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 8 
Abstract: Climate change is reshaping vulnerable ecosystems, leading to uncertain effects on ecosystem dynamics, 9 

including evapotranspiration (ET) and ecosystem respiration (Reco). However, accurate estimation of ET and Reco still 10 

remains challenging at sparsely monitored watersheds where data and field instrumentation are limited. In this study, 11 

we developed a hybrid predictive modeling approach (HPM) that integrates eddy covariance measurements, 12 

physically-based model simulation results, meteorological forcings, and remote sensing datasets to estimate ET and 13 

Reco in high space-time resolution. HPM relies on a deep learning algorithm, long short-term memory (LSTM), and 14 

requires only air temperature, precipitation, radiation, normalized differences vegetation index (NDVI) and soil 15 

temperature (when available) as input variables. We tested and validated HPM estimation results in different climate 16 

regions and developed four use cases to demonstrate the applicability and variability of HPM at various FLUXNET 17 

sites and Rocky Mountain SNOTEL sites in Western North America. To test the limitations and performance of HPMs 18 

in mountainous watersheds, an expanded use case focused on the East River Watershed, Colorado, USA. The results 19 

indicate HPM is capable of identifying complicated interactions among meteorological forcings, ET, and Reco variables, 20 

as well as providing reliable estimation of ET and Reco across relevant spatiotemporal scales, even in challenging 21 

mountainous systems. The study documents that HPM increases our capability to estimate ET and Reco and enhances 22 

process understanding at sparsely monitored watersheds.  23 

1. Introduction: 24 

 Climate change has a profound influence on global and regional energy, water and carbon cycling, including 25 

evapotranspiration (ET) and ecosystem respiration (Reco). ET is an important link between the water and energy cycles: 26 

dynamic changes in ET can affect precipitation, soil moisture, and surface temperature, leading to uncertain feedbacks 27 

in the environment (Jung et al., 2010; Seneviratne et al., 2006; Teuling et al., 2013). Thus, quantifying ET is 28 

particularly essential for improving our understanding of water and energy interactions as well as watershed responses 29 

to abrupt disturbances and gradual climate changes, which is critical for water resources management, agriculture, and 30 

other societal benefits (Anderson et al., 2012; Jung et al., 2010; Rungee et al., 2019; Viviroli et al., 2007; Viviroli and 31 

Weingartner, 2008). Reco, which represents the total respiration in a specific ecosystem,  plays a vital role in the 32 

response of terrestrial ecosystem to global change (Jung et al., 2017; Reichstein et al., 2005; Xu et al., 2004). While 33 

increases in Reco may contribute to accelerating global warming through positive feedbacks to the atmosphere (Cox et 34 

al., 2000;  Gao et al., 2017; IPCC, 2019; Suleau et al., 2011), estimating and monitoring Reco over relevant 35 

spatiotemporal scales is challenging. As described below, there are many different strategies for measuring and 36 

estimating ET and Reco, each of which has advantages and limitations. This study is motivated by the recognition that 37 



current methods cannot provide ET and Reco at space and time scales (e.g., daily) needed to improve prediction of 38 

changing terrestrial system behavior, particularly in challenging mountainous watersheds.  39 

 Several ground-based approaches have been used to provide 𝑖𝑛 𝑠𝑖𝑡𝑢 estimates or measurements of ET and 40 

Reco. Ground-based flux chambers measure trace gases emitted from the land surface, which can be used to estimate 41 

ET and Reco (Livingston and Hutchinson, 1995; Pumpanen et al., 2004). The eddy covariance method uses a tower 42 

with installed instruments to autonomously measure fluxes of trace gases between ecosystem and atmosphere 43 

(Baldocchi, 2014; Wilson et al., 2001). ET is then calculated from the latent heat flux, and Reco is calculated from the 44 

net carbon fluxes using night-time or daytime partitioning approaches (van Gorsel et al., 2009; Lasslop et al., 2010; 45 

Reichstein et al., 2005). The spatial footprint of obtained eddy covariance fluxes is on the order of hundreds of meters, 46 

and the temporal resolution of the measurements ranges from hours to decades (Wilson et al., 2001). Tower-based in-47 

situ measurements of fluxes have been integrated into the global AmeriFlux (http://ameriflux.lbl.gov/) and FLUXNET 48 

(https://FLUXNET.fluxdata.org/) networks. Eddy covariance towers are usually installed at valley bottoms of 49 

mountainous watersheds (Strachan et al., 2016). Data from flux towers should also be used carefully as flux footprints 50 

may vary significantly across sites and through time depending on site-specific information, turbulent states of the 51 

atmosphere and underlying surface characteristics (Chu et al., 2021). Given the cost and efforts required to install and 52 

maintain a flux tower, eddy covariance towers are typically sparse and may not capture complex fluxes at sites with 53 

complex terrains, such as montane environments. Though measurements from a single flux tower may not capture 54 

heterogeneity in ET and Reco due to complex terrains, they can support the development of statistical or physical-based 55 

models integrated with other types of data to provide ET and Reco estimation as we describe herein.  56 

 Physically-based numerical models, which represent land-surface energy and water balance, have also been 57 

used to estimate ET and Reco (Tran et al., 2019; Williams et al., 2009), such as the Community Land Model (CLM, 58 

Oleson et al., 2013). Performance of these models depends on the accuracy of inputs and parameters, such as soil type 59 

and leaf area index, which can be difficult to obtain at a sufficiently high spatiotemporal resolution. The lack of 60 

measurements to infer parameters needed for models often leads to large discrepancies between model-based and flux-61 

tower-based ET and Reco estimates. Conceptual model uncertainty inherent in mechanistic models can also lead to ET 62 

and 𝑅𝐸𝐶𝑂 estimation uncertainty and errors. For example, Keenan et al. (2019) suggested that current terrestrial carbon 63 

cycle models neglect inhibition of leaf respiration that occurs during daytime, which can result in a bias of up to 25 %. 64 

Chang et al. (2018) suggested that process-based models may not represent transpiration accurately due to challenges 65 

in simulating the uneven hydraulic distribution caused by complex terrain. Semi-analytical formulations are also 66 

commonly used to estimate ET, including the Budyko framework and its extensions (Budyko, 1961; Greve et al., 2015; 67 

Zhang et al., 2008); the Penman-Monteith’s equation (Allen et al., 1998), and the Priestley-Taylor equation (Priestley 68 

and Taylor, 1972). However, these conceptual uncertainties, in addition to data sparseness and data uncertainty, still 69 

limit the applicability of these approaches.   70 

Remote sensing products, such as Landsat imagery (Irons et al., 2012), Sentinel-2 (Main-Knorn et al., 2017) 71 

and the moderate-resolution imaging spectroradiometer (MODIS, NASA. 2008), have also been integrated to estimate 72 

