
Response to Reviewer 1 
 
General Response: We thank Reviewer 1 and Reviewer 2 for their detailed reviews, and for 
sharing their constructive and insightful comments. Before our point-by-point response to 
Reviewer 1, we note several major changes in the manuscript organization and content based 
on comments from both reviewers. We have addressed all review comments in our responses 
as well as in a substantial revision to the manuscript. The resulting manuscript is clearer and 
much improved. We note that for us to properly address and understand the reviews, it was 
necessary to actively revise the manuscript. Although the HESS process does not allow us to 
share our revised manuscript at this stage of the review process, we provide excerpts 
throughout the response to help illustrate the changes, and will provide the revised manuscript 
when invited.  
 
In terms of manuscript organization, we have consolidated the methodology to be one section. 
Section 3 now combines previous sections 2, 3, and 4.2. This improves the clarity of the method 
and reduces redundancies. In terms of content, we have carefully re-evaluated what use cases, 
figures, and tables to include in the paper. For example, we have removed one of the locations, 
Bad River, SD, from the Results entirely (Section 4). In doing so, we have culled our figures and 
tables such that all of the figures and tables are in the main manuscript. We currently have the 
same number of figures as the last draft (12 Figures), but we no longer have any figures or 
tables in a Supplemental document. This streamlining has helped to simplify the paper and to 
improve its clarity. One notable example of this is that we now focus the methodology and 
results on cluster maxs, whereas in the previous version we included methods/results from 
cluster maxs and cluster means. By focusing on the cluster max analysis, we clarify how the 
(dis)agreement between the events in the observed WT and modeled XWT is be used to 
quantify “hits/misses”. In summary, we thank the reviewers for bringing these points to our 
attention. As a result of their careful reviews, we have added numerous clarifications to the text 
and figures in an effort to improve overall understanding and interpretation. We hope that the 
editor and reviewers find these changes helpful and we look forward to sharing the revised 
manuscript.  
 
Below, we provide a point-by-point response, where we address each of Reviewer 1’s concerns.  
 
Reviewer 1. 
 
Interactive comment on “A Wavelet-Based Approach to Streamflow Event Identification and 
Modeled Timing Error Evaluation” by Erin Towler and James L. McCreight  
Uwe Ehret (Referee) uwe.ehret@kit.edu  
Received and published: 20 October 2020 
 
Dear Editor, dear Authors, Please find my comments in the attachment. Yours sincerely, Uwe 
Ehret 
 
 Review of Manuscript  



'A Wavelet-Based Approach to Streamflow Event Identification and Modeled Timing Error 
Evaluation' (hess-2020-323)  
by E. Towler and J. L. McCreight  
Dear Editor, dear Authors,  
I have reviewed the aforementioned work. My conclusions and comments are as follows:  
 
1. Scope  
The article is within the scope of HESS.  
 
2. Summary  
The authors explain a method based on wavelet transform and cross wavelet transform to i) 
detect relevant events in streamflow time series and ii) to calculate timing errors between a 
reference time series for which the events were determined (typically an observed time series) 
and a test time series (typically a model simulation). Relevant regions in the full 2-d space (time 
and timescale) of wavelet transforms are identified by significance testing as suggested by 
Torrence and Compo (1998). The timing errors are calculated based on the cross wavelet 
transform as suggested by Liu et al. (2011), but restricted to the areas of significant events in 
the reference time series, which imposes a direction on the comparison. The authors illustrate 
their method with several application examples, which vary by their event characteristics (single 
event, multiple events, events caused by different processes). The authors conclude that the 
proposed method offers a systematic, objective, and data-driven method for event identification 
and timing error calculation, which can be applied to large data sets, and they stress that 
beyond the particular application (including particular user choices) presented in the paper, 
other uses of the core method are possible.  
 
3. Overall ranking  
Overall, the authors provide an elegant and general solution to the fuzzy problem of event 
detection and timing error calculation in streamflow time series, which I am sure provides more 
generality, better reproducibility and better insight than most existing methods, including the 
ones I was involved with (Series Distance). There are, however, some flaws in the study, in 
terms of presentation clarity and in terms of demonstrating the generality of the method beyond 
the particular chosen use case, which should be eliminated. The relevance of the method 
deserves this extra effort.  
 
