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Abstract 8 
 9 

Streamflow timing errors (in the units of time) are rarely explicitly evaluated, but are 10 

useful for model evaluation and development. Wavelet-based approaches have been shown to 11 

reliably quantify timing errors in streamflow simulations, but have not been applied in a 12 

systematic way that is suitable for model evaluation. This paper provides a step-by-step 13 

methodology that objectively identifies events, and then estimates timing errors for those events, 14 

in a way that can be applied to large-sample, high-resolution predictions. Step 1 applies the 15 

wavelet transform to the observations, and uses statistical significance to identify observed 16 

events. Step 2 utilizes the cross-wavelet transform to calculate the timing errors for the events 17 

identified in Step 1. The approach also includes a quantification of the confidence in the timing 18 

error estimates. The methodology is illustrated using real and simulated stream discharge data 19 

from several locations to highlight key method features. The method groups event timing errors 20 

by dominant timescales, which can be used to identify the potential processes contributing to the 21 

timing errors and the associated model development needs.  For instance, timing errors that are 22 

associated with the diurnal melt cycle are identified. The method is also useful for documenting 23 

and evaluating model performance in terms of defined standards. This is illustrated by showing 24 

version-over-version performance of the National Water Model (NWM) in terms of timing 25 

errors.  26 

 27 
1.  Introduction  28 
 29 
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Common verification metrics used to evaluate streamflow simulations are typically 30 

aggregated measures of model performance, e.g., the Nash Sutcliffe Efficiency (NSE) and the 31 

related root mean square error (RMSE). Although typically used to assess errors in amplitude, 32 

these statistical metrics include contributions from errors in both amplitude and timing (Ehret 33 

and Zehe 2011), making them difficult to use for diagnostic model evaluation (Gupta et al. 34 

2008). Furthermore, common verification metrics are calculated using the entire time series, 35 

whereas timing errors require comparing localized features or events in the data. This paper 36 

focuses explicitly on event timing error estimation, which is not routinely evaluated, despite its 37 

potential benefit for model diagnostics (Gupta et al. 2008) and practical forecast guidance (Liu et 38 

al. 2011).  39 

The fundamental challenge with evaluating timing errors is identifying what constitutes 40 

as an “event” in the two time series being compared. Identifying events is typically subjective, 41 

time consuming, and not practical for large-sample hydrological applications (Gupta et al. 2014). 42 

Most methods for identifying events have focused on flooding events. One common approach to 43 

identifying flooding events is to use peak-over-threshold methods. The thresholds used for such 44 

analyses are often either based on historical percentiles (e.g., the 95th percentile) or on local 45 

impact levels (river stage), such as the National Weather Service (NWS) flood 46 

categories (NOAA National Weather Service, 2012). Timing error metrics are often calculated 47 

from the peaks of these identified events. For example, the Peak Time Error, or its derivative the 48 

Mean Absolute Peak Time Error, requires matching observed and simulated event peaks, and 49 

calculating their offset (Ehret and Zehe 2011). While this may be straightforward visually, it can 50 

be difficult to automate; some of the reasons for this are discussed below. 51 
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Difficulties arise using thresholds for event identification. For example, exceedances can 52 

cluster if a hydrograph vacillates above and below a threshold, begging the question: Is it one or 53 

multiple events? Which peak should be used for the assessment? In the statistics of extremes, 54 

declustering approaches can be applied to extract independent peaks (e.g., Coles 2001), but this 55 

reductionist approach may miss relevant features. For instance, if background flows are elevated 56 

for a longer period of time before and after the occurrence of these “events”, the threshold-based 57 

analysis identifies features of the flow separately from the primary hydrologic process 58 

responsible for the event. If one focuses just on peak timing differences in this example, that 59 

timing error may only apply to some small fraction of the total flow of the larger event which 60 

happens mainly below the threshold. Further, for overall model diagnosis that focuses on model 61 

performance for all events, not just flood events, variable thresholds would be needed to account 62 

for different kinds of events (e.g., a daily melt event versus a convective precipitation event).   63 

Using a threshold-approach to identify events and timing error assessment, Ehret and 64 

Zehe (2011) develop an intuitive assessment of hydrograph similarity, the Series Distance. This 65 

algorithm is later improved upon by Siebert et al (2016). The procedure matches observed and 66 

simulated segments (rise or recession) of an event, and then calculates the amplitude and timing 67 

errors, as well as the frequency of event agreement. The Series Distance requires smoothing the 68 

time series, identifying an event threshold, and selecting a time range to consider two segments 69 

matching. 70 

Liu et al (2011) developed a wavelet-based method for estimating model timing errors. 71 

Although wavelets have been applied in many hydrologic applications such as model analysis 72 

(e.g. Lane 2007; Weedon et al. 2015; Schaefli and Zehe 2009, Rathinasamy et al. 2014) and 73 

post-processing (Bogner and Kalas 2007; Bogner and Pappenberger 2011), Liu et al. were the 74 
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first to use it for timing error estimation. Liu et al. (2011) apply a cross-wavelet transform 75 

technique to streamflow time series for 11 headwater basins in Texas. Timing errors are 76 

estimated for medium- to-high flow “events” that are determined a priori by threshold 77 

exceedance. They use synthetic as well as real streamflow simulations to test the utility of the 78 

approach. They show that the technique can reliably estimate timing errors, though they 79 

conclude that it is less reliable for multi-peak or consecutive “events” (defined qualitatively). 80 

