
We thank the reviewer for these comments on our manuscript.  Below we respond (in bold type) 

to the reviewer's comments (in normal type). 

 

The authors have developed a MATLAB script and an R script that estimates new water fractions and 

transit time distributions (TTDs) based on Kirchner’s 2019 method. The method has been extended 

in this manuscript to provide robust estimations when outliers are present. I believe that this 

manuscript can serve as a good manual for potential users of that script. They have also provided 

some thoughtful analyses that would help users understand the potential limitations of the method. 

The manuscript is well‐written and mostly ready for publication. I only have some minor comments 

to help increase readability. Also, as a potential user, I have a few questions for the authors on how 

to use the method correctly. 

 

1. Required number of samples 

Could you suggest, at least, a rule of thumb number for the minimum number of samples required 

to perform an analysis using this method? I do not think that there would be a definite answer, and I 

guess it would depend on which analysis a user wants to do (among many others). Still, any 

suggestion would help potential users design their sampling strategy for their analysis of interest. 

The required number of samples will indeed depend on many other factors beyond just what 

analysis the user wants to do (new water fraction vs. TTD).  Some of those factors include: 

a) how variable are the tracer concentrations in precipitation, and over what timescales? 

b) how variable are the tracer concentrations in streamflow, and over what timescales?  (Note 

that this will depend not only on the answer to (a), but also on the timescales of catchment 

storage – in other words, what the transit time distribution is.) 

c) how stationary vs. non‐stationary (time‐invariant vs. time‐variant) is the catchment's transit 

time distribution? 

d) how large are the measurement uncertainties in the tracer concentrations?  Are the 

measurement errors serially correlated, and by how much? 

e) what errors or uncertainties in the results (Fnew and TTD values) are acceptable? 

Many of these factors will be unknown in advance (for example, the sample size needed to 

estimate a TTD will vary, depending on what that TTD is, which will not be known – that's the 

whole point of estimating the TTD in the first place).  Thus it is difficult at this stage to provide a 

rule of thumb, until we (and the community) gain more experience with real‐world applications.   

In the meantime, the most informative approach is to generate benchmark data sets under a 

range of assumptions, and then test how the sample size affects the accuracy of the inferred Fnew 

and TTD.  Unfortunately we cannot recommend a way to short‐cut that process. 

 

2. New water fractions and TTDs estimations when the TTDs are humped 

The authors showed that the method overestimates uncertainty associated with the estimated 

averaged TTD when TTDs are humped. They argued that nonstationarity (time variability) of the 



TTDs might have caused the overestimation problem. If that is the case, is it possible to get better 

uncertainty estimations when one estimates TTDs for each subset (assuming that the subsets are 

well constructed)? 

We already tried this and unfortunately it doesn't work.  Or rather, it might theoretically work, but 

not under conditions that are likely to be encountered in the real world.  Consider a simplified 

nonstationary system that has two different states, "wet", and "dry", with a different (stationary) 

TTD in each of these two states.  If the "wet" state lasted long enough that the catchment stayed 

wet between the time the tracer entered the catchment in rainfall and exited in streamflow, and 

likewise if the "dry" state lasted long enough that the catchment stayed dry between tracers 

entering in precipitation and exiting in streamflow… and if one could cleanly split the data set 

between the "wet" and "dry" subsets, then yes, the strategy described by the reviewer could 

potentially work.   

But this would require that the timescales over which the catchment switches between wet and 

dry conditions were much longer than the timescales over which the catchment stores tracers, 

which will rarely be the case.   In the messy real world, by contrast, many different precipitation 

events, and many changes in catchment conditions, are overprinted on each other between the 

time that tracers enter in precipitation and leave in streamflow.   

The authors also showed that the method overestimates the new water fraction at the daily time 

scale when the TTDs are humped. While they have shown that the issue can be resolved at the 

weekly time scale, I think that there is a way to get a good estimation at the daily time scale. Some 

of their explanations about the overestimation of the new water fraction and the results that are 

shown in Figure 6 imply that the method could estimate Fnew pretty well at the daily time scale if 

one estimates TTDs first (probably with m about 7 days in this case, and for each subset to alleviate 

the uncertainty overestimation issue) and then use Beta_0 for QFnew? 

We already thought of this and already tried it, and the reason we didn't describe it is because it 

didn't work.  (Indeed if we mentioned every intuitive‐sounding idea that doesn't work, and 

explained why it doesn't work, the paper would be many times its present length.) 

 

3. On the use of IRLS 

The role of IRLS is a bit unclear. Their robust estimation method consists of two steps (the MAD‐

based filtering and the use of IRLS), but those steps’ relative importance is not discussed. As the 

authors described in lines 173‐178, IRLS could be an additional source of getting less accurate 

estimates. Would it be possible that, in some cases, the method estimates better TTDs and new 

water fractions when only the filtering is applied? Then, I think it would be great to provide an 

option to do the MAD‐based filtering separately. 

We really don't think this would be a good idea.  MAD‐based filtering and IRLS, like any other 

robust estimation procedures, will both reduce the accuracy of any results that rely on extreme 

values that are not actually outliers (but instead, for example, are simply the very long tails of an 

outlier‐free distribution).  If, on the other hand, the extreme values are indeed outliers, then these 

procedures will greatly improve the accuracy of the results (relative to those from non‐robust 

analyses corrupted by outliers.   

The only case in which it would make sense to used MAD‐based filtering and not use IRLS would 

be if we knew that all of the outliers were big enough to be detected and removed by MAD‐based 



filtering, and none were small enough to get through the MAD filter.  Such a situation seems highly 

improbable.  Thus the decision to use robust estimation or not is, in our view, an either/or 

decision that the user should make.   

 

4. Clarifications 

L9, L65: I am not sure if the method can “measure” TTDs and new water fractions. 

We can say "estimate" instead since the TTD and Fnew are not measured directly.   

We will note, though, that many quantities that are actually estimated from proxies are typically 

called measurements instead.  For example, an altimeter actually measures air pressure, and uses 

it to calculate (or infer) altitude.  A GPS unit actually measures the relative arrival times of radio 

waves from GPS satellites, and calculates or infers the user's position.  But most people have no 

problem saying that an altimeter measures altitude and a GPS measures one's location. 

L58: It is hard to understand why the strongly biased outliers are harder to detect and eliminate. 

Strongly biased outliers are harder to detect and eliminate because they shift the mean of the 

distribution, making it harder to distinguish between the outliers and the un‐corrupted data.  Data 

with strongly biased outliers may also be difficult to distinguish from the naturally skewed 

distributions that characterize many environmental variables. 

L61: “Large enough” – Wouldn’t it makes the outliers easy to detect? 

That depends on the detection technique.  The example shown in Fig. 2 involves some outliers 

that have so much leverage on the fitted line that it lies close to them – and thus they are harder 

to detect as outliers based on their residuals (which is why we can't rely on IRLS alone to do the 

job, since IRLS is based on identifying unusually large outliers). 

L317: The authors have used the term “nonstationarity” frequently throughout the manuscript. If I 

understand correctly, I think it should be “time variability,” not nonstationarity. 

Nonstationarity refers, in conventional usage, to the time‐variability of the statistical properties of 

a quantity (typically a distribution).  Thus "nonstationary" and "time‐varying" are typically used 

interchangeably.  To make this equivalence explicit, we will add "(i.e., time‐varying)" after one use 

of "nonstationary" and "(i.e., time‐invariant)" after one use of "stationary".   

L330: Perhaps better to provide the lag‐1 serial correlation rsc for the non‐humped TTD cases. 

The goal of this analysis is to show how the non‐stationarity of the humped TTDs leads to inflated 

standard errors.  To show this, we compare results from stationary and non‐stationary benchmark 

models that have similar average TTDs.  The stationary and nonstationary benchmark models have 

the same parameter values, but one has constant precipitation (giving a stationary TTD) and the 

other has time‐varying precipitation (giving a nonstationary TTD).  If instead we compared 

benchmark models with different parameters, as suggested by the reviewer, we would not be able 

to demonstrate the role that non‐stationarity plays in generating large standard errors. 

Figure 2: CP and CQ notations here do not match with the notation used in the text. In the text, the 

double subscript notation is used. 



That's a formatting issue in the plotting program, which doesn't allow double subscripts.  We'll fix 

it by hand. 

Figure 2b: Coloring the corrupted data point (using different colors for the corrupted CP and CQ) 

would make the figure easier to understand. 

Good point.  We will re‐plot the figure with the same colors shown in Fig. 2a, and the outliers in 

black. 

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess‐2020‐ 330, 

2020. 

 



We thank reviewer #2 for these comments on our manuscript.  Below we respond (in bold type) to the 

reviewer's comments (in normal type). 

The Technical Note: “Calculation scripts for ensemble hydrograph separation” by Kirchner and Knapp, 

presents an ensemble hydrograph separation tool, useful to estimates new water fractions and transit 

time distributions (TTDs). The authors developed user‐friendly scripts that perform EHS calculations in 

two broadly used platforms (MATLAB and R). 

The authors used an impressive synthetic data set, that despite the limitations they clearly stated in the 

manuscript, mimics reasonably the real word behavior of isotope time series. 

The authors made an important contribution to the scientific community by helping to solve the 

common problem of lack of monitored/non‐stationary end end‐members while performing hydrograph 

separation. Moreover, they put great effort into describing the method, providing examples, and 

addressing uncertainties issues. I was delight by reading this technical note that is well‐structured and 

clearly written. 

Some of my main suggestions matched those of Reviewer RC1 (specifically related to IRLS and the 

overestimation of Fnew when the TTDs are humped) and were already clarified by the authors by 

including them as supplementary material. 

I found this work in very good form and suggest the Editor accept this publication after a single 

additional clarification. 

Thanks very much for these comments. 

L 380‐392 Could the authors please further explain the mismatch between the discharge age tracking 

using the benchmark model and the new ensemble hydrograph separation? As well as the potential 

implications for sampling size and frequency. This will be useful for users who will apply the method 

with real‐world data.  

As we indicated in our response to reviewer #1, it is difficult to generalize here.  What we show in Fig. 

11, and comment on in lines 380‐392, are results for one specific set of benchmark model parameters, 

and for the particular time series of precipitation fluxes and tracer concentrations shown in Fig. 1.  It 

would of course be interesting to undertake a more systematic exploration of how the sample size 

and frequency, as well as the various benchmark model parameters and the characteristics of the 

precipitation time series, all affect the uncertainties and errors in ensemble hydrograph separation 

estimates.   

But that would be an entirely different (and probably much longer) paper.  The point of this paper is 

to make the codes for the method publically available and to briefly illustrate their possible uses and 

limitations.  We should also keep this matter in perspective: both in the earlier paper (Kirchner, 2019) 

and in the present manuscript, we have already tested this method more rigorously than many others 

have been tested. 

What we can do is to expand the discussion in Section 4.5 to also include some comments on sample 

size, based on our recent experience applying ensemble hydrograph separation to real‐world data 

from Plynlimon (Knapp et al., 2019).  In the revised manuscript, we will therefore begin Section 4.5 

with the following: 



"Prospective users of ensemble hydrograph separation may naturally wonder what sample sizes and 

sampling frequencies are needed to estimate new water fractions and transit time distributions.  The 

answers will depend on many different factors, including the time scales of interest to the user, the 

desired precision of the F_new and TTD estimates, the logistical constraints on sampling and analysis, 

the frequency and intermittency of precipitation events, the variability of the input tracers over 

different time scales, and the time scales of storage and transport in the catchment itself (that is, 

what the TTD is and how non‐stationary it is, which of course can only be guessed before 

measurements are available).  Ideally one should sample at a frequency that is high enough to capture 

the shortest time scales of interest, and sample much longer than the longest time scales of interest.  