4. Evaluation  
 
General points  
In the introduction, please provide a more comprehensive literature review on methods for event 
detection and timing error calculation. E.g. Mei and Anagnostou (2015), Merz et al. (2006), 
Koskelo et al. (2012).  
Thank you for this suggestion and these citations. We have added these references to expand 
our introduction to event detection to include baseflow separation methods. The new excerpt 
from the Introduction is provided here (changes in bold): 



The fundamental challenge with evaluating timing errors is identifying what constitutes 
as an “event” in the two time series being compared. Identifying events is typically 
subjective, time consuming, and not practical for large-sample hydrological applications 
(Gupta et al. 2014). A variety of baseflow separation methods, ranging from 
physically-based to empirical, have been developed to identify hydrologic events 
(see Mei and Anagnostou 2015 for a summary), though many of these approaches 
require some manual inspection of the hydrographs. Merz et al. (2006) put forth an 
automated approach, but it requires a calibrated hydrologic model, which is a 
limitation in data poor regions. Koskelo et al. (2012) developed a simple, empirical 
approach that only requires rainfall and runoff time series, but is limited to small 
watersheds and daily data. Mei and Anagnostou (2015) introduce an automated 
physically-based approach, which is demonstrated for hourly data, though one 
caveat is that basin events need to have a clearly detectable recession period. 
Additional methods for identifying events have focused on identifying flooding events... 
 

The use case presented in the paper takes observed events as the reference, and calculates 
timing errors for these (see e.g. P4 L90-92). This neglects other important aspects of 
event-specific (dis-)agreement of observations and simulations: False alarms and missed 
events. This is mentioned several times by the authors (e.g. P7 L148-153, P12 L266, P12 
L271-272, P17 L388-391), and they also mention that the method could be set up differently if 
these aspects are of interest, but they do not explain how. False alarms and missed events are 
important and often-used features of categorical model evaluation (and the idea of 'event' is 
categorical). So I suggest that the authors add a short discussion about if and how their method 
can be used to measure them (I am not asking to actually perform these analyses, but to 
provide guidance for future uses).  
We agree that we need to enhance our description of the event (dis-)agreement of observations 
and simulations. We address this, but first we want to remind the reviewer of the context that, in 
our re-organization and streamlining, we simplified our methodology and results by focusing on 
cluster maxs. (In the previous version we presented results for both cluster max and cluster 
means approaches. Note that we also clarify the definition of cluster, please see later 
responses.) The cluster max is a single point of maximum power per cluster, and so cluster 
maxs can be classified as either hits or misses. In the previous draft we calculated the cluster 
mean timing error and the corresponding percent of hits within the cluster. We used the % hits 
in that case as a confidence measure for the timing error of each cluster. We see now how this 
was not clear as the hit diagnostic was different for these approaches and hence our decision to 
now focus the manuscript on cluster maxs. Focusing on cluster maxs simplifies our Step 2d, 
which was previously called “Quantify the confidence in the timing error”, which we now call 
“Quantify Percent Hits”. Percent hits now refers to a full-timeseries diagnostic of cluster maxs 
(instead of individual clusters). The edited section is included below:  

3.2.4. Step 2d. Quantify Percent Hits 
The premise of computing a timing error between the observed and modeled 

time series is that they share common events which can be meaningfully compared. In a 
two-way contingency analysis of events, a “hit” refers to when the modeled timeseries 
reproduces an observed event. When the modeled timeseries fails to reproduce an 



observed event, it is termed a “miss”. In the case of a miss, it does not make sense to 
include the timing error in the overall assessment. Because the timing errors are 
calculated from the XWT, we choose to diagnose hits and misses based on the 
significance of the XWT. Once cluster maxima are selected based on the characteristic 
timescales of the observed event spectrum and timing errors are obtained at these 
locations in the XWT, the significance of the XWT on the cluster maxima is used to 
decide if the model produced a hit or a miss for each point. For a single cluster max, 
such as shown in Figure 3c, the XWT significance is either True or False, the point is 
either a hit or a miss. Table 2 also displays the results of the timing error analysis for this 
synthetic example. We can see the prescribed 5 hour offset and that the cluster 
maximum was significant in the XWT. When calculating timing errors for a longer time 
series, a useful diagnostic is to calculate the percent hits over all the cluster maxima in a 
timescale. When summarizing timing errors statistics for a timescale, we drop misses 
from the calculation and the % hits indicates what portion of the timeseries was dropped 
(% misses = 100 - % hits). In our tables we provided timing error statistics this way as 
well as over all observed events to reveal the impact of dropping misses. 

