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Abstract 8 
 9 

Streamflow timing errors (in the units of time) are rarely explicitly evaluated, but are 10 

useful for model evaluation and development. Wavelet-based approaches have been shown to 11 

reliably quantify timing errors in streamflow simulations, but have not been applied in a 12 

systematic way that is suitable for model evaluation. This paper provides a step-by-step 13 

methodology that objectively identifies events, and then estimates timing errors for those events, 14 

in a way that can be applied to large-sample, high-resolution predictions. Step 1 applies the 15 

wavelet transform to the observations, and uses statistical significance to identify observed 16 

events. Step 2 utilizes the cross-wavelet transform to calculate the timing errors for the events 17 

identified in Step 1; this includes the diagnostic of model event “hits”, and timing errors are only 18 

assessed for hits. The methodology is illustrated using real and simulated stream discharge data 19 

from several locations to highlight key method features. The method groups event timing errors 20 

by dominant timescales, which can be used to identify the potential processes contributing to the 21 

timing errors and the associated model development needs. For instance, timing errors that are 22 

associated with the diurnal melt cycle are identified. The method is also useful for documenting 23 

and evaluating model performance in terms of defined standards. This is illustrated by showing 24 

version-over-version performance of the National Water Model (NWM) in terms of timing 25 

errors.  26 

 27 
1.  Introduction  28 
 29 
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Common verification metrics used to evaluate streamflow simulations are typically 30 

aggregated measures of model performance, e.g., the Nash Sutcliffe Efficiency (NSE) and the 31 

related root mean square error (RMSE). Although typically used to assess errors in amplitude, 32 

these statistical metrics include contributions from errors in both amplitude and timing (Ehret 33 

and Zehe 2011), making them difficult to use for diagnostic model evaluation (Gupta et al. 34 

2008). Furthermore, common verification metrics are calculated using the entire time series, 35 

whereas timing errors require comparing localized features or events in the data. This paper 36 

focuses explicitly on event timing error estimation, which is not routinely evaluated, despite its 37 

potential benefit for model diagnostics (Gupta et al. 2008) and practical forecast guidance (Liu et 38 

al. 2011).  39 

The fundamental challenge with evaluating timing errors is identifying what constitutes 40 

as an “event” in the two time series being compared. Identifying events is typically subjective, 41 

time consuming, and not practical for large-sample hydrological applications (Gupta et al. 2014). 42 

A variety of baseflow separation methods, ranging from physically-based to empirical, have been 43 

developed to identify hydrologic events (see Mei and Anagnostou 2015 for a summary), though 44 

many of these approaches require some manual inspection of the hydrographs. Merz et al. (2006) 45 

put forth an automated approach, but it requires a calibrated hydrologic model, which is a 46 

limitation in data poor regions. Koskelo et al. (2012) developed a simple, empirical approach that 47 

only requires rainfall and runoff time series, but is limited to small watersheds and daily data. 48 

Mei and Anagnostou (2015) introduce an automated physically-based approach, which is 49 

demonstrated for hourly data, though one caveat is that basin events need to have a clearly 50 

detectable recession period.  Additional methods have focused on identifying flooding events 51 

using peak-over-threshold methods. The thresholds used for such analyses are often either based 52 
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on historical percentiles (e.g., the 95th percentile) or on local impact levels (river stage), such as 53 

the National Weather Service (NWS) flood categories (NOAA National Weather Service, 2012). 54 

Timing error metrics are often calculated from the peaks of these identified events. For example, 55 

the Peak Time Error, or its derivative the Mean Absolute Peak Time Error, requires matching 56 

observed and simulated event peaks, and calculating their offset (Ehret and Zehe 2011). While 57 

this may be straightforward visually, it can be difficult to automate; some of the reasons for this 58 

are discussed below. 59 

Difficulties arise using thresholds for event identification. For example, exceedances can 60 

cluster if a hydrograph vacillates above and below a threshold, begging the question: Is it one or 61 

multiple events? Which peak should be used for the assessment? In the statistics of extremes, 62 

declustering approaches can be applied to extract independent peaks (e.g., Coles 2001), but this 63 

reductionist approach may miss relevant features. For instance, if background flows are elevated 64 

for a longer period of time before and after the occurrence of these “events”, the threshold-based 65 

analysis identifies features of the flow separately from the primary hydrologic process 66 

responsible for the event. If one focuses just on peak timing differences in this example, that 67 

timing error may only apply to some small fraction of the total flow of the larger event which 68 

happens mainly below the threshold. Further, for overall model diagnosis that focuses on model 69 

performance for all events, not just flood events, variable thresholds would be needed to account 70 

for different kinds of events (e.g., a daily melt event versus a convective precipitation event).   71 

Using a threshold-approach to identify events and timing error assessment, Ehret and 72 

Zehe (2011) develop an intuitive assessment of hydrograph similarity, the Series Distance. This 73 

algorithm is later improved upon by Seibert et al. (2016). The procedure matches observed and 74 

simulated segments (rise or recession) of an event, and then calculates the amplitude and timing 75 
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errors, as well as the frequency of event agreement. The Series Distance requires smoothing the 76 

time series, identifying an event threshold, and selecting a time range to consider two segments 77 

matching. 78 

Liu et al. (2011) developed a wavelet-based method for estimating model timing errors. 79 

Although wavelets have been applied in many hydrologic applications such as model analysis 80 

(e.g. Lane 2007; Weedon et al. 2015; Schaefli and Zehe 2009, Rathinasamy et al. 2014) and 81 

post-processing (Bogner and Kalas 2007; Bogner and Pappenberger 2011), Liu et al. were the 82 

first to use it for timing error estimation. Liu et al. (2011) apply a cross-wavelet transform 83 

technique to streamflow time series for 11 headwater basins in Texas. Timing errors are 84 

estimated for medium- to high- flow “events” that are determined a priori by threshold 85 

exceedance. They use synthetic as well as real streamflow simulations to test the utility of the 86 

approach. They show that the technique can reliably estimate timing errors, though they 87 

conclude that it is less reliable for multi-peak or consecutive “events” (defined qualitatively). 88 

