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Nomenclature Table 
Supplemental Table 1. Nomenclature table of terms used in the manuscript.  

Term, 
Acronym 

Synonyms Units Comments 

time series   Input data m^3/s for 
streamflow  

We analyze streamflow observations and simulations, which 
are ordered by the time dimension (Figure 1a) 

time    hours Dimension of the input timeseries (x-axis on all Figure 1 
panels). 

timescale period hours Dimension introduced at each time by the WT (y-axis on 
Figure 1b-d) 

wavelet 
transform (WT) 

wavelet power 
spectrum (result of 
the transform) 

m^6/s^2 In this paper, we employ the continuous WT (Figure 1b) with 
scale normalized energy (Liu et al, 2007) 

cone of 
influence (COI) 

COI   Where wavelet analysis is affected by the wavelet extending 
beyond the time domain of the input (muted colors in Figure 
1b) 

event     We define events in terms of both time and timescales that 
are significant in the WT and outside the COI (Figure 1c) 

characteristic 
timescale 

dominant 
timescale 

hours We define characteristic timescales by local maxima in time-
averaged, significant wavelet power (e.g. over events) 
(Figure 1d) 

event cluster     For a single (e.g. characteristic) timescale, contiguous 
events in time (Figure 1d) 

cross wavelet 
transform 
(XWT) 

cross wavelet 
power spectrum 
(result of the 
transform) 

Power: m^6/s^2 
Phase: radians 

The complex, cross-wavelet transform has properties of 
power and phase. Significance of the XWT can also be 
computed (e.g. Torrence and Compo, 1998) and are used in 
this work but not shown on the plots. Figure 2b. 

timing error   hours Timing errors are calculated from the phase offset of the 
XWT (e.g. Liu, 2011) and have dimensions of both time and 
timescale. Several statistics of timing errors (over time) for 
characteristic timescales can be computed (Figure 2c).  

 
 



Methodology Overview 
 

 
Supplemental Figure 1. Flow chart of steps in the methodology; although Steps 1a-1b and Steps 
2a-2b can happen in parallel, Step 2c needs to be preceded by Step 1c. 
 

 

 

 

 

 

 

 

 
 
 

3.1.1. 1a. Apply wavelet transform
to observations

3.1.2. 1b. Determine all observed events
using significance testing

3.1.3. 1c. Sample observed events to an 
event-set relevant to analysis

3.2.1. 2a. Apply cross-wavelet transform (XWT)
to observations and simulations

3.2.2. 2b. Calculate the cross-wavelet timing
errors

3.2.3. 2c. Subset cross-wavelet timing errors to
sampled observed events

3.2.4. 2d. Quantify the confidence in the 
timing error

3.1. Step 1. Identify observed events 3.2. Step 2. Calculate timing errors



Onion Creek, Single Event 

 
Supplemental Figure 2. An isolated peak from Onion Creek, TX and simulated NWM data: (a) 
observed and simulated time series, (b) cross wavelet (XWT) power spectrum and phase angles 
(arrows), (c) sampled timing errors for observed events. 
 
 
 
 
 
 
 
 
 
 



Pemigewasset River, Five Years 
 

 
Supplemental Figure 3. Five year run from Pemigewasset River, NH: For NWM V1.2, cluster max 
and mean timing errors by characteristic timescales (see panel title); outline shading shows 
average significance in the cross wavelet transform (XWT). 
  



Taylor River, One Year 
 

 
Supplemental Figure 4. Taylor River, CO: (a) observed time series, (b) observed wavelet power 
spectrum (left) and average power by timescale for all points (right); (c) statistically significant 
wavelet power spectrum or events (left) and average power by time scale for all events with 
maxima shown by grey dots (right); (d) Characteristic scales event clusters (horizontal lines). 
  



Taylor River, Five Year 
 
Supplemental Table 2. Summary of timing errors using cluster max for 5-years from Taylor 
River, CO.  

NWM 
Version 

Characteristic 
Timescale (hr) 

Number of 
Clusters 

Avg WT 
Power 

Median 
Timing 

Error (hr) 

Avg % 
Significance 

in XWT 
v1.0 23.4 39 249 -5.52 67% 
v1.1 23.4 39 249 -5.50 44% 
v1.2 23.4 39 249 -6.22 54% 
v1.0 236 4 220 -8.19 25% 
v1.1 236 4 220 10.01 25% 
v1.2 236 4 220 -15.28 25% 

 

 
Supplemental Figure 5. Five year run from Taylor River, CO: Comparing cluster max timing error 
distributions for top two characteristic timescales (see panel title) across NWM versions; 
outline shading shows average significance in the cross wavelet transform (XWT). 
 



