
Author responses to reviewers’ comments 

We appreciate the reviewers for providing us constructive comments and suggestions. 

Here we provide a summary of how we addressed each reviewer’s questions or 

comments. All reviewers’ comments and questions are in italic, followed by our detailed 

responses. We used Lx-Ly to represent the lines associated with changes we made in the 

revised manuscript and Linex-Liney to refer to specific reviewers’ comments.   

 

Summary: 

1. We improved the manuscript organization and reduced the length significantly (47 

pages to 34 pages) as suggested by the reviewers.   

2. We reformatted the figures, adopting more friendly color schemes and using consistent 

color palette as suggested by reviewer #3.  

3. We added relevant references as suggested by the reviewers.  

4. We checked with HESS guideline and ensured units and Latin words are correctly 

written.  

5. We revised the methodology section as suggested by reviewer #3. We replaced the 

detailed mathematical demonstration of LSTM with short but high-level explanation. We 

also added a sub-section explaining the use cases.  

6. We addressed reviewer #1’s suggestions to consider snow and monsoon’s impacts over 

fluxes. HPM only requires 4 or 5 input variables, so it does not have the capability to 

explicitly track the movement of snow water and/or monsoon water. To address 

reviewer’s hypothesis, we separated annual ET and Reco into pre-June (January – June) 

component and post-July (July – December) component. We also included additional 

years (e.g., 2014) to have different combinations of snow precipitation and monsoon 

precipitation.  

7. We partly addressed reviewer #1’s suggestions to perform additional research on 

delineating fore-summer drought and post-monsoon droughts; identifying differences in 

snow-dominated watersheds versus monsoon-dominated watershed and quantifying 

evaporation versus transpiration and autotrophic versus heterotrophic respiration. We 

performed an independent analysis based upon the Palmer drought sensitivity index 

(PDSI) and radiation and precipitation data at the East River Watershed to determine 

major control of watershed dynamics over time. The results indicated that there were no 

significant differences in meteorological control between US-NR1 and the East River 

Watershed that occurrences of fore-summer droughts and post-monsoon droughts are 

highly correlated, and energy limiting conditions may exert more control on watershed 

dynamics than moisture limitation during late summer and autumn periods. Details of the 

analysis can be found in our response to reviewer #1’s below. We did not consider 

evaporation versus transpiration and autotrophic versus heterotrophic respiration as 

suggested by the reviewer because we do not have data to enable this, and collecting 

them is beyond the context of this study.  

 

Our responses to RC#1. 

General comments: 

1. The first paragraphs of my previous review (general comments) were not specifically 

addressed. In my experience, this is not typical for the reviewer response process, and is 

likely to be unacceptable to some reviewers and/or editors going forward. In particular, I 



would still appreciate the authors responding to the third paragraph of my previous 

review, repeated here: 

Figures 4-9 all show similar long-term time series data with scatterplots that lend 

themselves to similar interpretations in terms of R2 of MAE. These are useful, but 

perhaps they could be condensed and/or supplemented with other figure types that were 

more conductive to process-based interpretation. For example, I found Figures 11e and 

11f fascinating insofar as they highlighted seasonal differences between vegetation types, 

but little explanation was provided to “unpack” these results (grasslands and shrublands 

not even mentioned). Likewise, Figures 12a and 12b present a rich opportunity to speak 

to differences between the biophysical controls on ET at the SNOTEL and East River 

sites. Some of the specific factors I’m left wondering about are differences in snow 

accumulation and melt between sites, evaporation versus transpiration, and 

heterotrophic versus autotrophic respiration. I understand that you don’t have all these 

measurements, but you’ve generated a lot of suggestive data that could be leveraged to 

push this field of research. 

 

Response: We apologize for not having provided a satisfactory response to this 

reviewer’s question in response to our original submission. In L346-L358, we unpacked 

NDVI dynamics for different vegetation types (including grasslands and shrublands) 

under various meteorological conditions (e.g., different combinations of snow and 

monsoon precipitation). We also provided additional analysis that focused on identifying 

drought conditions between sites as well as fore-summer and post-monsoon droughts (see 

Line605-Line605 comment). We partly addressed the reviewer’s comment about the role 

of snow precipitation and monsoon precipitation in ET and Reco dynamics using HPM 

estimations and we also emphasized the occurrence of energy limiting condition (L459-

L469, also our response to Line604-Line605 comment). We understand the importance of 

splitting ET into evaporation/transpiration and Reco into heterotrophic and autotrophic 

respiration. However, additional datasets and laboratory environments (e.g., isotopes, 

water use efficiency data) would be needed for this, which is outside the scope of this 

study. 

 

2. Some of the results and discussion require more nuanced and/or focused interpretation 

(See detailed comments below). At the same time, the manuscript is long and could be 

shortened/tightened in many places to more accurately present/highlight key results 

(details below).  

 

Response: We have shortened the manuscript significantly (47 pages to 34 pages) and 

also worked to succinctly enhance nuanced interpretation. We also performed additional 

analysis based on the suggestions and comments. We hope we have struck a reasonable 

balance in this revision.  

 

L10: The decision to focus on Reco could be set up better. In other words, why Reco 

instead of NEE or GPP and/or all three? I don’t necessarily have a problem with your 

decision to focus on Reco, but it must be clearly justified.  

 



Response: As is now described on L32-L36, Reco is sensitive to global climate change 

and plays a vital role in ecosystem carbon cycling (Le Quéré et al., 2009). Increases in 

Reco may contribute to a global warming acceleration through exerting positive feedback 

on the climate system (Cox et al., 2000). NEE and GPP are important, however better 

quantification and estimation of Reco is still needed in order to accurately quantify total 

carbon emissions from sparsely monitored ecosystems. This is the main reason why we 

focus on Reco. In our response to reviewer #2’s comments, we have developed specific 

HPM models to estimate NEE at certain FLUXNET sites and the model results are 

promising (Fig. A6). So we think HPM has the capability to provide NEE and GPP 

predictions and future studies may consider adopting our framework to better quantify net 

exchange of carbon and the assimilation component.    

 

L17: Sites within sites? 

 

Response: We improved clarity (L16). 

 

L21: Suggest adding “USA” here for the global audience.  

 

Response: We have modified correspondingly (L18).  

 

L27: Please specify “air, soil, snow”, etc. whenever “temperature” is invoked. Lots of 

room for confusion here because most would expect ET to vary more with air 

temperature versus Reco that is more sensitive to soil temperature.  

 

Response: While we meant air temperature, we removed that sentence to shorten the 

abstract. In the revised manuscript, we have specified the use of ‘air and soil’ temperature 

to reduce confusion.   

 

L34-L35: Same comment as L10. 

 

Response: We have modified correspondingly 

 

L129-L131: Recent work by Chu et al. 2021 on the representativeness of statistical tower 

measurement footprints to surrounding areas may be relevant here. 

 

Response: We have described the work of Chu et al. (2021) in the revised manuscript 

(L50-L52). 

 

L483: Is it earlier snowmelt triggers the onset of vegetation activity or that higher air 

temperature trigger both snowmelt and the onset of vegetation activity? 

 

Response: In our study, we observed earlier increase of NDVI in years with earlier 

snowmelt (e.g., 2012) and later increase of NDVI in years with later snowmelt (e.g., 

2015). 

This observation is consistent with Pedersen et al. (2018). The relationship between 

NDVI, snowmelt timing and air temperature is non-linear in our study and thus we do not 



think it is higher air temperature trigger both snowmelt and the onset of vegetation 

activity. There are studies that reported a positive correlation between NDVI and 

temperature (Jia et al., 2006) but also no or even weakening relationship between 

vegetation activity and temperature variability (Piao et al., 2014). We did not intend to 

imply any causalities among these processes and we have made clarifications in the 

revised manuscript (L353-L355).  

 

L485-L486: Can you speak to the synoptic meteorological conditions in 2012 versus 

2015? Why choose these two years for comparison? Similarly, the comparison of March, 

April and May between years is interesting, but what about the rest of the year? I’d be 

very interested in a similar post-monsoon analysis, potentially between years with strong 

and weak monsoons.  

 

Response: We chose year 2012 as it represents a severe fore-summer drought, and year 

2015 because it was a  normal/wet year based on the Palmer drought severity index 

(PDSI). This information has been added in L349-L352. In the revised manuscript, we 

have selected another year 2014, which was characterized by large snow precipitation but 

small monsoon precipitation. We added this year to better quantify dynamics for late-

summer and autumn months (L390-L396). In addition to monsoon, we want to point out 

that there was a sharp decline in August (~30%) and September (~40%) radiation 

compared to June in the three years, indicating the potential of energy limiting condition 

rather than a monsoon moisture limiting condition (L465-L469). Figure 1 shows the 

distribution of incident shortwave radiation and similar trends are observed for net 

radiation that peaks in June (~ 180 𝑊 𝑚−2), and declines significantly in August (~ 90 

𝑊 𝑚−2). Please also see our response to Line604-Line605 comment.  

 

L492-L497: Please edit this section to remove/acknowledge differences in NDVI that 

would be expected due to deciduous versus evergreen physiology. Some of the basic 

information currently comes across as results. I appreciate the attempt to relate these 

results back to processes, but this section needs refinement.  

 

Response: We modified the section correspondingly (L347-L349).  

 

L517: What does the “1” syntax correspond to? 

 

Response: For the East River sites, we selected 4 for each vegetation types. “1” is for the 

first one of each type as shown in Table 2. We clarified this in the manuscript. 

 

L525-L526: Please be specific about the meaning of “drought” in this context. Is it 

simply meant to connote some limitation to ET and/or Reco? If so, can you justify the 

underlying expectation that these variables would be affected at the same moisture 

threshold? I’d also argue that “usually” is the wrong word here. Earlier snowmelt 

certainly “can” trigger summer drought, but this scenario is subject to modification by 

monsoon precipitation and other factors as the authors acknowledge in this sentence. See 

recent work by Knowles et al. 2020, Xu et al. 2020, and many references therein.  

 



Response: We meant that earlier snowmelt is correlated with occurrences of fore-summer 

drought, and we agree with the reviewer that monsoon may modify drought conditions. 

