of the ensemble members, 

where the weights were obtained using the PBS. A schematic description of the whole 

process is presented in Figure 2. 

 

3.3 Validation procedure and analysis of the SWE products 300 

The ICAR atmospheric simulation and the ICAR_assim products were compared against 

independent observations. First, the ICAR atmospheric simulation was compared with 

three AWS located in the main mountain range of the domain (Fayad et al., 

2017a)(Figure 1). Temperature and precipitation measurements were aggregated to the 

hourly model output frequency from the original 30-minute time resolution. Then, the 305 
temperature and precipitation biases were estimated. The precipitation data was available 

only in two of the AWS. The error values and its variance were used to define the shape 

of the probability density functions of the perturbation parameters described above to 

generate each ensemble. 

Figure 2: Schematic flow chart of the ICAR_assim snow product devel-
opment 
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Table 1: AWS geographical coordinates and elevations. Elevation of the ICAR cell that 310 
contains each AWS. 

AWS Snow seasons Elevation    

[m a.s.l.] 

Latitude 

(WGS84) 

Longitude 

(WGS84) 

ICAR elevation 

[m a.s.l.] 

A 2013 to 2016 2834 34.27º N 36.09º E 2827 

B 2014 to 2016 1843 34.14º N 35.88º E 1746 

C 2011 to 2016 2296 33.98º N 35.86º E 2272 

After the PBS implementation, we compared the ICAR and ICAR_assim snow products 

with the snow depth observed information derived from a Campbell SR50A acoustic 

gauge at the three AWS. The observed snow depth was transformed into SWE by 

assuming a constant snow density value of 467 kg m−3, estimated from observations in 315 
the area (Fayad et al., 2017a). That was necessary to make the AWS data comparable 

with the ICAR snow outputs as they are provided only as SWE. Even if it is commonly 

implemented in operational atmospheric forecast models, the assumption of a constant 

density could introduce obvious bias in the SWE estimation (Dawson et al., 2017). In the 

Mediterranean snowpacks, such biases are partially reduced as consequence of the high 320 
densification rates of the snowpack (Bormann et al., 2013; Fayad et al., 2017b). 

However, we introduced a sensitivity analysis in the comparison, varying the density 

value in the range of ± 15% to illustrate such uncertainity. To compensate the big shift 

between the ICAR and ICAR_assim resolutions (1 km x 1 km) and the point-scale nature 

of the AWS observations, we have interpolated a new SWE series from the 4 nearest cells 325 
of the simulations using the inverse distance method.  

The spatial accuracy of the SWE products was compared to satellite observations. First, 

we developed a daily gapfilled snow cover time series covering the time period of the 

ICAR simulation from the MODIS snow cover products using the methodology proposed 

by Gascoin et al. (2015)⁠. Then, the products were aggregated to estimate the averaged 330 
snow presence over each cell in percentage (𝑃(𝑠𝑛𝑜𝑤)). The MODIS 𝑃(𝑠𝑛𝑜𝑤) product 

was aggregated to the ICAR grid to make it comparable. Then, we calculate the 𝑃(𝑠𝑛𝑜𝑤) 

for the ICAR and ICAR_assim simulations. We choose a SWE MODIS detection 

threshold of 20 mm to calculate the 𝑃(𝑠𝑛𝑜𝑤) from the simulated SWE series, inside the 

range recommended by Gascoin et al. (2015). All the spatial analysis and the data 335 
assimilation was computed over the areas that had exhibited a 𝑃(𝑠𝑛𝑜𝑤)> 5%, which 

amounts to a total surface of 4412 km2. 
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4. Results and Discussion 

4.1 Atmospheric simulation results 

The use of ICAR is justified as it is computationally inexpensive compared to similar 340 
WRF simulations, while retaining a physical basis to enable simulations in regions 

lacking observations. The speed up factors can range from 140 in its more complex 

configurations (as choose for this study) to 800 in its simpler configurations (Gutmann et 

al., 2016). However, the linear theory simplification presents some limitations when 

predicting the motion of the atmosphere, such as interactions between waves and 345 
turbulence (Nappo, 2012) or the lack of explicit convection. Despite these limitations, 

ICAR has been shown to be a valuable tool for downscalling showing a good consistency 

with observations (Horak et al., 2019), as well as with fully dynamical WRF simulations 

(Gutmann et al., 2016). Figure 3 shows how the ICAR model was able to improve the 2 

m air temperature data, compared with the ERA5 reanalysis (ICAR mean error= 2.8ºC 350 
compared with 8.5ºC in ERA5), showing comparable performances with the WRF 

coarser simulation (WRF mean error = 2.3 ºC). It was not expected to improve the parent 