ElSaadani and Krajewski (2017) followed the cross-wavelet approach used by Liu et al (2011) to 89 

provide similar analysis and further investigate the effect of the choice of mother wavelet on the 90 

timing error analysis. Ultimately, they recommended that in the situation of multiple, adjoining 91 

flow peaks the improved time localization of the Paul wavelet might justify its poorer frequency 92 

localization compared the Morlet wavelet.  93 

Liu et al. (2011) provide a starting point for the work in this paper where we develop two 94 

new bases for their method: 1) objective event identification for timing error evaluation and 2) 95 

the use of observed events as the basis for the model timing error calculations. The latter is 96 

important for “model benchmarking”, i.e., the practice of evaluating models in terms of defined 97 

standards (e.g., Luo, et al. 2012; Newman et al. 2017). Here, the use of observed events provides 98 
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a baseline by which to evaluate changes and to compare multiple versions or experimental 99 

designs. 100 

This paper provides a methodology for using wavelet analysis to quantify timing errors in 101 

hydrologic simulations. Our contribution is a systematic approach that integrates 1) statistical 102 

significance to identify events with 2) a basis for timing error calculations independent of model 103 

simulations (i.e., benchmarking). We apply our method to timing error evaluation of high-104 

resolution streamflow prediction. The paper is organized as follows: Section 2 describes the 105 

observational and simulated data used. Section 3 provides the detailed methodology of using 106 

wavelets to identify events and estimate timing errors in a synthetic example. In Section 4, we 107 

demonstrate the method using real and simulated streamflow data for several use cases, and then 108 

illustrate the application of the method for version-over-version comparisons. Section 5 is the 109 

discussion and conclusions, including how specific methodological choices may vary by 110 

application.  111 

2. Data 112 
 113 

The application of the methodology is illustrated using real and simulated stream discharge 114 

(streamflow, m3/s) data at three U.S. Geological Survey (USGS) stream gage locations in 115 

different geographic regions: Onion Creek at US Highway 183, Austin, Texas, for the South 116 

Central region (Onion Creek, TX; USGS site number 08159000), Taylor River at Taylor Park, 117 

Colorado, for the Intermountain West (Taylor River, CO; USGS site number 09107000), and 118 

Pemigewasset River at Woodstock, New Hampshire, for New England (Pemigewasset River, 119 

NH; USGS site number 01075000). We use the USGS instantaneous observations averaged on 120 

an hourly basis.  121 
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NOAA’s National Water Model (NWM, 122 

https://www.nco.ncep.noaa.gov/pmb/products/nwm/) is an operational model that produces 123 

hydrologic analyses and forecasts over the continental United States (CONUS) and Hawaii (as of 124 

version 2.0). The model is forced by downscaled atmospheric states and fluxes from NOAA’s 125 

operational weather models. Next, the NoahMP (Niu et al 2011) land surface model calculates 126 

energy and water states and fluxes. Water fluxes propagate down the model chain through 127 

overland and subsurface (soil and aquifer representations) water routing schemes to reach a 128 

stream channel model. The NWM applies the three parameter Muskingum-Cunge river routing 129 

scheme to a modified version of the NHD-Plus version 2 (McKay et al. 2012) river network 130 

representation (Gochis et al 2020).  131 

In this study, NWM simulations are taken from each version’s retrospective runs 132 

(https://docs.opendata.aws/nwm-archive/readme.html). These are continuous simulations (not 133 

cycles) run for the period October 2010 to November 2016 and forced by the National Land Data 134 

Assimilation System (NLDAS)-2 product as atmospheric conditions. The nudging data 135 

assimilation was not applied in these runs. We use NWM discharge simulations from versions 136 

V1.0, V1.1, and V1.2 (not all version may be publicly available). 137 

The methodology developed in this paper is implemented in the R language and is made 138 

publicly available, as detailed in the code availability section at the end of the manuscript.  139 

3. Methodology  140 
 141 

This section provides the description of the methodology using wavelets to identify events 142 

and estimate timing errors. The steps can be seen in an accompanying flowchart (Figure 1) and 143 

nomenclature table (Table 1), which defines key terms of the approach. To facilitate 144 

understanding, the steps are illustrated by an application of the methodology to an observed time 145 
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series of an isolated peak in Onion Creek, TX, (Figure 2a) and the synthetic modeled time series 146 

which is identical to the observation time series but shifted 5 hours in to the future (Figure 3a, note 147 

the log scale). 148 

3.1. Step 1. Identify observed events 149 
 150 

The first step is to identify a set of observed events for which the timing error should be 151 

calculated. We break this step into three sub-steps: 1a. Apply the wavelet transform to 152 

observations, 1b. Determine all observed events using significance testing, and 1c. Sample 153 

observed events to an event-set relevant to analysis.  154 

3.1.1. Step 1a. Apply wavelet transform to observations 155 

First, we apply the continuous wavelet transform (WT) to the observed time series. The 156 

main steps and equations for the WT are provided here, though the reader is referred to Torrence 157 

and Compo (1998) and Liu et al. (2011) for more details.  158 

Before applying the WT, a mother wavelet needs to be selected. In Torrence and Compo 159 

(1998), they discuss the key factors that should be considered when choosing the mother 160 

wavelet. There are four main considerations, including (i) orthogonal or nonorthogonal, (ii) 161 

complex or real, (iii) width, and (iv) shape. In this study, we follow Liu et al. (2011) in selecting 162 

the nonorthogonal and complex Morlet wavelet: 163 

!(#) = &!"/$'%&!''!'"/(, 164 
 165 

where w0 is the non-dimensional frequency, with a value of 6 (Torrence and Compo, 1998). 166 