We performed additional analysis to look deeper into drought conditions at the East River 

Watershed, please see our response to Line604-Line605 comment. Due to data 

availability, soil moisture was never used by HPM at the East River Watershed, so it is 

not feasible to expect how different soil moisture threshold influence ET and Reco 

predictions. We also want to point out that energy limiting condition for late-summer and 

autumn periods may occur as stated in our response to Line485-Line486 comment.  

 

L583-L596: I support this opportunity to discuss physiological differences between 

evergreen and deciduous vegetation, but simply citing Baldocchi et al. 2010 is 

insufficient. More thorough and nuanced discussion that incorporates foundational 

research on this topic is required.  

 

Response: Our original intent is to investigate whether HPM models can incorporate 

vegetation heterogeneity to quantify ET and Reco differences between different vegetation 

types with only 4 or 5 input features. We cited Baldocchi et al. 2010 to confirm that HPM 

estimation for deciduous forest and evergreen forest are reasonable and seek for physical 

explanation from their studies. This is mainly from a modeling perspective to explore 

limitation in model development and refinement; and a confirmation of model 

performance. We did not intend to characterize the physiology’s control on ET and Reco 

as the only data we are currently using are meteorological reanalysis data and satellite 

data. We agree with the reviewer more thorough and nuanced research can advance our 

understanding of ecosystem dynamics, and we have added additional references that help 

us better understand the physiology’s control on ET and Reco dynamics (L445-L451).  

 

L600-L601: See comment on L525-L526. 

 

Response: Please see our responses to Line525-Line526 and Line604-Line605 comments.  

 

L604-L605: This implies that growing season length determines snow water storage 

when in fact, it’s closer to the opposite i.e., air temperature and/or snow accumulation 

determine the onset of the growing season. See Lian et al. 2020 and Zhang et al. 2020 for 

examples of more recent work on this topic. Combining the Sloat et al. 2015, Wainwright 

et al., 2020 and Hu et al., 2010 references here also raises an important distinction. 

Whereas the Sloat and Wainwright references invoke fore-summer i.e., pre-monsoon 

drought, the Hu reference pertains to late summer drought i.e., after snowmelt water 

inputs have subsided. This distinction reflects the typical relative importance of snowmelt 

vs. monsoon precipitation at a given site e.g., snow-dominated sites may be susceptible to 

moisture limitation after the snowmelt pulse (late summer; Hu et al. 2010), whereas 

monsoon-dominated sites may be susceptible to moisture limitation before the onset of 

monsoon rains (early/fore-summer; Sloat et al. 2015; Wainwright et al. 2020). Please 

establish the typical relative importance of snow versus monsoon precipitation at the 

East River site and how your results may be expected to change at sites where moisture 

availability is typically more or less affected by snowmelt versus monsoon precipitation. 

 



Response: We agree that L604-L605 was misleading. We have clarified the sentence. In 

addition, we clarified the typical relative importance of snow versus monsoon 

precipitation on ET at East River site in the revised manuscript (L380-L396).  

With regard to the studies the reviewer is referring, we note that Sloat et al. (2015) used 

peak net ecosystem productivity and Wainwright et al. (2020) used peak June NDVI as 

measures for fore-summer periods at the East River sites whereas Hu et al. (2010) used 

annual carbon uptake and growing season length at Niwot Ridge. Though they have 

chosen different metrics in their studies, we do not think there’s a distinct difference at 

Niwot Ridge (US-NR1) or East River that one site is more snow-dominated versus 

monsoon-dominated,  or that one site constrained by fore-summer drought or post-

monsoon drought. Here we used SNOTEL Butte (ER-BT) as a representative site for the 

East River Watershed due to data availability.  

 

In fact, US-NR1 and the East River watershed share lots of similarities (e.g., in the same 

ecoregion). Precipitation, temperature and elevation are similar for US-NR1 and ER-BT 

(Table 1). Palmer drought index (PDI) and Palmer drought sensitivity index (PDSI) were 

used to quantify drought conditions, as documented in Sloat et al. (2015) and Wainwright 

et al. (2020). We did not find any quantitative measures for droughts in Hu et al. 2010. 

None of these three studies derived any indices to explicitly quantify post-monsoon 

drought conditions, so we used August PDSI to compare them. Figure 1 presents the 

PDSI time series obtained from Abatzoglou et al. (2018) for US-NR1 and ER-BT. Based 

on the U.S. drought monitor classification, a value of −1 is the threshold for droughts. 

And the more negative PDSI values are, the more severe the droughts are. If PDSI values 

are greater than −1, the ecosystems may not experience drought condition.  

 
Figure 1. Time series of PDSI at ER-BT and US-NR1. Values smaller than -1 indicate 

drought condition.  



We applied a simple linear regression of these PDSI values between US-NR1 (Hu et al. 

2010) and ER-BT (Wainwright et al. 2020). We found a correlation coefficient of 0.88 (p 

< 2.2e-16), 0.82 (p < 2.2e-16) and 0.91 (p < 2.2e-16)  for annual, June and August mean 

PDSI values between the sites, respectively. PDSI values in 2008 and 2014 differ 

significantly between the two sites, however that was mainly caused by unusual 

precipitation events and outside period with drought conditions as PDSI is greater than 

−1 . Based on this result, we believe it is reasonable to conclude that the drought 

conditions for US-NR1 and East River Watershed are similar.  

 
Figure 2. Net radiation distribution from 2011 to 2016 grouped by month at the East 

River Watershed. 

 

 We also discovered a high correlation between June PDSI and August PDSI. The 

correlation coefficients are 0.98 (p < 2.2e-16) and 0.90 (p < 2.2e-16) for US-NR1 and 

ER-BT, respectively, which indicates the coherency of fore-summer drought and post-

monsoon drought if any. We want to note that PDSI has its own limitations, and we were 

not able to explore other data products that may be more sensitive to monsoon 

precipitation. Still, this result indicates occurrence of post-monsoon droughts are highly 

correlated with the occurrence of fore-summer droughts. Individual monsoon events may 

change the soil moisture condition in short terms, however may not entirely alter the 

drought conditions. We also want to point out to a recent work by Carroll et al. (2020), 

where they discovered July-September monsoon in the central Rocky Mountains may 

support ET in lower subalpine forests, but the monsoon precipitation also contributes to 

streamflow deficiencies caused by reductions in snow accumulation. They suggested that 

the timing and location of water input with respect to energy and water availability 



remain key issues. If monsoon arrives when potential ET (PET) is high and soil moisture 

is waning during fore-summer droughts, this water serves to moisten dry soils and is 

consumed very quickly by vegetation leading to increases in ET (moisture limiting 

condition). But if the timing of monsoon arrives late when PET is small, monsoon 

precipitation may contribute to streamflow rather than ET as the ecosystem is under 

energy limiting condition. In our study, we observed a significant decline in radiation 

after peak growing season regardless of the amount of monsoon precipitation. Net 

radiation declines by ~ 30% in August and ~ 40% in September compared to June. 

During the late-summer and autumn months, we think the East River Watershed is more 

likely to be constrained by energy rather than moisture limitation during late-summer and 

autumn months. We provide revised text at L378-L396; L456-L472. 

 

L612: Hard to follow, I think “whereas” may be the wrong word here.  

 

Response: We meant to say that earlier arrival (early-July in 2012) of monsoon 

precipitation help buffer the fore-summer drought condition. Correspondingly, 2012 July 

ET is not substantially different compared to other years.  

 

L629: “Microclimate” is misspelled.  

 

Response: We removed this sentence in the revised manuscript to shorten the manuscript. 

We have made sure spelling is accurate throughout the manuscript.   

 

Our response to RC#3 

## Authors’ response to RC3 review 

We appreciate the anonymous reviewer for reviewing our manuscript and provide 

constructive for us to better improve the manuscript.  

Major remarks:  

1. I read parts of the manuscript several times to understand how the FLUXNET and 

CLM data was used (combined, separately) and how the framework exactly works, and I 

am still not sure if I entirely understand it. Also, it took me some time to understand the 

four experiments (“use cases”), what data was used for training, testing, etc. This is my 

major critic: I think the manuscript needs a cleaner structure and language.  

 

Response: In the revised manuscript, we have added a section to demonstrate the four use 

cases and indicate the relevant data used for training and validation (L271-L284).  

 

2. For me, the term “hybrid” is a bit confusing here. I assume that you refer to Reichstein 

(2019), where “(5) Surrogate modeling or emulation” is listed as a hybrid approach, 

which, once trained, can “achieve simulations orders of magnitude faster than the 

original physical model without sacrificing much accuracy” and “allows for fast 

sensitivity analysis, model parameter calibration, and derivation of confidence intervals 

for the estimates”. I think the manuscript would be much easier to understand if you 

would make this clearer.  

 



Response: We use ‘hybrid’ in HPM to indicate the use of machine learning with 

mechanistic-based models/output and FLUXNET measurements integrating with other 

datasets, such as remote sensing. We show how HPM approach was used to 1) couple 

flux measurement for gap filling and time series prediction (Use case 1); 2) integrate flux 

measurement for spatial reconstruction and configuration in different ecoregions (Use 

case 2); 3) implement with physical process models (Use case 3) and 4) provide flux 

estimation to gain better understanding of ecosystem dynamics (Use case 4).. We have 

better clarified these points in the revised manuscript (L12-L14; L115-L118).  

 

Minor Remarks: 

General: 

I strongly recommend to use colorblind-friendly colors in the plots. The time-series plots 

with green and red color mixed are particularly problematic. I think that the figures need 

some more work (general appearance, font size).  

 

Response: We have made the necessary changes. 

 

From the HESS guidelines: “Common Latin phrases are not italicized (for example, et 

a;., cf., e.g., a priori, in situ, […])” (e.g., line 49, in situ). 

 

Response: We have made the necessary changes.  

 

From the HESS guidelines: “The abbreviation “Fig.” should be used when it appears in 

running text and should be followed by a number unless it comes at the beginning of a 

sentence, e.g.: “The results are depicted in Fig. 5. Figure 9 reveals that …”.” 