Because, in step 1, we constrain our analysis to observed events in the wavelet 
power spectrum, we do not consider either of the remaining categories in a 2-way 
analysis (false alarms and correct negatives). We note that a complete 2-way event 
analysis could be constructed in the wavelet domain based on the Venn diagram of the 
observed and modeled events without necessarily using the XWT. 

 
The new Table 2 and Figure 3, referenced above, follow: 
 
Table 2. Summary of timing error results for isolated peak and prescribed 5 hour offset from 
Onion Creek, TX, for cluster max.  

 
 

Characteristic 
Timescale (hr) 

Avg WT 
Power 

Number of 
Clusters 

Cluster Max 

Timing 
Error (hr) Time (hr) Hit? 

22 
 
598,000 1 5 37 Yes 



 
Figure 3. An isolated peak from Onion Creek, TX and a synthetic +5 hour offset: (a) observed and 
synthetic time series (note logged y-axis), (b) cross wavelet (XWT) power spectrum and phase angles 
(arrows), (c) sampled timing errors for observed events (dashed contour is XWT significant events) and 
star is cluster maximum. 
 
Related to the decision to focus on cluster maxs and their diagnosis as hits or misses using the 
XWT, earlier in the manuscript (Step 2a) we have also edited the cross wavelet (XWT) figure 
panels to show this visually. This is seen in Figure 3 (previously Figure2, Onion Creek synthetic 
example) above and in its caption. Specifically, we have adjusted panel c, to show how the 
observed events (colors) don’t exactly overlap with the XWT significant events (dashed 
contour). This is now explained in the methodology:  

Similar to Step 1b of the WT, we can also calculate areas of significance for the XWT 
power as shown by the black contour in Figure 3b. For the XWT, significance is 
calculated with respect to the theoretical background wavelet spectra of each timeseries 
(Torrence and Compo, 1998). We define XWT events as points of significant XWT power 
outside the COI. XWT events indicate significant joint variability between the observed 



and modeled timeseries. In the next section, we employ XWT events as a basis for 
identifying hits and misses on observed events for which the timing errors are calculated. 
Described further in step 2d, timing errors are valid only for hits. Figure 3c shows the 
intersection of the observed events (colors) and the XWT events (dashed contour). This 
is a region of hits. Note that the early part of the observed events, particularly at shorter 
timescales, is not in the XWT events. This is because of the timing offset in the modeled 
timeseries, which misses the early part of the observed event.  

 
For Figures 11 and 12 (now 10 and 11) we have renamed the color scale scale “Percent Hits” 
and clarified the caption to include: “... outline shading shows percent (%) hits in the cross 
wavelet transform (XWT).”  This is shown for Figure 11, below:  
 

 
Figure 11. Five year run from Pemigewasset River, NH: Comparing cluster max timing error 
distributions for top three characteristic timescales (see panel title) across NWM versions; 
outline shading shows percent (%) hits in the cross wavelet transform (XWT). 
 
In our original tables, timing errors were calculated over all observed events (i.e., both hits and 
misses) and we reported the percent hits (previously called “Avg % Significant in XWT”). We will 
calculate timing errors over only the hits for each timescale and add this as an additional column 
to the tables. We may drop the original timing error statistic over all observed events (hits and 
misses), but for now we plan to compare the two. 



 
I found it hard to follow the description of the method, as it extends over several sections of the 
paper:  
In section 2, a conceptual overview is given but it misses an at least brief description of how WT 
and XWT function, which will be helpful for anyone not familiar with the concept.  
As mentioned in our general response, we have both restructured and consolidated the 
presentation, which allows our description of the methodology to progress logically, reduce 
redundancies, and allows us to clarify points of the method, such as the one the reviewer brings 
up here about adding additional interpretation of the wavelet transforms and associated 
quantities (WT, WT power, XWT, XWT power, phase, and significance (this is also partially in 
response to similar and additional comments from Reviewer 2). To this end, we have 
substantially bolstered the description of the methodology and its details in multiple places. We 
have inserted the following text in the methodology section to improve the paper: 
 

We make several additional notes on the wavelet power and its representation in the 
figures. The units of the wavelet power are those of the timeseries variance (m6/s2 for 
streamflow) and it is natural to want to cast the power in a physical light or relate it to the 
timeseries variance. Indeed, the power is often normalized by the timeseries variance 
when presented graphically. However, it must be noted that the wavelet convolved with 
the timeseries frames the resulting power in terms of itself at a given scale. Wavelet 
power is a (normalized) measure of how well the wavelet and the timeseries match at a 
given time and scale. The power can only be compared to other values of power 
resulting from a similarly constructed WT. There are various transforms that can be 
applied to aid graphical interpretation of the power (log, variance scaling), but the utility 
of these often depends on the nature of the individual timeseries analyzed. For 
simplicity, we plot the raw bias-rectified wavelet power in this paper. 
 