One should also aim to capture many diverse transport events, spanning many different catchment 

conditions and precipitation characteristics. 

Beyond these generalizations, it is difficult to offer concrete advice.  We can, however, report our 

recent experience applying ensemble hydrograph separation to weekly and 7‐hourly isotope time 

series at Plynlimon, Wales (Knapp et al., 2019).  We were generally able to estimate TTDs out to lags 

of about three months based on four years of weekly sampling.  The same four years of weekly 

samples yielded about 100 precipitation‐discharge sample pairs (after samples corresponding to 

below‐threshold precipitation were removed), which were sufficient to estimate weekly event new 

water fractions with an uncertainty of about 1% (e.g.,  𝑭𝐐𝐩
𝐧𝐞𝐰~ 8±1%).  When these were split into 

four seasons, we could estimate event new water fractions with an uncertainty of about 2‐3% using 

20‐30 weekly precipitation‐discharge pairs, and when they were split into 4‐6 different ranges of 

precipitation and discharge, we could reasonably well constrain the profiles of new water response to 

catchment wetness and precipitation intensity  (Fig. 10 of Knapp et al., 2019).  We were able to 

estimate 7‐hourly TTDs out to lags of 7 days based on about 17 months of 7‐hourly isotope samples, 

including almost 1500 discharge samples and 540 above‐threshold precipitation samples, and splitting 

these data sets in half allowed us to distinguish the TTDs for summer and winter conditions (Figs. 11 

and 12 of Knapp et al., 2019).  However, these numbers should not be uncritically adopted as rules of 

thumb for other catchments, since precipitation at Plynlimon is frequent and weakly seasonal, and 

the catchment is characterized by rapid hydrological response but relatively long storage timescales 

(Kirchner et al., 2000).  All of these characteristics could potentially affect the sample sizes needed for 

estimating new water fractions and transit time distributions.  As more experience is gained at more 

catchments, general rules of thumb may emerge.  Until then, however, benchmark tests like those 

described here can potentially provide a more reliable site‐specific guide to sample size 

requirements." 
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Abstract.  Ensemble hydrograph separation has recently been proposed as a technique for using passive tracers to 

measureestimate catchment transit time distributions and new water fractions, introducing a powerful new tool for 10 

quantifying catchment behavior.  However, the technical details of the necessary calculations may not be straightforward for 

many users to implement.  We have therefore developed scripts that perform these calculations on two widely used platforms 

(MATLAB and R), to make these methods more accessible to the community.  These scripts implement robust estimation 

techniques by default, making their results highly resistant to outliers.  Here we briefly describe how these scripts work, and 

offer advice on their use.  We illustrate their potential and limitations using synthetic benchmark data. 15 

1.  Introduction 

What fraction of streamflow is composed of recent precipitation?  Conversely, what fraction of precipitation becomes 

streamflow promptly?  What is the age distribution of streamwater?  What is the "life expectancy" of precipitation as it 

enters a catchment?  And how do all of these quantities vary with catchment wetness, precipitation intensity, and landscape 

characteristics?  Questions like these are fundamental to understanding the hydrological functioning of landscapes and 20 

characterizing catchment behavior.  Ensemble hydrograph separation (EHS) has recently been proposed as a new tool for 

quantifying catchment transit times, using time series of passive tracers like stable water isotopes or chloride.  Benchmark 

tests using synthetic data have shown that this method should yield quantitatively accurate answers to the questions posed 

above (Kirchner, 2019), and initial applications to real-world data sets (e.g., Knapp et al., 2019) have demonstrated the 

potential of this technique.   25 

 

However, it has become clear over the past year that the equations of Kirchner (2019, hereafter denoted K2019) may be 

difficult for many users to implement in practically workable calculation procedures or computer codes.  It has also become 

clear that robust estimation methods would be a valuable addition to the ensemble hydrograph separation toolkit, given the 

likelihood of outliers in typical environmental data sets.  The present contribution is intended to fill both of these needs, by 30 
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presenting user-friendly scripts that perform EHS calculations in either MATLAB or R, and that implement robust 

estimation by default. 

 

Here we demonstrate these scripts using synthetic data generated by the benchmark model of K2019, which in turn was 

adapted from the benchmark model of Kirchner (2016).  We use these benchmark data instead of real-world observations, 35 

because age-tracking in the model tells us what the correct answers are, so that we can verify how accurately these EHS 

scripts infer water ages from the synthetic tracer time series.  The benchmark model consists of two non-linear boxes 

coupled in series, with a fraction of the discharge from the upper box being routed directly to streamflow, and the rest being 

routed to the lower box, which in turn discharges to streamflow (for further details, see Kirchner, 2016 and K2019).  It 

should be emphasized that the benchmark model and the ensemble hydrograph separation scripts are completely independent 40 

of one another.  The benchmark model is not based on the assumptions that underlie the ensemble hydrograph separation 

method.  Likewise, the EHS scripts do not know anything about the internal workings of the benchmark model; they only 

know the input and output water fluxes and their isotope signatures.  Thus the analyses presented here are realistic analogues 

to the real-world problem of trying to infer the internal functioning of catchments from only their inputs and outputs of water 

and tracers. 45 

 

Figures 1a and 1b show the simulated daily water fluxes and isotope ratios used in most of the analyses below.  The 

precipitation fluxes are averages over the previous day (to mimic the effects of daily time-integrated precipitation sampling), 

and the streamflow values are instantaneous values at the end of each day (to mimic the effects of daily grab sampling).  We 

also aggregated these daily values to simulate weekly sampling, using weekly volume-weighted average tracer 50 

concentrations in precipitation and weekly spot values in streamflow (representing grab samples taken at the end of each 

week).  Five percent of the simulated tracer time series were randomly deleted to mimic sampling and measurement failures, 

and a small amount of random noise was added to mimic measurement errors. 

 

To illustrate the need for robust estimation techniques, and to demonstrate the effectiveness of the robust estimation methods 55 

employed in our scripts, we also randomly corrupted the synthetic isotope data with outliers (Fig. 1c).  These outliers are 

intentionally large; for comparison, the entire range of the outlier-free data shown in Fig. 1b lies between the two dashed 

lines in Fig. 1c.  The outliers are also strongly biased (they all deviate downward from the true values), making them harder 

to detect and eliminate.  We make no claim that the size of these outliers, and their frequency in the data set, reflect outlier 

prevalence and magnitude in the real world (which would be difficult to estimate in practice, without replicate sampling or 60 

other independent reference data).  Instead, these outliers were simply chosen to be large enough, and frequent enough, that 

they will substantially distort the results of non-robust analyses.  They thus provide a useful test for the robust estimation 

methods described below. 
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2.  Estimating new water fractions using the function 𝐄𝐇𝐒_𝐅𝐧𝐞𝐰 

The simplest form of ensemble hydrograph separation seeks to measureestimate the fraction of streamflow that is composed 65 

of recent precipitation.  Conventional hydrograph separation uses end-member mixing to estimate the time-varying 

contributions of "event water" and "pre-event water" to streamflow.  By contrast, ensemble hydrograph separation seeks to 

estimate the average fraction of new water in streamflow, averaged over an ensemble of events (hence the name), based on 

the regression slope between tracer fluctuations in precipitation and discharge (see Fig. 2a), 

𝐶୕ೕ െ 𝐶୕ೕషభ ൌ 𝐹୬ୣ୵
୕୮  ቀ𝐶୔ೕ െ 𝐶୕ೕషభቁ ൅ 𝛼 ൅ 𝜀௝       , ሺ1ሻ 70 

where 𝐹୬ୣ୵
୕୮  is the "event new water fraction" (the average fraction of new water in streamflow during sampling intervals 

with precipitation), 𝐶୕ೕ and 𝐶୕ೕషభare the tracer concentrations in streamflow at time steps 𝑗 and 𝑗 െ 1, 𝐶୔ೕ is the volume-

weighted average tracer concentration in precipitation that falls between time 𝑗 െ 1 and time 𝑗, and the intercept 𝛼 and the 

error term 𝜀௝ can be viewed as subsuming any bias or random error introduced by measurement noise, evapoconcentration 

effects, and so forth (see Sect. 2 of K2019 for formulae and derivations).   75 

 

Although ensemble hydrograph separation is rooted in assumptions that are similar to end-member mixing, mathematically 

speaking it is based on correlations between tracer fluctuations rather than on tracer mass balances.  As a result, it does not 

require that the end-member signatures are constant over time, or that all the end-members are sampled or even known, and 

it is relatively unaffected by evaporative isotopic fractionation or other biases in the underlying data (see Sect. 3.6 of 80 

K2019).  Even when new water fractions are highly variable over time, one can show mathematically (and confirm with 

benchmark tests) that ensemble hydrograph separation will accurately estimate their average (see Sect. 2 and Appendix A of 

K2019).  As Fig. 2a shows, higher discharges (indicating wetter catchment conditions) may be associated with larger new 

water fractions, and thus stronger coupling between tracer fluctuations in precipitation and streamflow.  Nonetheless, the 

regression slope in Fig. 2a averages over these variations, yielding an event new water fraction (0.164±0.006) that equals, 85 

within error, the true event new water fraction (0.168±0.005) determined by age tracking in the benchmark model.  

 

The lagged streamflow tracer concentration 𝐶୕ೕషభ serves as a reference level for measuring the fluctuations in the tracer 

concentrations 𝐶୔ೕ and 𝐶୕ೕ in time step 𝑗.  This has the practical consequence that the sampling interval determines what 

"new water" means.  For example, if 𝐶୔ and 𝐶୕ are sampled daily, "new water" means water that fell within the previous day 90 

(and thus is expressed in units of day-1), and if they are sampled weekly, "new water" means water that fell within the 

previous week (and thus is expressed in units of week-1).  Because the meaningmeanings and dimensions of new water 

fractions depend on the sampling interval, so do the numerical values, as illustrated by Knapp et al. (2019).  In our example, 

the weekly event new water fraction, calculated from weekly sampling of the daily values in Fig. 1, is 0.443±0.024, which 

agrees, within error, with the true weekly event new water fraction (0.429±0.017).  Astute readers will notice that the weekly 95 
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new water fraction is not 7 times the daily one, implying that translating between weekly and daily event new water fractions 

is not just a matter of converting the units.  This is partly because weeks rarely consist of seven consecutive daily 

hydrological events (instead they typically include some days without rain).  Thus the relationship between daily and weekly 

new water fractions will depend on the intermittency of precipitation events.  One must also keep in mind that the proportion 

of new water in streamflow cannot exceed 1, so new water fractions, even when evaluated from low-frequency data, cannot 100 

be arbitrarily large.   

 

As explained in Sect. 2 of K2019, there are three main types of new water fractions.  First, as noted above, the event new 

water fraction 𝐹୬ୣ୵
୕୮  is the average fraction of new water in streamflow during sampling intervals with precipitation.  

Second, the new water fraction of discharge 𝐹୬ୣ୵
୕  is the average fraction of new water in streamflow during all sampling 105 

intervals, with or without precipitation; this will obviously be less than the event new water fraction because periods without 

precipitation will not contribute any new water to streamflow.  Third, the "forward" new water fraction, or new water 

fraction of precipitation 𝐹୬ୣ୵
୔ , is the average fraction of precipitation that will be discharged to streamflow within the 

current sampling interval.  Both 𝐹୬ୣ୵
୕  and 𝐹୬ୣ୵

୔  can be derived by re-scaling 𝐹୬ୣ୵
୕୮  from Eq. (1) by the appropriate 

denominators.  All three of these new water fractions can also be volume-weighted (to express, for example, the fraction of 110 

new water in an average liter of streamflow, rather than on an average day of streamflow), if the regression in Eq. (1) is 

volume-weighted; these volume-weighted fractions are denoted using an asterisk, as 𝐹୬ୣ୵∗
୕୮ , 𝐹୬ୣ୵∗

୕ , and 𝐹୬ୣ୵∗
୔ .   