 

Response: We have made the necessary changes. 

 

From the HESS guidelines: “Units must be written exponentially (e.g. 𝑊 𝑚−2).” e.g., 

line 380 or in axes labels, you use mm/d instead of m d-1. 

 

Response: We have made the necessary changes. 

 

You use the notation “Adj.R2-0.94” in some figures (e.g. Fig. 5). This is misleading, 

please use “Adj.R2: 0.94”, “Adj.R2=0.94”, or similar.  

 

Response: We have made the necessary modifications. 

 

Time-series figures: please add a legend for all plots (pink points, red, green, blue, black 

lines).  

 

Response: We have made the necessary modifications. 

 

Symbol notation: I noticed you use “ET” for evapotranspiration and “ 𝑅𝐸𝐶𝑂 ” for 

ecosystem respiration. I find this is inconsistent, as you either you use these as 

abbreviations, which are not italic (“ET” & “𝑅𝐸𝐶𝑂”), or as mathematical variables (“𝐸” 



& “𝑅𝐸𝐶𝑂”), where multi-letter symbols are to be avoided due to ambiguity (is “𝐸𝑇 = 𝐸 ∙
𝑇?), and subscripts are only italic if they refer to a variable (such as in 𝑥𝑖, where 𝑖 is an 

index), but not if the subscript is a name.  

 

Response: Thank you for the comment. We have made the necessary changes. 

 

 In general, many small “not so nice” things like units written inconsistently.  

 

Response: We appreciate the comments and have made necessary changes.  

 

I suggest to not put “learn” in quotes (as in the model “learns”) as the term is very 

commonly used in this context. 

 

Response: We have made the necessary modifications. 

 

 Nice that you split the data in training, validation, and test (prediction) set! This is often 

not done.  

 

Response: Thank you 

 

The abstract is too detailed in my opinion, consider to shorten. 

 

Response: We have made the necessary modifications (32 lines to 22 lines). 

 

I suggest to state clearly how the approach is hybrid and why you use the approach. 

 

Response: We have increased the clarity (L115-L118).  

 

Nice review of current methods to estimate ET and 𝑅𝐸𝐶𝑂. It could be shortened a bit.  

 

Response: We have made the necessary modifications (24 lines to 16 lines).  

 

Tab.1 It is hard to differentiate between the rows visually. 

 

Response: We have made the necessary changes (L154). 

 

Fig.1 Consider highlighting the SNOTEL sites visually. 

 

Response: We used different shapes and colors to distinguish different sites (L157). 

 

I think you don’t need to explain the LSTM in detail. 

 

Response: We have made the necessary changes (L209-L221). 

 

L260: Does “deeply connected neural networks” refer to a fully connected neural 

network?  



 

Response: Yes.  

 

For use case 2, do you train the model on all sites jointly or on single sites?  

 

Response: We trained the model on individual sites.  

L282-L320: Consider replacing the extensive description of LSTMs with a conceptual 

high-level description. 

  

Response: We have made the necessary changes (L209-L221). 

 

L326: Would be nice to see if a smaller model does the job (but not essential here). 

 

Response: The current configuration of neural networks does not require any super-

computing power and we were satisfied with the prediction accuracy.  

 

L331: Olah. (2015) -> Olah (2015) 

 

Response: We have made the necessary changes (L221). 

 

L340-L352: Why did you separate precipitation into rainfall and snowfall and how was 

the variable 𝑠𝑛 used? If they were used as inputs for the LSTM, why not letting the neural 

network figure this out, i.e., just inputting the available features? 

 

Response: At locations dominated by snow, timing of snowmelt and bareground date is 

important for ET and Reco dynamics. As there are only 4 or 5 features currently used, 

manual separation of precipitation into rain and snow may help the model establish 

linkages between precipitation and energy perspectives to better learn ecological 

memories and thus improve model performance. At locations where snow is rarely 

present, precipitation was directly used. We clarified this in the paper. 

 

L355: I assume you used an LSTM? Then you can just use the term LSTM here, as it has 

been introduced already instead of “deep-learning recurrent neural networks”.  

 

Response: Yes. We have made the necessary changes (L264). 

 

I suggest to move the descriptions of the “use cases” to the methods section, maybe make 

a table that summarized what data is used for training and testing, the objective of the 

experiment etc.  

 

Response: We have made the necessary changes. A new section has been added (L271-

L284).  

 

The interpretation would be much easier if you would show the mean seasonal cycle and 

the interannual variability!  

 



Response: Thank you for your comment. We intended to use the monthly mean 

comparisons to show seasonal cycles and interannual variability. In discussion sections, 

we provided more details about ET and Reco at specific years.  

 

L399-L407: This is already discussion of the results. 

 

Response: We have made the necessary changes. 

 

L399-L404: I would expect that the LSTM learns SM dynamics i.e., it represents it 

(implicitly) in its hidden state. SM would not necessarily be needed as the LSTM earns 

the ecological memory effects (e.g., Besnard et al. (2019) or Kraft et al. (2019). Adding 

SM could still help improving the model as it currently does not have much data to learn 

from compared to the number of parameters. Also, referring to a comment from former 

Referee #1, I think this should be clarified. This is one of the key advantages of using 

models like an LSTM, it can learn ecological memory and thus, variables such as soil 

moisture may not be needed! 

 

Response: We agree with the reviewer that LSTM does has the advantage it could in 

theory learn the ecological memory. Still, we have to recognize that results of this study 

show that the use of LSTM cannot replace entirely the information present in soil 

moisture. Results show that ET and Reco estimations at sites limited by energy condition 

have very high estimation accuracy, which suggests LSTM was able to capture the 

ecological memories. However, at sites that experiences drought conditions, some of ET 

and Reco anomalous values are not frequent enough for LSTM to learn. These are time 

period where soil moisture data can be useful for this case to better inform LSTM and 

further increase prediction accuracy.   

 

L405-L407: I agree that LSTMs tend to have issues with extreme values. In my opinion, 

this is mostly because extreme values are rare, i.e., the model does not see many 

anomalous samples, there is less training data for such cases. Maybe you could mention 

this and provide a source, if you can find one.  

 

Response. We agree with the reviewer. We have elaborated on this issue (L492-L497). 

 

Tab. 3: Please write units in exponential form. You could mention that the increase in test 

performance could be linked to dropout (which I assume is deactivated for inference) in 

the discussion.  

 

Response. We have made the necessary changes.  

 

I think the representativity of FLUXNET sites for the entire ecoregion is questionable and 

disputed (?), maybe rephrase.  

 

Response. We have elaborated on this (L306-L308).  

 



Fig. 7: The monthly errors used to be pink before, right? I suggest to reuse the same 

colors.  

 

Response. In the revision, we have adopted a consistent color scheme and palette.  

 

L450: I don’t know what an “1-D” model is, consider explaining.  

 

Response. We were referring to the 1-dimensional CLM model developed in Tran et al. It 

solves physical equations in the vertical direction (L324-L326).  

 

L475: The mechanistic HPM model? 

 

Response. We have made the necessary changes (L341). 

 

L479: 30m -> 30 m. 

 

Response. We specified the resolution of remote sensing data in L82 and removed this 

sentence to shorten the manuscript.  

 

L479+ Much of it is discussion. 

 

Response. We have made the necessary changes. 

 

L517: 17% -> 17 % 

 

Response. We have made the necessary changes (L372). 

 

Fig. 11: Panels (a) and (b) are not very informative, maybe remove? 

 

Response. We think panels (a) and (b) are needed as they show the temporal trends and 

explain the seasonality of ET and Reco estimation at the East River Watershed for 

deciduous forest. Panels (a) and (b) placed the background for the following panels. Thus 

we decided to keep these two panels in Fig. 11 

 

L559: You referred to “physically-model-based HPM” as “mechanistic HPM” (line 

264), you may use the latter one here. 

 

Response. We removed this sentence during revision to shorten the paragraph. But yes, it 

should be ‘mechanistic HPM’. 

 

L625: Again, I think you need to discuss the “memory aspect”. If you have 

meteorological data and site-level variables (e.g. vegetation type, soil properties), and 

enough training data, an LSTM would learn SM implicitly. This should be added to the 

discussion, as it is a key selling-point for using deep learning models. I think the message 

“SM is needed for improving model” is wrong, state variables are not needed anymore 

with DL approaches if the states can be derived from the input data. Of course, it can still 



be beneficial to add soil moisture, as it would regularize the model and maybe, the 

complex processes involved (e.g., lateral flux) may not be learnt by the model if the 

relevant features are missing.  

 

Response. We agree with the reviewer that LSTM has been successful capturing the 

ecological memory effects in our study as well, and we have acknowledged this 

perspective in the revised manuscript (L426-L429). However, our results at certain sites 

suggest that drought occurrence and moisture limiting conditions may not be well 

captured by LSTM. We agree with the reviewer that soil moisture should be derived from 

the input data, but challenges still remain. There are uncertainties in the meteorological 

inputs (L405-L411), which increases the difficulties for LSTMs to learn soil moisture 

implicitly. LSTM may not be sufficiently trained upon drought conditions and longer 

time series may improve model performance. Soil moisture data can potentially fill the 

gap between atmospheric forcings and site-specific information. Thus at the current 

stage, we recommend to include soil moisture data when available to bypass certain 

limitations in data inputs and insufficient training. We have increased the clarity in the 

revised manuscript (L475-L481).  

 

L651-L660: As an outlook: the model could be trained on FLUXNET and process-based 

simulations jointly.  

 

Response. We have elaborated on this point (L495-L497). 

 

L669: I cite reviewer #1: “Replace CO with Colorado, USA for the global audience.”  