WRF simulation with ICAR, but the increase of resolution was necessary as the 

snowpack simulations requires higher resolutions. The coarser ERA5 resolution that 

smooths the terrain leads to warm biases. This is particularly evident in the Lebanon 355 
ranges were the elevation gradient ranges from 0 to 3000 m a.s.l. in approximately 25 km 

(Figure 1). Despite the clear improvement in the temperature performance, the simulation 

is biased towards slightly higher temperatures than the AWS data. However, the main 

temporal patterns and the magnitude of the temperature are well represented. 
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 360 

Similarly, precipitation outputs of ICAR were compared with the gauges deployed in two 

of the AWS sites. ICAR reduces the spread of the daily precipitation errors of ERA5 as 

shown in Figure 4 (standard deviation of 11.5mm in ERA5 compared with the 8.4mm of 

ICAR), even though the ERA5 error are already surprisingly low considering the spatial 

resolution and the fact that precipitation is challenging to simulate by numerical models 365 
especially over complex terrain (Legates, 2014). This validation provides a range of 

uncertainty estimates to help generate the probability density functions for the 

perturbations of the ensemble. The selected parameters to define the shape of the normal 

Figure 3: ERA5 (green), WRF (blue), ICAR (red) and AWS (black) daily tempera-
ture data. The boxplots represent the distribution of the errors and the gray 
shadows the data gaps in the observations. 
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probability density function which defines the additive perturbation to the temperature 

were set to a mean of -3.0 ºC and a variance of 1.8 ºC. Similarly, the parameters of the 370 
lognormal probability density function used to obtain the multiplicative perturbation 

factors for the precipitation were a mean of 2.0 and a variance of 0.75. Even though the 

parameters were designed to model the uncertainty of ICAR, they are similar to 

comparable implementations of the PBS (Cortés et al., 2016). Through the forced 

increase of the variance of the probability density functions, we ensure that the ensemble 375 
of snow simulations covers the expected uncertainty space of ICAR, while the PBS has 

proved to be robust to progressive variations of the perturbation parameters (Cortés et al., 

2016). 

 

4.2 Fractional snow cover assimilation 380 
The new proposed linear relationship function to derive fSCA from NDSI has improved 

the MODIS fSCA products when compared with the relationship function by Salomon-

son and Appel (2004) (Supplementary figure 1). Using the relationship function by Sa-

lomonson and Appel (2004) resulted in larger mean absolute error (MAE) (6.2% com-

Figure 4: ERA5 (green), WRF (blue), , ICAR (red) and AWS (black) daily precipitation 
data. The boxplots represent the distribution of the errors and the gray shadows the 
data gaps in the observations. 
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pared to 5.7%) and Root Mean Squared Error (RMSE) (12% compared to 11% ). The 385 
equation of the linear fit is: 

𝑓𝑆𝐶𝐴 = 1.23 ⋅ 𝑁𝐷𝑆𝐼 + 0.23 

The performance of ICAR_assim was compared against snow depth measurements at the 

AWS locations (Figure 5) and MODIS gapfilled products (Figures 6 and 7). In general, 

ICAR has a tendency to underestimate the SWE compared with ICAR_assim. This is 390 
likely related to the warm biases detected in the simulation, combined with the limitations 

of the snow model implemented in the Noah land surface model used by ICAR (Barlage 

et al., 2010). Thus, future versions of ICAR with better representations of the snow 

processes through the implementation of more complex land surface parametrizations 

like Noah-MP (Niu et al., 2011), as used in the parent WRF simulation, could potentially 395 
improve the accuracy of ICAR’s SWE outputs (Suzuki and Zupanski, 2018). This effect 

could be particularly enhanced in the mild climatic conditions of Lebanon, as larger 

disagreements in the SWE outputs between Noah and Noah-MP occur under warm 

conditions (Kuribayashi et al., 2013). However, the improvement of the snow 

representations of ICAR is clear when compared with ERA5 reanalysis which was not 400 
able to reproduce the snowpack at all due to its coarse resolution. 
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Figure 5: Comparison between observed, ICAR, FSM, and ICAR_assim. SWE products. 
The green in the background indicates the time steps when ICAR_assim improves the 
performance of ICAR. 
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 The use of FSM to generate the ensemble of simulations, introduced some uncertainties 405 
in the workflow. Some water years showed earlier snow melts using the FSM forced by 