ET and Reco (Abatzoglou et al., 2014; Daggers et al., 2018; Mohanty et al., 2017; Paca et al., 2019). Ryu et al. (2011) 73 

http://ameriflux.lbl.gov/
https://fluxnet.fluxdata.org/


proposed the ‘Breathing Earth System Simulator’ approach, which integrates mechanistic models and MODIS data to 74 

quantify ET and GPP with a spatial resolution of 1-5 km and a temporal resolution of 8 days. Ai et al. (2018) extracted 75 

indices from the MODIS dataset—and used the rate-temperature curve and strong correlations between terrestrial 76 

carbon exchange and air temperature to estimate Reco at 1 km spatial resolution and 8-day temporal resolution. Ma et 77 

al. (2018) developed a data fusion scheme that fused Landsat-like-scale datasets and MODIS data to estimate ET and 78 

irrigation water efficiency at a spatial scale of ~100 meters. However, even though remote sensing data cover large 79 

areas of the earth surface, they typically do not provide information over both high spatial and temporal resolution, 80 

and data quality is subject to cloud conditions. For example, Landsat has average return periods of 16 days with a 81 

spatial resolution of 30 m (visible and near-infrared), whereas MODIS has 1-2 days temporal resolution with a 250 m 82 

or 1 km spatial resolution depending on the sensors. These resolutions are typically too coarse to enable exploration 83 

of how aspects such as plant phenology, snowmelt, and rainfall influence water and energy dynamics of an ecosystem. 84 

Combining machine-learning models with remote sensing products and meteorological inputs offers another 85 

option for large-scale estimation of ET and Reco. Remotely sensed data can be good proxies for plant productivity and 86 

can be easily implemented into machine-learning models for ET and 𝑅𝐸𝐶𝑂  estimation, such as for an enhanced 87 

vegetation index, land surface water index and normalized differences vegetation index (NDVI) (Gao et al., 2015; 88 

Jägermeyr et al., 2014; Migliavacca et al., 2015). Li and Xiao (2019) developed a data-driven model to estimate gross 89 

primary production at a spatial and temporal resolution of 0.05° and 8 days. Berryman et al. (2018) demonstrated the 90 

value of a Random Forest model to predict growing season soil respiration from subalpine forests in the Southern 91 

Rocky Mountains ecoregion. Jung et al. (2009) developed a model tree ensemble approach to upscale FLUXNET data, 92 

where they successfully estimated ET and GPP. Other methods have used support vector machines, artificial neural 93 

networks, random forest, and piecewise regression (Bodesheim et al., 2018; Metzger et al., 2013; Xiao et al., 2014; 94 

Xu et al., 2018). These models were trained with ground-measured flux observations and other variables, and then 95 

applied to estimate ET over continental or global scales with remote sensing and meteorological inputs. Some of the 96 

most important inputs include the enhanced vegetation index, aridity index, air temperature, and precipitation. The 97 

spatiotemporal resolution of these approaches is constrained by the resolution of remote sensing products and 98 

meteorological inputs. Additionally, parameters such as leaf area index, cloudiness, and the vegetation types required 99 

by those models may not be available at the required resolution, accuracy or location. For example, in systems that 100 

have significant elevation gradients, errors may occur when valley-based FLUXNET data are used for training and 101 

then applied to hillslope or ridge ET and Reco estimation. 102 

Development of hybrid models that link direct measurements and/or mechanistic models with data-driven 103 

methods can benefit ET and Reco estimation (Reichstein et al., 2019). While remote sensing data that cover large 104 

regions provide promise for informing models, quantitative interpretation of these data needed for input into 105 

mechanistic models is still challenging (Reichstein et al., 2019). Physically based models can provide estimates of ET 106 

and Reco, but the estimate error can be high, owing to parametric, structural, and conceptual uncertainties as described 107 

above. Hybrid data-driven frameworks are advantageous because they enable the integration of remote sensing 108 

datasets, meteorological forcings, and mechanistic model outputs of ET and Reco into one model. Machine-learning 109 



approaches can then be applied to extract the spatiotemporal patterns for ET and Reco prediction. The integration of 110 

multi-model and multi-data can increase our modeling capability to estimate ET and Reco and enhance our process 111 

understanding of ecosystem water and carbon cycling under climate change.  112 

In this study, we developed a hybrid predictive modeling approach (HPM) to estimate daily ET and 𝑅𝐸𝐶𝑂 113 

with easily acquired meteorological data (i.e., air temperature, precipitation and radiation) and remote sensing products 114 

(i.e., NDVI). HPM is hybrid as it can flexibly integrate direct measurements from flux towers and/or physically-based 115 

model results (e.g., CLM) and utilize deep learning long-short term memory recurrent neural network (LSTM) to 116 

establish statistical relationships among fluxes, meteorological and remote sensing inputs. Once developed, the 117 

corresponding HPM can be used as a modeling tool to estimate ET and Reco over space and time. We developed four 118 

use cases to demonstrate the applicability of HPM based on site-specific data and model availability.  The remainder 119 

of this paper is organized as follows. Section 2 mainly describes the sites considered in this study and how data were 120 

acquired and processed. Section 3 presents the methodology of the HPM approach, followed by the results of various 121 

use cases presented in Section 4. Discussion and conclusion are provided in Sections 5 and 6, respectively. 122 

2. Site Information, Data Acquisition and Processing 123 

 The HPM method was tested using data from a range of different ecosystem types to explore its performance 124 

under different conditions. We place a particular focus on mountainous sites, given their regional and global 125 

importance yet challenges associated with ET and Reco  in these regions, as described above.  126 

2.1 FLUXNET Stations and Ecoregions 127 

 Nine FLUXNET stations, which cover a wide range of climate and elevations, were selected for this study 128 

(Table 1 and Figure 1). These stations have elevations from 129 m (US-Var) to 3050 m (US-NR1), mean annual air 129 

temperature from 0.34℃ (CA-Oas) to 17.92℃ (US-SRM), and mean annual precipitation from 320 mm (US-Whs) to 130 

800 mm (US-NR1). These FLUXNET stations also cover a wide range of vegetation types (i.e., evergreen forest, 131 

deciduous forest, and shrublands). As indicated by Hargrove et al. (2003), FLUXNET stations were maintained to 132 

capture watershed dynamics at different ecoregions, which are areas that display recurring patterns of similar 133 

combinations of soil, vegetation and landform characteristics (Omernik, 2004). Omernik & Griffith. (2014) delineated 134 

the boundaries of ecoregions through pattern analysis that consider the spatial correlation of both physical and 135 

biological factors (i.e., soils, physiography, vegetation, land use, geology and hydrology) in a hierarchical level. 136 

FLUXNET stations considered in this study mainly locate in four unique ecoregions (Table 1). As is described below, 137 

we developed local-scale (i.e., point scale) HPM that are representative for different ecoregions using data provided 138 

at these FLUXNET stations to estimate ET and 𝑅𝐸𝐶𝑂, and validated the HPM estimates with measurements from 139 

stations within the same ecoregion.   140 

2.2 SNOTEL Stations 141 

 For reasons described below, we performed a deeper exploration of HPM performance within one of the 142 

mountainous watershed sites (the East River Watershed of the Upper Colorado River Basin, USA), which is located 143 



in the “western cordillera” ecoregion. At this site, we utilized meteorological forcings data from three snow telemetry 144 

(SNOTEL) stations. These sites include the Butte (ER-BT, id: 380), Porphyry Creek (ER-PK, id: 701) and Schofield 145 

Pass (ER-SP, id: 737) sites. A one-dimensional (vertical) CLM model was developed at these SNOTEL stations that 146 

provides physically-model-based ET estimation (Tran et al., 2019). Table 1 summarizes the SNOTEL stations used in 147 

this study and the corresponding climate characteristics. Figure 1 shows the geographical locations of FLUXNET and 148 