 

In our scripts, new water fractions are calculated by the function EHS_Fnew.  Users supply EHS_Fnew with vectors of 

evenly spaced data for the water fluxes 𝑃 and 𝑄, and tracer concentrations 𝐶୔ and 𝐶୕, in precipitation and discharge.  Users 115 

can also specify five options: a) the threshold precipitation rate 𝑝_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (in the same units as 𝑃), below which 

precipitation inputs will be ignored, under the assumption that they will mostly have been lost to canopy interception, b) 

𝑣𝑜𝑙_𝑤𝑡𝑑, a logical flag (default=false) indicating whether the new water fractions should be volume-weighted, c) 𝑟𝑜𝑏𝑢𝑠𝑡, a 

logical flag (default=true) indicating whether the new water fractions should be calculated using robust estimation methods 

as described in Sect. 2.1 below, d) 𝑠𝑒𝑟_𝑐𝑜𝑟𝑟, a logical flag (default=true) indicating whether the standard error estimates 120 

should account for serial correlation in the residuals, and e) 𝑝𝑡𝑓𝑖𝑙𝑡𝑒𝑟, a point filter vector of logical flags indicating whether 

individual time steps should be included in the analysis, thus facilitating easy analyses of subsets of the original time series.  

The function EHS_Fnew returns estimates of  𝐹୬ୣ୵
୕୮ , 𝐹୬ୣ୵

୕ , and 𝐹୬ୣ୵
୔  and their associated standard errors, with or without 

volume-weighting depending on whether 𝑣𝑜𝑙_𝑤𝑡𝑑 is set to true or false. 
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2.1 Robust estimation of new water fractions 125 

The linear regression in Eq. (1), like any least-squares technique, is potentially vulnerable to outliers.  Because potential 

outliers are often present in environmental data, practical applications of ensemble hydrograph separation would benefit 

from a robust method for estimating new water fractions.  Such a method should not only be insensitive to outliers; ideally it 

should also be statistically efficient (i.e., it should yield reasonable estimates from small samples), and it should be 

asymptotically unbiased (i.e., it should converge to the conventional regression results when outliers are absent, with a bias 130 

near zero for large samples).   

 

Figure 2 shows ensemble hydrograph separation plots of the outlier-free benchmark data (Fig. 2a, estimated from the time 

series shown in Fig. 1b) and the outlier-corrupted benchmark data (Fig. 2b, estimated from the time series shown in Fig. 1c).  

On these axes – precipitation and streamflow tracer fluctuations on the 𝑥 and 𝑦 axes, respectively, each expressed relative to 135 

the streamflow tracer concentration in the previous time step – the regression slope estimates the event new water fraction 

𝐹୬ୣ୵
୕୮ .  Here we are interested in how outliers affect this regression slope.  When outliers are absent (Fig. 2a), the 

regression slope (0.164±0.006, estimate±standard error) is consistent with the true event new water fraction 𝐹୬ୣ୵
୕୮ = 

(0.168±0.005) calculated from water age tracking in the benchmark model.   

 140 

By contrast, outliers substantially distort the ensemble hydrograph separation plot in Fig. 2b; they extend well beyond the 

range of the outlier-free data indicated by the gray rectangle, and inflate the estimate of 𝐹୬ୣ୵
୕୮  by nearly a factor of three.  

Outliers in precipitation tracer concentrations will be displaced left or right from the corresponding true values (in Fig. 2b, 

these outliers are displaced to the left because they are all negative).  Precipitation outliers will thus tend to flatten the 

regression line.  Outliers in streamflow concentrations will appear in two different ways.  First, they will be displaced above 145 

or below the corresponding true values (in this case, they are only displaced below, because they are all negative).  Secondly, 

they will also appear as strongly correlated deviations on both the 𝑥 and 𝑦 axes because streamflow concentrations at time 

𝑗-1 are used as reference values for both precipitation concentrations (on the 𝑥 axis) and streamflow concentrations (on the 𝑦 

axis) at time 𝑗.  Unlike precipitation outliers, these correlated points will tend to artificially steepen the regression line.  Thus, 

whether outliers steepen or flatten the regression relationships underlying ensemble hydrograph separation will depend on 150 

the relative abundance and size of the streamflow outliers and precipitation outliers (relative to each other, and relative to the 

variability in the true streamflow and precipitation tracer values).  In the example shown in Fig. 2b, the outliers have the net 

effect of artificially steepening the fitted slope, yielding an apparent 𝐹୬ୣ୵
୕୮  of 0.430±0.018 that is more than 2.5 times the 

true value of 0.168±0.005 determined by age tracking in the benchmark model. 

 155 

Many robust estimation methods will not be effective against outliers like those shown in Fig. 2b, which create points that 

have great leverage on the slope of the fitted line.  This leverage can allow the outliers to pull the line close enough to 



 

6 
 

themselves that they will not be readily detected as outliers.  To address this problem, our robust estimation procedure has 

two parts.  The first step is to identify extreme values of both precipitation and streamflow tracer concentrations at the outset, 

and exclude them by setting them to NA (thus treating them as missing values).  This will effectively prevent outliers from 160 

exerting strong leverage on the solution.  Because the exclusion criterion must itself be insensitive to outliers, we define 

extreme values as those that lie farther from the median than six times MAD, the median absolute deviation from the median.  

The cutoff value of six times MAD was borrowed from the residual downweighting function used in Locally Weighted 

Scatterplot Smoothing (LOWESS: Cleveland, 1979).  Any exclusion criterion may also eliminate points that are not outliers, 

but simply extreme values.  However, unless the underlying distribution has very long tails, the 6 ∙ MAD criterion will 165 

exclude very few points that are not outliers.  If the underlying data follow a normal distribution, for example, the chosen 

criterion will exclude only the outer-most 0.005 percent of that distribution. 

 

As a second step, we use iteratively reweighted least squares (IRLS: Holland and Welsch, 1977) to estimate the regression 

slope, and thus the event new water fraction 𝐹୬ୣ୵
୕୮ .  IRLS iteratively fits Eq. (1) by linear regression, with point weights 170 

that are updated after each iteration.  Points with unusually large residuals are given smaller weight.  In this way, IRLS 

regressions follow the linear trend in the bulk of the data, giving less weight to points that deviate substantially from that 

trend.  This behavior, which allows IRLS to down-weight outliers, can have undesirable effects in analyses of outlier-free 

data exhibiting divergent trends.  In Fig. 2a, for example, higher flows have steeper trends, with the highest 20 percent of 

flows (shown in red) exhibiting a much steeper trend than the rest of the data.  Because IRLS gives these points relatively 175 

less weight, the robust estimate of 𝐹୬ୣ୵
୕୮  is 0.126±0.004, 25% less than the true value of 0.168±0.005 determined from age 

tracking in the benchmark model.  Thus, in this case, the robust estimation procedure is somewhat less accurate than 

ordinary least squares if the data are free of outliers.  Conversely, however, the outliers in Fig. 2b have little effect on the 

robust estimation procedure, which returns a 𝐹୬ୣ୵
୕୮  estimate of 0.115±0.005, within 10% of the outlier-free value.  This 

example demonstrates that like any robust estimation procedure, ours is highly resistant to outliers but at the cost of reduced 180 

accuracy when outliers are absent, particularly in cases, like Fig. 2a, that superimpose widely differing trends.  Robust 

estimation is turned on by default, but users can turn it off if they are confident that their data are free of significant outliers. 

3.  Profiling catchment behavior using 𝐄𝐇𝐒_𝐩𝐫𝐨𝐟𝐢𝐥𝐞 

Visual comparisoncomparisons of the different discharge ranges shown by different colors in Fig. 2a indicate that in these 

benchmark data, higher discharges are associated with stronger coupling between tracer concentrations in precipitation and 185 

streamflow, implying that streamflow contains a larger fraction of recent precipitation.  This observation implies that by 

estimating 𝐹୬ୣ୵
୕୮  by regression for each discharge range separately, one can profile how new water fractions vary with 

discharge (and thus with catchment wetness, at least in the benchmark model system, with catchment wetness).  As outlined 
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in K2019, this can be accomplished by splitting the original data set into separate ensembles and running EHS_Fnew on each 

ensemble individually.   190 

 

Although this can be achieved by applying a series of point filter vectors to isolate each ensemble, here we provide a 

function, EHS_profile, that automates this process.  Users supply EHS_profile with the same data vectors and logical flags 

needed for EHS_Fnew as described in Sect. 2 above, plus a criterion vector for sub-setting the data and two vectors that 

define the percentile ranges of this criterion variable to be included in each subset.  Many different variables could be chosen 195 

as the sub-setting criterion; examples include discharge (or antecedent discharge), precipitation intensity (or antecedent 

precipitation), day of year, soil moisture, groundwater levels, fractional snow cover, and so forth.   

 

Figures 3 and 4 show example profiles created by EHS_profile from the benchmark model time series, with and without 

outliers.  The gray lines in Fig. 3 show how new water fractions (the fractions of streamflow that entered the catchment as 200 

precipitation during the same sampling interval, as determined by age tracking in the benchmark model) vary as a function of 

discharge rates.  The gray lines in Fig. 4 show the similar age tracking results for "forward" new water fractions (the 

fractions of precipitation that leave as streamflow during the same sampling interval), as a function of precipitation rates.  

These age tracking results are compared to profiles of the new water fraction 𝐹୬ୣ୵
୕  and "forward" new water fraction 𝐹୬ୣ୵

୔  

calculated from the tracer time series using EHS_profile, with and without robust estimation (dark and light symbols, 205 

respectively, in Figs. 3 and 4).  If the tracer time series contain no outliers (Figs. 3a and 4a), both the robust and non-robust 

estimation procedures accurately estimate the new water fractions in each discharge range (i.e., the light and dark blue points 

closely follow the gray line).  By contrast, if the tracer time series are corrupted by outliers (Figs. 3b-f and 4b), the non-

robust estimation procedure yields new water fractions (light blue points) that deviate dramatically from the age tracking 

results, even if outliers make up only 1 percent of the data set (Fig. 3b).  By contrast, the robust estimation procedure yields 210 

new water fractions (dark blue points) that closely follow the age tracking results (Figs. 3b-e and 4b), at least as long as the 

fraction of outliers in the data set does not exceed10exceed 10 percent.  Somewhere between an outlier frequency of 10 and 

20 percent, the robust estimation procedure reaches its so-called "breakdown point" (Hampel, 1971), at which it can no 

longer resist the outliers' effects (see Fig. 3f).  This breakdown point is relatively low (for comparison, the breakdown point 

of the median as an estimator of central tendency is 50 percent) because the outliers introduce highly correlated artifacts into 215 

the analysis (see Fig. 2b) and because these particular outliers are very large and very strongly biased (they always lie below 

the true values).  The breakdown point could be raised by tailoring the exclusion criterion (step 1 in our two-step procedure) 

to these particular outlier characteristics – for example, by basing it on deviations relative to the median of the densest 50% 

of the data, rather than the median of all the data, to counteract the bias in the outliers.  Doing so, however, would violate the 

principle that the scripts and the data used to test them should be fully independent of one another, as outlined in Sect. 1.  In 220 

any case, the empirical breakdown point of 10-20 percent identified in Fig. 3 is specific to this particular data set with these 

particular outlier characteristics, and should not be interpreted as indicating the likely breakdown point in other situations.  In 
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general, however, we would expect the robust estimation procedure to be more resistant to outliers that are smaller or less 

strongly biased.   