ICAR, compared with the ICAR snow outputs. As the uncertainty of the snow models 

associated to the forcing is higher than the uncertainty associated by the use of different 

model parameterizations and model structures (Günther et al., 2019)⁠, we hypothesize that 

such differences were caused by the differences in the precipitation phase partitioning, 410 
which is challenging to simulate in the areas that remain close to 0 ∘C during the snow 

season (Fayad and Gascoin, 2020). The lack of spring snowfalls in some years may have 

deep implications in the snowpack simulation that are not limited to its effect in the mass 

balance and the releasing of latent heat by refreezing the liquid precipitation. It leads to 

lower albedos, which combined with the high short-wave radiation of Lebanon due to its 415 
latitude causes earlier snow melts. However, such discrepancies are greatly minimized in 

ICAR_assim, by the assimilation of the fSCA retrievals 

The results of the validation of ICAR_assim show a good agreement with the 

observations. For the estimated SWE, the RMSE and the MAE relative to the AWS were 

189.2 mm and 104.52 mm respectively after removing the summer from the analyses, 420 
with a coefficient of correlation (R) of 0.75 for theannual mean SWE accumulation. Even 

though ICAR_assim generally shows a good agreement with the observations (especially 

considering the scale mismatch between the stations and ICAR_assim), some clear 

differences were found. Figure 5 exhibits a surprisingly high difference in the magnitude 

of the observed SWE and the ICAR_assim output for the 2011/2012 winter season in the 425 
third AWS. However, independent observations in the area have described an exceptional 

snowpack in this season, with snow depths more than 6 m even reaching up to 10 m 

locally (Koeniger et al., 2017). Such disagreements between the AWS information and 

the independent observations can be explained by the high spatial heterogeneity of the 

snow depth at point scales (López-Moreno et al., 2011). This effect was studied in the 430 
Atlas mountains, where the agreement of the snow simulations rapidly drops using 

resolutions over 250 m (Baba et al., 2019). Such spatial heterogeneity has been shown to 

be particularly high over mount Lebanon due to the important role of the wind 

redistribution as consequence of geomorphology (Fayad and Gascoin, 2020). For 

example, Fayad and Gascoin (2020), reported large differences with the AWS data from 435 
in situ measurements on 15 of January 2016, when they measured snow depths up to 258 

cm on the surroundings of the third AWS location (Figure 5; bottom panel), while the 

AWS sensor itself detected 7.5 cm. However, the comparison between the temporal 

patterns of the snow cover over Lebanon from MODIS gap-filled daily products and 

ICAR_assim have shown good levels of agreement with a RMSE=270.2 km2, a 440 
MAE=124.1 km2 over a total surface of 4412km2 (Figure 6), and a Pearson correlation 

value of R=0.88 in the annual maximum of the snow cover extent (Figure 6). The larger 

spatial support of the MODIS products permits a more representative and extensive 

validation of ICAR_assim. Thus, the good agreement between both snow cover products 
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and the generally SWE magnitudes with the AWS observations shows the temporal 445 
consistency of the ICAR_assim reanalysis. 

 

The spatial patterns of ICAR_assim, were also compared with the MODIS gapfilled 

products (Figure 7). The spatial comparison of the 𝑃(𝑠𝑛𝑜𝑤) showed a very good level of 

agreement demostrating the potential of fSCA assimilation through the PBS in improving 450 
the ICAR SWE products. The comparison showed a correlation value of R=0.98, a 

RMSE=3.0 % and a MAE=2.3 % improving the ICAR simulation that exhibited values of 

R=0,79, RMSE=14.3% and MAE=12.3%. There was a general tendency to slightly 

underestimate the 𝑃(𝑠𝑛𝑜𝑤) values by ICAR_assim, specially at the lower elevations. We 

hypothesize that this effect could be caused by the selection of a constant SWE depth to 455 
calculate the snow cover from the ICAR_assim product. Thus, the shallow snowpacks 

whose SWE values are under the selected threshold are not recorded as snow presence in 

the ICAR_assim even though they could potentially be detected as snow by the MODIS 

sensor. In addition, the MODIS snow cover products should be considered less accurate 

over areas of  rapid melt (Gascoin et al., 2015). Such mismatch between ICAR_assim and 460 
MODIS combined with the fact that the 2011 – 2012 snow season showed persistent 

cloud covers related with its exceptional snowpack, could explain the biases in the Figure 

6. During the 2011 – 2012 snow season, the gapfilling algorithm had less information to 

fill the MODIS snow cover time series, while the PBS had propagated the fSCA 

information through the whole season from the few available observations. In summary, 465 
our results have shown how ICAR_assim can accurately reproduce the inter-annual and 

intr-annual spatiotemporal patterns of the snow cover, with a SWE magnitude 

comparable with independent observations that agree well in terms of temporal patterns. 