SNOTEL stations selected in this study.  149 

Table 1. Summary of FLUXNET stations and SNOTEL stations information. * denotes SNOTEL stations and all others 150 

are FLUXNET stations. Dfc, Bsk, Csa represent subarctic or boreal climates, semi-arid climate, Mediterranean hot summer 151 

climates, respectively. ENF, DBF, WSA, GRA, and OSH represent evergreen needleleaf forest, deciduous broadleaf forests, 152 

woody savannas, grasslands, open shrubland, respectively. FLUXNET data were obtained from the FLUXNET2015 153 

database. 154 

Site ID Latitude, Longitude Elevation 

(m) 

Mean Annual 

air temperature 

(°∁) 

Mean Annual  

Precipitation 

(m) 

Climate 

Koeppen 

Vegetation 

IGBP 

Ecoregion 

(Level II) 

Period of 

Record 

US-NR1 (40.0329, -

105.5464) 

3050 1.5 800 Dfc ENF Western 

Cordillera 

2000-2014 

CA-Oas (53.6289, -

106.1978) 

530 0.34 428.53 Dfc DBF Boreal Plain 1997-2010 

CA-Obs (53.9872, -

105.1178) 

628.94 0.79 405.6 Dfc ENF Boreal Plain 1999-2010 

US-SRM (31.8214, -

110.8661) 

1120 17.92 380 Bsk WSA Western 

Sierra Madre 

Piedmont 

2005-2015 

US-Ton (38.4316, -

120.9660) 

177 15.8 559 Csa WSA Mediterranean 

California 

2002-2015 

US-Var (38.4133, -

120.9507) 

129 15.8 559 Csa GRA Mediterranean 

California 

2002-2015 

US-Whs (31.7438, -

110.0522) 

1370 17.6 320 Bsk OSH Western 

Sierra Madre 

Piedmont 

2008-2015 

US-Wkg (31.7365, -

109.9419) 

1531 15.64 407 Bsk GRA Western 

Sierra Madre 

Piedmont 

2005-2015 

US-Me2 (44.4523, -

121.5574) 

1253 6.28 523 Csb ENF Western 

Cordillera 

2012-2015 

ER-BT* (38.894, -106.945) 3096 2.38 821 Dfc N/A Western 

Cordillera 

1995-2017 

ER-SP* (39.02, -107.05) 3261 2.46 1064 Dfc N/A Western 

Cordillera 

1995-2017 

ER-PK* (38.49, -106.34) 3280 1.97 574 Dfc N/A Western 

Cordillera 

1995-2017 



 155 

 156 

Figure 1. Location of sites considered in this study. Note: US-Ton and US-Var; US-Whs and US-Wkg are closed to each 157 

other. East River Watershed is located next to ER-BT. The white lines delineate Western US states and Canadian provinces. 158 

Circles represent FLUXNET sites, diamonds represent SNOTEL sites and triangle represents the East River Watershed.  159 

2.3 East River Watershed Characteristics and Previous Analyses 160 

 Data from the East River Watershed were used to explore how ET and Reco dynamics estimated from the 161 

developed HPM vary with different vegetation and meteorological forcings. The East River Watershed is located 162 

northeast of the town of Crested Butte, Colorado. This watershed has an average elevation of 3266 m, with significant 163 

gradients in topography, hydrology, geomorphology, vegetation, and weather. The mean annual air temperature in the 164 

East River is ∼2.4°C, with average daily air temperatures of −7.6°C and 13.4°C in December and July respectively 165 

(Kakalia et al., 2020) and an average of 1200 mm yr−1  total precipitation (Hubbard et al., 2018). Consisting of 166 

montane, subalpine, and alpine life zones, each with distinctive vegetation biodiversity, the East River Watershed is a 167 

testbed for the US Department of Energy Watershed Function Scientific Focus Area Project, led by the Lawrence 168 

Berkeley National Laboratory (Hubbard et al., 2018). The project has acquired a range of datasets, including 169 

hydrological, biogeochemical, remote sensing, and geophysical datasets.  170 

Recently completed studies at the East River Watershed were used in this study to inform HPM and to assess 171 

the results. For example, physically-model-based estimations of ET at this site (Tran et al., 2019) were used herein for 172 



HPM development and validation. Falco et al. (2019) used machine-learning-based remote sensing methods to 173 

characterize the spatial distribution of vegetation types, slopes, and aspects within a hillslope at the East River 174 

Watershed, which were used with obtained HPM estimates to explore how vegetation heterogeneity influences ET 175 

and 𝑅𝐸𝐶𝑂 dynamics. To perform this assessment, we computed the spatial distribution of vegetation types at watershed 176 

scale based on Falco et al. (2019). We evaluated manually and selected 16 locations within the East River Watershed 177 

having different vegetation types and slope aspects. These 16 locations were chosen to be at the center of vegetation 178 

patched and covered by one vegetation type. A summary of the locations is presented in Table 2; the spatial distribution 179 

of the locations is shown in Figure 2. 180 

Table 2: Location and vegetation types of East River Watershed sampling points (Figure 2) 181 

Easting (m) Northing (m) Vegetation Type Aspect Elevation (m) 

327085 4309878 Deciduous Forest South 2983 

326288 4312504 Deciduous Forest South 3177 
330012 4313132 Deciduous Forest North 3108 

326854 4313192 Deciduous Forest South 3098 

328246 4312832 Meadow South 3095 
327010 4315059 Meadow South 2790 

328738 4306139 Meadow North 2890 

334270 4309465 Meadow  North 2929 
333406.5 4308340 Riparian Shrubland South 2760 

327846 4312497 Riparian Shrubland South 2723 

334641 4305632 Riparian Shrubland North 2740 
330760 4310097 Riparian Shrubland South 2855 

329573 4314569 Evergreen Forest South 3026 

333106 4307313 Evergreen Forest North 3102 
325056 4310456 Evergreen Forest South 2961 

335141 4309614 Evergreen Forest North 3131 

  182 

 183 

Figure 2: Vegetation classification of the East River, CO Watershed from Falco et al. (2019). East River sites selected in 184 

this study are denoted by black circles. 185 

2.4 Data Collection and Processing 186 



To enhance transferability of the developed HPM strategy to less intensively characterized watersheds, we 187 

selected only “easy to measure” or “widely available” attributes, such as precipitation, air temperature, radiation and 188 

NDVI, as inputs to the HTM model. Soil temperature was used when available. The data sources used for these inputs 189 

include FLUXNET data (https://fluxnet.fluxdata.org/), SNOTEL data (https://www.wcc.nrcs.usda.gov/snow/) and 190 

developed CLM model (Tran et al., 2019) at SNOTEL stations, DAYMET meteorological inputs (Thornton et al., 191 

2017) and remote sensing data from Landsat imageries (Irons et al., 2012). We identified some data gaps and erroneous 192 

data (especially during winter seasons) for the ET estimates at US-NR1, which were cleaned following the procedures 193 

presented in Rungee et al. (2019). At the three selected SNOTEL stations, air temperature data at these three SNOTEL 194 

stations were processed following Oyler et al. (2015) and radiation data was obtained from DAYMET. CLM models 195 

were generated following Tran et al. (2019) for the SNOTEL stations and US-NR1. At the East River Watershed sites, 196 

data were obtained from DAYMET. NDVI time series were calculated from the red band and near-infrared band from 197 

Landsat 5, 7 and 8 images at all sites. We used the cloud-scoring algorithm provided in the Google Earth Engine to 198 

mask clouds in all retrieved data, only selecting the ones that had a simple cloud score below 20 to ensure data quality. 199 