Also, section 2 refers to supplement Table 1 and supplement Fig. 1, which are in fact important 
to understand the method. I suggest moving these to the main paper.  
We agree, and have moved these to the main paper: Supplemental Figure 1 is now Figure 1 
and Supplemental Table 1 is now Table 1. 
 
Section 2 refers to Fig. 1, but the concept of event clusters is not explained. This concept only 
becomes clear in Fig. 3, which is referred to in section 5 for the first time.  
As mentioned, per the reviewer’s suggestion, we have restructured the methodology (now 
Section 3) by merging draft sections 2, 3, and 4.2. At the very beginning of Section 3, we 
introduce Table 1 (previously Supplemental Table 1), which is the nomenclature table of terms 
used in the manuscript, which includes the definition of “event cluster”, which can be used for 
reference as the reader progresses through the steps of the methodology. Further, in our 
restructuring of Section 3, we now illustrate the steps of the methodology by using the observed 
time series of an isolated peak in Onion Creek, TX, (which was previously referred to and 
illustrated in separate sections); hence, now the concept of event clusters is defined and a 
figure illustrating it is referred to for the first time, at the same point in the manuscript. We 



provide an excerpt to where this occurs in the methodology here, which occurs in section 3.1.3 
(Step 1c), with the definition of clusters in bold: 

•Identify timescales of absolute and local average power maxima: After obtaining the 
average event power as a function timescale (Figure 2c, right), the local and absolute 
maximums for average event power can be determined. In the Onion Creek case, there 
is a single maximum at 22 hours (grey dot in Figure 2c, right panel). The timescales 
corresponding to the absolute and local maxima of the average power of the observed 
time series are called the characteristic timescales used for evaluation. This is the first 
subset of events: all events that fall within the characteristic timescales. For a single 
characteristic timescale, contiguous events in time are called event clusters 
(horizontal line in Figure 2d).   

 

 
Figure 2. An isolated peak from Onion Creek, TX: (a) observed time series, (b) observed wavelet power 
spectrum (left) and average power by timescale for all points (right); (c) statistically significant wavelet 
power spectrum or events (left) and average power by time scale for all events with maxima shown by 
grey dots (right); (d) Characteristic scale event cluster (horizontal green line) and cluster maximum (star). 
 



In section 3, the steps of the method are repeated in more detail, which creates some 
redundancy with section 2, but still the concept of event clusters only becomes clear in section 5 
(Fig. 3).  
See previous response.  
 
Also, I did not fully understand from the text how the observed WT and the XWT of the observed 
and simulated time series are related, such that evaluating the XWT in significance regions of 
the WT is justified (see P 12 L262-263). The authors only mention that significance areas in the 
WT and the XWT do not necessarily coincide (P10 L237). Please explain and justify in more 
detail.  
We addressed this comment above where we enhanced the description of XWT significance 
and events in the context of modeled hits and misses.  
 
Section 4.2 provides an application, which is somewhere in the middle between a demonstration 
case to explain the method (then it would be better to include it into section 3) and a 
demonstration cases like those in section 5. In section 4 it appears rather orphaned.  
Overall, I suggest merging sections 2, 3 and 4.2 into one section explaining the method, which 
includes supplement Table 1, supplement Figure 1, and an illustrative example as shown in Fig. 
3 where the concept of event clusters becomes clear.  
We agree, and in summary, we have merged these sections, moved Supplemental Table 1 and 
Supplemental Figure 1 to the main manuscript, and better clarified the concept of event clusters. 
  
The meaning of 'event cluster' is not completely clear to me: From the supplement Table 1, it 
refers – for a particular choice of timescale – to a time-contiguous set of events (i.e. each 
horizontal line in Fig. 3d is one event cluster). From P9 L198-200, it seems that it refers to 
contiguous regions of statistical significance (i.e. the entire colored area in Fig. 3c is one event 
cluster). Please clarify.  
See previous response.  
 