 

Response. We have made the necessary changes (L506). 
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Abstract: Gradual changes in meteorological forcings (such as temperature and precipitation) areClimate change is 9 

reshaping vulnerable ecosystems, leading to uncertain effects on ecosystem dynamics, including water and carbon 10 

fluxes. Estimating evapotranspiration (ET) and ecosystem respiration (𝑅𝐸𝐶𝑂) is essential for analyzing the effect of 11 

climate change on ecosystem behavior. To obtain a better understanding of these processes, we need to improve our 12 

Reco). However, accurate estimation of water and carbon fluxes over space and time, which is difficult within 13 

ecosystems that often have only sparseET and Reco still remains challenging at sparsely monitored watersheds where 14 

data. and field instrumentation are limited. In this study, we developed a hybrid predictive modeling approach 15 

(HPM) that integrates eddy covariance measurements, physically-based model simulation results, meteorological 16 

forcings, and remote sensing datasets to estimate evapotranspiration (ET) and ecosystem respiration (𝑅𝐸𝐶𝑂)ET and 17 

Reco in high space-time resolution. HPM relies on a deep learning algorithm-, long short termshortterm memory 18 

(LSTM)-as well as direct measurements or outputs from physically-based models. ), and requires only air 19 

temperature, precipitation, radiation, normalized differences vegetation index (NDVI) and soil temperature (when 20 

available) as input variables. We tested and validated HPM estimation results at sites within various sites. We 21 

particularly focus on testing HPM in mountainous regions, given their importance for water resources, their 22 

vulnerability to climate change, and the recognized difficulties in estimating ET and 𝑅𝐸𝐶𝑂  in such regions. We 23 

benchmarked daily scale estimates of ET and  𝑅𝐸𝐶𝑂 obtained from the HPM method against measurements made at 24 

FLUXNET stations and outputs from the Community Land Model (CLM) at in different climate regions and 25 

developed four use cases to demonstrate the applicability and variability of HPM at various FLUXNET sites and 26 

Rocky Mountain SNOTEL stations. At the mountainous sites in Western North America. To test the limitations and 27 

performance of HPMs in mountainous watersheds, an expanded use case focused on the East River Watershed site 28 

in the Upper, Colorado River Basin, we explored how ET and 𝑅𝐸𝐶𝑂  dynamics estimated from the new HPM 29 

approach vary with different vegetation and meteorological forcings., USA. The results of this study indicate that 30 

HPM is capable of identifying complicated interactions among meteorological forcings, ET, and 𝑅𝐸𝐶𝑂Reco variables, 31 

as well as providing reliable estimation of ET and 𝑅𝐸𝐶𝑂 Reco across relevant spatiotemporal scales, even in 32 

challenging mountainous systems. With HPM estimation of ET and 𝑅𝐸𝐶𝑂  at the East River Watershed, we identified 33 

that HPM ET models are sensitive to temperature and radiation inputs whereas NDVI, temperature and radiation all 34 

have crucial influences over 𝑅𝐸𝐶𝑂  dynamics. In general, our study demonstrated that the HPM approach can 35 

circumvent the typical lack of spatiotemporally dense data neededThe study documents that HPM increases our 36 

capability to estimate ET and 𝑅𝐸𝐶𝑂 over space and time, as well as the parametric and structural uncertainty inherent 37 

in mechanistic models. While the current limitations of the HPM approach are driven by the temporal and spatial 38 



resolution of available datasets (such as meteorological forcing and NDVI data), ongoing advances are expected to 39 

further improve accuracy and resolution of ET and 𝑅𝐸𝐶𝑂  estimation using HPMReco and enhances process 40 

understanding at sparsely monitored watersheds.  41 

1. Introduction: 42 
 EvapotranspirationClimate change has a profound influence on global and regional energy, water and 43 

carbon cycling, including evapotranspiration (ET) and ecosystem respiration (𝑅𝐸𝐶𝑂)  are key components of 44 

ecosystem water and carbon cycles.(Reco). ET is an important link between the water and energy cycles: dynamic 45 

changes in ET can affect precipitation, soil moisture, and surface temperature, leading to uncertain feedbacks in the 46 

environment (Jung et al., 2010; Seneviratne et al., 2006; Teuling et al., 2013). Thus, quantifying ET is particularly 47 

essential for improving our understanding of water and energy interactions andas well as watershed 48 

responseresponses to abrupt disturbances and gradual climate changes in climate, which is critical for water 49 

resources management, agriculture, and other societal benefits (Anderson et al., 2012; Jung et al., 2010; Rungee et 50 

al., 2019; Viviroli et al., 2007; Viviroli and Weingartner, 2008). 𝑅𝐸𝐶𝑂 ,Reco, which represents  the sum of 51 

autotrophictotal respiration and respiration by heterotrophic microorganisms  in a specific ecosystem,  plays a vital 52 

role in the response of terrestrial ecosystem to global change (Jung et al., 2017; Reichstein et al., 2005; Xu et al., 53 

2004). As long term exchanges in 𝑅𝐸𝐶𝑂  have pivotal influences over the climate systemWhile increases in Reco may 54 

contribute to accelerating global warming through positive feedbacks to the atmosphere (Cox et al., 2000;  Gao et 55 

al., 2017; IPCC, 2019; Suleau et al., 2011), approaches are needed to estimate estimating and monitor 56 

𝑅𝐸𝐶𝑂 monitoring Reco over relevant spatiotemporal scales. is challenging. As described below, there are many 57 

different strategies for measuring and estimating ET and 𝑅𝐸𝐶𝑂 ,Reco, each of which has advantages and limitations. 58 

The motivation for thisThis study is motivated by the recognition that current methods cannot provide ET and 59 

𝑅𝐸𝐶𝑂Reco at space and time scales (e.g., daily) needed to improve prediction of changing terrestrial system behavior, 60 

particularly in challenging mountainous watersheds.  61 

 Several ground-based approaches have been used to provide 𝑖𝑛 𝑠𝑖𝑡𝑢 estimates or measurements of ET and 62 

𝑅𝐸𝐶𝑂 .Reco. Ground -based flux chambers capture and measure trace gases emitted from the land surface, which can 63 

be used to estimate ET and 𝑅𝐸𝐶𝑂Reco (Livingston and Hutchinson, 1995; Pumpanen et al., 2004). However, the 64 

microclimate of the environment is affected by the chamber, and the laborious acquisition process and small 65 

chamber size typically lead to information with coarse spatiotemporal resolution (Baldocchi, 2014). The eddy 66 

covariance method uses a tower with installed instruments to autonomously measure fluxes of trace gases between 67 

ecosystem and atmosphere (Baldocchi, 2014; Wilson et al., 2001). The covariance between the vertical velocity and 68 

mixing ratios of the target scalar is computed to obtain the fluxes of carbon, water vapor, and other trace gases 69 

emitted from the land surface. ET is then calculated from the latent heat flux, and 𝑅𝐸𝐶𝑂Reco is calculated from the net 70 

carbon fluxes using night-time or daytime partitioning approaches (van Gorsel et al., 2009; Lasslop et al., 2010; 71 

Reichstein et al., 2005). The spatial footprint of obtained eddy covariance fluxes is on the order of hundreds of 72 

meters, and the temporal resolution of the measurements rangeranges from hours to decades (Wilson et al., 2001). 73 

SuchTower-based in -situ measurements of fluxes have been integrated into the global AmeriFlux 74 

(http://ameriflux.lbl.gov/) and FLUXNET (https://FLUXNET.fluxdata.org/) networks, where such data have greatly 75 

benefited process investigations and model development undertaken by a wide scientific community. However, 76 
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given the cost, effort, and power required to install and maintain a flux tower, eddy covariance towers are typically 77 

sparse relative to the scale of study sites used to address ecosystem questions. Additionally, the location of a flux 78 

tower within a watershed greatly influences measurement representativeness. For example, for logistical reasons, 79 

eddy. Eddy covariance towers are usually installed at valley bottoms of mountainous watersheds (Strachan et al., 80 

2016). However, microclimate caused by complex mountainous terrains (e.g., slope, aspect and elevation) can have 81 

different radiation inputs and moisture dynamics compared to flat areas where flux towers are mostly installed. Flux 82 

measurements from eddy covariance towers provide a representation of major driver and controls on ET and 𝑅𝐸𝐶𝑂  in 83 

an ecoregion while meteorological forcing variability needs to be accounted to possibly represent various aspects 84 

introduced by complex terrain. Thus, though measurements from a single flux tower may not capture heterogeneity 85 

in ET and 𝑅𝐸𝐶𝑂 due to complex terrain, theyData from flux towers should also be used carefully as flux footprints 86 

may vary significantly across sites and through time depending on site-specific information, turbulent states of the 87 

atmosphere and underlying surface characteristics (Chu et al., 2021). Given the cost and efforts required to install 88 

and maintain a flux tower, eddy covariance towers are typically sparse and may not capture complex fluxes at  sites 89 

with complex terrains, such as montane environments. Though measurements from a single flux tower may not 90 

capture heterogeneity in ET and Reco due to complex terrains, they can support the development of statistical or 91 

physical-based models integrated with other types of data to provide ET and 𝑅𝐸𝐶𝑂Reco estimation in high resolution 92 

over space and timeas we describe herein.  93 

 Physically-based numerical models, which numerically represent land-surface energy and water balance, 94 

have also been used to estimate ET and 𝑅𝐸𝐶𝑂Reco (Tran et al., 2019; Williams et al., 2009). These physically-based 95 

models solve physical equations to simulate the exchanges of energy, heat, water and carbon across atmosphere-96 

canopy-soil compartments. Examples include, such as the Community Land Model (CLM, Oleson et al., 2013). 97 