Figure 6: Daily snow cover extent comparison between MODIS gapfilled products and 
ICAR_assim. 
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4.3 Snowpack dynamics over Lebanon mountains 470 

ICAR_assim exhibits some limitations that should be considered. First, despite the high 

resolution of the reanalysis the regional nature of the simulations prevent the 

representation of some processes like wind or avalanches snow redistribution. In 

addition, there are some other sources of uncertainty involved in the development of the 

reanalysis, like the depletion curve, the fSCA derived from MODIS or the structural 475 
uncertainty associated with each model. However, ICAR_assim has been shown to be 

consistent with the limited observations providing a valuable resource in the data scarce 

context of the Lebanese mountains. 

Figure 8 shows the spatial distribution of the mean peak SWE values and its temporal 

coefficient of variation for the 2010-2017 time period. Such values can be influenced by 480 
the fact that the study period is relatively humid compared with the previous years (Cook 

et al., 2016), showing slightly higher values than a long term climatology. However, the 

length of the reanalyses constitutes a reasonably representative sample of the main 

snowpack dynamics over the region. The snowpack over Lebanon has exhibited the high 

temporal variability that is characteristic of the Mediterranean snowpacks (Fayad et al., 485 
2017b), with similar values of the coefficient of variation as those observed in other 

Mediterranean mountain ranges (Alonso-González et al., 2020). The maximum 

accumulations reach 2000 mm of SWE and are located at the higher elevations of mount 

Lebanon, where there is a plateau over the elevation of the winter zero isotherm (Fayad 

and Gascoin, 2020). The temporal coefficient of variation of the annual peak SWE 490 
follows unequal spatial patterns, . It tends to exhibit higher values over the areas sheltered 

from direct interaction with the warm and moist Mediterranean air. In addition it exhibits 

a decreasing trend with elevation (Figure 9) as found in other Mediterranean ranges 

(Alonso-González et al., 2020), reaching a mimimum of 15%. 

Figure 7: Snow probability spatial comparison between observed MODIS products and 
ICAR_assim. 
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 495 

 

There are clear differences between the Lebanon and Anti-Lebanon ranges, that can be 

just partially explained by their different orography. Despite the closeness of both 

Lebanon and Anti-Lebanon ranges, they exhibit different relationships between the 

values of mean peak SWE (Figure 9 top panel) and snow duration(Figure 9 bottom panel) 500 
and with the elevation, showing that the differences are not just related to the particular 

orography of each range, but also with its climatological characteristics. Thus, at 

comparable elevations mount Lebanon tends to show higher values of 𝑃(𝑠𝑛𝑜𝑤) and 

mean peak SWE, with lower values of coefficient of variation, suggesting thicker, longer 

lasting and seasonally stable snowpack. The orographic precipitation caused by the uplift 505 
of the Mediterranean moisture is a major source of precipitation in the area (Jomaa et al., 

2019) That is probably why Anti-Lebanon mountains shows lower peak accumulations 

than Mount Lebanon, with Anti-lebanon in the rain shadow leading to lower precipitation 

and snow accumulation. However, despite the differences in the coefficient of variation 

values, they tend to become similar at the higher elevations. The same coefficient of 510 
variation occurs in the elevations where the precipitation leads the snow accumulation 

while they differ at the lower elevations, where the accumulation is conditioned by the 

temperature. This effect suggest warmer conditions on the Anti-Lebanon mountain as 

consequence of leeside wind effects (Foëhn type effect), and confirm the sensitivity of 

the snow simulation to the chosen partition phase method over Mediterranean mountains 515 
(Fayad and Gascoin, 2020). 

 

Figure 8: Averaged annual peak SWE (left) and annual coefficient of variation 
(right). 
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Figure 10 shows the averaged seasonal SWE accumulation at different elevations over 

both the Lebanon and Anti-Lebanon ranges. Each elevation represents the aggregated 520 
pixels of the elevation with a range of ± 50 m a.s.l. For reference, they show on average a 

peak SWE of 306 mm at the elevation band of 2000 m a.s.l., which is comparable to 

those found in the Iberian Peninsula mountain ranges (Alonso-González et al., 2020). 