 225 

Astute readers will note that the robust estimates of new water fractions almost exactly match the benchmark age tracking 

data in the profiles shown here, whereas they underestimated the same age tracking data by roughly 25% in Sect. 2.1 above, 

where the data were not separated into distinct ranges of discharge or precipitation rates.  The difference between these two 

cases is illuminating.  Individual discharge ranges exhibit well-defined relationships between tracer fluctuations in 

precipitation and streamflow; that is, the individual colored discharge ranges in Fig. 2a show roughly linear scatterplots with 230 

well constrained slopes.  Thus, for these individual discharge ranges, the robust estimates agree with the benchmark "true" 

values (and the non-robust estimates do too, if the underlying data are free of outliers).  However, when these different 

discharge ranges are superimposed, the robust estimation procedure down-weights the high-discharge points because they 

follow a different trend from the rest of the data, resulting in an underestimate of the new water fraction averaged over all 

discharges.  Thus users should be aware that our robust estimation procedure (like any such procedure) can be confounded 235 

by data in which some points exhibit different behavior than the rest, and are therefore excluded or down-weighted as 

potential anomalies.   

4.  Estimating transit time distributions using 𝐄𝐇𝐒_𝐓𝐓𝐃 

One can estimate catchment transit time distributions from tracer time series by extending Eq. (1) to a multiple regression 

over a series of lag intervals 𝑘 ൌ 0 …𝑚: 240 

ቀ𝐶୕ೕ െ 𝐶୕ೕష೘షభ
ቁ ൌ෍  𝛽௞  ቀ𝐶୔ೕషೖ െ 𝐶୕ೕష೘షభ

ቁ

௠

௞ୀ଴

  ൅ 𝛼 ൅ 𝜀௝        , ሺ2ሻ 

where the vector of regression coefficients 𝛽௞ can be re-scaled to yield different types of transit time distributions as 

described in Sects. 4.5-4.7 of K2019.  Applying Eq. (2) to catchment data is straightforward in principle but tricky in 

practice, because any rainless intervals will lead to missing precipitation tracer concentrations 𝐶୔ೕషೖ for a range of time steps 

𝑗 and lag intervals 𝑘.  Handling this missing data problem requires special regression methods, as outlined in Sect. 4.2 of 245 

K2019.  Gaps in the underlying data can also lead to ill-conditioning of the covariance matrix underlying the least-squares 

solution of Eq. (2), leading to instability in the regression coefficients 𝛽௞.  This ill-conditioning problem is handled using 

Tikhonov-Phillips regularization, which applies a smoothness criterion to the solution in addition to the least-squares 

goodness-of-fit criterion, as described in Sect. 4.3 of K2019.   

 250 

The function EHS_TTD spares users from the practical challenges of implementing these methods.  Users supply EHS_TTD 

with the same data vectors needed for EHS_Fnew as described in Sect. 2 above.  Users also specify 𝑚, the maximum lag in 
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the transit time distribution, and 𝜈, the fractional weight given to the Tikhonov-Phillips regularization criterion (versus the 

goodness-of-fit criterion) in determining the regression coefficients 𝛽௞.  The default value of 𝜈 is 0.5, following Sect. 4.3 of 

K2019, which gives the regularization and goodness-of-fit criteria roughly equal weight; if 𝜈 is set to zero, the regularization 255 

criterion is ignored and the estimation procedure becomes equivalent to ordinary least squares.  Users can set the optional 

point filter 𝑄𝑓𝑖𝑙𝑡𝑒𝑟 to filter the data set by discharge time steps (for example, to track the ages of discharge leaving the 

catchment during high or low flows, regardless of the conditions that prevailed when the rain fell that ultimately became 

those streamflows).  Alternatively, users can set the optional point filter 𝑃𝑓𝑖𝑙𝑡𝑒𝑟 to filter the data set by precipitation time 

steps (for example, to track the life expectancy of rainwater that falls during large or small storms, regardless of the 260 

conditions that will prevail when that rainwater ultimately becomes discharge).  It is also possible to set both 𝑃𝑓𝑖𝑙𝑡𝑒𝑟 and 

𝑄𝑓𝑖𝑙𝑡𝑒𝑟 so that both the precipitation and discharge time steps are filtered, but this capability should be used cautiously 

because it could potentially lead to TTDs being estimated on only a small, and highly fragmented, part of the data set.   

 

The function EHS_TTD returns vectors for the transit time distribution QTTD (the age distribution of streamflow leaving the 265 

catchment), the "forward" transit time distribution PTTD (the "life expectancy" distribution of precipitation entering the 

catchment), and their associated standard errors.  If the 𝑣𝑜𝑙_𝑤𝑡𝑑 flag is true, the corresponding volume-weighted 

distributions (QTTD* and PTTD*) and their standard errors are returned.  In all cases, the units are fractions of discharge or 

precipitation per sampling interval (e.g., day-1 for daily sampling or week-1 for weekly sampling).  This difference in units 

should be kept in mind when comparing results obtained for different sampling intervals. 270 

4.1 Robust estimation of transit time distributions 

In EHS_TTD, robust estimation of transit time distributions follows a multi-step approach that is analogous to that which is 

used in EHS_Fnew (described in Sect. 2.1 above).  We first exclude extreme values of both precipitation and streamflow 

tracer concentrations using the 6 ∙ MAD criterion.  We then apply iteratively reweighted least squares (IRLS) to Eq. (2), 

without regularization; this yields a set of robustness weights, which down-weight points that lie far away from the 275 

multidimensional linear trend of the data.  These robustness weights are then applied within the Tikhonov-Phillips 

regularized regression that estimates the transit time distribution.  This robust estimation approach requires that we handle 

the missing data problem in a different way than the one that was documented in Sect. 4.3 of K2019.  The necessary 

modifications are detailed in Appendix A. 

 280 

This robust estimation procedure yields transit time distributions that are highly resistant to outliers (Fig. 5).  The gray lines 

in Fig. 5 show the true transit time distributions of discharge (QTTD) and "forward" transit time distributions of precipitation 

(PTTD), as determined by age tracking in the benchmark model.  These age tracking results are compared to transit time 

distributions calculated from the tracer time series using EHS_TTD, with and without robust estimation (dark and light 
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symbols, respectively, in Fig. 5).  When the tracer time series are outlier-free (Fig. 5a and 5c), both the robust and non-robust 285 

estimation procedures accurately estimate these TTDs (i.e., the light and dark blue points closely follow the gray lines).  

When the tracer time series are corrupted by outliers (Figs. 5b and 5d), the non-robust TTDs (light blue points) deviate 

substantially from the age tracking results (gray lines), but the robust TTDs (dark blue points) follow the gray lines nearly as 

well as with the outlier-free data. 

4.2 Overestimation of uncertainties in humped transit time distributions 290 

The benchmark tests shown in Figs. 2-5 above, like most of those presented in K2019, are based on a benchmark model 

simulation that yields "L-shaped" TTDs, that is, those in which the peak occurs at the shortest lag.  In this section we explore 

several phenomena associated with the analysis of distributions that are "humped", that is, those that peak at an intermediate 

lag.  Where tracer data are sufficient to constrain the shapeshapes of catchment-scale TTDs, they suggest that humped 

distributions are rare (Godsey et al., 2010).  They are also not expected on theoretical grounds, since precipitation falling 295 

close to the channel should reach it quickly and with little dispersion, leading to TTDs that peak at very short lags (Kirchner 

et al., 2001; Kirchner and Neal, 2013).  Nonetheless, humped distributions could potentially arise in particular catchment 

geometries (Kirchner et al., 2001), or in circumstances where tracers are introduced far from the channel but not close to it.  

Thus we have re-run the benchmark model with parameters that generate humped TTDs (Su,ref = 50 mm, Sl,ref = 50 mm, bu = 

5, bl = 2, and η = 0.01), driven by the same time series of precipitation rates and rainfall δ18O values used in Sects. 2-4.1 300 

above.  

 

Figure 6 shows both forward and backward humped transit time distributions, as estimated by EHS_TTD from the 

benchmark model daily tracer time series, with their standard errors.  (Here, as in the other analyses presented in this note, 

𝑠𝑒𝑟_𝑐𝑜𝑟𝑟 = true, so the standard errors account for serial correlation in the residuals.)  It is visually obvious that the error 305 

bars, which represent a range of ±1 standard error, are much larger than either the differences in the TTD estimates 

themselves (the solid dots) between adjacent lags, or the typical deviations of the TTD estimates from the true values 

determined from age tracking (the gray lines).  In other words, the error bars greatly exaggerate the uncertainty or 

unreliability of the TTD estimates.  If the TTD estimates are unbiased, and their standard error estimates are too, then the 

standard error should approximate the root-mean-square deviation between the estimate and the benchmark.  If the errors are 310 

roughly normally distributed, the true value should lie within the error bars about 65-70 percent of the time, and outside the 

error bars about 30-35 percent of the time.  By contrast, the error bars in Fig. 6 are many times larger than the typical 

deviation of the TTD estimates from the true values.  Figure 5 shows a milder form of this exaggeration of uncertainty; here 

too, the age tracking values almost never lie outside the error bars, whereas that should occur about 1/3 of the time if the 

error bars are estimated accurately.   315 
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Thus it appears that the TTD error estimates are generally conservative (i.e., they overestimate the true error), but with 

humped distributions the uncertainties are greatly exaggerated.  Numerical experiments (Fig. 7) reveal that this problem 

arises from the nonstationarity of the transit times in the benchmark model (and, one may presume, in real-world catchment 

data as well).  K2019 (Sect. 4 and Appendix B) showed that ensemble hydrograph separation correctly estimates the average 320 

of the benchmark model's nonstationary (i.e., time-varying) TTD, as one can also see in Figs. 6 and 8.  When this 

(stationary) average TTD is used to predict streamflow tracer concentrations (which is necessary to estimate the error 

variance and thus the standard errors), however, it generates nearly the correct patterns of values but not with exactly the 

right amplitudes or at exactly the right times (see Fig. 7a).  This is the natural consequence of estimating a nonstationary 

process with a stationary (i.e., time-invariant) statistical model.  As a result, the residuals are larger, with much stronger 325 

serial correlations, than they would be if the underlying process were stationary (compare Figs. 7a and 7b), resulting in much 

larger calculated standard errors of the TTD coefficients.  These tendencies are even stronger for humped TTDs, which 

introduce stronger serial correlations in the multiple regression fits that are used to estimate the TTD itself.  Serial 

correlations in the residuals reduce the effective number of degrees of freedom by a factor of approximately (1-𝑟ୱୡ)/(1+𝑟ୱୡ), 

where 𝑟ୱୡ is the lag-1 serial correlation coefficient of the residuals, thus increasing the standard error by roughly a factor of 330 

[(1+𝑟ୱୡ)/(1-𝑟ୱୡ)]0.5.  For the nonstationary case shown in Fig. 7a, 𝑟ୱୡ is 0.96, (thus increasing the standard error by a factor of 

roughly 7,), whereas for the stationary case shown in Fig. 7b, 𝑟ୱୡ is 0.22, (thus increasing the standard error by only a factor 

of 1.25.).  