ElSaadani and Krajewski (2017) followed the cross-wavelet approach used by Liu et al (2011) to 81 

provide similar analysis and further investigate the effect of the choice of mother wavelet on the 82 

timing error analysis. Ultimately, they recommended that in the situation of multiple, adjoining 83 

flow peaks the improved time localization of the Paul wavelet might justify its poorer frequency 84 

localization compared the Morlet wavelet.  85 

Liu et al. (2011) provide a starting point for the work in this paper where we develop two 86 

new bases for their method: 1) objective event identification for timing error evaluation and 2) 87 

the use of observed events as the basis for the model timing error calculations The latter is 88 

important for “model benchmarking”, i.e., the practice of evaluating models in terms of defined 89 

standards (e.g., Luo, et al. 2012; Newman et al. 2017). Here, the use of observed events provides 90 

a baseline by which to evaluate changes and to compare multiple versions or experimental 91 

designs. 92 

This paper provides a methodology for using wavelet analysis to quantify timing errors in 93 

hydrologic simulations. Our contribution is a systematic approach that integrates 1) statistical 94 

significance to identify events with 2) a basis for timing error calculations independent of model 95 

simulations (i.e., benchmarking). We apply our method to evaluation of high-resolution 96 

streamflow prediction. The paper is organized as follows: Section 2 provides an overview of the 97 
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conceptual approach of using wavelets to identify events and estimate timing errors, and Section 98 

3 provides the detailed methodology. In Section 4, we describe the software and data, as well as 99 

provide a simple illustration of the method using real and simulated streamflow data. In Section 100 

5, we provide results, including select examples to highlight features of the method and version-101 

over-version comparisons. Section 6 is the discussion and conclusions, including how specific 102 

choices may vary by application.  103 

2. Conceptual Overview 104 

Before going into technical details of the Method (Section 3), we provide a conceptual 105 

overview of the approach of using wavelets to identify events and estimate timing errors. We 106 

provide a nomenclature table (Supplemental Table 1) of key terms relevant to the approach. The 107 

wavelet transform (WT) expands the dimensionality of the original time series by introducing the 108 

timescale (or period) dimension and returns power as a function of both time and timescale (e.g. 109 

Torrence and Compo, 1998). This is illustrated in Figure 1: the streamflow time series (panel a) is 110 

expanded into a 2-dimensional wavelet power spectrum (panel b). Where traditional model errors, 111 

such as the aforementioned RMSE or NSE, reduce the information of the time series to a single 112 

statistic, wavelet analysis expands the input signal and provides information on the dominant 113 

timescales of the time series at each time. Wavelet analysis can therefore detect localized signals 114 

in time series (Daubechies 1990), including hydrologic time series, which are often irregular or 115 

aperiodic (i.e., events may be isolated and don’t regularly repeat) or non-stationary. We note that 116 

in many wavelet applications, timescale is referred to as “period”. To emphasize that our study is 117 

more focused on irregular events and less on periodic behavior of time series, we use the term 118 

“timescale”. The wavelet transform is the foundation of the view in this paper that events have 119 
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characteristics of both time and timescale. Timing errors, calculated from events defined this way, 120 

therefore have dimensions of both time and timescale as well.  121 

In their seminal wavelet study, Torrence and Compo (1998) outline a method for 122 

objectively identifying statistical significance in the wavelet transform. We adopt this approach 123 

and define “events” in the observed time series via statistical significance of the wavelet power 124 

spectrum. The details are provided in the next section, however Figure 1 illustrates that the 125 

events in the input time series (panel a) are defined as regions of the wavelet power spectrum 126 

shown in panel b: events are inside the black contours (>= 95% confidence level) but not inside 127 

the cone of influence (regions where the colors are muted, this is explained in detail in Section 128 

3). The wavelet power spectrum is only shown for the events in panel c. Events defined in this 129 

way are a function of both time and timescale. Note that at a given time, events of different 130 

timescales can occur simultaneously. What one may subjectively interpret as a single event in the 131 

input time series is generally quantified by this definition as multiple coincident events at a 132 

variety of timescales each with a different power (e.g. Figure 1, panel c). Although for some 133 

locations there may be physical reasons to expect certain timescales to be important (e.g., 134 

seasonal cycle of snowmelt), the most important scales at which hydrologic signals occur at a 135 

particular location are not necessarily known a priori. The wavelet power can be examined 136 

across events to identify the most dominant, or what we call “characteristic” timescales for a 137 

given time series; the procedure for this is detailed later in the technical methodological section 138 