Given the different calibration sensors used in Landsat 5, 7, and 8, we also followed the processes described in Homer 200 

et al. (2015) and Vogelmann et al. (2001) to keep NDVI computations consistent over time. Landsat satellites have a 201 

return period of 16 days, and thus we performed a reconstruction of NDVI time series to obtain daily scale time data 202 

(Section 3.2.2).  203 

3. Hybrid Predictive Modeling Framework 204 

 In this section, we illustrate the steps for building an HPM model for ET and Reco estimation over time and 205 

space. Figure 3 presents the general framework of HPM, which includes modules for data preprocessing, model 206 

development, model validation, and predictive modeling.  207 

3.1 Model Framework  208 

 HPM establishes relationships among meteorological forcings attributes, NDVI, ET and Reco (Figure 3) using 209 

deep-learning-based module (fully connected deep neural networks and long short-term memory recurrent neural 210 

networks). Long short-term memory (LSTM, Hochreiter & Schmidhuber, 1997) is a type of recurrent neural network 211 

(RNN) capable of learning temporal dependence without suffering from optimization difficulties (e.g., vanishing 212 

errors). An LSTM layer consists of memory blocks and unique cell states that are controlled by three multiplicative 213 

units, including the input, output and forget gates. These gates regulate the flow of information and decide which data 214 

in a sequence is important to keep or throw away. Through the LSTM structure, even information from the earlier 215 

time steps can make its way to later time steps, reducing the effects of short-term memory and thus capturing long-216 

term dependence. LSTM has been previously used to capture such dependencies between climate and environmental 217 

data. For example, Kratzert et al. (2018) successfully used LSTM to learn the long-term dependencies in hydrological 218 

data (e.g., storage effects within catchments, time lags between precipitation inputs and runoff generation) for rainfall-219 

runoff modeling. LSTM has also been used for gap filling in hydrological monitoring networks in the spatiotemporal 220 

domain  (Ren et al., 2019). More information about the LSTM-RNN method is provided by Olah (2015). 221 

https://fluxnet.fluxdata.org/
https://www.wcc.nrcs.usda.gov/snow/


HPM modules include input attributes, model development, validation, and prediction. Based on data 222 

availability, input features are obtained from flux towers, gridded meteorological data, and remote sensing data; all 223 

data are preprocessed for gap filling, smoothing, and updating. In the HPM model development module, individual 224 

HPM models can be trained in two different ways based on data availability: with data obtained from flux towers 225 

(“data-driven HPM”) or with outputs from physically-based models (“mechanistic HPM”). Seventy percent of these 226 

data are used for training LSTM to learn the interactions among input features, ET, and Reco, until a pre-defined 227 

“stopping criteria” (e.g., root mean squared error, RMSE) is met, indicating subsequent training would lead to minimal 228 

improvement. In most models, the configuration of the neural networks includes a first LSTM layer with 50 units, a 229 

second LSTM layer with 25 units, and a dense layer with 8 units having L2 regularizers, and a final output dense layer. 230 

Dropout layers are also embedded in the model to prevent overfitting. There are 11600 and 7600 parameters for the 231 

first and second LSTM layers; 208 and 9 for the first and second dense layers and no parameters for the dropout layers. 232 

Other configurations of networks may provide better estimation results; however, they are not assessed in this study 233 

as the proposed configuration already provide reasonable results. 234 

In the validation module, we implemented a validation procedure that uses the remaining 30 % of the data to 235 

assess model performance. Estimation outputs from the trained HPM models are also compared with other ET and 236 

Reco data obtained from other independent sites or mechanistic models within the same ecoregion. Statistical measures 237 

such as adjusted 𝑅2 and mean absolute error (MAE) are computed to evaluate the performance of HPM models. In 238 

the predictive model module, meteorological forcings data and remote sensing data are processed at target sites of 239 

interest, and the validated HPM model is used to estimate ET and Reco at these sites. ET and Reco outputs estimated 240 

from HPM at sparsely monitored watersheds then provide alternative datasets for process understanding within the 241 

target watersheds.  242 

 243 

Figure 3: Hybrid Predictive Model (HPM) Framework. The HPM model mainly consists of four modules: Input Attributes, 244 

Model Development, Model Validation and Model Prediction, represented by rectangles with colors. Arrows represent the 245 



linkages among different modules. Choices of data-driven HPM or mechanistic HPM depend on the ecoregion of target 246 

watershed and data availability. 247 

3.2 Feature Selection 248 

 At sparsely monitored watersheds, only weather reanalysis data and remote sensing data are commonly 249 

available. Thus, we mainly considered air temperature, radiation, precipitation, vegetation indices (e.g., NDVI) and 250 

variables inferred from these data as inputs for HPM. Soil temperature when available is used at FLUXNET sites. 251 

Other key attributes that depend on depth and site-specific characteristics such as soil moisture and snow depth are 252 

not used in current HPM models due to data availability.  253 

3.2.1 Snow information 254 

In snow-influenced mountainous watersheds, we separated precipitation data into snow precipitation (when 255 

air temperature < 0) and rainfall precipitation (when air temperature > 0), which is in line with what has been used in 256 

hydrological models such as CLM (Oleson et al., 2013). Knowles et al. (2016) discovered a significant correlation 257 

between day of peak snow accumulation, snowmelt and air temperature. To capture snow related dynamics (e.g., 258 

snowmelt), we constructed a categorical variable (sn) based on air and soil temperature thresholds. Note: this may not 259 

be needed if snow data becomes available and at sites where snow is rarely present.  260 

𝒔𝒏 = {

0, 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑛𝑜𝑤 𝑎𝑐𝑐𝑢𝑚𝑙𝑎𝑡𝑖𝑜𝑛;   𝐴𝑖𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 < 0
1, 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑛𝑜𝑤 𝑚𝑒𝑙𝑡𝑖𝑛𝑔; 𝐴𝑖𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 > 0 𝑤ℎ𝑖𝑙𝑒 𝑆𝑜𝑖𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ≤ 0

2, 𝑛𝑜 𝑠𝑛𝑜𝑤; 𝐴𝑖𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑛𝑑 𝑆𝑜𝑖𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 > 0
,          (1) 261 

3.2.2 Vegetation information 262 

 We reconstructed daily NDVI values based on meteorological forcing data (e.g., air temperature, 263 

precipitation, radiation) using LSTM to increase the temporal coverage of NDVI. Figure 4 represents Landsat-derived 264 

NDVI and reconstructed NDVI values for two sites at the East River, CO watershed: Butte (ER-BT), and Schofield 265 

Pass (ER-SP). Though not ideal, as satellites continue to advance and more training data becomes available, the 266 

accuracy of NDVI temporal reconstruction is expected to increase. 267 



 268 

Figure 4: Temporal reconstruction of NDVI at ER-BT (left) and ER-SP (right). Black lines represent reconstructed daily 269 
NDVI. Red points are used for training and blue points are used for validation 270 

3.3 Use Cases 271 

 We developed four different use cases to demonstrate the applicability of HPMs based on site-specific data 272 

and model availability. Use case 1 focuses on ET and Reco in the time domain, where a HPM is trained on direct 273 

measurements from flux tower. A 70%-20%-10% training-validation-prediction split of the data was used. These 274 

HPMs are useful for time series gap filling and future prediction. Use case 2 and use case 3 have emphasis on providing 275 

ET and Reco over space, where use case 2 uses data-driven HPM and use case 3 utilizes mechanistic HPM. Data-driven 276 

HPM is trained with data from flux tower and mechanistic HPM is trained upon outputs from a mechanistic model 277 