 

Since the exaggerated standard errors in Fig. 6 arise primarily from the nonstationarity in the benchmark model's transit 335 

times, one might intuitively suspect that this problem could be at least partly resolved by dividing the time series into 

separate subsets (representing, for example, wet conditions with shorter transit times and dry conditions with longer transit 

times), and then estimating TTDs for each subset separately using the methods described in Sect. 4.4 below.  Benchmark 

tests of this approach were unsuccessful, however.  This approach might theoretically work, if the "wet" and "dry" states 

persisted for long enough that tracers would both enter and leave the catchment while it was either "wet" or "dry".  Under 340 

more realistic conditions, however, many different precipitation events and many changes in catchment conditions will be 

overprinted on each other between the time that tracers enter in precipitation and leave in streamflow, making this approach 

infeasible. 

 

A somewhat counterintuitive approach that shows more promise is to use lower-frequency tracer data to estimate humped 345 

TTDs.  Figure 8 shows that if the same TTDs as those shown in Fig. 6 are estimated from weekly data rather than daily data, 

the standard errors more accurately approximate the mismatch between the TTD estimates and the true values (i.e., the 

difference between the blue dots and the gray curves).   Weekly sampling yields much more reasonable standard errors in 

this case, because the multiple regression residuals are much less serially correlated (see Fig. 7c; 𝑟ୱୡ is 0.66, increasing the 

standard error by only a factor of 2.2).  In addition, with daily data the TTD coefficients are estimated for a closely spaced 350 
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mesh of lag times (with lag intervals of 1 day), and broad TTDs like the ones shown in Fig. 6 do not change much over such 

short lag intervals.  Thus the individual TTD coefficients on such a closely spaced mesh are not well constrained; one could 

make the TTD stronger at the fifth daily lag and weaker at the sixth daily lag, for example, with little effect on the overall fit 

to the data.  With weekly sampling, the TTD coefficients are more widely separated in time (with lag intervals of 1 week), 

and thus are less redundant with one another. 355 

4.3 Overestimation of Fnew when distributions are humped 

Figure 9 shows profiles of new water fractions new water fractions ( 𝐹୬ୣ୵
୕ ) and forward new water fractions ( 𝐹୬ୣ୵

୔ ), 

analogous to those shown in Figs. 3-4, but based on model simulations yielding the humped distributions shown in Fig. 6.  

One can immediately see that the new water fractions are substantially overestimated, and that this bias is particularly large 

for forward new water fractions associated with low rainfall rates (i.e., the left side of Fig. 9b).  These artifacts arise because 360 

the random fluctuations in input tracer concentrations used in the benchmark model have a serial correlation of 0.5 between 

successive daily values.  Thus the correlations between input and output tracer fluctuations at lag zero (and thus the new 

water fractions) are artificially inflated by leakage from the stronger correlations at longer lags, where the TTD is much 

stronger.  Numerical experiments show that the bias in the new water fractions disappears when the short-lag serial 

correlation in the input tracers is removed, supporting this hypothesis for how the bias arises.  Nonetheless, real-world 365 

precipitation tracer concentrations are often serially correlated, (particularly in high-frequency measurements), so researchers 

should be aware of the bias that they could potentially introduce intoarise in new water fractions if transit time distributions 

are humped.   

 

In principle the exampledistortions arising from the correlations in the precipitation tracer data could potentially be alleviated 370 

by calculating TTDs for individual precipitation and discharge ranges using the methods outlined in Sect. 4.4 below, and 

then estimating 𝐹୬ୣ୵
୕  and 𝐹୬ୣ୵

୔  from the lag-zero coefficients of QTTD and PTTD, respectively.  Benchmark tests of this 

approach were not successful, however, possibly because the transit time distributions cannot be estimated reliably when the 

source data are split among so many narrow ranges of precipitation or discharge.  (Indeed, in many cases users may seek to 

estimate new water fractions precisely because they lack sufficient data to reliably estimate transit time distributions.) 375 

 

Instead, benchmark tests suggest that a practical cure for the biases shown here, this in Fig. 9 may be, counterintuitively, to 

estimate profiles of 𝐹୬ୣ୵
୕  and 𝐹୬ୣ୵

୔  from lower-frequency measurements, similar to the estimation of humped TTDs.  As 

Fig. 10 shows, the bias in Fig. 9 is effectively eliminated if the profiles of new water fractions are estimated from weekly 

samples instead of daily samples (see Fig. 10)..  This occurs because the input tracers are less correlated over weekly 380 

sampling intervals than over daily sampling intervals, and because the TTD is much stronger at short lags on weekly time 

scales (Fig. 8) than on daily time scales (Fig. 6).  In real-world cases, biases like those shown in Fig. 9 may not be obvious, 
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because the correct answer (shown here by the gray line, derived from benchmark model age tracking) will not be known.  

However, the behavior in Fig. 9b is implausible on hydrological grounds (why should catchments quickly transmit a 

particularly large fraction of very small precipitation events to the stream?), and the 𝐹୬ୣ୵
୔  profiles in Figs. 9b and 10b show 385 

strongly contrasting patterns.  Thus observations like these may help in identifying biased new water fraction estimates, even 

in cases where the TTD itself has not been quantified. 

4.4 Visualizing catchment nonlinearity using precipitation- and discharge-filtered TTDs 

Transit time distributions are typically constructed from the entire available tracer time series for a catchment, as in Figs. 5, 

6, and 8.  Such TTDs can be considered as averages of catchments' nonstationary transport behavior, as shown in Sect. 4.2 390 

above.  However, ensemble hydrograph separation can also be used to calculate TTDs for filtered subsets of the full 

catchment time series, focusing on either discharge or precipitation time steps that highlight particular conditions of interest.  

(In Appendix B we describe the new procedure that EHS_TTD uses for filtering precipitation time steps; this approach yields 

more accurate results than the one outlined in Sect. 4.2 of K2019.)  TTDs from these filtered subsets of the full time series 

can yield further insights into catchment transport phenomena. 395 

 

For example, we can map out the nonlinearities that give rise to catchments' nonstationary behavior, by comparing TTDs 

from subsets of the original time series that represent different catchment conditions (Fig. 11).  Larger precipitation events in 

our benchmark model result in forward transit time distributions with peaks that are higher, earlier, and narrower (Fig. 11a).  

A similar progression in peak height, timing, and width is observed in forward TTDs (Fig. 11b) obtained from the 400 

benchmark tracer time series by setting the point filter 𝑃𝑓𝑖𝑙𝑡𝑒𝑟 in EHS_TTD to focus on individual ranges of precipitation 

rates.  The backward transit time distributions in the benchmark model (Fig. 11c) differ somewhat from the forward transit 

time distributions (Fig. 11a), but exhibit a similar shift to higher, earlier, and narrower peaks at higher discharges.  This trend 

is also reflected in backward TTDs (Fig. 11d) obtained from the benchmark time series by setting 𝑄𝑓𝑖𝑙𝑡𝑒𝑟 for the same 

discharge ranges used in Fig. 11c.   405 

 

The ensemble hydrograph separation TTDs do not perfectly match the age tracking results shown by the dotted gray lines in 

Figs. 11b and 11d, particularly for the smallest fractions of the precipitation and discharge distributions, where fewer data 

points are available.  Nonetheless, although the TTDs differ in detail from the age tracking results, they exhibit very similar 

progressions in peak height and shape, reflecting the nonlinearity in the benchmark model storages, which have shorter 410 

effective storage times at higher storage levels and discharges.  Although the particular results shown in Fig. 11 are 

generated by a synthetic benchmark model, they illustrate how similar analyses could be used to infer nonlinear transport 

processes from real-world catchment data.  Comparing TTDs representing different levels of antecedent catchment wetness, 

for example, could potentially be used to determine how much more precipitation bypasses catchment storage during wet 

conditions.  Similarly, TTDs representing different levels of subsequent precipitation (over the following day or week, for 415 
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example) could potentially be used to determine how effectively such precipitation mobilizes previously stored water.  Thus 

Fig. 11 illustrates how TTDs from carefully selected subsets of catchment tracer time series can be used as fingerprints of 

catchment response, and as a basis for inferring the mechanisms underlying catchment behavior. 

4.5 Choosing the Sample size, sampling frequency, and number of TTD lags 

Prospective users of ensemble hydrograph separation may naturally wonder what sample sizes and sampling frequencies are 420 

needed to estimate new water fractions and transit time distributions.  The answers will depend on many different factors, 

including the time scales of interest to the user, the desired precision of the 𝐹୬ୣ୵ and TTD estimates, the logistical constraints 

on sampling and analysis, the frequency and intermittency of precipitation events, the variability of the input tracers over 

different time scales, and the time scales of storage and transport in the catchment itself (that is, what the TTD is and how 

non-stationary it is, which of course can only be guessed before measurements are available).  Ideally one should sample at a 425 

frequency that is high enough to capture the shortest time scales of interest, and sample much longer than the longest time 

scales of interest.  One should also aim to capture many diverse transport events, spanning many different catchment 

conditions and precipitation characteristics. 

 

Beyond these generalizations, it is difficult to offer concrete advice.  We can, however, report our recent experience applying 430 

ensemble hydrograph separation to weekly and 7-hourly isotope time series at Plynlimon, Wales (Knapp et al., 2019).  We 

were generally able to estimate TTDs out to lags of about three months based on four years of weekly sampling.  The same 

four years of weekly samples yielded about 100 precipitation-discharge sample pairs (after samples corresponding to below-

threshold precipitation were removed), which were sufficient to estimate weekly event new water fractions with an 

uncertainty of about 1% (e.g., 𝐹୬ୣ୵
୕୮ ~8 േ 1%).  When these were split into four seasons, we could estimate event new 435 

water fractions with an uncertainty of about 2-3% using 20-30 weekly precipitation-discharge pairs, and when they were 

split into 4-6 different ranges of precipitation and discharge, we could reasonably well constrain the profiles of new water 

response to catchment wetness and precipitation intensity  (Fig. 10 of Knapp et al., 2019).  We were able to estimate 7-

hourly TTDs out to lags of 7 days based on about 17 months of 7-hourly isotope samples, including almost 1500 discharge 

samples and 540 above-threshold precipitation samples, and splitting these data sets in half allowed us to distinguish the 440 

TTDs for summer and winter conditions (Figs. 11 and 12 of Knapp et al., 2019).  However, these numbers should not be 

uncritically adopted as rules of thumb for other catchments, since precipitation at Plynlimon is frequent and weakly seasonal, 

and the catchment is characterized by rapid hydrological response but relatively long storage timescales (Kirchner et al., 

2000)An.  All of these characteristics could potentially affect the sample sizes needed for estimating new water fractions and 

transit time distributions.  As more experience is gained at more catchments, general rules of thumb may emerge.  Until then, 445 

however, benchmark tests like those described here can potentially provide a more reliable site-specific guide to sample size 

requirements.  
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Another obvious question for users is the number of lags over which the TTD should be estimated.  Here, too, there is no 

fixed rule; the answer will depend on the time scales of interest, the length of the available tracer time series, and the shape 450 

of the TTD itself (which of course will not be known in advance).  An empirical approach is to compare the results for 

several different maximum lags 𝑚, and see where the resulting TTDs are similar and different.  Figure 12 shows this 

approach applied to daily and weekly tracer time series, yielding TTDs with contrasting shapes.  The upper row (panels a 

and b) show L-shaped TTDs estimated from the same synthetic tracer time series that underlie Figs. 1-5, and the lower row 

shows humped TTDs from the same benchmark model driven by the same inputs, but with different parameters as described 455 

above.  In each panel, the shorter and longer TTDs (shown in different colors) are generally consistent with one another, 

except in the case of the 4-lag TTD shown in blue in Fig. 12d.  In that case, such a short TTD is evidently unable to capture 

the shape of the benchmark distribution, as indicated by its deviation from the TTDs of other lengths.  One can also see that 

the last few lags of any TTD can diverge from the TTD shape defined by the other TTDs.  In Fig. 12a the last few lags 

generally deviate downward and in Fig. 12c they generally deviate upward; thus there appears to be no general rule except 460 

that the last few lags of any TTD estimates should be treated with caution and potentially excluded from analysis. 