(Section 3.1.3). This approach to event detection is objective, data-driven, and portable across 139 

diverse locations, which is important for large-sample hydrologic applications. We point out that 140 

in the objective identification of events, we are not limited to flooding events. Rather, events are 141 
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defined more broadly: an event is when the wavelet power falls outside its standard statistical 142 

power. This can be further subset into flooding events if desired.    143 

Once observed events are identified by the method, we can calculate timing errors 144 

between observed and simulated time series.  The cross-wavelet timing error approach of Liu et 145 

al (2011) is used, but we restrict our calculation of timing errors to the aforementioned regions of 146 

statistically significant wavelet power in the observations; i.e., we calculate timing errors in 147 

terms of observed events (Figure 1c). Because both the phase (timing error) and the significance 148 

of the cross wavelet transform (XWT) computed between the observed and modeled time series 149 

depends on the modeled time series, we use the observed event definition (Figure 1c) in the 150 

calculation of the timing errors to provide a common, consistent basis independent of the models 151 

evaluated (i.e., benchmarking). The portions of the observed wavelet spectrum used for 152 

comparison may further be restricted depending on the analysis goals. 153 

3. Method for evaluating event timing errors 154 
 This section provides the technical description of the methodology, and the steps can be 155 

seen in an accompanying flowchart (Supplemental Figure 1).  156 

3.1. Step 1. Identify observed events 157 
 The first step towards evaluating timing errors is to identify a set of observed events for 158 

which the timing error should be calculated. We break this step into three sub-steps: 1a. Apply 159 

the wavelet transform to observations, 1b. Determine all observed events using significance 160 

testing, and 1c. Sample observed events to an event-set relevant to analysis.  161 

3.1.1. Step 1a. Apply wavelet transform to observations 162 

First, we apply the continuous wavelet transform to the observed time series. We provide 163 

an overview of the main steps and equations for the wavelet transform here, though the reader is 164 

referred to Torrence and Compo (1998) and Liu et al. (2011) for more details.  165 

https://doi.org/10.5194/hess-2020-323
Preprint. Discussion started: 22 September 2020
c© Author(s) 2020. CC BY 4.0 License.



 8 

Before applying the WT, a mother wavelet needs to be selected. In Torrence and Compo 166 

(1998), they discuss the key factors that should be considered when choosing the mother 167 

wavelet. There are four main considerations, including (i) orthogonal or nonorthogonal, (ii) 168 

complex or real, (iii) width, and (iv) shape. In this study, we follow Liu et al. (2011) in selecting 169 

the nonorthogonal and complex Morlet wavelet: 170 

𝜓(𝑛) = 𝜋'(/*𝑒,-./𝑒'/0/1, 171 
where w0 is the non-dimensional frequency, with a value of 6 (Torrence and Compo, 1998). 172 

Once the mother wavelet is selected, the WT is applied to a time series xn, where n goes 173 

from n=0 to n=N-1, with a time step of 𝛿𝑡. The WT is the convolution of the time series with the 174 

mother wavelet that has been scaled and normalized: 175 

𝑊/(𝑠) = ∑ 𝑥/8𝜓∗ :
;/<'/=>?

@
AB'(

/<CD , 176 
where s is the scale parameter, the asterix indicates the complex conjugate of the wavelet 177 

function. The wavelet power is defined as |𝑊/1|. We use the bias corrected wavelet power 178 

spectrum (Liu et al. 2007; Veleda et al. 2012), which ensures spectral peaks are comparable 179 

across timescales. We also identify a maximum timescale that corresponds to our application. 180 

We select 256 hours (~10 days), but this number could be higher or lower for other applications 181 

and there are no real penalties for using too high a maximum (lower than the annual cycle).  182 

Because we are applying the WT to a finite time series, there are timescale-dependent 183 

errors at the beginning and end times of the power spectrum. These are referred to as the cone of 184 

influence or COI (Torrence and Compo, 1998). We ignore all results within the COI in this 185 

study. 186 

3.1.2. Step 1b. Determine all observed events using significant testing 187 

 Once the WT is applied, the 2-dimensional (2-D) wavelet power spectra shows how the 188 

features of the time series vary with both time and timescale. To identify areas of significance, 189 
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we apply Torrence and Compo’s (1998) approach that compares the WT power spectra with a 190 

power spectra from a red noise process. Specifically, the observed time series is fitted with an 191 

order 1 autoregressive (AR1, or red noise) model, and the WT is applied to the AR1 time series. 192 

The power spectra of the AR1 model provide the basis for the statistical significance testing. 193 

Significance is determined if the power spectra are statistically different using a chi-squared test 194 

with 95% confidence.  195 

Statistical significance indicates an “event” at a given time and timescale: that is, the 196 

wavelet power falls outside its standard statistical power. The result is the set of all events, i.e., 197 

each event is a combination of time and timescale (i.e., locations on the 2-D grid).  We refer to 198 

contiguous regions of statistical significance (in time and timescale) as “event clusters” (note that 199 

no statistical clustering is performed). 200 

3.1.3. Step 1c. Sample observed events to an event-set relevant to analysis 201 

 Step 1b results in the identification of all events at all timescales and times. In this sub-202 

step, the event space is sampled to suit the particular evaluation. Because the goal of this paper is 203 

to evaluate model timing errors over long simulation periods, we choose to sample the event 204 

space based on dominant timescales in the time-averaged observed wavelet spectra. For our 205 

application we choose to further sub-sample the observed wavelet spectra by selecting, for each 206 

characteristic timescale, the most powerful event within each event cluster. This is articulated in 207 

the following bullets:  208 

• Calculate the average event power across each timescale: Considering only the 209 

statistically significant areas of the observed wavelet spectrum, calculate the average 210 

power across each timescale. 211 

 212 

https://doi.org/10.5194/hess-2020-323
Preprint. Discussion started: 22 September 2020
c© Author(s) 2020. CC BY 4.0 License.