Once the mother wavelet is selected, the WT is applied to a time series xn, where n goes 167 

from n=0 to n=N-1, with a time step of (). The WT is the convolution of the time series with the 168 

mother wavelet that has been scaled and normalized: 169 
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 171 
where #)is the localized time in [0, N-1], s is the scale parameter, and the asterix indicates the 172 

complex conjugate of the wavelet function. The wavelet power is defined as |*'(| which 173 

represents the squared amplitude of an imaginary number when a complex wavelet is used as in 174 

this study. We use the bias corrected wavelet power (Liu et al. 2007; Veleda et al. 2012), which 175 

ensures power is comparable across timescales. We also identify a maximum timescale a priori 176 

that corresponds to our application. We select 256 hours (~10 days), but this number could be 177 

higher or lower for other applications and there are no real penalties for using too high a 178 

maximum (lower than the annual cycle). 179 

The wavelet transform (WT) expands the dimensionality of the original time series by 180 

introducing the timescale (or period) dimension. Wavelet power is also a function of both time 181 

and timescale (e.g. Torrence and Compo, 1998). This is illustrated in Figure 2: the streamflow 182 

time series (panel a) is expanded into a 2-dimensional (2-D) wavelet power spectrum (panel b). 183 

Wavelet analysis can detect localized signals in time series (Daubechies 1990), including 184 

hydrologic time series, which are often irregular or aperiodic (i.e., events may be isolated and 185 

don’t regularly repeat) or non-stationary. We note that in many wavelet applications, timescale is 186 

referred to as “period” and this axis is indeed the Fourier period in our plots. However, to 187 

emphasize that our study is more focused on irregular events and less on periodic behavior of 188 

time series, we use the term “timescale” to denote Fourier period (and not wavelet scale). 189 

 Because we are applying the WT to a finite time series, there are timescale-dependent 190 

errors at the beginning and end times of the power spectrum, where the entirety of the wavelet at 191 

each scale is not fully contained within the time series. This region of the WT is referred to as the 192 



 9 

cone of influence or COI (Torrence and Compo, 1998). Figure 2b illustrates the COI as the 193 

regions where the colors are muted; we ignore all results within the COI in this study.  194 

We make several additional notes on the wavelet power and its representation in the 195 

figures. The units of the wavelet power are those of the time series variance (m6/s2 for 196 

streamflow) and it is natural to want to cast the power in a physical light or relate it to the time 197 

series variance. Indeed, the power is often normalized by the time series variance when presented 198 

graphically. However, it must be noted that the wavelet convolved with the time series frames 199 

the resulting power in terms of itself at a given scale. Wavelet power is a (normalized) measure 200 

of how well the wavelet and the time series match at a given time and scale. The power can only 201 

be compared to other values of power resulting from a similarly constructed WT. There are 202 

various transforms that can be applied to aid graphical interpretation of the power (log, variance 203 

scaling), but the utility of these often depends on the nature of the individual time series 204 

analyzed. For simplicity, we plot the raw bias-rectified wavelet power in this paper. 205 

3.1.2. Step 1b. Determine all observed events using significant testing 206 

 In their seminal wavelet study, Torrence and Compo (1998) outline a method for 207 

objectively identifying statistical significance in the wavelet power by comparing the wavelet 208 

power spectra with a power spectra from a red noise process. Specifically, the observed time 209 

series is fitted with an order 1 autoregressive (AR1, or red noise) model, and the WT is applied 210 

to the AR1 time series. The power spectrum of the AR1 model provides the basis for the 211 

statistical significance testing. Significance is determined if the power spectra are statistically 212 

different using a chi-squared test.  213 

Figure 2b shows significant (>= 95% confidence level) regions of wavelet power inside 214 

black contours. Statistical significance indicates wavelet power that falls outside the time series 215 
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background statistical power based on an AR1 model of the time series. Statistical significance 216 

of the wavelet power can be thought of as events in the wavelet domain. We define events as 217 

regions of significant wavelet power outside the COI. Figure 2c displays the wavelet power for 218 

the events in this time series. We emphasize that events defined in this way are a function of both 219 

time and timescale and that, at a given time, events of different timescales can occur 220 

simultaneously. 221 

3.1.3. Step 1c. Sample observed events to an event-set relevant to analysis 222 

 Step 1b results in the identification of all events at all timescales and times. In this sub-223 

step, the event space is sampled to suit the particular evaluation. Torrence and Compo (1998) 224 

offer two methods to smoothing the wavelet plot that can increase significance and confidence: 225 

(i) averaging in time (over timescale) or (ii) averaging in timescale (over time). Because the goal 226 

of this paper is to evaluate model timing errors over long simulation periods, we choose to 227 

sample the event space based on averaging in timescale. Although for some locations there may 228 

be physical reasons to expect certain timescales to be important (e.g., seasonal cycle of 229 

snowmelt), the most important timescales at which hydrologic signals occur at a particular 230 

location are not necessarily known a priori. Averaging events in timescale can provide a useful 231 

diagnostic by identifying the dominant, or “characteristic”, timescales for a given time series. 232 

Averaging many events in timescale can filter noise and help reveal the expected timescales of 233 

dominant variability corresponding to different processes or sets of processes.  234 

In our analysis we seek to uncover the dominant event timescales and to evaluate modeled 235 

timing errors on these. The following bullets articulate our methodological choices for 236 

summarizing observed events:  237 
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• Calculate the average event power in each timescale: Considering only the statistically 238 

significant areas of the observed wavelet spectrum, calculate the average power in each 239 

timescale (Figure 2c, right panel). We point out that calculating the average power over 240 

events is different than what is found by averaging across all time points, which doesn’t 241 

take statistical significance into consideration (Figure 2b, right panel).  242 

 243 
• Identify timescales of absolute and local maxima in time-average power: After obtaining 244 

the average event power as a function timescale (Figure 2c, right panel), the local and 245 

absolute maximums for average event power can be determined. In the Onion Creek case, 246 

there is a single maximum at 22 hours (grey dot in Figure 2c, right panel). The timescales 247 

corresponding to the absolute and local maxima of the average power of the observed 248 

time series are called the characteristic timescales used for evaluation. This is the first 249 

subset of events: all events that fall within the characteristic timescales. For a single 250 

characteristic timescale, contiguous events in time are called event clusters (horizontal 251 

line in Figure 2d).   252 

 253 
• Identify events with maximum power in each event cluster: For all timescales, we identify 254 

the event with maximum power in each event cluster. This is the second event subset: all 255 

events with maximum power in each cluster that falls within a characteristic timescale 256 