Bad River, One Year 
 
Supplemental Table 3 and Supplemental Figure 6 show that for the characteristic scale of 52.5 
hours, the model is early and confident for V1.0 and V1.2; V1.1 shows a late timing error, but 
confidence is lower (~50%). However, results were only based on 2 event clusters. 
 
Supplemental Table 3. Summary of timing errors using cluster max for 1-year from Bad River, 
SD.  

NWM 
Version 

Characteristic 
Timescale (hr) 

Number of 
Clusters 

Avg WT 
Power 

Median 
Timing 

Error (hr) 

Avg (%) 
Significance 

in XWT 
v1.0 52.5 2 37524 -8.3 100% 
v1.1 52.5 2 37524 11.3 50% 
v1.2 52.5 2 37524 -7.8 100% 

 
 

 
Supplemental Figure 6. One year run from Bad River, SD: Comparing timing error distributions 
for top characteristic timescale (see panel title) across NWM versions. 

 



Taylor River, Five Year 
 

 
Supplemental Figure 7. Five year run from Taylor River, CO: for top four characteristic 
timescales (periods), maximum streamflow distributions for each event (using cluster max) in 
cubic meters per second (cms). This figures shows that all events identified by the algorithm are 
not necessarily flood events, the highest maximum streamflow value occurs at a timescale of 
111.2 hours. To compare with traditional peak-over-threshold approaches, this event-set could 
be filtered to include only events above a given threshold. 
 
  



Example Code and Runtime Profile 
 
The code for reproducing the figures in this paper and extended vignettes/notebooks are 
provided in public github repository https://github.com/NCAR/wavelet_timing. The core code is 
provided in the “rwrfhydro” R package https://github.com/NCAR/rwrfhydro and the specific 
analyses are contained in the first repository. The installation of rwrfhydro requires having the 
devtools package installed.  
Installation 
install.packages(devtools) 
devtools::install_github("https://github.com/NCAR/rwrfhydro") 

 
Example: Three Basic Figures 
After the installation of rwrfhydro, there a two more packages are required as show below to 
run the examples. This example (adapted from the vignettes and the code to reproduce the 
figures in the paper) plots the equivalent of figures 1, 2 and  
library(rwrfhydro) 
if(!require("relayer")) { 
  devtools::install_github("https://github.com/clauswilke/relayer") 
  library(relayer)} 
if(!require("grid")) { 
  install.packages(grid); library(grid)} 
 
location = 'pemigewasset_river' 
time_period <- 'small_event' 
 
data <- WtGetEventData(location, time_period) 
 
wt_event = WtEventTiming( 
  POSIXct=data$POSIXct, 
  obs=data$q_cms_obs, 
  mod=list('NWM v1.2'=data$`NWM v1.2`), 
  min_ts_length=24, 
  max.scale=256, 
  rm_chunks_warn=FALSE 
) 
 
figure1 = step1_figure(wt_event) 
grid.draw(figure1) 

 
figure2 = step2_figure(wt_event) 
grid.draw(figure2) 

 
figure3 = event_cluster_timing_by_period(wt_event, n_period=5) 
plot(figure3) 

 
Example: Performance Profiling  
If the wavelet timing error method is suitable for use in a calibration strategy partially depends 
on the time required to calculate the timing errors. The following code provides a measure of 
the time required. 
if(!require("microbenchmark")) {  
  install.packages("microbenchmark"); library(microbenchmark)} 
 
location = 'pemigewasset_river' 
time_period <- 'five_years' 
data = WtGetEventData(location, time_period) 
 
get_wt_stats = function() { 
  wt_event = WtEventTiming( 



    POSIXct=data$POSIXct, 
    obs=data$q_cms_obs, 
    mod=list('NWM v1.2'=data$`NWM v1.2`), 
    min_ts_length=24, 
    max.scale=256, 
    rm_chunks_warn=FALSE 
  ) 
  return(we_hydro_stats(wt_event)) 
} 
 
# Runtime profile – using observations.  

suppressWarnings( 
  print(microbenchmark(get_wt_stats(), times=10), unit='s')) 

 
On an iMac desktop, the mean time to get the stats was 8.7 seconds. 