 10 

• Identify timescales of absolute and local average power maxima: By plotting the average 213 

power versus the timescale, the local and absolute maximums for average power can be 214 

determined. The timescales corresponding to the absolute and local maxima of the 215 

average power are called the characteristic timescales of the observed wavelet spectrum. 216 

This is the first subset of events: all events that fall within the characteristic time scales.  217 

 218 
• Identify events with maximum power for each event cluster: As previously mentioned, 219 

events can also be grouped into “event clusters”, that is, contiguous significant areas. We 220 

can use this to further sample from the event-set created in the last bullet: across each 221 

characteristic timescale, we identify the event with maximum power for each event 222 

cluster. This is the second event subset: all events with maximum power for each cluster 223 

that fall within a characteristic timescale. 224 

 225 
3.2. Step 2. Calculate Timing Errors 226 

 Step 1 identifies events by applying a wavelet transform to the observed time series. To 227 

calculate the timing error of a modeled time series, we perform its cross wavelet transform with 228 

the observed time series, as detailed in this section.  229 

3.2.1. Step 2a. Apply cross-wavelet transform (XWT) to observations and simulations 230 

 Given the WT of an observed time series 𝑊/F(𝑠) and a modeled time series 𝑊/G(𝑠), the 231 

cross-wavelet spectrum can be defined as: 232 

𝑊/FG(𝑠) = 𝑊/F(𝑠)𝑊/G∗(𝑠), 233 
where the asterix implies the complex conjugate. The cross-wavelet power is defined as 234 

|𝑊/FG(𝑠)|.  235 

Similar to Step 1b of the WT, we can also calculate the areas of significance for the 236 

XWT. These are not the same as the areas of significance for the WT. The significant areas of 237 
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the XWT vary with each simulation, and are therefore not useful for evaluation on their own. 238 

Nevertheless, we are interested in the overlap between the significant areas of the observed WT 239 

and the significant areas of the cross-wavelet transform, and this is used to quantify our 240 

confidence in the timing error estimate. We discuss this further in Step 2d.       241 

3.2.2. Step 2b. Calculate the cross-wavelet timing errors 242 

To calculate the timing errors, we first compute the phase angle of the cross-wavelet 243 

spectrum. The phase angle gives the phase difference and can be computed as: 244 

𝜙/FG(𝑠) = 𝑡𝑎𝑛'( Jℑ;〈@
MNOPQR(@)〉=

ℜ;〈@MNOPQR(@)〉=
U, 245 

where ℑ is the imaginary and ℜ is the real component of 𝑊/FG(𝑠).  246 

We convert the phase angle into the timing error as in Liu et al. (2011): 247 
∆𝑡/FG(𝑠) = 𝜙/FG(𝑠) ∗ 𝑇/2𝜋, 248 

where T is the equivalent Fourier period of the wavelet.  249 

3.2.3. Step 2c. Subset cross-wavelet timing errors to sampled observed events 250 

 Step 2b results in an estimate of timing errors for all times and timescales in the cross-251 

wavelet transform space. In our application we are interested in the timing errors that correspond 252 

to the identified sample of observed events, especially for events at the characteristic timescales 253 

(the first event-set in step 1c) and for the maximum power events in each cluster (the second 254 

event-set in step 1c). The latter provides a single timing error for each event cluster at each 255 

characteristic timescale, which could be used in a post-processing step to provide a cluster-by-256 

cluster timing correction, if desired.  257 

It is important to point out that for other applications, there could be other ways to 258 

interrogate the timing errors that result from the cross-wavelet transform. Some of these 259 

possibilities are noted in the Discussion section. 260 

3.2.4. Step 2d. Quantify the confidence in the timing error estimate  261 
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To interpret our confidence in the timing error estimate, we can examine the overlap 262 

between the significant areas of the observed WT and the significant areas of the XWT.  263 

We can look at percent (%) overlap, that is, how many of the XWT events overlap with 264 

the WT events, either for all events or for the sampled event-sets. An overlap close to 0% would 265 

indicate that the model did not do a good job of simulating the observations – or it is a “miss” 266 

(flood is observed but not forecasted). If the overlap was 100%, it would be close to a perfect 267 

simulation. Second, if we are looking at a single timing error for each event cluster, we may look 268 

to see if that event is significant in the XWT. If it is not, it gives us less confidence in the 269 

estimate.    270 

We note that because we are calculating timing errors in terms of observed events, there 271 

is no information about “false alarms”, where a flood is forecasted but not observed. 272 

4. Application of the Framework 273 

The methodology developed in this paper is implemented in the R language and is made 274 

publicly available, as detailed in the code availability section at the end of the manuscript.  275 

4.1. Data 276 
The application of the methodology is illustrated using real and simulated stream discharge 277 

(streamflow, m3/s) data from four U.S. Geological Survey (USGS) stream gage locations: Onion 278 

Creek at US Highway 183, Austin, Texas (Onion Creek, TX; USGS site number 08159000), 279 

Taylor River at Taylor Park, Colorado (Taylor River, CO; USGS site number 09107000), 280 

Pemigewasset River at Woodstock, New Hampshire (Pemigewasset River, NH; USGS site 281 

number 01075000), and Bad River near Fort Pierre, South Dakota (Bad River, SD; USGS site 282 

number 06441500).  We use the USGS instantaneous observations averaged on an hourly basis.  283 