(star in Figure 2d); these are called cluster maxima. 257 

 258 
3.2. Step 2. Calculate Timing Errors 259 

 Step 1 identifies observed events by applying a wavelet transform to the observed time 260 

series. To calculate the timing error of a modeled time series, we perform its cross wavelet 261 

transform with the observed time series. Figure 3a shows the observed and modeled time series 262 
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used in our illustration of the methodology: the observed is the same isolated peak from Onion 263 

Creek, TX, as in Figure 2a, and the synthetic modeled time series adds a prescribed timing error 264 

of +5 hours to the observed. (Note that while the observed time series is identical in both, figures 265 

2a and 3a have linear and log10 axes, respectively). 266 

3.2.1. Step 2a. Apply cross-wavelet transform (XWT) to observations and simulations 267 

 The cross-wavelet transform (XWT) is performed between the observed and synthetic 268 

time series. Given the WTs of an observed time series *'.(+) and a modeled time series *'/(+), 269 

the cross-wavelet spectrum can be defined as: 270 

*'./(+) = *'.(+)*'/∗(+), 271 
where the asterix denotes the complex conjugate. The cross-wavelet power is defined as 272 

|*'./(+)|	 and signifies the joint power of the two time series. The XWT between the Onion 273 

Creek observations and the synthetic 5 hour offset time series is shown in Figure 3b, with power 274 

represented by the color scale.  275 

Similar to Step 1b of the WT, we can also calculate areas of significance for the XWT 276 

power as shown by the black contour in Figure 3b. For the XWT, significance is calculated with 277 

respect to the theoretical background wavelet spectra of each time series (Torrence and Compo, 278 

1998). We define XWT events as points of significant XWT power outside the COI. XWT 279 

events indicate significant joint variability between the observed and modeled time series. 280 

Below, in step 2d, we employ XWT events as a basis for identifying hits and misses on observed 281 

events for which the timing errors are calculated. Figure 3c shows the observed events (colors), 282 

and the intersection between the observed and XWT events (dashed contour). As described later, 283 

this intersection (inside dashed contour) is a region of hits where timing errors are considered 284 

valid. Note that the early part of the observed events at shorter timescales is not in the XWT 285 
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events. This is because the timing offset in the modeled time series misses the early part of the 286 

observed event for some timescales. 287 

3.2.2. Step 2b. Calculate the cross-wavelet timing errors 288 

For complex wavelets, such as the Morlet used in this paper, the individual WTs include 289 

an imaginary component of the convolution. Together, the real and imaginary parts of the 290 

convolution describe the phase of each time series with respect to the wavelet. The cross wavelet 291 

transform combines the WTs in conjugate, allowing the calculation of a phase difference or 292 

angle (radians) which can be computed as: 293 

4'./(+) = )5#!" .ℑ(〈+
!"*'./(+)〉)

ℜ(〈+!"*'./(+)〉)
1 294 

Where ℑ is the imaginary and ℜ is the real component of *'./(+). The arrows in Figure 3b 295 

indicate the phase difference for our example case, which are used to calculate the timing errors. 296 

Note that these are calculated at all points in the wavelet domain. 297 

The distance around the phase circle at each timescale is the Fourier period (hours). We 298 

convert the phase angle into the timing errors (hours) as in Liu et al. (2011): 299 

∆)'./(+) = 4'./(+) ∗ </2& 300 

where T is the equivalent Fourier period of the wavelet. Note that the maximum timing error 301 

which can be represented at each timescale is half the Fourier period because the phase angle is 302 

in the interval (-pi, pi). In other words, only timescales greater than 2E can accurately represent a 303 

timing error E. Because the range of the arctan function is limited by ±pi, true phase angles 304 

outside this range alias to angles inside this range. (For example, the phase angles 1.05 * pi and -305 

.95 * pi are both assigned to -.95*pi). Also note that when the wavelet transforms are 306 

approximately antiphase, the computed phase differences and timing errors produce 307 

corresponding bimodal distributions given noise in the data. Figure 3c shows phase aliasing in 308 
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the negative timing errors at timescales less than 10 hours, double the 5 hour synthetic timing 309 

error we introduced. The bimodality of the phase and timing are also seen at the 10hr timescale 310 

when the timing errors abruptly change sign (or phase by 2pi). We note the convention used is 311 

that the XWT produces timing errors that are interpreted as “modeled minus observed”, i.e., 312 

positive values mean the model occurs after the observed. Positive 5 hour timing errors in Figure 313 

3c describe that the model is “late” compared to the observations as seen in the hydrographs in 314 

the top panel (a). 315 

3.2.3. Step 2c. Subset cross-wavelet timing errors to sampled observed events 316 

 Step 2b results in an estimate of timing errors for all times and timescales in the cross-317 

wavelet transform space. In our application, we are interested in the timing errors that correspond 318 

to the identified sample of observed events, especially for the maximum power events in each 319 

cluster for each characteristic timescale. In the synthetic Onion Creek example, the point of 320 

interest in the wavelet transform of the observed timeseries, used to sample the timing errors 321 

produced by the XWT, is shown by the grey star in Figure 3c.  322 

The results for the synthetic Onion Creek example are summarized in Table 2. For the 323 

identified characteristic timescale of 22 hours in the observed wavelet power (which had an 324 

average WT power of 555,700 m^6/s^2 - Figure 2c right), there was 1 event cluster, and the 325 

timing error at the cluster maximum was 5 hours and it occurred at hour 37 of the time series.  326 