Performance of these models dependdepends on the accuracy of inputs and parameters, such as soil type and leaf 98 

area index, which can be difficult to obtain at a sufficiently high spatiotemporal resolution. The lack of 99 

measurements to infer parameters needed for models often leads to large discrepancies between model-based and 100 

flux-tower-based ET and 𝑅𝐸𝐶𝑂Reco estimates. Conceptual model uncertainty inherent in mechanistic models can also 101 

lead to ET and 𝑅𝐸𝐶𝑂  estimation uncertainty and errors. For example, Keenan et al. (2019) suggested that current 102 

terrestrial carbon cycle models neglect inhibition of leaf respiration that occurs during daytime, which can result in a 103 

bias of up to 25 %. Chang et al. (2018) used virtual experiments with 3-D terrestrial integrated modeling system to 104 

investigate why a lower ratio of transpiration to ET is always produced by large scale land surface models. Their 105 

study suggested heterogeneous fluxes caused by uneven hydraulic distribution due to complex terrain are not always 106 

considered in process-based models. These conceptual uncertainties, in addition to data sparseness and data 107 

uncertainty, further limit the applicability of physically-based models to estimate ET and 𝑅𝐸𝐶𝑂  at high 108 

spatiotemporal scales. Semi-analytical formulations based on combinations of meteorological and empirical 109 

parameters provide a reference condition for the water and energy balance. Examples used to estimate potential ET 110 

includesuggested that process-based models may not represent transpiration accurately due to challenges in 111 

simulating the uneven hydraulic distribution caused by complex terrain. Semi-analytical formulations are also 112 

commonly used to estimate ET, including the Budyko framework and its extensions (Budyko, 1961; Greve et al., 113 
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2015; Zhang et al., 2008); the Penman-Monteith’s equation (Allen et al., 1998), and the Priestley-Taylor equation 114 

(Priestley and Taylor, 1972)(Priestley and Taylor, 1972). Actual ET can then be approximated by multiplying a 115 

coefficient associated with water deficit (De Bruin, 1983; Williams & Albertson, 2004). However, even with these 116 

empirical formulations many attributes are still difficult to obtain globally at high temporal scales , such as water-117 

vapor deficit, leaf area index, and aerodynamic conductance of different plants.However, these conceptual 118 

uncertainties, in addition to data sparseness and data uncertainty, still limit the applicability of these approaches.   119 

Remote sensing products, such as Landsat imagery (Irons et al., 2012), Sentinel-2 (Main-Knorn et al., 120 

2017) and the moderate-resolution imaging spectroradiometer (MODIS, NASA. 2008), have also been integrated to 121 

estimate ET and 𝑅𝐸𝐶𝑂 with empirical, statistical, or semi-physical relationsReco (Abatzoglou et al., 2014; Daggers et 122 

al., 2018; Mohanty et al., 2017; Paca et al., 2019). Due to the high spatial coverage of remote sensing products, 123 

global-scale estimates of ET and 𝑅𝐸𝐶𝑂  have become feasible. For example, Ryu et al. (2011) proposed the 124 

‘Breathing Earth System SimulatorSimulator’ approach, which integrates mechanistic models and MODIS data to 125 

quantify ET and GPP with a spatial resolution of 1-5 km and a temporal resolution of 8 days. Ai et al. (2018) 126 

extracted enhanced vegetation index, fraction of absorbed photosynthetically active radiation, and leaf area 127 

indexindices from the MODIS dataset—and used the rate-temperature curve and strong correlations between 128 

terrestrial carbon exchange and air temperature to estimate 𝑅𝐸𝐶𝑂Reco at 1 km spatial resolution and 8-day temporal 129 

resolution. Ma et al. (2018) developed a data fusion scheme that fused Landsat-like-scale datasets and MODIS data 130 

to estimate ET and irrigation water efficiency at a spatial scale of ~100 meters. However, even though remote 131 

sensing data cover large areas of the earth surface, they typically do not provide information over both high spatial 132 

and temporal resolution, and are alsodata quality is subject to cloudycloud conditions. For example, Landsat has 133 

average return periods of 16 days with a spatial resolution of 30 m (visible and near-infrared), whereas MODIS has 134 

1-2 days temporal resolution with a 250 m or 1 km spatial resolution depending on the sensors. These resolutions are 135 

typically too coarse to enable exploration of how aspects such as plant phenology, snowmelt, and rainfall impact 136 

integrated ecosysteminfluence water and energy dynamics.  of an ecosystem. 137 

Combining machine-learning models with remote sensing products and meteorological inputs offers 138 

another option for large-scale estimation of ET and 𝑅𝐸𝐶𝑂 . Reco. Remotely sensed data can be good proxies for plant 139 

productivity and can be easily implemented into machine-learning models for ET and 𝑅𝐸𝐶𝑂  estimation, such as for 140 

an enhanced vegetation index, land surface water index and normalized differences vegetation index (NDVI) (Gao 141 

et al., 2015; Jägermeyr et al., 2014; Migliavacca et al., 2015). Li and Xiao (2019) developed a data-driven model to 142 

estimate gross primary production at a spatial and temporal resolution of 0.05° and 8 days, respectively, using 143 

MODIS and meterological reanalysis data.. Berryman et al. (2018) demonstrated the value of a Random Forest 144 

model to predict growing season soil respiration from subalpine forests in the Southern Rock y Mountains ecoregion. 145 

Jung et al. (2009) developed a model tree ensemble approach to upscale FLUXNET data, where they successfully 146 

estimated ET and GPP. Other methods have used support vector machines, artificial neural networks, random forest, 147 

and piecewise regression (Bodesheim et al., 2018; Metzger et al., 2013; Xiao et al., 2014; Xu et al., 2018). These 148 

models were trained with ground-measured flux observations and other variables, and then applied to estimate ET 149 

over continental or global scales with remote sensing and meteorological inputs. Some of the most important inputs 150 



include the enhanced vegetation index, aridity index, air temperature, and precipitation. However, theThe 151 

spatiotemporal resolution of these approaches is constrained by the resolution of remote sensing products and 152 

meteorological inputs. Additionally, parameters such as leaf area index, cloudiness, and the vegetation types 153 

required by those models may not be available at the required resolution, accuracy or location. For example, in 154 

systems that have significant elevation gradients, errors may resultoccur when valley-based FLUXNET data are 155 

used for training and then applied to hillslope or ridge ET and 𝑅𝐸𝐶𝑂Reco estimation. 156 

Development of hybrid models that link direct measurements and/or interpretable mechanistic models with 157 

data-driven methods can benefit ET and 𝑅𝐸𝐶𝑂Reco estimation (Reichstein et al., 2019). While remote sensing data 158 

that cover large regions provide promise for informing models, quantitative interpretation of these data needed for 159 

input into mechanistic models is still challenging (Reichstein et al., 2019). Physically- based models can provide 160 

estimates of ET and 𝑅𝐸𝐶𝑂 ,Reco, but the estimate error can be high, owing to parametric, structural, and conceptual 161 

uncertainties as described above. Hybrid data-driven frameworks are potentially advantageous because they enable 162 

the integration of remote sensing datasets, meteorological forcings, and mechanistic model outputs of ET and 163 

𝑅𝐸𝐶𝑂Reco into one model. Machine-learning approaches arecan then be applied to extract the spatiotemporal patterns 164 

for ET and 𝑅𝐸𝐶𝑂 Reco prediction. Hybrid models can utilize the high spatial coverageThe integration of remote 165 

sensing multi-model and multi-data (e.g., 30 m of Landsat) and high temporal resolution of direct measurement from 166 

flux towers or simulation results from mechanistic models (e.g., daily or hourly scales), thus providing alternative 167 

approaches for next-stage, more accurate estimation ofcan increase our modeling capability to estimate ET and 𝑅𝐸𝐶𝑂  168 

at greater spatialReco and finer temporal scales—and enhancingenhance our process understanding of ecosystem 169 

water and carbon cycling under climate change.  170 

In this study, we developed a hybrid predictive modeling approach (HPM) to better estimate daily ET and 171 

𝑅𝐸𝐶𝑂  with easily acquired meteorological data (i.e., air temperature, precipitation and radiation) and remote sensing 172 

products (i.e., NDVI). HPM is hybrid as it can use deep learning models toflexibly integrate direct measurements 173 

from flux towers and/or physically-based model results (e.g., CLM) withand utilize deep learning long-short term 174 

memory recurrent neural network (LSTM) to establish statistical relationships among fluxes, meteorological and 175 

remote sensing inputs to capture. Once developed, the complex physical interactions within the watershed 176 

ecosystem. After development, we validatedcorresponding HPM performance with the FLUXNET dataset and 177 

benchmarked the CLM model at select sites. We thencan be used the HPM foras a modeling tool to estimate ET and 178 

𝑅𝐸𝐶𝑂  estimation at the mountainous East River Watershed in Colorado, USAReco over space and investigated how 179 

ETtime. We developed four use cases to demonstrate the applicability of HPM based on site-specific data and 𝑅𝐸𝐶𝑂  180 

dynamics varies within the East River Watershed. 181 

model availability.  The remainder of this paper is organized as follows. Section 2 mainly describes the 182 

sites considered in this study and how data were acquired and processed. Section 3 presents the methodology of the 183 

HPM approach, followed by the results of various use cases presented in Section 4. Discussion and conclusion are 184 

provided in Sections 5 and 6, respectively. 185 

2. Site Information, Data Acquisition and Processing 186 
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 The HPM method was tested using data from a range of different ecosystem types to explore its 187 

performance under different conditions. However, weWe place a particular focus on mountainous sites, given their 188 

regional and global importance yet challenges associated with ET and 𝑅𝐸𝐶𝑂Reco  in these regions, as described above.  189 

2.1 FLUXNET Stations and Ecoregions 190 

 Nine FLUXNET stations, which cover a wide range of climate and elevations, were selected for this study 191 

(Table 1 and Figure 1), which cover a wide range of climate and elevations.). These stations have elevations from 192 

129 m (US-Var) to 3050 m (US-NR1), mean annual air temperature from 0.34℃ (CA-Oas) to 17.92℃ (US-SRM), 193 

and mean annual precipitation from 320 mm (US-Whs) to 800 mm (US-NR1). These FLUXNET stations also cover 194 

a wide range of vegetation types (i.e., evergreen forest, deciduous forest, and shrublands). As indicated by Hargrove 195 

et al. (2003), FLUXNET stations provide a good representation ofwere maintained to capture watershed dynamics at 196 

different ecoregions, which are areas that display recurring patterns of similar combinations of soil, vegetation and 197 

landform characteristics (Omernik, 2004). Omernik & Griffith. (2014) delineated the boundaries of ecoregions 198 

through pattern analysis that consider the spatial correlation of both physical and biological factors (i. e., soils, 199 

physiography, vegetation, land use, geology and hydrology) in a hierarchical level. FLUXNET stations considered 200 

in this study mainly locate in 4four unique ecoregions (Table 1). As is described below, we developed local-scale 201 