NOAA’s National Water Model (NWM, 284 

https://www.nco.ncep.noaa.gov/pmb/products/nwm/) is an operational model that produces 285 
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hydrologic analyses and forecasts over the continental United States (CONUS) and Hawaii (as of 286 

version 2.0). The model is forced by downscaled atmospheric states and fluxes from NOAA’s 287 

operational weather models. Next, the NoahMP (Niu et al 2011) land surface model calculates 288 

energy and water states and fluxes. Water fluxes propagate down the model chain through 289 

overland and subsurface (soil and aquifer representations) water routing schemes to reach a 290 

stream channel model. The NWM applies the three parameter Muskingum-Cunge river routing 291 

scheme to a modified version of the NHD-Plus version 2 (McKay et al. 2012) river network 292 

representation.  293 

In this study, NWM simulations are taken from each version’s retrospective runs 294 

(https://docs.opendata.aws/nwm-archive/readme.html). These are continuous simulations (not 295 

cycles) run for the period October 2010 to November 2016 and forced by the National Data 296 

Assimilation System (NLDAS)-2 product as atmospheric conditions. The nudging data 297 

assimilation was not applied in these runs either. We use NWM discharge simulations from 298 

versions V1.0, V1.1, and V1.2 (not all version may be publicly available). 299 

To apply the methodology, we note that the observed and simulated datasets must be 300 

paired (overlapping). Further, for evaluation, any new simulation must also be paired with the 301 

observed. Missing data, which is common in observed time series, can be problematic and can 302 

result in false significance. We account for this our methodology by calculating the XT and 303 

XWT on each complete time series. This will be illustrated in the forthcoming example at Taylor 304 

River, CO.   305 

4.2. Application  306 
For illustration purposes we apply Steps 1 and 2 to an observed time series in Onion 307 

Creek, TX; for simplicity, we select an isolated peak (Figure 1a). First, we apply the wavelet 308 

transform to the observations (Figure 1b). This shows the time series in terms of its power by 309 
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time and timescale, with warmer colors indicating more power. The black outline shows the 310 

areas of significance and the muted colors indicate the COI. To determine all observed events, 311 

we identify all the points that are significant and outside the COI (Figure 1c). Next, we average 312 

the power across each timescale: to the right of Figure 1b we show power averaged across all 313 

points for each timescale, and to the right of Figure 1c we show power averaged across just the 314 

events for each timescale. The latter is the one used to identify our characteristic scales. In this 315 

case, there is a single maximum at 22 hours. For the characteristic timescale, we see there is only 316 

1 event cluster and the event with maximum power is marked with a star (Figure 1d). 317 

 For Step 2, we use the same Onion Creek, TX, peak from Figure 1a, and add a prescribed 318 

timing error of +5 hours to every point in the original time series (Figure 2a) to create a synthetic 319 

time series. We perform the cross-wavelet transform between the observed and synthetic time 320 

series (Figure 2b). The arrows in Figure 2b indicate the phase offset, which are used to calculate 321 

the timing error (Figure 2c). The timing error estimates show that for timescales greater than 10 322 

hours, we get back the prescribed timing error of 5 hours, i.e., the scale must be at least double 323 

the timing error. In this case, because we are adding a prescribed error, the error is approximately 324 

5 hours for all events, including for the characteristic timescale of 22 hours.  325 

 Finally, we repeat Step 2, but compare the observation of this event to actual model data 326 

from NWM V1.2. This shows that the model is early (Supplemental Figure 2a). We perform the 327 

cross wavelet transform (Supplemental Figure 2b) and examine the timing error (Supplemental 328 

Figure 2c). Table 1 summarizes the results: the mean error across the 22-hour characteristic 329 

timescale is -3.2 hours, as is the error for the cluster’s maximum power. All events in the cluster 330 

are also significant in the XWT (100%), and the cluster maximum is also significant, providing 331 

confidence in this timing error estimation.    332 

https://doi.org/10.5194/hess-2020-323
Preprint. Discussion started: 22 September 2020
c© Author(s) 2020. CC BY 4.0 License.



 15 

 333 
5. Results  334 

In this section, modeled data is used from several locations and time series to highlight the 335 

features of the method, finishing with version-over-version comparisons to illustrate the utility 336 

for evaluation.  337 

5.1. Pemigewasset River, NH 338 

This example uses time series from the Pemigewasset River, NH.  First, we examine a three-339 

month time series that exhibits multiple peaks above a base flow (Figure 3a). By eye, it is fairly 340 

straightforward to pick out three main peaks. The wavelet transform (Figure 3b and 3c) reveals 341 

up to three event clusters, depending on the characteristic timescale examined (Figure 3d). When 342 

we plot the average power by timescale (right of Figure 3c), we see that there are nine relative 343 

maxima (small grey dots) – hence there are 9 characteristic scales for this example.   344 

In Step 2, we compare the same time series with output from NWM V1.2 (Figure 4a), apply 345 

the cross-wavelet transform (Figure 4b), and calculate the timing error for all observed events 346 