3.2.4. Step 2d. Filter Misses 327 

The premise of computing a timing error between the observed and modeled time series 328 

is that they share common events which can be meaningfully compared. In a two-way 329 

contingency analysis of events, a “hit” refers to when the modeled time series reproduces an 330 

observed event. When the modeled time series fails to reproduce an observed event, it is termed 331 
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a “miss”. In the case of a miss, it does not make sense to include the timing error in the overall 332 

assessment. Once the characteristic timescales of the observed event spectrum are identified and 333 

event cluster maxima are located, timing errors are obtained at these locations in the XWT. In 334 

this step, the significance of the XWT on these event cluster maxima is used to decide if the 335 

model produced a hit or a miss for each point and to determine if the timing error is valid. As 336 

previewed above, Figure 3c shows the observed events (colors) and the dashed contour shows 337 

intersection between the observed and XWT events. Regions of intersection between observed 338 

events and XWT events are considered model hits and observed events falling outside the XWT 339 

events are considered misses. Because we constrain our analysis to observed events in the 340 

wavelet power spectrum, we do not consider either of the remaining categories in a 2-way 341 

analysis (false alarms and correct negatives). We note that a complete 2-way event analysis 342 

could alternatively be constructed in the wavelet domain based on the Venn diagram of the 343 

observed and modeled events without necessarily using the XWT. We choose to use the XWT 344 

events because the XWT is the basis of the timing errors. 345 

In the synthetic example of Onion Creek, a single characteristic timescale and event 346 

cluster yields a single cluster maximum as shown by the star in Figure 3c. Because this star falls 347 

both within the observed and XWT events, it is a hit and the timing error at that point is valid 348 

(Table 2). For a longer time series, as seen in subsequent examples, a useful diagnostic and 349 

compliment to timing error statistics at each characteristic timescale is the percent hits. When 350 

summarizing timing error statistics for a timescale, we drop misses from the calculation and the 351 

% hits indicates what portion of the time series was dropped (% misses = 100 - % hits). In our 352 

tables we provided timing error statistics only for hits. 353 

4. Results  354 
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In the previous section, we illustrate the method using an isolated peak and a prescribed 355 

timing error. In this section, we demonstrate the method using NWM model simulations which 356 

introduce greater complexity and longer time series. Finally, we show version-over-version 357 

comparisons for 5-year simulations to illustrate the utility for evaluation.  358 

4.1 Demonstration using NWM data 359 

Pemigewasset River, NH 360 

This example uses a three-month time series from the Pemigewasset River, NH, to examine 361 

multiple peaks in the hydrograph (Figure 4a). By eye, it is fairly straightforward to pick out three 362 

main peaks. From Step 1 of our method, the wavelet transform is applied to the observations 363 

(Figure 4b, left and 4c, left), revealing up to three event clusters, depending on the characteristic 364 

timescale examined (Figure 4d). When we plot the average event power by timescale (right of 365 

Figure 4c), we see that there are nine relative maxima (small grey dots) – hence there are 9 366 

characteristic scales for this example. The cluster maxima (grey stars) for each observed event 367 

cluster are shown in Figure 4d. 368 

Next, we compare the observed time series with the simulation from the NWM V1.2 (Figure 369 

5a), and follow Step 2 of our method: a) apply the cross-wavelet transform (Figure 5b colors), b) 370 

calculate the timing error for all observed events from the phase difference (Figure 5b arrows), c) 371 

subset the timing errors to the observed cluster maxima (Figure 5c stars), and d) retain only 372 

modeled hits (Figure 5c stars within the dashed contours). Table 3 is ordered by characteristic 373 

timescales from highest to lowest average power; we only show the top 5 characteristic scales.  374 

The absolute maximum of the time average event spectrum has a timescale = 24.8 hours; for 375 

cluster one, the model is nearly 11 hours late and cluster two is early (-3.5 hours), both are hits, 376 

and the average timing error is 3.5 hours late. However, for the next timescale (=27.8 hr), the 377 
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third cluster maximum is a miss, so its timing error is reported as a NA, and is not included in the 378 

average. This miss can be seen in Figure 5c where the cluster 3 star falls just outside the XWT 379 

events for the 27.8 timescale. Moreover, this miss can also be interpreted from the comparison of 380 

the hydrographs in Figure 5a where the modeled third peak does not reasonably approximate the 381 

magnitude of the observed peak. Interestingly, while it is a narrow miss at the shorter timescale 382 

of 27.8 hours, the associated (3rd) cluster maxima at the next most powerful characteristic 383 

timescale (33.1 hours) is a hit. This reflects that the hydrograph is insufficiently peaked for this 384 

event but does have some of the observed, lower-frequency variability. Overall, the characteristic 385 

timescale of 33.1 hours has timing results similar to the 27.8 hour timescale with the exception of 386 

the third cluster maximum. This raises the question if these are distinct characteristic timescales. 387 

In the Discussion and Conclusions section we discuss smoothing the time average event power 388 

by timescale to address this issue.  389 

The characteristic timescale with the 4th highest time-average power occurs at 111 hours, 390 

which is a different order of magnitude, suggesting that this may have a different physical 391 

process driving it. At this timescale, the model is late in both event clusters (10 and 16 hours). 392 

Results are similar for the next timescale of 148 hours. We don’t show results for the remaining 393 

4 characteristic time scales with lower average power, since they have similar characteristic 394 

timescale values and associated timing errors to what has already been shown.  395 

Taylor River, CO 396 
 397 

In this example, we examine a one-year time series from Taylor River, CO, that illustrates 398 

hydrograph peaks driven by different processes. The Taylor River is in a mountainous area 399 

where the spring hydrology is dominated by snowmelt runoff. Figure 6a shows the time series 400 

from Taylor River, CO, where we can see the snowmelt runoff in spring and also several peaks 401 
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in summer, likely driven by summer rains. Figure 6b shows the WT, and illustrates how missing 402 

data is handled: this results in additional COIs (muted colors) to account for the edge effects, and 403 

areas of the COI are ignored in our analyses.  404 

From the statistically significant events in the WT, we see the peak in the characteristic time 405 

scales at 23.4 hours (right of Figure 6c), and there is another maxima at 99 and 118 hour 406 

timescales. The process-based shift in dominant timescales is evident in the wavelet power 407 