(e.g., CLM). These HPMs are usually trained at well monitored watersheds where either flux data is available or data 278 

support the development of a mechanistic model. After training, these HPMs integrate meteorological and remote 279 

sensing inputs to provide ET and Reco at target sparsely monitored watersheds within the same ecoregion. For both 280 

use case 2 and 3, we validated the HPM estimations against data from other sites within the same ecoregion. Use case 281 

4 focuses on the East River Watershed, where we demonstrate how HPM can increase our understanding of ecosystem 282 

fluxes and explore the limitations of HPM in mountainous watersheds. Use case 4 estimations were validated against 283 

data extracted from other studies.  284 

4. Results 285 

4.1 Use Case 1: ET and 𝑹𝑬𝑪𝑶 Time Series Estimation with HPM Developed at FLUXNET Sites 286 

Local HPMs were developed to estimate ET and Reco using flux tower data obtained from FLUXNET sites 287 

listed in Table 1. At all FLUXNET sites, air temperature, precipitation, net radiation, NDVI and soil temperature were 288 

used. For US-NR1, CA-Oas and CA-Obs, sn is also included. The results, which are shown in Fig. 5, A1-A4 and 289 

Table 3, reveal that the HPM approach was effective for estimating ET and Reco. The long-term trends in ET and Reco 290 

are well captured by HPM. However, short-term fluctuations in ET and Reco during the summer periods are also not 291 

well captured by HPM. For example, at US-Ton and US-Var, we observed an increasing discrepancy in summer month 292 



ET and Reco. This is mainly caused by insufficient training for summer extremes. At US-Me2, we observed significant 293 

increasing errors in the validation set, especially for Reco that are caused by significant differences in raw data between 294 

2002-2010 (data used for training) and post-2011 (data used for validation).  295 

 296 

Figure 5: ET and Reco estimation with data from FLUXNET sites at CA-OAS. Panels (a) and (b) show the scatter plots of 297 

daily (blue) and monthly (red) ET and Reco between HPM estimation and FLUXNET data. Darker blue clouds represent 298 

greater density of data points. Panels (c) and (d) present the daily HPM estimation of ET and Reco separated by training, 299 

validation and prediction sets. Pink points depict monthly error between HPM estimation and FLUXNET data. Results for 300 

other sites are included in supplementary materials below (Fig. A1, A2, A3 and A4).  301 

Table 3: Statistical measures of HPM estimation of ET and Reco 302 

Site ID Train 

MAE 

-ET 

[𝒎𝒎 𝒅−𝟏] 

Test 

MAE 

- ET 

[𝒎𝒎 𝒅−𝟏] 

Train Adj. 

𝑹𝟐 - ET 

Test Adj. 

𝑹𝟐 - ET 

Train MAE 

−𝐑𝐞𝐜𝐨 

[𝒈𝑪𝒎−𝟐𝒅−𝟏] 
 

Test MAE 

−𝐑𝐞𝐜𝐨 

[𝒈𝑪𝒎−𝟐𝒅−𝟏] 
 

Train 

Adj. 𝑹𝟐 

−𝐑𝐞𝐜𝐨 

 

Test Adj. 

𝑹𝟐 

−𝐑𝐞𝐜𝐨 

 

US-NR1 0.19 0.11 0.95 0.98 0.33 0.18 0.91 0.98 

CA-Oas 0.18 0.13 0.94 0.97 0.33 0.26 0.96 0.97 

CA-Obs 0.12 0.09 0.95 0.96 0.29 0.25 0.96 0.97 

US-SRM 0.22 0.17 0.92 0.94 0.24 0.19 0.80 0.87 

US-Ton 0.22 0.17 0.92 0.94 0.43 0.36 0.76 0.82 

US-Var 0.15 0.12 0.92 0.95 0.49 0.38 0.81 0.88 



US-Whs 0.13 0.09 0.93 0.96 0.12 0.09 0.84 0.89 

US-Wkg 0.19 0.15 0.87 0.91 0.18 0.15 0.85 0.91 

US-Me2 0.36 0.43 0.81 0.75 0.75 0.83 0.88 0.85 

 303 

4.2 Use Case 2: Ecoregion-Based, Data-Driven HPM Model for ET and 𝑹𝑬𝑪𝑶 Estimation  304 

In this section, we explored the use of a data-driven HPM trained with one FLUXNET station to estimate ET 305 

and Reco at other locations within the same ecoregion. Specifically, we developed HPM models at US-Ton, CA-Oas 306 

and US-Wkg, and provided ET and Reco estimations at US-Var, CA-Obs and US-Whs at three ecoregions, respectively. 307 

Table 4 summarizes how we developed the data-driven HPM models for spatially distributed estimation of ET and 308 

Reco as well as the corresponding statistical summaries. Figures 6 and A5 present the time series of HPM-estimated 309 

ET and 𝑅𝐸𝐶𝑂  compared to measurements from flux towers. HPM estimation at US-Obs, US-Whs and US-Var 310 

achieved an adjusted 𝑅2 of 0.87, 0.88 and 0.91 for ET and 0.95, 0.70 and 0.78 for 𝑅𝐸𝐶𝑂, respectively. These results 311 

show that HPM captures the seasonal and long-term dynamics of ET and 𝑅𝐸𝐶𝑂 . However, at sites that experience 312 

seasonally dry periods (e.g., US-Whs), prediction accuracy decreases during the peak growing season. Although the 313 

prediction accuracy is not as high as Use Case 1 (Section 4.1), this use case demonstrates that HPM can learn the 314 

complicated relationships between responses and features successfully, and that a local data-driven HPM can be used 315 

to fuse with data from other subsites for long-term estimation of ET and 𝑅𝐸𝐶𝑂 within the same ecoregions.  316 

 317 



Figure 6. ET and Reco estimation at CA-Obs using HPM trained at CA-Oas. Other sites are presented in Fig. A5.  318 

4.3 Use Case 3: Ecoregion-Based, Mechanistic HPM Estimation of ET  319 

Mechanistic HPM, which is trained upon physically-based model simulations, provides an avenue for 320 

estimating fluxes in ecoregions where flux towers are not available. Consistent results between measured ET and 321 

CLM-estimated ET at US-NR1 (adjusted 𝑅2 = 0.88; 𝑘 = 0.95, Fig. S1) indicate independent CLM simulations can 322 

be effectively used to develop the mechanistic HPM. We applied mechanistic HPM trained with 1-Dimensional 323 

(vertical) CLM developed at ER-BT (Tran et al., 2019) to estimate ET at sites classified as part of the western 324 

Cordillera ecoregion (i.e., ER-SP, ER-PK and US-NR1). We then compared ET estimation from HPM to independent 325 

CLM-based ET estimations at ER-SP and ER-PK. Figure 7 shows a high consistency between HPM estimation and 326 

the validation data. For all scenarios, an adjusted 𝑅2 of 0.8 or greater is observed (Table 4), which strongly indicates 327 

that mechanistic HPM can provide accurate ET estimation at sites of similar ecoregions. These results suggest the 328 

broad applicability of mechanistic HPM to estimate ET based on ecoregion characteristics. This approach is expected 329 

to be particularly useful for regions where flux towers are difficult to install or where measured fluxes are not 330 

representative of the landscape, such as in mountainous watersheds.  331 

Table 4. Statistical summary of HPM estimation over space with FLUXNET sites and SNOTEL stations with CLM 332 