(Figure 4c).  As previously mentioned, we are interested in the timing errors corresponding to 347 

observed events at the characteristic timescales. In Figure 5a, the panels are ordered by 348 

timescales from highest to lowest average power; we only show the top 5 characteristic scales, 349 

using the first-subset of events, grouped by cluster. The first panel, where timescale = 24.8 hours, 350 

is the absolute maximum. This shows two cluster distributions: for cluster one, the model is late 351 

for most events, and cluster two shows the model is early; the dark shading indicates that most of 352 

the events are significant in the XWT. The next two dominant scales have similar average power 353 

and are of the same order of magnitude at 27.8 hours and 33.1 hours; if we had applied 354 

smoothing to the graph of average power by timescale, these relative maxima would smooth out. 355 

We will revisit this in the Discussion, when we discuss pathways to implementation. The 356 
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characteristic scale with the next highest maxima occurs at 111 hours, which is a different order 357 

of magnitude, suggesting that this may have a different physical process driving it. This shows 358 

the model to be late for both clusters, and results are similar for a timescale of 148 hours. We 359 

don’t show results for the remaining 4 characteristic time scales with lower average power, since 360 

they have similar characteristic timescale values and associated timing errors to what has already 361 

been shown.  362 

We can see how looking at the timing errors using the cluster distributions will get harder as 363 

the number of clusters increase, so it is also useful to summarize the information by looking at 364 

each cluster mean and max. If we run the methodology on the full 5-year Pemigewasset River 365 

time series, we can compare the mean and max timing errors for each characteristic time scale 366 

using box plots where the outline is shaded by the average confidence (Supplemental Figure 3). 367 

Table 2 summarizes this information. For example, the absolute maxima, at the 17.5 hour 368 

timescale has 86 clusters, and a timing error centered around zero (-0.43 hours), 75% of which 369 

are significant in the XWT. This is very similar to the results for the cluster max, as it is for the 370 

rest of the characteristic time scales. One other thing to note is that as expected, because the 371 

characteristic time scales are data driven, they are not the same as they were for the 3-month 372 

period.  373 

5.2. Bad River, SD 374 
The second example uses a two-month time series from the Bad River, SD, to illustrate the 375 

concept of consecutive peaks (Figure 6a). Whereas in the previous example it was fairly 376 

straightforward to pick out 3 distinct peaks, in this time series, there is one noticeable peak 377 

centered around June the 1st, with smaller peaks preceding and following it. The question is 378 

whether or not this is one event cluster or multiple? Looking at the wavelet transform (Figure 6b 379 
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and 6c), we can see that for smaller timescales, there are more clusters, but for longer timescales, 380 

they are considered a single cluster.  381 

In Step 2, we compare the same time series with output from NWM V1.2 (Figure 7a), 382 

calculate the cross-wavelet transform (Figure 7b), and calculate the timing error (Figure 7c). The 383 

timing error figure shows a sign switch: for longer timescales (i.e., when the peaks are 384 

considered part of a single event cluster), the model is early, but for shorter time scales (i.e., 385 

when the peaks are each considered their own cluster), the model is late. This is an important 386 

point: corrections at one scale may worsen timing error (or other metrics) at other scales.  387 

This example has another interesting feature: namely that there is a false alarm in the model 388 

just before July 15. We note that because of our methodology, there is no observed event at that 389 

time, and therefore no timing error to be calculated, that is there is no information in the timing 390 

error statistics in terms of false alarms.  391 

5.3. Taylor River, CO 392 
In this example, we will examine a time series from Taylor River, CO, that illustrates peaks 393 

that are driven by different processes. The Taylor River is in a mountainous area where the 394 

spring hydrology is dominated by snowmelt runoff. To start, we will look at a portion of the 395 

spring melt season, where we can visibly see a diurnal signal (Figure 8). However, while it’s 396 

easy to see that the model is too high in amplitude, it’s hard to visually tell much about the 397 

timing error. Figure 9 shows that for the characteristic time scale of 23.4 hours, the model is 398 

usually early, with high confidence.  399 

Supplemental Figure 4a shows a year-long time series from Taylor River, CO, where we can 400 

see the snowmelt runoff in spring, but also several peaks in summer, likely driven by summer 401 

rains. From the WT, we again see the peak in the characteristic time scales at about 24 hours 402 

(right of Supplemental Figure 4c), but there is another maxima at 99 and 118 hour timescales, 403 
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relating to flows from the summer rains. Looking at Figure 10, starting with the 24 hour 404 

timescale, we see that for the clusters that are significant in the XWT, the model is generally 405 

early. For the 118 and 99 hour timescale, the model is also early, but those cluster events are not 406 

statistically significant in the XWT. This suggests that we are confident in the early timing errors 407 

of the model for the diurnal snowmelt cycle, and this could be used as qualitative guidance for 408 

model performance at this site until the model performance is improved. However, we show that 409 

it is less reliable for the early timing errors for the summer peaks. This underscores the key point 410 

that timing errors are timescale dependent, and can help diagnose which processes to target for 411 

improvements.   412 

Supplemental Figure 4b also illustrates how missing data is handled: this results in additional 413 

COIs (muted colors) to account for the edge effects, and areas of the COI are ignored in our 414 

analyses.  415 

5.4. Evaluating Model Performance  416 
 417 

Finally, we show how the methodology can be used for evaluating performance changes 418 

across NWM versions. We point out that none of the NWM version upgrades were targeting 419 

timing errors, so these results just provide a demonstration. We use a 5-year overlapping time 420 

series and cluster max for the results, but cluster mean results were similar (not shown). For the 421 