(Figure 6b and 6c): the 23.4 hour timescale is dominant before July 1, during snowmelt runoff, 408 

and then shifts to the 99 and 118 hour timescales, relating to flows from summer rains. In Step 2, 409 

we compare the observed time series with the simulation from the NWM V1.2 (Figure 7a); here 410 

it is useful to zoom into the spring melt season time series (Figure 8), where we see that the 411 

amplitude of the diurnal signal is too high, but it’s hard to visually tell much about the timing 412 

error. Next, the cross-wavelet transform (Figure 7b) and timing errors are calculated (Figure 7c). 413 

The results are summarized in Table 4. Starting with the dominant 23.4 hour timescale, we see 414 

that there are 11 clusters, that 73% (=8/11 cluster maxima) are hits, and that the model is 415 

generally early (the mean is 6 hours early). For the 118 and 99 hour timescales, there are no hits. 416 

This suggests that we are confident in the timing errors of the model for the diurnal snowmelt 417 

cycle, and these timing errors can be used as guidance for model performance and model 418 

improvements. However, the model does not successfully reproduce key variability during the 419 

summer and timing errors are not valid at this timescale. This underscores the key point that 420 

timing errors are timescale dependent, and can help diagnose which processes to target for 421 

improvements.   422 

4.2 Evaluating Model Performance  423 
 424 
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Finally, we show how the methodology can be used for evaluating performance changes 425 

across NWM versions. We point out that none of the NWM version upgrades were targeting 426 

timing errors, so these results just provide a demonstration. We use 5-year observed and modeled 427 

time series at the three locations: Onion Creek, TX, Pemigewasset River, NH, and Taylor River, 428 

CO. 429 

For Onion Creek, Table 5 summarizes the results for the three most important timescales and 430 

Figure 9 provides a graphical representation of these timing errors (hits only). For the dominant 431 

29.5 hour timescale and for all model versions, there were 19 cluster maxima, 89.5% of which 432 

were hits, with a median timing error of 1.4 hours early. However, the model shows 433 

progressively earlier timing errors with increasing version (Figure 9).  The results are similar for 434 

the other two characteristic timescales.  435 

For Pemigewasset River, Table 6 summarizes the results for the 3 most important timescales 436 

and Figure 10 provides a graphical representation of the timing errors (hits only). At this 437 

location, the median timing error improved with NWM V1.2, getting closer to zero. While the 438 

distribution of the timing errors became less biased than the previous versions, it also became 439 

wider (Figure 10). Over the timeseries, there were between 59 and 76 event clusters. 440 

Interestingly, the hit rate for all timescales was best for NWM V1.1 though its timing errors are 441 

broadly the worst. From NWM V1.0 to NWM V1.2, improvements to both hit rate and median 442 

timing errors were obtained at all timescales.  443 

For Taylor River, Table 7 summarizes the results for the 2 most important timescales. For the 444 

characteristic timescale of 235 hours (~10 days) there are only 4 event clusters and each model 445 

version has only 1 hit. The timing of this hit improves by roughly half its error from NWM V1.0 446 

to NWM V1.2 in going from 16 to 9 hours. The 23.4 hour timescale has 41 event clusters with a 447 
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hit rate varying considerably by version. The median timing error is fairly consistent with 448 

version, however, ranging from 6 to 7 hours early.  449 

5. Discussion and Conclusions 450 
 451 

In this paper, we develop a systematic, data-driven methodology to objectively identify 452 

time series (hydrograph) events and estimate timing errors in large-sample, high-resolution 453 

hydrologic models. The method was developed towards several intended uses: Primarily, it was 454 

developed for model evaluation, so that model performance can be documented in terms of 455 

defined standards. We illustrate this with the version-over-version NWM comparisons. Second, 456 

it can be used for model development, whereby potential timing error sources can be diagnosed 457 

(by timescale) and targeted for improvement. Related to this point, given the advantages of 458 

calibrating using multiple-criteria (e.g., Gupta et al. 1998), timing errors could be used as part of 459 

a larger calibration strategy. However, minimizing timing errors at one timescale may not 460 

translate to improvements in timing errors (or other metrics) at other timescales. Wavelet 461 

analysis has also been used directly as an objective function for calibration, although a difficulty 462 

is in determining the similarity measure to use (e.g. Schaefli and Zehe 2009, Rathinasamy et al. 463 

2014). Future research will investigate the application of the timing errors presented here for 464 

calibration purposes. Finally, the approach can be used for model interpretation and forecast 465 

guidance as estimating timing errors provides characterization of the timing uncertainty (i.e., for 466 

a given timescale, the model is generally late or early) or confidence.  467 

Given the fact that several subjective choices were made specific to our application and 468 

goals, it is important to highlight that we have made the analysis framework openly available 469 

(detailed in the code availability section below), so the method can be adapted, extended, or 470 

refined by the community right away. We look at timing errors from an observed event-set 471 
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relevant to our analysis, but there are other ways to subset the events that might be more suitable 472 

to other applications. For example, we focus on the event cluster maxima, but one could also 473 

examine the event cluster means or the local maxima along time. Another alternative to finding 474 

the event cluster maxima (i.e., for a given timescale) would be to identify the event with 475 

maximum power in “islands of significance” across timescales, i.e., contiguous regions of 476 

contiguous significance across both time and timescale. This approach would ignore that 477 

multiple frequencies can be important at once. Also defining such islands is not straightforward. 478 

A different approach could be desirable if one suspected non-stationarity in the characteristic 479 

timescales over the time series. Then perhaps a moving average in timescale could be employed 480 

to identify characteristic timescales. In our approach, we define the event set broadly. However, 481 

it could be subset using streamflow thresholds (e.g. for flooding events) to compare events in the 482 

wavelet domain with traditional peak-over-threshold events. For example, Figure 11 shows the 483 

maximum streamflows for the event-set from the 5 year time series at Taylor River. This figure 484 

shows that all events identified by the algorithm are not necessarily high flow events (i.e., the 485 

maximum streamflow peaks are lower for the 23.4 hour timescale as compared to the 235.6 hour 486 

timescale). To compare with traditional peak-over-threshold approaches, this event-set could be 487 

filtered to include only events above a given threshold (i.e., events in both the wavelet and time 488 

domains).  489 

Another point that arises is how many characteristic timescales should be examined and 490 