 

A further observation from Fig. 12 is that TTD estimates from weekly tracer data may be at least as accurate, if not more so, 

than those calculated from daily tracer data.  This may seem surprising, particularly because the time series underlying Fig. 

12 are all five years long; thus the daily time series contain 7 times as many individual tracer measurements than the weekly 465 

time series.  Nonetheless, for several reasons it is not surprising that in this case one could obtain more stable estimates from 

fewer data points.  First of all, in these numerical experiments the precipitation tracer concentrations are serially correlated 

(as they also often are in the real world); thus there is more redundancy among the daily tracer inputs than among the weekly 

tracer inputs.  Secondly, the precipitation volumes are less variable (in percentage terms) from week to week than they are 

from day to day, meaning that the weekly calculations use fewer input concentrations that are accompanied by very small 470 

water volumes (and that therefore could not have much influence on the real-world catchment).  And thirdly, lower sampling 

frequencies entail TTDs with coefficients at more widely spaced lags, which are thus less redundant with one another and 

thus can be individually constrained better.  Of course with lower-frequency sampling one loses the short-lag tail of the 

TTD, which may be of particular interest.  But in cases where this information is not crucial – or where only lower-

frequency data are available – it appears that TTDs can be reliably estimated from samples taken weekly, and perhaps at 475 

even lower sampling frequencies. 

5.  Closing comments 

In this short contribution, we have presented scripts that implement the ensemble hydrograph separation approach.  We have 

also illustrated some of its quirks and limitations using synthetic data.  TheThese issues have been revealed through 
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benchmark tests that are substantially stricter than many in the literature.  One should not assume that other methods have 480 

fewer quirks and limitations, unless those methods have been tested with equal rigor. 

 

For example, many benchmark data sets are generated using the same assumptions that underlie the analysis methods that 

they are used to test.  Although the results of such tests often look nice, they are unrealistic because those idealized 

assumptions are unlikely to hold in real-world cases.  For example, the TTD methods presented here would work very well if 485 

they were tested against benchmark data generated from a stationary TTD (see Fig. 7b), but this is hardly surprising since the 

regression in Eq. 2 assumes stationarity.  ButHowever, such a test is far removed from the real world, in which tracer data 

typically come from nonstationary catchment systems.  Tests with nonstationary benchmarks yield results that are less 

(artificially) pleasing, but more realistic (e.g., Fig. 7a).  These tests also demonstrate an important point, by showing how 

well the TTD method estimates the average of the time-varying TTDs that are likely to arise in real-world cases (see also 490 

Sect. 4 and Appendix B of K2019). 

 

Although these scripts have been tested against several widely differing benchmark data sets (both here and in K2019), we 

encourage users to test them with their own benchmark data to verify that they are behaving as expected.  As the examples 

presented here show, ensemble hydrograph separation can potentially be applied not only to the high-frequency tracer data 495 

sets that are now becoming available, but also to longer-term, lower-frequency tracer data that have been collected through 

many environmental monitoring programs.  We hope that the availability of these scripts facilitates new and interesting 

explorations of the transport behavior of many different catchment systems.  

Author contributions 

J.W.K. wrote the R scripts and J.L.A.K. translated them into MATLAB.  J.W.K. conducted the benchmark tests, drew the 500 

figures, and wrote the first draft of the manuscript.  Both authors discussed the results and revised the manuscript.  

 

Data availability 

After acceptance of the manuscript, theThe R and MATLAB scripts and benchmark data sets will beare available from a doi-

referenced archive.  For review purposes these files can be obtained from  505 

at https://doi.org/10.16904/envidat.182.  
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Appendix A: Improved solution method for transit time distributions 

Ensemble hydrograph separation estimates transit time distributions by a multiple regression of streamflow tracer 

fluctuations against current and previous precipitation tracer fluctuations (Eq. 2, which is the counterpart to Eq. 1 over 510 

multiple lag intervals 𝑘).  Performing this multiple regression with real-world data requires addressing the "missing data 

problem": precipitation tracer concentrations will be inherently unavailable during time steps where no precipitation falls, 

and both precipitation and streamflow tracer concentrations may also be missing due to sampling and measurement failures.  

The scripts presented here handle missing data somewhat differently than the procedure outlined in Sect. 4.2 of K2019.  In 

this appendix we outline the new procedure and explain why it is necessary.   515 

 

Equation (2) in the main text has the form of a multiple linear regression equation, 

𝑦௝ ൌ  ෍𝛽௞ 𝑥௝,௞

௠

௞ୀ଴

൅ 𝛼 ൅ 𝜀௝      ,       ሺA1ሻ 

where 

𝑦௝ ൌ  𝐶୕ೕ െ 𝐶୕ೕష೘షభ
   ሺA2ሻ 520 

and 

𝑥௝,௞ ൌ  𝐶୔ೕషೖ െ 𝐶୕ೕష೘షభ
     .       ሺA3ሻ 

The conventional least-squares solution to such a multiple regression is usually expressed in matrix form as 

𝜷෡ ൌ ሺ𝐗୘𝐗ሻିଵ 𝐗୘𝒀      , ሺA4ሻ 

where 𝜷෡ is the vector of the regression coefficients 𝛽௞, 𝒀 is the vector of the reference-corrected streamflow tracer 525 

concentrations 𝑦௝ ൌ 𝐶୕ೕ െ 𝐶୕ೕష೘షభ
 and 𝐗 is the matrix of the reference-corrected input tracer concentrations 𝑥௝,௞ ൌ 𝐶௉ೕషೖ െ

𝐶ொೕష೘షభ
 at each time step 𝑗 and lag 𝑘.   

 

Equation (A4) cannot be applied straightforwardly to real-world catchment data, because it cannot be solved when values of 

𝑦௝ or 𝑥௝,௞ are missing.  K2019 handled this missing data problem using a variant of Glasser's (1964) "pairwise deletion" 530 

approach.  In this approach, Eq. (A4) was re-cast in terms of covariances, 

൭𝛽መ୩൱ ൌ ቌ covሺ𝑿௞,𝑿ℓሻሺ௞ℓሻ ቍ

ିଵ

ቌcovሺ𝑿௞,𝒀ሻሺ௞௬ሻቍ         , ሺA5ሻ 

and these covariances were evaluated only for pairs of non-missing values (see Eqs. 42 and 43 of K2019), as signified by the 

subscripts in parentheses (i.e., they were only evaluated for time steps 𝑗 where both 𝑥௝,௞ and 𝑥௝,ℓ or 𝑥௝,௞ and 𝑦௝ were non-
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missing).  The solution method presented in K2019 recognized that these covariances must be adjusted to account for the 535 

two different reasons that values can be missing.  A value of 𝑥௝,௞ that is missing because of a sampling or analysis failure 

represents missing information; it cannot be included in calculating the corresponding covariances, but (barring biases in 

which values are missing) it should have no systematic effect.  By contrast, if a value of 𝑥௝,௞ that is missing because too little 

rain fell, it should dilute the covariances in which it appears, because with trivial precipitation inputs, the missing tracer 

concentration could not cause any meaningful co-varying change in streamflow tracer concentrations.  These considerations 540 

required the elements of the covariance matrix in (A5) to be adjusted using prefactors called 𝑛௫ೖ and 𝑛௫ೖ௫೗ that accounted for 

the number of precipitation samples that were missing for the two different reasons outlined above (see Eqs. 44-45 and 

Appendix B of K2019). 

 

Practical experience since the publication of K2019 has revealed at least three important limitations in the approach outlined 545 

above (and detailed in Sect. 4.2 and Appendix B of K2019).  First, although this approach can work well if values of 𝑦௝ or 

𝑥௝,௞ are missing at random, in non-random cases it can lead to the covariances being estimated from inconsistent sets of 

values.  For example, if 𝑦௝ is missing for some particular 𝑗, the corresponding values of 𝑥௝,௞ will still be used in estimating 

the covariance matrix covሺ𝑿௞,𝑿ℓሻሺ௞ℓሻ.  This is advantageous if the values are missing at random, because all the covariances 

will include as many data pairs as possible.  However, the covariance estimates could become inconsistent, with potentially 550 

substantial consequences for the solution to Eq. (A5), if the values are missing non-randomly.  In our case, the missing 

values are inherently structured, because a single missing precipitation tracer concentration 𝐶୔ೕ causes a diagonal line of 

missing values in 𝐗, and a single missing streamflow tracer concentration 𝐶୕ೕ causes a missing row in 𝐗 and two missing 

values in 𝒀.  The second problem is that our robust estimation procedure depends on iteratively reweighted least squares 

(IRLS), which in turn requires us to calculate the regression residuals, which is impossible for any time step 𝑗 that is missing 555 

either 𝑦௝ or any of the 𝑥௝,௞.  The third problem is that estimating the uncertainties in the TTD requires the error variance, 

which again requires calculating the residuals.  This last problem can be circumvented by using Glasser's error variance 

formula (Eq. 52 of K2019), but K2019 warns that this formula can yield implausible results, including negative error 

variance values (which are of course logically impossible). 

 560 

Here, rather than removing the missing values and using Glasser's error variance formula, instead we fill in the missing 

values and calculate the residuals directly by inverting Eq. (A1), thus facilitating both robust estimation using IRLS, and 

direct calculation of the error variance for purposes of uncertainty estimation.  The key to this approach is that we subtract 

the means from 𝒀 and from each column 𝑿௞ of 𝐗, (or subtract the weighted means in case of volume-weighting), and then 

we fill in the missing values with zeroes.  Because each of the variables has already been "centered" to have a mean of zero, 565 

the in-filled values of zero will have no effect on the solution of Eq. (A1); in statistical terms, they will exert no leverage.  

This approach also has the advantage that the intercept 𝛼 in Eq. (A1) becomes zero and drops out of the problem.   
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Broadly speaking, the solution proceeds similarly to Sect. 4.2-4.4 of K2019, with several important differences.  One is that 

the covariance matrix now requires different prefactors than the 𝑛௫ೖ and 𝑛௫ೖ௫೗ used in K2019 to account for the two different 570 

types of missing data, because missing values will affect the covariances differently now that they are being in-filled with 

zeroes.  In principle, a value of 𝑥௝,௞ that is missing because of a sampling or analysis failure represents missing information, 

so it should not alter the covariances in which it appears.  However, those covariances will be diluted when the missing value 

is replaced by zero (since it will add nothing to the cross-products in the numerator of the covariance formula, but will add to 

the total number 𝑛 in the denominator).  The resulting covariances must be re-scaled to reverse this dilution artifact.  By 575 

contrast, if values of 𝑥௝,௞ that are missing because no rain fell, they should dilute the covariances in which they appear, 

because with no precipitation, they could not cause any co-varying change in streamflow tracer concentrations.  Thus 

replacing these missing values with zeroes correctly dilutes the corresponding covariances.   