NWM V1.0 for Onion Creek, we see that for the 29.5 hour timescale, there were 17 clusters, for 422 

which the median timing error is -1.4 hours, and all were significant in the XWT (Table 3). 423 

Comparing V1.0, V1.1, and V1.2, the results for Onion Creek show that the median timing error 424 

has gotten slightly earlier (worse), although the distribution became tighter from V1.0 to V1.1 425 

and V1.2 (Figure 11). In Figure 11, the dark blue color of the boxplot outline indicates that there 426 

is high confidence in the timing error, as the overlapping significance is close to 100% for the 427 

https://doi.org/10.5194/hess-2020-323
Preprint. Discussion started: 22 September 2020
c© Author(s) 2020. CC BY 4.0 License.



 19 

top three characteristic timescales. Using the 5-year overlapping time series for Pemigewasset 428 

River, NH, we see that the median timing error improved by getting closer to zero, but that the 429 

distribution became wider (Figure 12). Again, the confidence is fairly high (>80%) across 430 

characteristic time scales and versions (Table 4), and >60 clusters were used in the estimations. 431 

Using 5-years from Taylor River, CO (Supplemental Table 2, Supplemental Figure 5), we see 432 

that for the characteristic scale of 235 hours (~10 days), has low confidence (~25%) for the 4 433 

sampled clusters; the timescale of 23.4 hours has a median that is consistently early by around 6 434 

hours, with the version model confidence ranging from 44% to 67% (Supplemental Table 2). 435 

Results for the Bad River can be seen in Supplemental Table 3 and Supplemental Figure 6.  436 

 437 
6. Discussion and Conclusions 438 
 439 

In this paper, we develop a systematic, data-driven methodology to objectively identify 440 

events and estimate timing errors in large-sample, high-resolution hydrologic models. The 441 

method was developed towards several intended uses: Primarily, it was developed for model 442 

evaluation, so that model performance can be documented in terms of defined standards. We 443 

illustrate this with the version-over-version NWM comparisons. Second, it can be used for model 444 

development, whereby potential timing error sources can be diagnosed and targeted for 445 

improvement. Related to this point, given the advantages of calibrating using multiple-criteria 446 

(e.g., Gupta et al. 1998), timing errors could be used as part of a larger calibration strategy. 447 

However, as noted in the consecutive peaks example for the Bad River, minimizing timing errors 448 

at one timescale may not translate to improvements in timing errors (or other metrics) at other 449 

scales. Wavelet analysis has also been used directly as an objective function for calibration, 450 

although a difficulty is in determining the similarity measure to use (e.g. Schaefli and Zehe 2009, 451 

Rathinasamy et al. 2014). Future research will investigate the properties of timing errors for 452 
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calibration. Finally, the approach can be used for model interpretation, as estimating timing 453 

errors provides a characterization of the uncertainty (i.e., for a given timescale, the model is 454 

generally late or early), as well as a measure of the confidence, that could be useful for 455 

qualitative forecast guidance.  456 

Given the fact that several subjective choices were made specific to our application and 457 

goals, we think it is important to highlight that we have made the analysis framework openly 458 

available (detailed in the code availability section below), so the method can be extended or 459 

refined by the community right away. For instance, because of our focus on model evaluation 460 

and development, we use the observed WT to identify events. However, in other instances it 461 

might be sufficient to only sample events that are in the significant areas of the XWT (essentially 462 

to identify the characteristic scales and event-set directly from the XWT instead of from the 463 

WT). This might be reasonable for applications that are more focused on model interpretation in 464 

a real-time forecasting mode, but it would not allow for version comparison and it is not 465 

guaranteed that all the important characteristic scales would be identified (i.e., the model may 466 

not capture some real-world processes, and therefore miss the associated characteristic 467 

timescales).  We only look at the timing errors from an event-set relevant to our analysis, but 468 

there are other ways to subset the events that might be more suitable to other applications. For 469 

instance, we define the event set broadly, but it could be subset for high peak or flooding events 470 

to compare with traditional peak-over-threshold approaches. For example, Supplemental Figure 471 

7 shows the maximum streamflows for the event-set from the 5 year run at Taylor River; this 472 

event-set could be filtered to include only events above a given threshold. The method provides a 473 

quantification of the confidence in the timing errors, and we include all timing errors in our 474 

summaries. However, it might make more sense to drop points that do not have a high 475 
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confidence (i.e., with a low percent of events that significantly overlap between the XT and the 476 

XWT) and to flag those events as misses.      477 

Another point that arises is how many characteristic timescales should be examined. 478 

Here, we average the power across timescales and identify characteristic scales to be at every 479 

absolute and relative maxima. As seen in the illustrative examples, this can result in multiple 480 

characteristic scales, some of which can be quite similar, suggesting that events at those scales 481 

are from similar or related processes. One solution could be to smooth the average power by 482 

timescale, which would reduce the number of local maxima, or to look at timing errors within a 483 

band of timescales. It is also important to note that the characteristic scales are data-driven, so 484 

they will change with different lengths of observed time series. Longer runs capture more events 485 

and should converge on the more dominant timescales and events for a location. However, for 486 

performance evaluation, overlapping time periods are needed.  487 

In our application of the WT, we follow Liu et al. (2011) and select the Morlet as the 488 

mother wavelet. However, results are sensitive to the mother wavelet selected. Further discussion 489 

of mother wavelet choices can be found in Torrence and Compo (1998) and in ElSaadani and 490 