Target 

Site 

Training 

Site 

Level II Ecoregion ET MSE 

(monthly)[𝑚𝑚 𝑑−1] 
ET 

Adj. 𝑅2 

Reco 

MSE(monthly)[𝑔𝐶𝑚−2𝑑−1] 
Reco 

Adj. 𝑅2 

CA-Obs CA-Oas Boreal Plain 0.39 0.88 0.36 0.97 

US-Var US-Ton Mediterrean 

California 

0.34 0.70 0.67 0.70 

US-Whs US-Wkg Western Serra Madre 

Pidemont 

0.13 0.94 0.17 0.85 

ER-SP ER-BT Western Cordillera 0.20 0.92 - - 

ER-PK ER-BT Western Cordillera 0.24 0.90 - - 



 333 

Figure 7. HPMs trained with CLM simulation at ER-BT are used to estimate ET at ER-SP and ER-PK. Panels (a) and (c) 334 

display the time series of HPM estimation of ET (red lines), and independent CLM estimation at ER-SP and ER-PK. Panels 335 

(b) and (d) show the scatter plots of daily (blue) and monthly (red) ET at these sites. Darker blue clouds represent greater 336 

density of data points. 337 

4.4 Use Case 4: HPM approach improved our prediction capability and process understanding at the East 338 
River Watershed 339 

With the proposed HPM approach (e.g., mechanistic HPM), we were able to estimate ET and Reco at selected 340 

locations at the East River Watershed, CO, USA with only meteorological forcings and remote sensing data. Our 341 

estimations are comparable to other independent studies, such as Mu et al. (2013) (Fig. S2) and Berryman et al. (2018). 342 

HPM estimations enhanced our understanding of watershed processes and enabled us to explore the limitations in the 343 

developed HPM approach especially at mountainous watersheds.  344 

Physiology differences among vegetation types and dynamic changes in meteorological conditions were well 345 

captured by input features and HPM at the East River Watershed. Not surprisingly, the reconstructed NDVI indicated 346 

that deciduous forests have the highest peak NDVI followed by grasslands, shrublands and evergreen forests whereas 347 

annual variation of NDVI in evergreen forests is smaller than the other vegetation types (Fig. 8). Year 2012 is regarded 348 

as a fore-summer drought year with earlier than normal snowmelt, and year 2015 is regarded as a normal water year. 349 



The Palmer drought severity index (PDSI) is -5.2 and -1.5 for June and -4.6 and 1.1 for August in 2012 and 2015, 350 

respectively. Dynamic changes in meteorological conditions between 2012 and 2015 were also reflected in the 351 

reconstructed NDVI time series. We observed an earlier rise of NDVI in 2012: March, April and May mean NDVI 352 

values for deciduous forest sites are 0.07, 0.2 and 0.37 compared to 0.06, 0.15 and 0.33 in 2015. Similar trends were 353 

observed for other vegetation types during spring months as well. NDVI values remain high during the peak growing 354 

season (deciduous forest > grassland > shrubland > evergreen forest) for both 2012 and 2015. However, we observed 355 

NDVI declines for grasslands and shrublands since August in 2012 but not until September in 2015. During autumn 356 

periods, NDVI declines significantly following the sharp decline in radiation.  357 

 358 

Figure 8: Reconstructed NDVI time series at selected locations in the East River Watershed for 2011 to 2018 (panel a) and 359 

for 2015 (panel b, normal water year). Black, red, green, and blue lines represent the time series of NDVI for deciduous 360 

forests, meadow grasslands, evergreen forests and riparian shrubland, respectively.  361 

HPM-estimated ET and Reco also show different dynamics with different vegetation types and meteorological 362 

conditions. Figure 9a and 9b present the time series of estimated ET and Reco associated with deciduous forests, 363 

respectively. Figure 9c and 9d present the ET and Reco differences between deciduous forests sites and evergreen 364 

forests, shrublands and grasslands. Before peak growing season, evergreen forests have the greatest ET and Reco 365 

compared to the other vegetation types. ET of evergreen forests is about 10% greater than deciduous forests, whereas 366 

ET of deciduous forests during peak growing season is greater than evergreen forests, shrublands and meadows. After 367 

growing season, the NDVI of deciduous forests is less than 0.2 (loss of leaves) compared to the NDVI of evergreen 368 

forests. Before peak growing season, Reco of evergreen forests is slightly greater than deciduous forests, meadow 369 

grasslands and shrublands. During peak growing season, we observed largest Reco for deciduous forests sites (~ 6 370 

𝑔𝐶𝑚−2𝑑−1) followed by meadows, shrublands and evergreen forests. Reco of deciduous forests is around 17 % greater 371 

than Reco of evergreen forests. However, we did not observe significant differences in annual ET among these four 372 

vegetation types (e.g., DF: 535 to 573 mm, MS: 534 to 570 mm, RS: 532 to 567 mm and EF: 532 to 569 mm across 7 373 

years in this study). Total annual Reco of deciduous forests is greater than the other vegetation types (DF1: 642 to 698 374 

𝑔𝐶𝑚−2, MS1: 588 to 636 𝑔𝐶𝑚−2, RS1: 589 to 636 𝑔𝐶𝑚−2 and EF1: 592 to 639𝑔𝐶𝑚−2). These results indicate HPM 375 

Reco models are sensitive to vegetation types and HPM ET models are mostly constrained by meteorological conditions.  376 



Considering the inter-annual variability in meteorological forcings, we further selected year 2014 (large snow 377 

precipitation ~ 587 𝑚𝑚 but small rain precipitation ~ 275 𝑚𝑚) in addition to 2012 (drought year) and 2015 (small 378 

snow precipitation ~ 383 mm and large rain precipitation ~ 477 𝑚𝑚) to test HPM performance. As HPM does not 379 

have the capability to identify snow and monsoon precipitation’s contribution to fluxes, we separated annual ET and 380 

Reco into pre-June (January-June) and post-July (July-December) to quantify the contribution from snow and monsoon. 381 

Earlier snowmelt that occurred in 2012 boosted spring ET and Reco and we observed larger March-mean ET and Reco 382 

compared to 2014 and 2015 that are characterized by later snowmelt. Occurrences of fore-summer drought in 2012 383 

led to moisture limiting conditions, resulting in large fluctuations of ET and Reco during May and June. ET fluctuated 384 

from 2.9 to 1.9 𝑚𝑚 𝑑−1 during late May, and 3.53 to 2.6 𝑚𝑚 𝑑−1 during early June. However, early occurrence of 385 

monsoon in 2012 led to a peak ET in early July. Due to late snowmelt, ET did not significantly fluctuate in 2014 and 386 

2015. However, peak ET shifted towards late July in 2014. Regarding Reco dynamics, fore-summer drought conditions 387 

led to variations in Reco from ~ 4 to 6 𝑔𝐶𝑚−2 𝑑−1 in 2012. In 2014, we observed more steady increase of Reco during 388 

the early and peak growing seasons. For late-summer and autumn months (August – October), ET decreased steadily 389 

in all three years regardless of monsoon precipitation inputs, following the significant decline in radiation. Pre-June 390 

ET and Reco ( 255𝑚𝑚  and 217 𝑔𝐶𝑚−2 𝑑−1 ) were both greater in 2012 compared to 2014 ( 223 𝑚𝑚  and 391 