 

A sketch of the solution procedure is as follows.  First we identify and remove outliers in the precipitation and streamflow 580 

tracer concentrations 𝐶୔ and 𝐶୕ as described in Sects. 2.1 and 4.1, and use the remaining values to calculate the 𝑦௝ and 𝑥௝,௞ 

using Eqs. (A2) and (A3).  Next we calculate a matrix 𝑢௝,௞ of boolean flags that indicate whether a given value of 𝑥௝,௞ will be 

usable or not, according to the criteria outlined in the paragraph above: a value of 𝑥௝,௞ is unusable if it is missing (and thus 

will need to be replaced by zero) and its corresponding value of precipitation is above p_threshold (and thus its contribution 

to the covariances would not be nearly zero anyway).  If either of these conditions is not met, the value of  𝑥௝,௞ is usable 585 

(potentially with replacement by zero if it is missing and corresponds to below-threshold precipitation inputs).  In more 

explicit form, 

𝑢௝,௞ ൌ ൜
0 if 𝑥௝,௞ is missing and 𝑃௝ି௞ ൒ 𝑃୲୦୰ୣୱ୦୭୪ୢ
1 otherwise

     . ሺA6ሻ 

We then eliminate any rows 𝑗 in 𝐗, 𝒀, and 𝐔 for which 𝑦௝ is missing and/or all of the 𝑥௝,௞ are missing, because in such cases 

Eq. (A1) would have no meaningful solution.  Next, we subtract the means (or the weighted means) from 𝒀 and from each 590 

column 𝑿௞ of 𝐗, and replace the missing values of 𝑥௝,௞ with zeroes (there will be no missing values of 𝑦௝ at this stage).   

 

If 𝑟𝑜𝑏𝑢𝑠𝑡 = true, we then solve the multiple regression in Eq. (A1) using IRLS.  We do not use the regression coefficients 𝛽௞ 

from the IRLS procedure, but instead use its robustness weights to down-weight anomalous points.  These robustness 

weights are then combined withmultiplied by the volume weights (if 𝑣𝑜𝑙_𝑤𝑡𝑑 is true).  The end result is a set of point 595 

weights 𝑤௝ that equal 1 times the volume weights (if any) times the IRLS robustness weights (if any), or that just equal 1 if 

𝑣𝑜𝑙_𝑤𝑡𝑑 and 𝑟𝑜𝑏𝑢𝑠𝑡 are both false.   

 

We then calculate the (weighted) covariances as 
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covሺ𝑿௞ ,𝑿ℓሻ ൌ
𝑛୵

𝑛୵ െ 1
 
∑ 𝑤௝  ൫𝑥௝,௞ െ 𝑥̅௞൯൫𝑥௝,ℓ െ 𝑥̅ℓ൯௝

∑ 𝑤௝௝
ሺA7ሻ 600 

and  

covሺ𝑿௞ ,𝒀ሻ ൌ
𝑛୵

𝑛୵ െ 1
 
∑ 𝑤௝  ൫𝑥௝,௞ െ 𝑥̅௞൯൫𝑦௝ െ 𝑦ത൯௝

∑ 𝑤௝௝
    , ሺA8ሻ 

where 𝑛୵ is the effective number of equally-weighted points,  

𝑛୵ ൌ
൫∑ 𝑤௝௝ ൯

ଶ

∑ ൫𝑤௝
ଶ൯௝

     , ሺA9ሻ 

which accounts for the unevenness of the weights 𝑤௝ (if all of the weights are equal, 𝑛୵ equals 𝑛, the length of the vector 605 

𝒀.).  The means shown in Eqs. (A7) and (A8) all equal zero, but they are preserved here so that the formulas can be readily 

recognized.  To account for the contrasting types of missing values as outlined above, we multiply each of the covariances 

by prefactors 𝑢௫ೖ/𝑢௫ೖ௫ℓ, defined as 

𝑢௫ೖ ൌ෍𝑤௝  𝑢௝,௞

௝

     and        𝑢௫ೖ௫ℓ ൌ෍𝑤௝  𝑢௝,௞ 𝑢௝,ℓ

௝

      . ሺA10ሻ 

With these prefactors, the solution to Eq. (A1) becomes 610 

൫𝛽መ୩൯ ൌ ൫𝑢௫ೖ/𝑢௫ೖ௫ℓ  covሺ𝑿௞ ,𝑿ℓሻ൯
ିଵ
ሺcovሺ𝑿௞,𝒀ሻሻ        . ሺA11ሻ

To solve the same problem with Tikhonov-Phillips regularization, we instead solve 

൫𝛽መ୩൯ ൌ ሺ𝐂 ൅ 𝜆𝐇ሻିଵሺcovሺ𝑿௞ ,𝒀ሻሻ         , ሺA12ሻ 

where 𝐂 is the covariance matrix ൫𝑢௫ೖ/𝑢௫ೖ௫ℓ  covሺ𝑿௞ ,𝑿ℓሻ൯, 𝐇 is the Tikhonov-Phillips regularization matrix, and 𝜆 controls 

the relative weight given to the regularization criterion (see Eqs. 49 and 50 of K2019).    615 

 

To estimate the uncertainties in the regression coefficients 𝛽መ୩, we first calculate the residuals by inverting Eq. (A1), recalling 

that 𝛼=0, 

𝜀௝ ൌ  𝑦௝ െ෍𝛽௞ 𝑥௝,௞

௠

௞ୀ଴

     .      ሺA13ሻ 

We then calculate the (weighted) residual variance, accounting for both the degrees of freedom and any unevenness in the 620 

weights,   

𝑠ఌଶ ൌ  
𝑛 െ 1

𝑛 െ ሺ𝑚 ൅ 1ሻ െ 1
 
𝑛୵

𝑛୵ െ 1
 
∑ 𝑤௝  ൫𝜀௝ െ 𝜀൯̅

ଶ
௝

∑ 𝑤௝௝
     ,       ሺA14ሻ 
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where the (weighted) mean of the residuals should be zero, but it is included here for completeness.  We then calculate the 

standard errors of the regression coefficients, following Eq. (54) of K2019, using 

SE൫𝛽መ௞൯ ൌ ඨ
𝑠ఌଶ

𝑛ୣ୤୤ೖ
  ඥሾሺ𝐂 ൅ 𝜆𝐇ሻିଵሺ𝐂ሻ    ሺ𝐂 ൅ 𝜆𝐇ሻିଵሿ௞௞    , ሺA15ሻ 625 

but with the difference that the unevenness in the weighting is already taken into account in Eq. (A14), so the effective 

sample size is now calculated following Eq. (13) of K2019 as  

𝑛ୣ୤୤ೖ ൌ෍𝑢௝,௞  
1 െ 𝑟ୱୡ
1 ൅ 𝑟ୱୡ௝

      , ሺA16ሻ 

where 𝑟௦௖ is the lag-1 (weighted) serial correlation in the residuals 𝜀௝.  If the 𝑠𝑒𝑟_𝑐𝑜𝑟𝑟 option is set to false, the effective 

sample size is calculated as 630 

𝑛ୣ୤୤ೖ ൌ෍𝑢௝,௞ 
௝

      . ሺA17ሻ 

The regression coefficients and their standard errors are then converted into TTDs and their associated standard errors using 

Eqs. (55), (60), and (63)-(66) of K2019.  Readers should note, however, that these scripts do not explicitly take account of 

the sampling interval and its units.  Thus their results should be interpreted as being in reciprocal units of the sampling 

interval, e.g., day-1 for daily sampling and week-1 for weekly sampling. 635 
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Appendix B: Improved method for filtering precipitation time steps in TTD estimation 

The system of equations that is used to estimate transit time distributions in ensemble hydrograph separation (Eq. A1) can be 

represented as a matrix equation of the form 
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where 𝑥௝,௞ expresses the concentration of the tracer input whichthat enters the catchment at time step 𝑖 ൌ 𝑗 െ 𝑘, at a lag of 𝑘 

time steps before some of it leaves the catchment at time step 𝑗 as part of the discharge concentration 𝑦௝, with both 

concentrations normalized as described in Eqs. (A2) and (A3).  Filtering this system of equations according to discharge time 

steps (so that, for example, periods with low discharge are excluded) is accomplished straightforwardly by deleting the 

corresponding rows from the matrices.  For example, if we want to exclude discharge time steps 3, 4, and 5, Eq. (B1) 645 

becomes  
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which can be solved in exactly the same way as the full system of equations shown in Eq. (B1).  Filtering according to 

precipitation time steps (so that, for example, periods with dry antecedent conditions are excluded) is less straightforward.  

The approach outlined in Sect. 4.8 of K2019 is to simply excludeexcludes the corresponding values of 𝑥௝,௞, which form 650 

diagonal stripes in the 𝐗 matrix.  For example, for an artificially simplified case with only nine discharge time steps and four 

lags, these diagonal stripes of missing values would appear as 

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝑦ଵ
𝑦ଶ
𝑦ଷ
𝑦ସ
𝑦ହ
𝑦଺
𝑦଻
𝑦଼
𝑦ଽ⎠

⎟
⎟
⎟
⎟
⎟
⎞

ൌ

⎝

⎜
⎜
⎜
⎜
⎜
⎛

െ െ 𝑥ଵ,ଶ 𝑥ଵ,ଷ
𝑥ଶ,଴ െ െ 𝑥ଶ,ଷ
𝑥ଷ,଴ 𝑥ଷ,ଵ െ െ
െ 𝑥ସ,ଵ 𝑥ସ,ଶ െ
𝑥ହ,଴ െ 𝑥ହ,ଶ 𝑥ହ,ଷ
െ 𝑥଺,ଵ െ 𝑥଺,ଷ
𝑥଻,଴ െ 𝑥଻,ଶ െ
𝑥଼,଴ 𝑥଼,ଵ െ 𝑥଼,ଷ
𝑥ଽ,଴ 𝑥ଽ,ଵ 𝑥ଽ,ଶ െ ⎠

⎟
⎟
⎟
⎟
⎟
⎞

൮

𝛽଴
𝛽ଵ
𝛽ଶ
𝛽ଷ

൲ ൅

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝛼
𝛼
𝛼
𝛼
𝛼
𝛼
𝛼
𝛼
𝛼⎠

⎟
⎟
⎟
⎟
⎟
⎞

൅

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝜀ଵ
𝜀ଶ
𝜀ଷ
𝜀ସ
𝜀ହ
𝜀଺
𝜀଻
𝜀଼
𝜀ଽ⎠

⎟
⎟
⎟
⎟
⎟
⎞

     .       ሺB3ሻ 



 

23 
 

The technical problem of performing such a calculation can be solved as described in Appendix A above, but this alone will 

not solve the mathematical problem created by the diagonal stripes of missing values.  The mathematical problem is that the 655 

influence of the missing 𝑥௝,௞ will still be reflected in the fluctuations in the discharge tracer concentrations 𝑦௝, and any 

regression solution will seek to explain those fluctuations in terms of the  𝑥௝,௞ values that remain, thus biasing the regression 

coefficients 𝛽௞.  A better approach than Eq. (B3) is not to remove the excluded values entirely, but instead to separate them 

in a new group of variables with their own coefficients, as follows: 
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In Eq. (B4), each of the original input tracer values 𝑥௝,௞ either appears in the left-hand matrix of included values (denoted 

𝑥௝,௞) and is multiplied by the corresponding coefficient 𝛽௞, or, if it has been filtered out, appears in the right-hand matrix of 

excluded values (denoted 𝑥௝,௞
ᇱ ) and is multiplied by the corresponding coefficient 𝛽௞

ᇱ .  Equation (B4) suppresses the distortion 

of the 𝛽௞ coefficients from the missing 𝑥௝,௞, because each row of this matrix equation retains all the values in the original 

equation (Eq. B2), but now has separate sets of coefficients for the included values and the excluded values.  We can merge 665 

these two sets of coefficients and combine the 𝐗 and 𝐗′ matrices, re-casting Eq. (B4) as a conventional regression problem,  
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which can be solved by the approach outlined in Appendix A.  One important detail is that the Tikhonov-Phillips 

regularization matrix must be segmented so that regularization is applied separately to the 𝛽௞ and the 𝛽௞
ᇱ ; otherwise a 

regularization algorithm would try to smooth over the jump between 𝛽௠, which will typically be small, and 𝛽଴
ᇱ , which could 670 

be large.  Regularization can be applied separately to the two sets of coefficients by configuring the regularization matrix as  
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     ,       ሺB6ሻ 

where the diagonal sub-matrices 𝐇 are 𝑚-by-𝑚 Tikhonov-Phillips regularization matrices (see Eq. 49 of K2019), and the 

off-diagonal sub-matrices are 𝑚-by-𝑚 matrices of zeroes.  