(i.e., point scale) HPM that are representative for different ecoregions using data provided at these FLUXNET 202 

stations to estimate ET and 𝑅𝐸𝐶𝑂, and validated the HPM estimates with measurements from stations within the 203 

same ecoregion.   204 

2.2 SNOTEL Stations 205 

 For reasons described below, we performed a deeper exploration of HPM performance within one of the 206 

mountainous watershed sites (the East River Watershed of the Upper Colorado River Basin, USA), which is located 207 

in the “western cordillera” ecoregion. At this site, we utilized meteorological forcings data from three snow 208 

telemetry (SNOTEL) stations. These sites include the Butte (ER-BT, id: 380), Porphyry Creek (ER-PK, id: 701) and 209 

Schofield Pass (ER-SP, id: 737) sites. AA one-dimensional (vertical) CLM model was developed at these SNOTEL 210 

stations that provides physically-model-based ET estimation (Tran et al., 2019). Table 1 summarizes the SNOTEL 211 

stations used in this study and the corresponding climate characteristics. Figure 1 shows the geographical locat ions 212 

of FLUXNET and SNOTEL stations selected in this study.  213 

Table 1. Summary of FLUXNET stations and SNOTEL stations information. * denotes SNOTEL stations and all others 214 

are FLUXNET stations. Dfc, Bsk, Csa represent subarctic or boreal climates, semi-arid climate, Mediterranean hot 215 

summer climates, respectively. ENF, DBF, WSA, GRA, and OSH represent evergreen needleleaf forest, deciduous 216 

broadleaf forests, woody savannas, grasslands, open shrubland, respectively. FLUXNET data were obtained from the 217 

FLUXNET2015 database. 218 
Site 

ID 

Site Name Latitude, 

Longitude 

Elevation 

(m) 

Mean 

Annual air 

temperature 

(°∁) 

Mean 

Annual  

Precipitation 

(m) 

Climate 

Koeppen 

Vegetation 

IGBP 

EcoregionsEcoregion 

(Level II) 

Period 

of 

Record  

US-

NR1 

Niwot Ridge (40.0329, -

105.5464) 

3050 1.5 800 Dfc ENF Western Cordillera 2000-

2014 

CA- Saskatchewan-
Aspen 

(53.6289, - 530 0.34 428.53 Dfc DBF Boreal Plain 1997-

Formatted: Line spacing:  1.5 lines

Formatted: Font: 9 pt, Bold

Deleted Cells

Formatted: Line spacing:  1.5 lines

Formatted: Font: 9 pt, Bold

Formatted: Font: 9 pt, Bold

Formatted: Font: 9 pt, Bold

Formatted: Font: 9 pt, Bold

Formatted: Font: 9 pt, Bold

Formatted: Font: 9 pt, Bold

Formatted: Font: 9 pt, Bold

Formatted: Font: 9 pt, Bold

Formatted: Line spacing:  1.5 lines

Formatted: Font: 9 pt, Bold

Formatted: Line spacing:  1.5 lines

Formatted: Font: 9 pt, Bold

Formatted: Font: 9 pt, Bold

Formatted: Font: 9 pt, Bold

Formatted: Font: 9 pt, Bold

Formatted: Font: 9 pt, Bold

Formatted: Font: 9 pt, Bold

Formatted: Font: 9 pt, Bold

Formatted: Font: 9 pt, Bold

Formatted: Line spacing:  1.5 lines

Formatted: Line spacing:  1.5 lines

Formatted: Font: 9 pt, Bold

Formatted: Font: 9 pt, Bold

Formatted: Font: 9 pt, Bold

Formatted: Font: 9 pt, Bold

Formatted: Font: 9 pt, Bold

Formatted: Font: 9 pt, Bold



Oas 106.1978) 2010 

CA-

Obs 

Saskatchewan-

Black Spruce 

(53.9872, -

105.1178) 

628.94 0.79 405.6 Dfc ENF Boreal Plain 1999-

2010 

US-

SRM 

Santa Rita 

Mesquite 

(31.8214, -

110.8661) 

1120 17.92 380 Bsk WSA Western Sierra 

Madre Piedmont 

2005-

2015 

US-

Ton 

Tonzi Ranch (38.4316, -

120.9660) 

177 15.8 559 Csa WSA Mediterranean 

California 

2002-

2015 

US-

Var 

Vaira Ranch-

lone 

(38.4133, -

120.9507) 

129 15.8 559 Csa GRA Mediterranean 

California 

2002-

2015 

US-

Whs 

Walnut Gulch 

Lucky Hills 
Shrub 

(31.7438, -

110.0522) 

1370 17.6 320 Bsk OSH Western Sierra 

Madre Piedmont 

2008-

2015 

US-

Wkg 

Walnut Gulch 

Kendall 
Grasslands 

(31.7365, -

109.9419) 

1531 15.64 407 Bsk GRA Western Sierra 

Madre Piedmont 

2005-

2015 

US-

Me2 

Metolius 

mature 
ponderosa 

pine 

(44.4523, -

121.5574) 

1253 6.28 523 Csb ENF Western Cordillera 2012-

2015 

ER-

BT* 

East River-

Butte 

(38.894, -

106.945) 

3096 2.38 821 Dfc N/A Western Cordillera 1995-

2017 

ER-

SP* 

East River-
Schofield Pass 

(39.02, -

107.05) 

3261 2.46 1064 Dfc N/A Western Cordillera 1995-

2017 

ER-

PK* 

East River-
Porphyry 

Creek 

(38.49, -

106.34) 

3280 1.97 574 Dfc N/A Western Cordillera 1995-

2017 
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 222 
Figure 1. Location of sites considered in this study. Note: US-Ton and US-Var; US-Whs and US-Wkg are at the same 223 

locations.  closed to each other. East River Watershed is located next to ER-BT. The white lines delineate Western US 224 

states and Canadian provinces. Circles represent FLUXNET sites, diamonds represent SNOTEL sites and triangle 225 

represents the East River Watershed.  226 

2.3 East River Watershed Characteristics and Previous Analyses 227 

 Data from the East River Watershed were used to explore how ET and 𝑅𝐸𝐶𝑂Reco dynamics estimated from 228 

the developed HPM vary with different vegetation and meteorological forcings. The East River Watershed is located 229 

northeast of the town of Crested Butte, Colorado. This watershed has an average elevation of 3266 m, with 230 

significant gradients in topography, hydrology, geomorphology, vegetation, and weather. The watershed has a mean 231 

annual temperature around 0℃ , with an average of 1200 mm yr−1The mean annual air temperature in the East 232 

River is ∼2.4°C, with average daily air temperatures of −7.6°C and 13.4°C in December and July respectively 233 

(Kakalia et al., 2020) and an average of 1200 mm yr−1 total precipitation (Hubbard et al., 2018). Consisting of 234 

montane, subalpine, and alpine life zones, each with distinctive vegetation biodiversity, the East River Watershed is 235 

a testbed for the US Department of Energy Watershed Function Scientific Focus Area Project, led by the Lawrence 236 

Berkeley National Laboratory (Hubbard et al., 2018). The project has acquired a range of datasets, including 237 

hydrological, biogeochemical, remote sensing, and geophysical datasets.  238 

Recently completed studies at the East River Watershed were used in this study to inform HPM and to 239 

assess the results. For example, physically-model-based estimations of ET at this site (Tran et al., 2019) were used 240 
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herein for HPM development and validation. Falco et al. (2019) used machine-learning-based remote sensing 241 

methods to characterize the spatial distribution of vegetation types, slopes, and aspects within a hillslope at the East 242 

River Watershed, which were used with obtained HPM estimates to explore how vegetation heterogeneity influences 243 

ET and 𝑅𝐸𝐶𝑂  dynamics. To perform this assessment, we computed the spatial distribution of vegetation types at 244 

watershed scale based on Falco et al. (2019). We evaluated manually and selected 16 locations within the East River 245 

Watershed having different vegetation types and slope aspects. These 16 locations were chosen to be at the center of 246 

vegetation patched and covered by one vegetation type. A summary of the locations is presented in Table 2; the 247 

spatial distribution of the locations is shown in Figure 2. 248 

Table 2: Location and vegetation types of East River Watershed sampling points (Figure 2) 249 
Easting (m) Northing (m) Vegetation Type Aspect Elevation (m) 

327085 4309878 Deciduous Forest South 2983 

326288 4312504 Deciduous Forest South 3177 
330012 4313132 Deciduous Forest North 3108 

326854 4313192 Deciduous Forest South 3098 

328246 4312832 Meadow South 3095 
327010 4315059 Meadow South 2790 

328738 4306139 Meadow North 2890 

334270 4309465 Meadow  North 2929 
333406.5 4308340 Riparian Shrubland South 2760 

327846 4312497 Riparian Shrubland South 2723 

334641 4305632 Riparian Shrubland North 2740 
330760 4310097 Riparian Shrubland South 2855 

329573 4314569 Evergreen Forest South 3026 

333106 4307313 Evergreen Forest North 3102 

325056 4310456 Evergreen Forest South 2961 

335141 4309614 Evergreen Forest North 3131 

  250 

 251 
Figure 2: Vegetation classification of the East River, CO Watershed from Falco et al. (2019). East River sites selected in 252 

this study are denoted by black circles. 253 

2.4 Data Collection and Processing 254 

To enhance transferability of the developed HPM strategy to less intensively characterized watersheds, we 255 

selected only “easy to measure” or “widely available” at tributes, such as precipitation, air temperature, radiation and 256 

NDVI, as inputs to the HTM model. Soil temperature was used when available. The data sources used for these 257 



inputs include FLUXNET data (https://fluxnet.fluxdata.org/), SNOTEL data (https://www.wcc.nrcs.usda.gov/snow/) 258 

and developed CLM model (Tran et al., 2019) at SNOTEL stations, DAYMET meteorological inputs (Thornton et 259 

al., 2017) and remote sensing data from Landsat imageries (Irons et al., 2012).   260 