Krajewski (2017).   491 

In short, this paper provides a systematic, flexible, and computationally efficient 492 

methodology that is appropriate for model evaluation and comparison, and is useful for model 493 

development and guidance. Future work will apply the approach to identify characteristic 494 

timescales across the United States, as well as to assess the associated timing errors in the NWM.  495 

Code/Data Availability  496 

The code for reproducing the figures in this paper as well as extended vignettes/notebooks are 497 

provided in public github repository https://github.com/NCAR/wavelet_timing. In addition to 498 

https://doi.org/10.5194/hess-2020-323
Preprint. Discussion started: 22 September 2020
c© Author(s) 2020. CC BY 4.0 License.



 22 

reproducing the analyses and figures in this paper, several jupyter notebooks provide more 499 

detailed analyses of the time series included in this paper. We emphasize that the analysis 500 

framework is meant to be flexible and adapted to similar applications where different statistics 501 

may be desired. The figures created are specific to the applications in this paper but provide a 502 

starting point for other work. 503 

The core code is provided in the public “rwrfhydro” R package 504 

https://github.com/NCAR/rwrfhydro. The package can be installed as described by the 505 

README document in the repository and in the Supplemental Online Materials for this paper. 506 

The code is written in the open-source R language (R Core Team 2019) and builds off multiple, 507 

existing R packages. Most notably the wavelet and cross-wavelet analyses are performed using 508 

the “biwavelet” package (Gouhier et al. 2018).  509 
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Figures 621 

 622 
Figure 1. An isolated peak from Onion Creek, TX: (a) observed time series, (b) observed wavelet 623 
power spectrum (left) and average power by timescale for all points (right); (c) statistically 624 
significant wavelet power spectrum or events (left) and average power by time scale for all 625 
events with maxima shown by grey dots (right); (d) Characteristic scale event cluster (horizontal 626 
green line) and maxima (star). 627 
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 628 
Figure 2. An isolated peak from Onion Creek, TX and a synthetic +5 hour offset: (a) observed 629 
and synthetic time series, (b) cross wavelet (XWT) power spectrum and phase angles (arrows), 630 
(c) sampled timing errors for observed events. 631 
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 632 
Figure 3. Multiple peaks from Pemigewasset River, NH: (a) observed time series, (b) observed 633 
wavelet power spectrum (left) and average power by timescale for all points (right); (c) 634 
statistically significant wavelet power spectrum or events (left) and average power by time scale 635 
for all events with maxima shown by grey dots (right); (d) Characteristic scales event clusters 636 
(horizontal lines). 637 
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 638 
Figure 4. Multiple peaks from Pemigewasset River, NH: (a) observed and simulated NWM time 639 
series, (b) cross wavelet (XWT) power spectrum and phase angles (arrows), (c) sampled timing 640 
errors for observed events. 641 
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 642 
Figure 5. Multiple peaks from Pemigewasset River, NH : For the top 5 characteristic timescales 643 
(see panel title), timing error distributions for event clusters. Dark colors show if the event was 644 
significant in the cross wavelet transform (XWT), muted colors indicate no significance.  645 
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 646 
Figure 6. Consecutive peaks from Bad River, SD: (a) observed time series, (b) observed wavelet 647 
power spectrum (left) and average power by timescale for all points (right); (c) statistically 648 
significant wavelet power spectrum or events (left) and average power by time scale for all 649 
events with maxima shown by grey dots (right); (d) Characteristic scales event clusters 650 
(horizontal lines). 651 
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 652 
Figure 7. Consecutive peaks from Bad River, SD: (a) observed and simulated NWM time series, 653 
(b) cross wavelet (XWT) power spectrum and phase angles (arrows), (c) sampled timing errors 654 
for observed events. 655 

https://doi.org/10.5194/hess-2020-323
Preprint. Discussion started: 22 September 2020
c© Author(s) 2020. CC BY 4.0 License.



 33 

 656 
Figure 8. Taylor Park, CO: observed and simulated NWM time series.   657 
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 658 
Figure 9. Taylor Park, CO: Timing error distributions for event clusters. Dark colors show if the 659 
event was significant in the cross wavelet transform (XWT), muted colors indicate no 660 
significance.  661 
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 662 
Figure 10. Taylor Park, CO: Timing error distributions for event clusters for top three 663 
characteristic timescales (see panel title). Dark colors show if the event was significant in the 664 
cross wavelet transform (XWT), muted colors indicate no significance.  665 
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 666 
Figure 11. Five year run from Onion Creek, TX: Comparing cluster max timing error 667 
distributions for top three characteristic timescales (see panel title) across NWM versions; 668 
outline shading shows average significance in the cross wavelet transform (XWT). 669 
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 670 
Figure 12. Five year run from Pemigewasset River, NH: Comparing cluster max timing error 671 
distributions for top three characteristic timescales (see panel title) across NWM versions; 672 
outline shading shows average significance in the cross wavelet transform (XWT).  673 
 674 
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