The concept of identifying relevant timescales by calculating – for every timescale - average 
power across all relevant events over time and then selecting local and global maxima (see e.g. 
Fig. 3c, right panel) is not clear to me. What is the meaning/interpretation of such a local 
maximum of averaged power, and how does it qualify as a selection criterion for relevant 
timescales? It will work when the relevant timescales are the same for all the rainfall-runoff 
events in the time series, but it will not if they come from different processes (such as the time 
series you show in supplemental Fig. 4) and have different characteristic timescales. Would it be 
better to assign a single characteristic timescale to each 'island of significance' (contiguous 
region of significant events surrounded by non-significant areas) by finding the maximum power 
peak in each island, and then calculating the timing error only for this representative 
(time,timescale)?  
This is a good point, and made us realize two things: First, that we need to better justify our 
decision to average in timescale; and second that we need to acknowledge that there are other 



ways to identify events for which to calculate the timing errors, such as using “islands of 
significance”. In terms of the former, for this paper, we wanted to provide a technique that (a) 
builds off previous work, and (b) is as simple and straightforward as possible. In terms of the 
former, Torrence and Compo (1998) offer two methods to smoothing the wavelet plot that can 
increase significance and confidence: (i) averaging in time or (ii) averaging in timescale. In this 
paper, we average in timescale, since that can reveal the dominant timescales on which events 
are occuring, which is useful to model diagnostics. The assumption is that identifiable sets of 
processes of interest are distinct in timescale, and that averaging over many events will reveal 
its expected value. It is true that this means that sometimes, there may be a maximum power 
peak below or above the identified characteristic timescale, but that this is smoothed out by 
averaging over all the significant events. We clarify this point now in the methodology, 
specifically in Step 1c, the excerpt for this is included below (changes in bold):  

3.1.3. Step 1c. Sample observed events to an event-set relevant to analysis 
Step 1b results in the identification of all events at all timescales and times. In 

this sub-step, the event space is sampled to suit the particular evaluation. Torrence and 
Compo (1998) offer two methods to smoothing the wavelet plot that can increase 
significance and confidence: (i) averaging in time (over timescale) or (ii) averaging 
in timescale (over time). Because the goal of this paper is to evaluate model timing 
errors over long simulation periods, we choose to sample the event space based 
on averaging in timescale. Although for some locations there may be physical 
reasons to expect certain timescales to be important (e.g., seasonal cycle of 
snowmelt), the most important scales at which hydrologic signals occur at a 
particular location are not necessarily known a priori. Averaging events in 
timescale can provide a useful diagnostic by identifying the dominant, or 
“characteristic”, timescales for a given time series. Averaging many events in 
timescale can filter noise and help reveal the expected timescales of dominant 
variability corresponding to different processes or sets of processes. 
 

In terms of the latter, using “island of significance” was one of our first ideas when we set out to 
quantify timing errors. However, this approach has several drawbacks: 1) selecting a single 
peak ignores that multiple frequencies can be important at once; this is illustrated with Figure 
4c, below, (which was draft Figure 3c), where for the Pemigewasset River events shown, there 
are islands of significance that include events for different characteristic timescales (i.e., there 
are 3 characteristic time scales around 24 hours and 2 characteristic timescales at 111 and 148 
hours): 



 
Figure 4. Multiple peaks from Pemigewasset River, NH: (a) observed time series, (b) observed wavelet 
power spectrum (left) and average power by timescale for all points (right); (c) statistically significant 
wavelet power spectrum or events (left) and average power by time scale for all events with maxima 
shown by grey dots (right); (d) Characteristic scales event clusters (horizontal lines). 
 
However, there is a second drawback, which is that defining islands when connected is 
problematic (e.g., How do we define the islands? What if there is one small connecting point 
connecting 2 islands somewhere in the time/timescale WT?). Averaging in timescale is a more 
straightforward approach for model diagnostics. However, if one thought that the characteristic 
timescales were non-stationary, i.e., changing over the length of the time series, then you could 
do moving timescale averaging (our approach with moving windows) to investigate the 
non-stationarity. We acknowledge this in the Discussion and Conclusions: 

We only look at the timing errors from an event-set relevant to our analysis, but there are 
other ways to subset the events that might be more suitable to other applications. For 
instance, we focus on the cluster max, but one could also examine the cluster mean. 
Also, instead of finding the event of maximum power in each cluster (i.e., for a given 
timescale), it would be possible to identify the event with maximum power in “islands of 
significance”, i.e., significant areas contiguous in time across timescales. However, this 
ignores that multiple frequencies can be important at once and defining the islands when 
connected is problematic. If one suspected non-stationarity in the characteristic 



timescales over the timeseries, then a different approach such as a moving average in 
timescale could be employed. 
  