 A variety of measured data and model outputs were used to train and validate HPM. We obtained daily 261 

meteorological data, including air temperature, precipitation, radiation, ET, and 𝑅𝐸𝐶𝑂  data, from the FLUXNET 262 

database at the selected FLUXNET sites. The pipeline of data processing for FLUXNET dataset is provided at 263 

https://FLUXNET.fluxdata.org/. We identified some data gaps and erroneous data (especially during winter seasons) 264 

for the ET estimates at US-NR1, which were cleaned following the procedures presented in Rungee et al. (2019). 265 

The meteorological data were used as inputs for HPM development, and ET and 𝑅𝐸𝐶𝑂 data from these sites were 266 

used for HPM validation. At the three selected SNOTEL stations, we obtained air temperature, precipitation, and 267 

snow-water-equivalent data from the SNOTEL database. Air temperature data at these three SNOTEL stations were 268 

processed following Oyler et al. (2015), given potential systematic artifacts. Snow-water-equivalent data are not 269 

easily acquired, and thus were not considered as inputs for HPM. However, a categorical variable was constructed to 270 

assimilate information regarding snow (Section 3.2.1). CLM models were generated following Tran et al. (2019) for 271 

the SNOTEL stations and US-NR1 to assess the spatiotemporal variability of ET at the East River Watershed and 272 

for training and validating HPM (Section 4.3). The DAYMET dataset (Thornton et al., 2017) provided gridded daily 273 

weather-forcings-attribute estimates at a 1 km spatial resolution. We obtained the incident radiation data from 274 

DAYMET at the SNOTEL stations as inputs for HPM. For the East River Watershed sites, meteorological forcings 275 

data, including air temperature, precipitation and radiation, were also obtained from DAYMET. The low spatial 276 

resolution of DAYMET data introduces uncertainty in HPM estimation of ET and 𝑅𝐸𝐶𝑂 , which will be discussed in 277 

the following sections. We calculated the NDVI time series from the red band (RED) and near-infrared band (NIR) 278 

from Landsat 5, 7, and 8 images at all selected FLUXNET sites, SNOTEL stations, and East River Watershed sites 279 

at a spatial scale of 30 m.  280 

Since cloud conditions can severely decrease data quality, we and radiation data was obtained from 281 

DAYMET. CLM models were generated following Tran et al. (2019) for the SNOTEL stations and US-NR1. At the 282 

East River Watershed sites, data were obtained from DAYMET. NDVI time series were calculated from the red 283 

band and near-infrared band from Landsat 5, 7 and 8 images at all sites. We used the cloud-scoring algorithm 284 

provided in the Google Earth Engine to mask clouds in all retrieved data, only selecting the ones that had a simple 285 

cloud score below 20 to ensure data quality. Given the different calibration sensors used in Landsat 5, 7, and 8, we 286 

also followed the processes described in Homer et al. (2015) and Vogelmann et al. (2001) to keep NDVI 287 

computations consistent over time. Landsat satellites have a return period of 16 days, and thus we performed a 288 

reconstruction of NDVI time series to obtain daily scale time data (Section 3.2.2).  289 

3. Hybrid Predictive Modeling Framework 290 

 In this section, we illustrate the steps for building an HPM model for ET and 𝑅𝐸𝐶𝑂Reco estimation over time 291 

and space. Figure 3 presents the general framework of HPM, which includes modules for data preprocessing, model 292 

development, model validation, and predictive modeling.  293 

3.1 Model Framework  294 
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 HPM establishes relationships among meteorological forcings attributes, NDVI, ET, and 295 

𝑅𝐸𝐶𝑂Reco (Figure 3). Both input data (e.g., meteorological forcings) and output data (ET and 𝑅𝐸𝐶𝑂) used for training 296 

and validation are preprocessed for gap filling, smoothing, and data updating. HPM “learns” the complex space -time 297 

relationship among meteorological forcings, NDVI, ET, and 𝑅𝐸𝐶𝑂) using a deep-learning-based module (deeplyfully 298 

connected deep neural networks and a long short-term memory recurrent neural network). HPM then can be used for 299 

ET and 𝑅𝐸𝐶𝑂  estimation at sparsely monitored watersheds. Individual HPM models can be trained in two different 300 

ways using ET and 𝑅𝐸𝐶𝑂 information: with data obtained from flux towers (“data-driven HPM”) or with outputs 301 

from 1-D physically-based models (“mechanistic HPM”). In both cases, the models obtained with local data are then 302 

used to estimate ET and 𝑅𝐸𝐶𝑂  at other sites in the same ecoregion (see Section 2.1). For ecoregions not represented 303 

by FLUXNET sites, it is necessary to develop mechanistic HPM that enables ET and 𝑅𝐸𝐶𝑂  estimation over space 304 

and time.  305 

 HPM has several additional modules, including model development, model validation, and model 306 

prediction modules. In the HPM model development module, deep-learning algorithms are trained with input 307 

features and response data until a pre-defined “stopping criteria” (e.g., root mean squared error, RMSE) is met, 308 

indicating subsequent training would lead to minimal improvement. In the validation module, estimation outputs 309 

from the “trained HPM models” are compared with other ET and 𝑅𝐸𝐶𝑂 data obtained from other independent sites or 310 

mechanistic models within the same ecoregion. Statistical measures, including adjusted 𝑅2 and mean absolute error 311 

(MAE), are computed to evaluate the performance of HPM models. In the predictive model module, meteorological 312 

forcings data and remote sensing data are processed at target sites of interest, and the validated HPM model is used 313 

to estimate ET and 𝑅𝐸𝐶𝑂  at these sites. ET and 𝑅𝐸𝐶𝑂 outputs estimated from HPM at sparsely monitored watersheds 314 

then provide alternative datasets for process understanding within the target watersheds.  315 

 316 
Figure 3: Hybrid Predictive Model (HPM) Framework. The HPM model mainly consists of four modules: Input 317 

Attributes, Model Development, Model Validation and Model Prediction, represented by rectangles with colors. Arrows 318 

represent the linkages among different modules. Choices of data-driven HPM or mechanistic HPM depend on the 319 

ecoregion of target watershed and data availability. 320 
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networks). Long short-term memory (LSTM, Hochreiter & Schmidhuber, 1997) is capable of identifying long-term 321 

dependencies between climate and environmental data.a type of recurrent neural network (RNN) capable of learning 322 

temporal dependence without suffering from optimization difficulties (e.g., vanishing errors). An LSTM layer 323 

consists of memory blocks and unique cell states that are controlled by three multiplicative units, including the 324 

input, output and forget gates. These gates regulate the flow of information and decide which data in a sequence is 325 

important to keep or throw away. Through the LSTM structure, even information from the earlier time steps can 326 

make its way to later time steps, reducing the effects of short-term memory and thus capturing long-term 327 

dependence. LSTM has been previously used to capture such dependencies between climate and environmental data. 328 

For example, Kratzert et al. (2018) successfully used LSTM to learn the long-term dependencies in hydrological 329 

data (e.g., storage effects within catchments, time lags between precipitation inputs and runoff generation) for 330 

rainfall-runoff modeling. LSTM has also been used for gap filling in hydrological monitoring networks in the 331 

spatiotemporal domain  (Ren et al., 2019). In this study, the outputs (ET or 𝑅𝐸𝐶𝑂) denoted as 𝑦 are predicted from 332 

the input 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑇], consisting of the last 𝑇consecutive time steps of attributes, such as meteorological 333 

forcings attributes (e.g., air temperature and precipitation) and remote sensing attributes (i.e., NDVI). In a recurrent 334 

neural network (RNN), ℎ𝑡 represents the internal state at every time step 𝑡 that takes in current input value 𝑥𝑡 and 335 

previous internal state ℎ𝑡−1, and is recomputed along the time axis using the following equation:More information 336 

about the LSTM-RNN method is provided by Olah (2015). 337 

ℎ𝑡 = 𝑔(𝑊𝑥𝑡 + 𝑈ℎ𝑡−1 + 𝑏),                                                                              (1) 338 

where 𝑔 represents the hyperbolic tangent activation function, 𝑊 and 𝑈 are trainable weight metrices of the hidden 339 

state ℎ, and 𝑏 is a bias vector. W, U and 𝑏 are all trainable through optimization. LSTM introduces the cell state 𝑐𝑡, 340 

which makes LSTM powerful in identifying long-term dependencies in a statistical manner. The cell state 𝑐𝑡 has 341 

three gates structures, including “forget gates” (which determine what information from previous cell states will be 342 

forgotten), “HPM modules include input gates” (which determine what information will be conveyed from the 343 

forget gate) and “output gates” (which return information from cell state 𝑐𝑡 to a new state ℎ𝑡). With these gate 344 

structures, the cell state 𝑐𝑡 controls what information will be forgotten, conveyed, and updated over time. The forget 345 

gate is formulated as follows:  346 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓),                                                                               (2) 347 

where 𝑓𝑡 results in a value between 0 and 1 indicating the degree of information to be forgotten; 𝜎 is the logistic 348 

sigmoid function, 𝑎𝑛𝑑 𝑊𝑓 , 𝑈𝑓  and 𝑏𝑓  are trainable parameters. Next, the input gate decides which values will be 349 

updated in the current cell state, and creates a vector of candidate values 𝑐�̃� in the range of (-1, 1) through a 𝑡𝑎𝑛ℎ 350 

layer, which will be used to update the current state. With the candidate values calculated from the current state, and 351 

the information conveyed from the forget gate, we can calculate the current cell state as follows: 352 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖),                                                                                (3) 353 

𝑐�̃� = 𝑡𝑎𝑛 ℎ(𝑊𝑐̃𝑥𝑡 + 𝑈𝑐̃ℎ𝑡−1 + 𝑏𝑐̃),                                                                         (4) 354 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐�̃� ,                                                                                      (5) 355 

where 𝑖𝑡 is the input gate that defines which information of 𝑐�̃� will be used to update the current cell state and is in 356 

the range of (0, 1); 𝑐𝑡  represents the current cell state; and 𝑊𝑐̃, 𝑈𝑐̃, 𝑏𝑐̃, 𝑊𝑖 , 𝑈𝑖 ,  𝑎𝑛𝑑 𝑏𝑖  are trainable parameters. 357 
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Finally, the output gate 𝑜𝑡 controls the information of cell state 𝑐𝑡 to a new hidden state ℎ𝑡, which is computed using 358 

the following equation: 359 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜),                                                                              (6) 360 