178 𝑔𝐶𝑚−2 𝑑−1) and 2015 (230 𝑚𝑚 and 197 𝑔𝐶𝑚−2 𝑑−1) in deciduous forests. While there were no significant 392 

differences in post-July ET among the three years (318, 316 and 306 𝑚𝑚), 2012 was the highest. Within deciduous 393 

forests and annually over 2012, 2014 and 2015, ET was 573 mm, 539 mm and 536 mm and Reco was 698 𝑔𝐶𝑚−2, 394 

642 𝑔𝐶𝑚−2 and 652 𝑔𝐶𝑚−2, respectively. . Similar trends were observed for other vegetation types.  395 



 396 

Figure 9: ET (a) and Reco (b) estimation for the deciduous forest site DF1 at the East River Watershed. Panels (c) and (d) 397 

show the differences in ET and Reco among various vegetation types and deciduous forest. Red, green, and blue lines 398 

represent the differences in evergreen forest, meadow, and riparian shrubland compared to deciduous forest. Panels (e) 399 

and (f) zoom into 2015 to better display seasonal variations. 400 

Though HPM estimations allowed us to explore differences in ET and Reco across vegetation types and 401 

meteorological forcings heterogeneity, it is necessary to investigate the limitations of HPM approach. Figure 10 shows 402 

the absolute value of monthly mean difference in ET (Fig. 10a and Fig. 10b) and Reco (Fig. 10c and Fig. 10d) across 403 



SNOTEL stations (ER-BT, ER-SP and ER-PK) and within selected East River locations. We observed greater 404 

differences in air temperature and radiation at the SNOTEL sites and very small differences at the East River sites 405 

(Figure S4). June air temperature differences among SNOTEL sites were occasionally over 3℃ , while the DAYMET 406 

data from the East River rarely revealed 0.2℃ differences. In addition, a ~80 𝑊 𝑚−2 of radiation differences was 407 

observed with SNOTEL data whereas radiation differences stays around 30 𝑊 𝑚−2  for East River sites. 408 

Correspondingly, we observed 2.5 times greater differences in ET across SNOTEL stations compared to the sites 409 

within the East River watershed. We observed similar level of differences (around 0.8 𝑔𝐶𝑚−2) in Reco within East 410 

River Watershed and across SNOTEL stations. Landsat data enabled us to capture NDVI differences at these sites, 411 

but we have identified the insufficient resolution of input meteorological forcing data at the East River sites. These 412 

results indicate uncertainties in meteorological forcing attributes (e.g., radiation and air temperature) can have a huge 413 

influence over HPM ET estimation and HPM Reco model is more sensitive to NDVI datasets. If high resolution 414 

meteorological data becomes available for the East River watershed, we believe the HPM approach can better capture 415 

heterogeneities in ET and Reco at the East River watershed and better distinguish the roles of meteorological forcing 416 

and vegetation heterogeneity on ET and Reco distribution.  417 

 418 

Figure 10. Absolute differences in monthly mean ET and Reco across SNOTEL stations and within East River Watershed. 419 

Panels (a) and (c) describe the absolute differences in monthly mean ET and Reco between ER-BT, ER-SP, and ER-PK. 420 

Panels (b) and (d) describe the absolute differences in monthly mean ET and Reco within East River Watershed between 421 

deciduous forests, evergreen forests, meadow grasslands, and riparian shrublands. 422 



5. Discussion  423 

Our study demonstrates that HPM provides reliable estimations of ET and Reco under various climate and 424 

vegetation conditions. The unique gated structures and cell states of LSTM allow HPM to track information from 425 

earlier times and decide which information to pass along and which information to forget. This effective configuration 426 

allows LSTM to effectively capture the long-term dependencies and ecological memory effects among meteorological 427 

forcings, NDVI, ET and Reco. With 70 % of the data used for training (model development), ET and Reco estimation 428 

from HPM achieves an average adjusted 𝑅2 of 0.9 compared to flux tower measurements. To demonstrate HPM’s 429 

applicability for providing ET and Reco estimation at sparsely monitored watersheds, we presented four use cases, 430 

including prediction ET and Reco in the time domain, data-driven HPMs and mechanistic HPMs. Results from the four 431 

use cases suggest HPM is a powerful approach to estimate ET and Reco at target watersheds requiring only 5 commonly 432 

available input data and can advance our understanding of watershed processes.  433 

HPM was capable incorporating information from NDVI time series to delineate the physiological 434 

differences among deciduous forests, evergreen forests, shrublands and grasslands. In our study, NDVI data indicated 435 

evergreen forests have a longer growing season compared to other vegetation types and deciduous forests have higher 436 

peak NDVI values. Correspondingly, we also observed an earlier increase in ET and Reco for evergreen forests (before 437 

May), but larger ET and Reco for deciduous forests during peak growing season (around June and July). Baldocchi et 438 

al. (2010) found that deciduous forests had a shorter growing season, but showed a greater capacity for assimilating 439 

carbon during the growing season. Evergreen forests, on the other hand, had an extended growing season but with a 440 

smaller capacity for gaining carbon. They found older leaves tend to have smaller leaf nitrogen and stomata 441 

conductance that lead to smaller ET and Reco during peak growing seasons. Hu et al. (2010) found that extended 442 

growing season length resulted in less annual 𝐶𝑂2  uptake at Niwot Ridge, USA. They found increasing growing 443 

season length is usually correlated with decreasing snow water storage and decreasing forest carbon uptake. Xu et al. 444 

(2020) suggested canopy photosynthetic capacity is the driving force that lead to different resources use efficiencies 445 

(RUEs) between deciduous forests and evergreen forests. Novick et al. (2015) focused on the net ecosystem exchange 446 

of CO2 and also suggested seasonality is less important for evergreen forests, where significant amounts of carbon 447 

were assimilated outside of active season. These findings are similar to what we found in HPM estimations, where we 448 

observed a greater ET and Reco contribution during early and later seasons for evergreen forests compared to deciduous 449 

forests that have significantly greater peak ET and Reco during peak growing season. As HPM only requires 5 input 450 

features and NDVI is the only variable related with vegetation types, we were not able to perform detailed analysis 451 

delinearing the physiological control on ET and Reco dynamics. But we believe HPM models are still useful as they 452 

can be provide initial ET and Reco estimation that help with site selection and field campaign designs.   453 

Temporal variability in meteorological conditions also leads to unique ET and Reco responses at the East 454 

River Watershed, as shown by HPM estimations. Three years with a diverse combination of snow and rain 455 

precipitation were analyzed. In 2012, a year that experienced earlier snowmelt, both ET and Reco increased early in 456 

the season. However, earlier growth in vegetation and increasing demand for water resulted in fore-summer drought 457 

conditions that led to decreases in ET and Reco in late May and June. In 2014, HPM estimated a steady increase in ET 458 



and Reco during spring months following radiation and air temperature trends, with no subsequent significant decline 459 

in ET and Reco. This indicates that energy was still the key limiting factor for spring dynamics in 2014, leading to a 460 

smaller pre-June ET and Reco compared to 2012. Following an earlier arrival of monsoon in 2012 compared to 2014 461 

and 2015, we observed higher mean ET and Reco in July than in June, which indicates the earlier arrival of monsoon 462 

precipitation greatly reduced the moisture limiting condition caused by fore-summer drought and led to subsequent 463 

increase in ET and Reco. During late summer and autumn months, radiation declined significantly with ~ 30 % decrease 464 

in August and ~ 40 % decrease in September. Though 2012, 2014 and 2015 had diverse monsoon precipitation during 465 

these periods, HPM did not estimate significant differences in post-July ET. This result indicates the East River 466 

watershed is mainly under energy-limiting rather than moisture-limiting conditions during late-summer and autumn; 467 

and timing of monsoon arrival is more important than the absolute amount of monsoon precipitation for ET dynamics. 468 