More specifically, the peak SWE and duration values shows intermediate values between 

the Central Iberian and Pyrenees ranges at 2000 m a.s.l, but with a peak SWE coefficient 525 
of variation of 53 %, that is greater than the highest values of Iberia located at Sierra 

Nevada with 34 %. The relative area lying at each elevation compared with the total 

elevation over 1300 m a.s.l. is represented to highlight the importance of the hypsography 

from the hydrological point of view. Thus, Lebanon exhibits a deep and long lasting 

snowpack with up to 1000 mm of peak SWE on average particularly over 2500 m a.s.l., 530 

Figure 9: Relationship between annual peak SWE and elevation (top), coefficient of 
variation and elevation (middle), and snow duration and elevation (bottom). 
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but the relative areal coverage of such elevations is very low. This suggest that the mean 

peak SWE series at lower elevations could hide a large variation in mass due to the wider 

areas at lower elevations where many different peak SWE values can coexist, as Alonso-

González et al.(2020) found in the Iberian mountain ranges. 

 535 

 

The thick snowpacks found at the higher elevations are not necessarily the biggest fresh 

water resources available due to the hypsometry of the mountain area. Figure 11 shows 

the average amount of freshwater stored in the snowpack per elevations band. It is 

obvious that the maximum amount of freshwater is stored between 2100 to 2500 m.a.s.l., 540 
despite the fact that thicker snowpacks are at higher elevations. The cumulative water 

storage in the snowpack is more than double in the medium elevation zone (average 

maximum up to 552 Hm3 from 1300 to 2300m a.s.l.) when compared to the higher areas 

(average maximum up to 189 Hm3 at 2400 m a.s.l. and onward). This is an important part 

of the yearly water budget, as mean annual precipitation was estimated in to be 7200 Hm3 545 
for the period (2010-2016)  (Jaafar et al., 2020). Noting that this in contrast to the fact 

that the orography of Lebanon encourages the storage of snow in the upper areas because 

of the existence of a high elevation plateau(Fayad et al., 2017a; Fayad and Gascoin, 

2020)⁠. These results suggest new challenges for the water management of Lebanon in the 

future as a consequence of warming climate. The snowpack at low elevation areas is 550 
more sensitive to warming (Jefferson, 2011; Marty et al., 2017; Sproles et al., 2013), 

particularly over areas with mild winter conditions as has been shown in other 

Mediterranean regions (Alonso-González et al., 2020a)⁠. 

Figure 10: Mean annual evolution of  SWE at different elevation bands. Dark blue line 
represent the Anti-lebanon range, black line the Mount Lebanon range,  and red line 
the relative areal coverage of each elevation above 1300 m a.s.l. 
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5. Conclusions 555 

The assimilation of MODIS fSCA through the use of the PBS has proven to be a cost 

effective way to use remote sensing data in snow simulations, and is particularly 

appropriate for simulating snow in data scarce regions. Thus, the generated SWE 

products show good agreement with MODIS snow cover gapfilled data, with R = 0.98, 

RMSE = 3.0 % and MAE = 2.3 %  for the spatial map of the probability of snow. The 560 
time series of snow cover showed a R=0.88, RMSE=270.2 km2, and MAE=124.1 km2 

over a total surface of 4412km2. The performances in terms of SWE magnitude with the 

few available point-scale observations was R=0.75, RMSE=189.2 mm, and MAE = 104.5 

mm after removing the summer from the analyses. 

The snowpack over Lebanon is characterized by a high temporal variability. Some 565 
differences exist between its two main mountain ranges. Mount Lebanon exhibits thicker, 

longer and more regular snowpacks compared to the Anti-Lebanon range. Such 

differences cannot only be explained by the elevation difference but also reflects the 

dryer conditions on the leeside of the Mount Lebanon range due the rain shadow effect. 

The hypsometry of Lebanon results in the most important snow freshwater reservoir 570 
being in the middle elevations (2200-2500 m a.s.l.). Snowpacks at these elevations close 

to the 0 ºC isotherm are highly vulnerable to climate warming. As such, our findings 

suggest big challenges for the future management of water resources over the Lebanon 

region. 

 575 

Figure 11: Averaged annual water stored in the snowpack at different elevation bands. 
Dark blue line represent the Anti-Lebanon range, black line the Mount Lebanon range ,  
and red line the relative areal coverage of each elevation above 1300 m a.s.l. 
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Supplementary 1: Comparison of Salomoson and Appel 2004 function and the newly devel-
oped linear equation. The color scale represents the logarithmic relative density by bins. 