the similarity of adjacent characteristic timescales. In our method, we average the power in 491 

timescales and identify characteristic scales to be at every absolute and relative maxima. As seen 492 

in the illustrative examples, this can result in multiple characteristic scales, some of which can be 493 

quite similar, suggesting that events at those scales are from similar or related processes. One 494 
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solution could be to smooth the average power by timescale, which would reduce the number of 495 

local maxima, or to look at timing errors within a band of timescales. It is also important to note 496 

that the characteristic scales are data-driven, so they will change with different lengths of 497 

observed time series. Longer runs capture more events and should converge on the more 498 

dominant timescales and events for a location. However, for performance evaluation, 499 

overlapping time periods for observed and modeled time series are needed.  500 

In our application of the WT, we follow Liu et al. (2011) and select the Morlet as the 501 

mother wavelet. However, results are sensitive to the mother wavelet selected. Further discussion 502 

of mother wavelet choices can be found in Torrence and Compo (1998) and in ElSaadani and 503 

Krajewski (2017).   504 

In summary, this paper provides a systematic, flexible, and computationally efficient 505 

methodology for calculating model timing errors that is appropriate for model evaluation and 506 

comparison, and is useful for model development and guidance. Based on the wavelet transform, 507 

the method introduces timescale as a property of timing errors. The approach also identifies 508 

streamflow events in the observed and modeled timeseries and only evaluates timing errors for 509 

modeled events which are hits in a 2-way contingency analysis. Future work will apply the 510 

approach to identify characteristic timescales across the United States, as well as to assess the 511 

associated timing errors in the NWM.  512 

Code/Data Availability  513 

The code for reproducing the figures and tables in this paper are provided in the public github 514 

repository https://github.com/NCAR/wavelet_timing with instructions for installing 515 

dependencies. The core code used in the above repository is provided in the public “rwrfhydro” 516 

R package https://github.com/NCAR/rwrfhydro. The code is written in the open-source R 517 
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language (R Core Team 2019) and builds off multiple, existing R packages. Most notably the 518 

wavelet and cross-wavelet analyses are performed using the “biwavelet” package (Gouhier et al. 519 

2018).  520 

We emphasize that the analysis framework is meant to be flexible and adapted to similar 521 

applications where different statistics may be desired. The figures created are specific to the 522 

applications in this paper but provide a starting point for other work. 523 
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Tables 
 
Table 1. Nomenclature table of terms used in the manuscript 

Term, 
Acronym 

Synonyms Units Comments 

time series    Input data m^3/s for 
streamflow  

We analyze streamflow observations and simulations, which 
are ordered by the time dimension (Figure 2a) 

time    hours Dimension of the input time series (x-axis on all Figure 2 
panels). 

timescale period hours Dimension introduced at each time by the WT (y-axis on 
Figure 2b-d) 

wavelet 
transform (WT) 

wavelet power 
spectrum (result of 
the transform) 

m^6/s^2 In this paper, we employ the continuous WT (Figure 2b) with 
scale normalized energy (Liu et al, 2007) 

cone of 
influence (COI) 

COI   Where wavelet analysis is affected by the wavelet extending 
beyond the time domain of the input (muted colors in Figure 
2b) 

event     We define events in terms of both time and timescales that 
are significant in the WT and outside the COI (Figure 2c) 

characteristic 
timescale 

dominant 
timescale 

hours We define characteristic timescales by local maxima in time-
averaged, significant wavelet power (e.g. over events) 
(Figure 2d) 

event cluster     For a single (e.g. characteristic) timescale, contiguous 
events in time (Figure 2d) 

cross wavelet 
transform 
(XWT) 

cross wavelet 
power spectrum 
(result of the 
transform) 

Power: m^6/s^2 
Phase: radians 

The complex, cross-wavelet transform has properties of 
power and phase. Significance of the XWT can also be 
computed (e.g. Torrence and Compo, 1998) as shown in 
Figure 3b. XWT events are outlined in dashed line in figure 
3c. 

timing error   hours Timing errors are calculated from the phase offset of the 
XWT (e.g. Liu, 2011) and have dimensions of both time and 
timescale. Several statistics of timing errors (over time) for 
characteristic timescales can be computed (Figure 2c).  

  
 
  
 
 
 
 
 
 



Table 2. Summary of timing error results for cluster maxima for isolated peak and prescribed 5 
hour offset from Onion Creek, TX.     

Characteristic 
Timescale (hr) 

Avg WT 
Power 

Number of 
Clusters 

Cluster Maxima 

Timing 
Error (hr) Time (hr) Hit? 

22       555,700  1 5 37 TRUE 
 
  



Table 3. For three-month time series from Pemigewasset River, NH, by characteristic timescale, 
summary of timing error results for cluster maxima that were hits using NWM v1.2. 
 

Characteristic 
Timescale (hr) 

Avg WT 
Power Cluster Timing 

Error (hr) Hit? 
Total 

Number of 
Clusters 

% Hits Avg Timing 
Error (hr) 

24.8 82,800 
1 10.7 TRUE 

2 100 3.5 
2 -3.64 TRUE 

27.8 74,400 
1 9.54 TRUE 

3 67 2.8 2 -3.99 TRUE 
3 NA FALSE 

33.1 73,100 
1 8.41 TRUE 

3 100 1.2 2 -2.12 TRUE 
3 -2.71 TRUE 

111 72,000 
1 10.0 TRUE 

2 100 13 
2 16.5 TRUE 

148 58,200 
1 12.0 TRUE 

2 100 14 
2 15.0 TRUE 

 
 
 
 
  



Table 4. For one year time series from Taylor River, CO, by characteristic timescale: summary 
of timing error results for the cluster maxima that were hits using NWM v1.2. 

Characteristic 
Timescale (hr) 

Avg WT 
Power 

Number of 
Clusters % Hits 

Timing Error (hr)  

Min Mean Max 

23.4 316 11 73 -8.2 -6.0 -3.6 
118 93.1 2 0 NA NA NA 
99.1 90.5 2 0 NA NA NA 

 
  



Table 5. Summary of timing errors from cluster maxima that were hits for 5 year time series 
from Onion Creek, TX. 
 