This result is consistent with findings in Carroll et al. (2020). Their study also indicated earlier arrival of summer 469 

monsoon was effectively supporting ET and that the monsoon precipitation was quickly consumed by vegetation, 470 

whereas later arrival of summer monsoon water mainly contributed to streamflow under energy-limiting conditions. 471 

Uncertainties of HPM models arise from several aspects. First, current choices of only five input features 472 

based on data availability may decrease estimation accuracy in certain environments, such as sites with seasonally dry 473 

periods. Though the LSTM component within HPMs can capture the memory effects and long-term dependencies of 474 

watershed dynamics, rare extreme values are difficult to be captured by LSTM due to insufficient training data for 475 

such cases. For example, we observed a decreasing prediction accuracy for ET and Reco estimation at sites that 476 

experience drought conditions. Current use of meteorological forcings data and NDVI may not provide sufficient data 477 

for LSTM to identify droughts implicitly. Other key variables (e.g., soil moisture) when available can potentially be 478 

useful to help LSTM better quantify these rare events and increase model performance. Secondly, parameterization 479 

and insufficient spatiotemporal resolution of meteorological data still remain a challenge. Field observations along the 480 

Rocky Mountain ranges have shown that south-facing hillslopes have significantly earlier snowmelt compared to 481 

north-facing hillslopes (Kampf et al., 2015; Webb et al., 2018). However, we did not observe same level of 482 

heterogeneities in radiation and air temperature in reanalysis data compared to weather station data (Fig. S4 and S5). 483 

Mu et al. (2013) and Zhang et al. (2019) suggested uncertainties in meteorological inputs can result in large errors 484 

(i.e., > 20 % MAE) and reduce accuracy by 10 – 30 %. Additionally, HPM is also influenced by remote sensing inputs 485 

accuracy, including but not limited to insufficient resolution, cloud conditions, spatial averaging, temporal 486 

reconstruction, any other algorithms involved. But with recent advances in remote sensing and satellite technologies 487 

(McCabe et al., 2017) and harmonized Landsat-Sentinel datasets (Claverie et al., 2018), the spatial and temporal 488 

resolution should greatly increase in the future (i.e., 3 m resolution and daily). Finally, errors can stem from the HPM 489 

hybrid approaches and conceptual model uncertainties. Any original errors in mechanistic models will be passed onto 490 

HPM estimations of ET and Reco. We recommend to train data-driven HPM and mechanistic HPM using long time 491 

series (e.g., > 5 years) with high quality data or simulations, which enables HPMs to better memorize long-term 492 

dependencies of ecosystem dynamics. Though some of the uncertainties still remain a challenge, efforts have been 493 

made to minimize them through the technical advances described herein. Future HPM models can potentially be jointly 494 



trained on FLUXNET and process-based simulations to bypass certain limitations and provide more accurate ET and 495 

Reco at sparsely monitored watersheds.  496 

6. Conclusion 497 

In this study, we developed and tested a Hybrid Predictive Modeling approach for ET and Reco estimation, 498 

with an enhanced focus on a watershed in the Rocky Mountains. We developed individual HPM models at various 499 

FLUXNET sites and at sites where data could support the proper development of a mechanistic model (e.g., CLM). 500 

These models were validated against eddy covariance measurements and CLM outputs. We further used these models 501 

for ET and Reco estimation at watersheds within the same ecoregion to test HPM’s capability of providing estimation 502 

over space, where only meteorological forcings data and remote sensing data were available. Lastly, we applied the 503 

HPM to provide long-term estimation of ET and Reco and test the sensitivity of HPM to various vegetation and 504 

meteorological conditions within the East River Watershed of CO, USA.  505 

Given the promising results of HPM, the approach offers an avenue for estimating ET and Reco using easy-506 

to-acquire or commonly available datasets. This study also suggests that the spatial heterogeneity of meteorological 507 

forcings and vegetation dynamics have significant impacts on ET and Reco dynamics, which may be currently 508 

underestimated due to typically coarse spatial resolution of data inputs. Parameters related to energy and soil moisture 509 

conditions can be implemented into HPM to increase HPM’s accuracy, especially for sites in ecoregions limited by 510 

soil moisture conditions. Lastly, it should be pointed out that HPM is not restricted to estimation of ET and Reco only. 511 

HPM also has great potential for estimating other parameters important for water and carbon cycles given the right 512 

choice of input variables, such as net ecosystem exchange (Figure A6). Thus, we believe the proposed HPM model 513 

can improve our prediction capabilities of ET and Reco at sparsely monitored watersheds and advance our 514 

understanding of watershed dynamics.  515 
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Appendix 770 

 771 
1. ET and 𝑹𝑬𝑪𝑶 Estimation over Time at other Fluxnet sites 772 



 773 

Figure A1: ET estimation with data from selected FLUXNET sites at CA-OBS, US-NR1, US-SRM, and US-Ton. Panels (a), 774 

(c), (e) and (g) present daily estimations of ET separated for training, validation, and prediction. Pink points depict monthly 775 

error between HPM estimation and FLUXNET data. Panels (b), (d), (f) and (h) show the scatter plots of daily (blue) and 776 

monthly (red) ET. Darker blue clouds represent greater density of data points.  777 



 778 

Figure A2: ET estimation with data from selected FLUXNET sites at US-Var, US-Whs, US-Wkg and US-Me2. Panels (a), 779 

(c), (e) and (g) present daily estimations of ET separated for training, validation, and prediction. Pink points depict monthly 780 

error between HPM estimation and FLUXNET data. Panels (b), (d), (f) and (h) show the scatter plots of daily (blue) and 781 

monthly (red) ET. Darker blue clouds represent greater density of data points.  782 



 783 

Figure A3: Reco estimation with data from selected FLUXNET sites at CA-OBS, US-NR1, US-SRM, and US-Ton. Panels 784 

(a), (c), (e) and (g) present daily estimations of Reco separated for training, validation, and prediction. Pink points depict 785 

monthly error between HPM estimation and FLUXNET data. Panels (b), (d), (f) and (h) show the scatter plots of daily (blue) 786 

and monthly (red) Reco. Darker blue clouds represent greater density of data points.  787 



 788 

Figure A4: Reco estimation with data from selected FLUXNET sites at US-Var, US-Whs, US-Wkg and US-Me2. Panels (a), 789 

(c), (e) and (g) present daily estimations of Reco separated for training, validation, and prediction. Pink points depict monthly 790 

error between HPM estimation and FLUXNET data. Panels (b), (d), (f) and (h) show the scatter plots of daily (blue) and 791 

monthly (red) Reco. Darker blue clouds represent greater density of data points.  792 



 793 

 794 

Figure A5: Use case 2. ET and Reco estimation at US-Var and US-Whs from HPM trained at US-Ton and US-Wky, 795 

respectively.   796 



 797 

2. Tested NEE Estimation over Time at CA-OAS and US-NR1 798 

 799 

Figure A6. HPM estimate of NEE at CA-OAS and US-NR1. 𝑹𝟐 between estimation and measurements are 0.87, 0.83 and 800 
0.81 at CA-OAS; 0.94, 0.88 and 0.90 at US-NR1 for the training set, validation set and prediction set, respectively. Model 801 
inputs include air temperature, soil temperature, sn, precipitation and radiation.  802 