 675 

Benchmark tests verify that the approach outlined in Eq. (B5) yields much more accurate estimates of  𝛽௞ than the approach 

outlined in K2019 does.  Therefore this approach is employed in EHS_TTD whenever the input data are filtered according to 

precipitation time steps. 

 

  680 
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Figures 

 

 715 

Figure 1.  Benchmark model daily water fluxes (a) and precipitation and streamflow isotope time series (light and dark blue 

symbols, respectively), without outliers (b) and with 5% outliers (c).  The axis frame of the outlier-free data (panel b) 

corresponds to the dashed lines in panel (c).  Benchmark model parameters are Su,ref = 50 mm, Sl,ref = 2000 mm, bu = 10, bl = 

3, and η = 0.8.  The model is driven by a daily precipitation time series from Plynlimon, Wales, and a hypothetical 

precipitation δ18O isotope record with a seasonal sinusoidal amplitude of 1.2 per mil, a normally distributed random standard 720 

deviation of 2.5 per mil, and a serial correlation of 0.5 between successive daily isotope values.  A random measurement 

error with a standard deviation of 0.1 per mil was added to all simulated precipitation and streamflow isotope measurements. 
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Figure 2.  Regression relationship (Eq. 1) used to estimate the event new water fraction 𝐹୬ୣ୵
୕୮ , using (a) the outlier-free 

benchmark data of Fig. 1a1a, with different percentile ranges of discharge shown in contrasting colors, and (b) the outlier-

corrupted benchmark data of Fig. 1b.1b, with outlier points shown in black.  The axis frame of the outlier-free plot (panel a) 

corresponds to the small gray rectangle in panel (b).  In panel (a), five different percentile ranges of the discharge 730 

distribution are shown in contrasting colors.  The stronger coupling between tracer fluctuations in precipitation and 

streamflow at higher discharges, as seen in the differently colored points in panel (a), reflects a larger new water contribution 

to streamflow.  The event new water fraction 𝐹୬ୣ୵
୕୮  is the average fraction of streamflow that is composed of precipitation 

that fell during the current sampling interval, and is calculated from the regression slope between fluctuations in precipitation 

and streamflow tracer concentrations (𝐶୔ೕ and 𝐶୕ೕ), each expressed relative to the previous streamflow sample's tracer 735 

concentration (𝐶ொೕషభ).  Because this reference value appears on both axes of the regression plot, anomalous streamflow tracer 

values will appear as positively correlated outliers.  These points, as well as the 𝑥௝ outliers generated by anomalous 

precipitation tracer values, may have substantial leverage on the fitted regression line, leading to distorted estimates of the 

regression slope 𝐹୬ୣ୵
୕୮ . 
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Figure 3.  Profiles illustrating how new water fractions of discharge change with discharge regime, estimated using robust 

and non-robust methods (dark and light blue symbols, respectively; error bars indicate one standard error) applied to 

synthetic benchmark tracer data without different percentages of outliers.  In profiles generated from outlier-free data (a), 

many light blue symbols are invisible because they are directly overprinted by dark blue symbols.  The light gray line 745 

indicates the true new water fraction, as calculated from water age tracking in the benchmark model.  The non-robust 

estimates (light blue symbols) closely follow the true values (gray line) if the tracer time series are outlier-free (a), but 

deviate markedly if they are corrupted by outliers (b-f), even if those outliers comprise only a few percent of the data (b-d).  

The robust estimates (dark blue symbols) closely follow the true values (gray line), until the outliers become so frequent that 

the robust estimation algorithm is no longer effective against them (f).   750 
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Figure 4.  Profiles illustrating how "forward" new water fractions (new water fractions of precipitation, i.e., fractions of 

precipitation leaving as streamflow during the current sampling interval) change with precipitation regime, estimated using 

robust and non-robust methods (dark and light blue symbols, respectively; error bars indicate one standard error) applied to 755 

synthetic benchmark tracer data without outliers (a) and with outliers (b).  In (a), many light blue symbols are invisible 

because they are directly overprinted by dark blue symbols.  The light gray line indicates the true forward new water 

fraction, as calculated from water age tracking in the benchmark model.  The robust estimates (dark blue symbols) closely 

follow this line, whether or not the benchmark data contain outliers.  The non-robust estimates (light blue symbols) closely 

follow the gray line if the tracer time series are outlier-free (a), but deviate markedly if the tracer data are corrupted by 760 

outliers (b).  One off-scale value is indicated by the light blue arrow. 
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Figure 5.  Transit time distributions of discharge (QTTDs; panels a and b) and forward new water fractions of precipitation 

(PTTDs; panels c and d), as estimated by ensemble hydrograph separation from synthetic benchmark tracer time series 765 

without outliers (a, c) and with outliers (b, d).  Symbols show results obtained with and without robust estimation (dark and 

light symbols, respectively); error bars indicate one standard error.  In (a) and (c), many light blue symbols are obscured 

because they are overprinted by dark blue symbols.  Light gray curves indicate the true TTDs, as calculated from water age 

tracking in the benchmark model.  When the tracer data are free of outliers (a, c), estimates obtained from robust and non-

robust methods are almost equally good, both typically lying within 1 standard error of the true TTDs (gray curves).  770 

However, when the input data are corrupted by extreme outliers (b, d), estimates from the non-robust method yields 

estimates (light symbols) that deviate substantially from the true TTDs, whereas estimates from the robust method (dark 

symbols) still followsfollow the gray curve nearly as well as itthey did with the outlier-free data. 
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Figure 6.  Humped transit time distributions (QTTDs) and forward transit time distributions (transit time distributions of 

precipitation, PTTDs), as estimated by ensemble hydrograph separation from synthetic benchmark tracer time series.  

Symbols show ensemble hydrograph separation results obtained with and without robust estimation (dark and light symbols, 

respectively); error bars indicate one standard error.  Many light blue symbols are obscured because they are overprinted by 

dark blue symbols.  The light gray lines indicate the true TTD, as calculated from water age tracking in the benchmark 780 

model.  The TTDs calculated from the synthetic tracer time series follow these gray lines, but the error bars indicate that the 

standard errors are overestimated by large factors.  Benchmark model parameters are Su,ref = 50 mm, Sl,ref = 50 mm, bu = 5, bl 

= 2, and η = 0.01.  The model is driven by the same time series of precipitation rates and δ18O values as shown in Fig. 1 and 

as used in Figs. 2-5. 
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Figure 7.  Comparison of observed and fitted streamflow tracer time series (gray dots and dark blue line, respectively, 

shown relative to their lagged reference values as in the left hand side of Eq. 2), and fitting residuals (dark blue dots), for the 

nonstationary benchmark model with a humped time-averaged TTD (a), for the same model with the same parameters, but 

with constant precipitation rates and therefore a stationary humped TTD (b), and for the same model based on weekly rather 790 

than daily sampling (c).  The observed and fitted tracer time series are shown relative to the reference tracer concentration 

(the streamflow concentration beyond the longest TTD lag; see Kirchner, 2019 for details).  In (a), the multiple regression fit 

to the streamflow tracers generally exhibits the correct behavior, but with minor errors in amplitude and timing, resulting in 

residuals that exhibit strong serial correlation (lag-1 𝑟ୱୡ = 0.96) and thus greatly exaggerated standard errors of the regression 

coefficients that define the TTD.  By contrast, under a stationary benchmark model (b), achieved by holding the precipitation 795 

rate constant at its average value, the multiple regression fit to the streamflow tracers yields much smaller residuals (note the 

difference in scale) with little serial correlation (lag-1 𝑟ୱୡ = 0.23).  Weekly samples from the nonstationary benchmark model 

(c) yield residuals with much less serial correlation (lag-1 𝑟ୱୡ = 0.66) than daily samples (a), resulting in less exaggerated 

standard errors of the regression coefficients (compare Figs. 6 and 8). 
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Figure 8.  Transit time distributions (QTTDs) and forward transit time distributions (transit time distributions of 

precipitation, PTTDs), as estimated by ensemble hydrograph separation from synthetic weekly benchmark tracer time series.  

Symbols show ensemble hydrograph separation results obtained with and without robust estimation (dark and light symbols, 

respectively); error bars indicate one standard error.  Many light blue symbols are obscured because they are overprinted by 805 

dark blue symbols.  The light gray lines indicatesindicate the true TTDTTDs, as calculated from water age tracking in the 

benchmark model.  The tracer data used here are the same as in Fig. 6, but aggregated to simulate weekly instead of daily 

sampling.  The standard errors are not as overestimated as those in Fig. 6, because weekly sampling results in weaker serial 

correlation in the residuals of the regressions that estimate the TTD (see Fig. 7). 
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Figure 9.  Profiles of new water fractions ( 𝐹୬ୣ୵
୕ , panel a) and forward new water fractions ( 𝐹୬ୣ୵

୔ , panel b), estimated 

using robust and non-robust methods (dark and light blue symbols, respectively; error bars indicate one standard error) 

applied to daily tracer time series, generated by the benchmark model using parameters that generate a humped distribution 

(see Fig. 6).  Some light blue symbols are invisible where they are overprinted by dark blue symbols.  The light gray lines 815 

show the true new water fractions, as calculated from water age tracking in the benchmark model.  These new water 

fractions are overestimated by both robust and non-robust methods.   
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Figure 10.  Profiles of new water fractions ( 𝐹୬ୣ୵
୕ , panel a) and forward new water fractions ( 𝐹୬ୣ୵

୔ , panel b), estimated 

using robust and non-robust methods (dark and light blue symbols, respectively; error bars indicate one standard error) 820 

applied to weekly tracer time series from the benchmark model using parameters that generate a humped distribution (see 

Fig. 6).  Some light blue symbols are invisible where they are overprinted by dark blue symbols.  The light gray lines show 

the true new water fractions, as calculated from water age tracking in the benchmark model.  In contrast to the results from 

the daily time series (Fig. 9), the weekly tracer time series yield new water fraction profiles that are consistent with the true 

values determined by age tracking.   825 
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Figure 11.  Non-stationary transit time distributions of precipitation (top panels) and discharge (bottom panels), visualized 

through age tracking in the benchmark model (left panels) and ensemble hydrograph separation (right panels) for selected 830 

ranges of precipitation and discharge in the daily time series.  Dotted gray lines in right panels show model age tracking 

results (from left panels) for comparison.  Curves show spline interpolations between individual points at each daily lag.  

The ensemble hydrograph separation TTDs differ somewhat from the model age tracking results, but they both exhibit 

similar progressions toward higher, earlier, and narrower TTD peaks at higher precipitation and discharge rates. 
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Figure 12.  L-shaped (a, b) and humped (c, d) transit time distributions (QTTDs) calculated from benchmark daily (a, c) and 

weekly (b, d) tracer time series for different numbers of lag intervals (shown by the different colors in each panel).  The light 

gray curves indicate the true TTDs, as calculated from water age tracking in the benchmark model.  Standard errors are not 

shown to avoid obscuring the patterns in the overlapping TTD estimates.  TTD estimates with different numbers of lags 840 

generally agree, except for their last few lags.  The unusual case ofAn exception to this general rule is the 4-lag TTD shown 

in dark blue in panel (d). 

 

 

 845 


	EHS scripts response to reviewer 1
	EHS scripts response to reviewer 2
	EHS scripts technical note final formatted - compared with original submission