I found it difficult to follow the presentation of the results in section 5, as not the same set of 
Figures was provided for each case in the paper. I suggest reducing the number of cases, but 
providing the same set of figures for all of them.  
We agree with the Reviewer, and as mentioned, we have carefully reviewed the content of the 
manuscript to address this. First, in our new Methodology (Section 3), we illustrate the method 
using the Onion Creek, TX, isolated peak observation and a prescribed timing error (not NWM 
simulation data). In the Results (Section 4), we further demonstrate the method, increasing the 
complexity by using NWM simulated data and longer time series. As suggested, we reduce the 
number of cases, and we remove the example of Bad River. We still look at two examples: 
Pemigewasset River, NH, and Taylor River, CO, but in the first subsection (section 4.1) we only 
look at the 3-month time series for Pemigewasset River, and a one-year time series for Taylor 
River, showing the XT and XWT figures for both. We also only focus on the cluster max (in the 
previous version we had a comparison of cluster max and cluster mean). We now acknowledge 
that one could also look at cluster mean in the Discussion. In the second Results subsection 
(4.2), we still show version-over-version comparisons for 5-year simulations for Onion 
Creek, Pemigewasset River, and Taylor River, to illustrate the utility for evaluation.  
 
For the benefit of the reviewer, here is a summary table mapping the old figures to the new 
figures, as well as a description of the figures now included:  

 
 
 
 
 
 
 
 
 
 
 



Further, here are the figures that have been removed from the manuscript, along with the 
reason:  

 
 
Specific points  
P3 L66: Seibert et al. (2016)  
Thank you, we have added the “.” after al 
 
P5 L 101: selected  
This has been corrected.  
 
At the beginning of section 4, please add a short justification of your choice of test data  
These locations represent three different regions in the U.S., namely South Central, New 
England, and Intermountain West. We have added text to this effect in the Data section (now 
Section 2): 

“2. Data 
The application of the methodology is illustrated using real and simulated stream 
discharge (streamflow, m3/s) data from U.S. Geological Survey (USGS) stream gage 
locations representing three different geographic regions: Onion Creek at US Highway 
183, Austin, Texas for the South Central region (Onion Creek, TX; USGS site number 
08159000), Taylor River at Taylor Park, Colorado for the Intermountain West (Taylor 
River, CO; USGS site number 09107000), and Pemigewasset River at Woodstock, New 
Hampshire for New England (Pemigewasset River, NH; USGS site number 01075000).”  

 
Fig. 1d: The position and length of the horizontal green line is not clear at this point. Please 
explain in the text for easier comprehension.  
This is related to the clarification of the term event cluster, this has been addressed through the 
merging of the methodology sections and a clarification of the definition (see previous 
responses).  
 
P14 L318: Despite what the authors state in the text, Fig. 1a and Fig. 2a do not show the same 
observed time series (however the significance areas in Fig. 1c and Fig. 2c are the same).  



Thanks for pointing this out. We agree this can be confusing. These look different because the 
observed streamflow time series (Fig 1a in previous version) is in regular/linear scale and the 
combined observed and simulated time series on a logged scale (Fig 2a in previous version). 
We do this because the log scale helps reveal differences in the two time series. We now clarify 
this in the text when we first introduce the figure (now Figure 3): “... and the synthetic modeled 
time series which is uniformly shifted 5 hours to the future (figure 3a, note the log scale)” and in 
the caption: “Figure 3. An isolated peak from Onion Creek, TX and a synthetic +5 hour offset: 
(a) observed and synthetic time series (note logged y-axis).” 
 
In Fig. 2a, the 'obs' time series is light blue, in all other Figures it is dark blue. Please harmonize.  
Indeed. Thanks for your attention to detail! You can see the updated figure (the first figure, 
captioned Figure 3) with the fix above. 
 
P14 L329: I could not find Table 1  
We apologize that the tables were not included in the original manuscript you reviewed, and we 
were thankful that you raised this issue. Once we received your review, we uploaded the tables 
to the discussion, and they are now included in the revised manuscript.  
 
P16 L368: I could not find Table 2  
See above response. 
 
P18 L423: I could not find Table 3  
See above response.  
 
All Figures with time series: x-axis (time) is usually given in calendar date, and y-axis 
(timescale) in hours. Displaying both in unit hours would facilitate the comparison of relevant 
timescales with the features in the time series.  
Thanks for the suggestion. We are considering this for the final set of figures. We may set the 
minor grid resolution to hours. We see the potential value, but success will be plot dependent as 
the time series length can make clear presentation difficult. 
 
Yours sincerely,  
Uwe Ehret  
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