NWM 
Version 

Characteristic 
Timescale (hr) Avg WT Power Number of 

Clusters % Hits 
Median 

Timing Error 
(hr)  

v1.0 29.5 2,843,000 19 89 -1.4  

v1.1 29.5 2,843,000 19 89 -2.8  

v1.2 29.5 2,843,000 19 89 -3.2  

v1.0 17.5 2,672,000 26 92 -1.1  

v1.1 17.5 2,672,000 26 88 -1.9  

v1.2 17.5 2,672,000 26 92 -2.4  

v1.0 58.9 1,578,000 14 79 -1.4  

v1.1 58.9 1,578,000 14 79 -3.0  

v1.2 58.9 1,578,000 14 79 -3.0  

 
  



Table 6. Summary of timing errors from cluster maxima that were hits for 5 year time series 
from Pemigewasset River, NH. 

NWM 
Version 

Characteristic 
Timescale (hr) 

Avg WT 
Power 

Number of 
Clusters % Hits 

Median 
Timing 

Error (hr) 

v1.0 17.5 172,900 67 84 -2.7 
v1.1 17.5 172,900 67 91 -2.8 
v1.2 17.5 172,900 67 85 -0.2 
v1.0 27.8 169,600 61 82 -3.9 
v1.1 27.8 169,600 61 97 -4.2 
v1.2 27.8 169,600 61 90 1.1 
v1.0 31.2 169,500 59 86 -4.2 
v1.1 31.2 169,500 59 95 -4.6 
v1.2 31.2 169,500 59 93 1.6 

 
  



Table 7. Summary of timing errors from cluster maxima that were hits for 5 year time series of 
Taylor River, CO. 
 

NWM 
Version 

Characteristic 
Timescale (hr) Avg WT Power Number of 

Clusters % Hits 
Median 
Timing 

Error (hr) 
 

v1.0 236 263 4 25 -16  

v1.1 236 263 4 25 -10  

v1.2 236 263 4 25 -9.0  

v1.0 23.4 250 41 68 -6.1  

v1.1 23.4 250 41 44 -6.9  

v1.2 23.4 250 41 56 -6.5  

 



Figures 
 
 

 
Figure 1. Flow chart of steps in the methodology; although Steps 1a-1b and Steps 2a-2b can 
happen in parallel, Step 2c needs to be preceded by Step 1c. 
 
  

3.1.1. 1a. Apply wavelet transform
to observations

3.1.2. 1b. Determine all observed events
using significance testing

3.1.3. 1c. Sample observed events to an 
event-set relevant to analysis

3.2.1. 2a. Apply cross-wavelet transform (XWT)
to observations and simulations

3.2.2. 2b. Calculate the cross-wavelet timing
errors

3.2.3. 2c. Subset cross-wavelet timing errors to
sampled observed events

3.2.4. 2d. Filter misses

3.1. Step 1. Identify observed events 3.2. Step 2. Calculate timing errors



 
Figure 2. An isolated peak from Onion Creek, TX: (a) observed time series, (b) observed wavelet 
power spectrum (left) and average power by timescale for all points (right); (c) statistically 
significant wavelet power spectrum or events (left) and average power by time scale for all 
events with maxima shown by grey dots (right); (d) Characteristic scale event cluster (horizontal 
green line) and cluster maximum (star). 
 



 
Figure 3. An isolated peak from Onion Creek, TX and a synthetic +5 hour offset: (a) observed 
and synthetic time series (note logged y-axis), (b) cross wavelet (XWT) power spectrum, phase 
angles (arrows), and XWT significance (grey line), (c) sampled timing errors for observed events 
(inside dashed contour indicates intersection of XWT events with observed events) and the grey 
star shows the cluster maximum from Figure 2d. 
 
 
 
 
 
 
 
  



 
 
 

 
Figure 4. For three-month time series from Pemigewasset River, NH: (a) observed time series, 
(b) observed wavelet power spectrum (left) and average power by timescale for all points (right); 
(c) statistically significant wavelet power spectrum of events (left) and average power by time 
scale for all events with maxima shown by grey dots (right); (d) Characteristic scales event 
clusters (horizontal lines) and cluster maxima (grey stars). 
 



 
Figure 5. For three-month time series from Pemigewasset River, NH: (a) observed and simulated 
NWM time series (note logged y-axis), (b) cross wavelet (XWT) power spectrum (colors), phase 
angles (arrows), and statistically significant XWT events (solid contours), (c) sampled timing 
errors for observed events (inside dashed contour indicates intersection of XWT events with 
observed events) and cluster maxima (grey stars). 
 
 
  



 
Figure 6 For one-year time series from Taylor River, CO: (a) observed time series, (b) observed 
wavelet power spectrum (left) and average power by timescale for all points (right); (c) 
statistically significant wavelet power spectrum or events (left) and average power by time scale 
for all events with maxima shown by grey dots (right); (d) Characteristic scales event clusters 
(horizontal lines). 
 



 
Figure 7. For one-year time series from Taylor River, CO: (a) observed and simulated NWM 
time series (note logged y-axis), (b) cross wavelet (XWT) power spectrum (colors), phase angles 
(arrows), and statistically significant XWT events (solid contours), (c) sampled timing errors for 
observed events (inside dashed contour indicates intersection of XWT events with observed 
events).  
  



 
 
 
 

 
Figure 8. Zoom-in to spring runoff of one-year time series for Taylor Park, CO: observed and 
simulated NWM time series.   
  



 
Figure 9. Five year time series from Onion Creek, TX: Comparing cluster maxima timing error 
distributions for top three characteristic timescales (see panel title) across NWM versions. 
 
 
  



 
Figure 10. Five year time series from Pemigewasset River, NH: Comparing cluster maxima 
timing error distributions for top three characteristic timescales (see panel title) across NWM 
versions.  
 
  



  
Figure 11. Five year time series from Taylor River, CO: for top two characteristic timescales, 
maximum streamflow peak distributions for each event (using cluster maxima) in cubic meters 
per second (cms). 