ℎ𝑡 = tanh(𝑐𝑡) ∗ 𝑜𝑡 ,                                                                                        (7) 361 

With the new hidden state calculated, ET and 𝑅𝐸𝐶𝑂  can be calculated using a one unit dense layer: 362 

𝑦𝑡 =  𝑊𝑑ℎ𝑡 + 𝑏𝑑 ,                                                                                         (8) 363 

where 𝑊𝑑 and 𝑏𝑑  are additional trainable parameters. In summary, the LSTM unit calculates the internal state using 364 

current meteorological forcings and remote sensing data at every time step. The forget gate, input gate, and output 365 

gate decide what information from previous time steps will be kept, updated, and conveyed to the new hidden st ate. 366 

Finally, with a single dense layer, the algorithm will output ET and 𝑅𝐸𝐶𝑂  estimation from the trained attributes, 367 

model.  368 

A 70%-30% split between training and development, validation time series , and prediction. Based on data 369 

availability, input features are obtained from flux towers, gridded meteorological data was applied here, where the 370 

first 70% of the data were used, and remote sensing data; all data are preprocessed for gap filling, smoothing, and 371 

updating. In the HPM model development as a learning process, and 30% of the data were used as validation sets 372 

atmodule, individual sites. At the East River Watershed, HPM results were also validated HPM models can be 373 

trained in two different ways based on data availability: with data obtained from flux towers (“data-driven HPM”) or 374 

with benchmark CLM outputs from physically-based models (“mechanistic HPM”). Seventy percent of these data 375 

are used for training LSTM to learn the interactions among input features, ET, and Reco, until a pre-defined 376 

“stopping criteria” (e.g., root mean squared error, RMSE) is met, indicating subsequent training would lead to 377 

minimal improvement. Tran et al. (2019) and FLUXNET measurements. We used the mean absolute error (MAE), 378 

and adjusted 𝑅2 as the statistical measure to determine model performance. In most models, the configuration of the 379 

neural networks includes a first LSTM layer with 50 units, a second LSTM layer with 25 units, and a dense layer 380 

with 8 units having L2 regularizers, and a final output dense layer. Dropout layers are also embedded in the model to 381 

prevent overfitting. There are 11600 and 7600 parameters for the first and second LSTM layers; 208 and 9 for the 382 

first and second dense layers and no parameters for the dropout layers. Other configurations of networks may 383 

provide better estimation results; however, they are not assessed in this study as the proposed configuration already 384 

provide reasonable results. More information about the LSTM-RNN method is provided by Olah. (2015). 385 

In the validation module, we implemented a validation procedure that uses the remaining 30 % of the data 386 

to assess model performance. Estimation outputs from the trained HPM models are also compared with other ET 387 

and Reco data obtained from other independent sites or mechanistic models within the same ecoregion. Statistical 388 

measures such as adjusted 𝑅2 and mean absolute error (MAE) are computed to evaluate the performance of HPM 389 

models. In the predictive model module, meteorological forcings data and remote sensing data are processed at 390 

target sites of interest, and the validated HPM model is used to estimate ET and Reco at these sites. ET and Reco 391 

outputs estimated from HPM at sparsely monitored watersheds then provide alternative datasets for process 392 

understanding within the target watersheds.  393 
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 394 

Figure 3: Hybrid Predictive Model (HPM) Framework. The HPM model mainly consists of four modules: Input 395 

Attributes, Model Development, Model Validation and Model Prediction, represented by rectangles with colors. Arrows 396 

represent the linkages among different modules. Choices of data-driven HPM or mechanistic HPM depend on the 397 

ecoregion of target watershed and data availability. 398 

3.2 Feature Selection 399 

 Key properties influencing ET and 𝑅𝐸𝐶𝑂   dynamics are linked to snow processes, plant dynamics, moisture 400 

stresses, radiation inputs and other relevant processes. However, at At sparsely monitored watersheds, only 401 

weather reanalysis data and remote sensing data are commonly available. Thus, we mainly considered air 402 

temperature, radiation, precipitation, vegetation indices (e.g., NDVI) and variables inferred from these data as inputs 403 

for HPM. Soil temperature when available is used at FLUXNET sites. Other key attributes that depend on depth and 404 

site -specific characteristics such as soil moisture and snow depth are not used in current HPM models due to data 405 

availability.  406 

3.2.1 Snow information 407 

In snow-influenced mountainous watersheds, snow dynamics significantly influence water and carbon 408 

fluxes. Because of the difficulties in measuring snow time series over space, we did not directly use attributes such 409 

as snow water equivalent as input to HPM. Instead, we separated precipitation data into snow precipitation (when air 410 

temperature < 0) and rainfall precipitation (when air temperature > 0). This), which is in line with what has been 411 

used in hydrological models such as CLM (Oleson et al., 2013). Note that for certain sites in this study, snow is not 412 

present (e.g., US-Ton). In order to capture the dynamics of snow processes, such as accumulation and melting, we 413 

constructed a categorical variable (sn), as follows:Knowles et al. (2016) discovered a significant correlation between 414 

day of peak snow accumulation, snowmelt and air temperature. To capture snow related dynamics (e.g., snowmelt), 415 

we constructed a categorical variable (sn) based on air and soil temperature thresholds. Note: this may not be needed 416 

if snow data becomes available and at sites where snow is rarely present.  417 

𝒔𝒏 = {
0, 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑛𝑜𝑤 𝑎𝑐𝑐𝑢𝑚𝑙𝑎𝑡𝑖𝑜𝑛;   𝑆𝑊𝐸 > 0 𝑎𝑛𝑑 𝑆𝑊𝐸 < 𝑝𝑒𝑎𝑘 𝑆𝑊𝐸

1, 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑛𝑜𝑤 𝑚𝑒𝑙𝑡𝑖𝑛𝑔; 𝑆𝑊𝐸 > 0 𝑎𝑛𝑑  𝑆𝑊𝐸 ≤ 𝑝𝑒𝑎𝑘 𝑆𝑊𝐸 
2, 𝑛𝑜 𝑠𝑛𝑜𝑤; 𝑆𝑊𝐸 =  0

,                             (9) 418 



Since data on peak SWE are rarely available because of the difficulties in measuring snow, we also define a 419 

proxy categorical variable, sn. When no SWE measurements were available, we estimated sn using air and soil 420 

temperature data following Knowles et al. (2016), who found significant correlations between the day of peak snow 421 

accumulation and first day of air temperature above 0 degrees Celsius, as follows: 422 

𝒔𝒏 = {

0, 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑛𝑜𝑤 𝑎𝑐𝑐𝑢𝑚𝑙𝑎𝑡𝑖𝑜𝑛;   𝐴𝑖𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 < 0
1, 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑛𝑜𝑤 𝑚𝑒𝑙𝑡𝑖𝑛𝑔; 𝐴𝑖𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 > 0 𝑤ℎ𝑖𝑙𝑒 𝑆𝑜𝑖𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ≤ 0

2, 𝑛𝑜 𝑠𝑛𝑜𝑤; 𝐴𝑖𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑛𝑑 𝑆𝑜𝑖𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 > 0
,         (10 (1) 423 

3.2.2 Vegetation information 424 

 To mitigate the long return periods of satellites and the presence of clouds, we We reconstructed daily 425 

NDVI values based on meteorological forcingsforcing data (e.g., air temperature, precipitation, radiation) using 426 

deep-learning recurrent neural networks, leadingLSTM to estimates of NDVI at daily increase the temporal 427 

resolution. For example,coverage of NDVI. Figure 4 represents Landsat-derived NDVI and reconstructed NDVI 428 

values for two sites at the East River, CO watershed: Butte (ER-BT), and Schofield Pass (ER-SP). Figure 4 reveals 429 

that based on meteorological forcings data only, the reconstructions achieved an adjusted R2 of 0.65. Though not 430 

ideal, as satellites continue to advance and more training data becomes available, the accuracy of NDVI temporal 431 

reconstruction is expected to increase. 432 

 433 
Figure 4: Temporal reconstruction of NDVI at ER-BT (left) and ER-SP (right). Black lines represent reconstructed daily 434 
NDVI. Red points are used for training and blue points are used for validation 435 
3.3 Use Cases 436 

 We developed four different use cases to demonstrate the applicability of HPMs based on site -specific data 437 

and model availability. Use case 1 focuses on ET and Reco in the time domain, where a HPM is trained on direct 438 

measurements from flux tower. A 70%-20%-10% training-validation-prediction split of the data was used. These 439 

HPMs are useful for time series gap filling and future prediction. Use case 2 and use case 3 have emphasis on 440 

providing ET and Reco over space, where use case 2 uses data-driven HPM and use case 3 utilizes mechanistic HPM. 441 

Data-driven HPM is trained with data from flux tower and mechanistic HPM is trained upon outputs from a 442 

mechanistic model (e.g., CLM). These HPMs are usually trained at well monitored watersheds where either flux 443 

data is available or data support the development of a mechanistic model. After training, these HPMs integrate 444 



meteorological and remote sensing inputs to provide ET and Reco at target sparsely monitored watersheds within the 445 

same ecoregion. For both use case 2 and 3, we validated the HPM estimations against data from other sites within 446 

the same ecoregion. Use case 4 focuses on the East River Watershed, where we demonstrate how HPM can increase 447 

our understanding of ecosystem fluxes and explore the limitations of HPM in mountainous watersheds. Use case 4 448 

estimations were validated against data extracted from other studies.  449 

4. Results 450 

We tested HPM’s capabilities using four different use cases to explore different conditions. First, we tested 451 

the capability of HPM to estimate long-term temporal dependency among meteorological forcings, ET, and 𝑅𝐸𝐶𝑂  452 

(Use Case 1; presented in Section 4.1). Second, we validated HPM’s capability to estimate the spatial distribution of 453 

ET and 𝑅𝐸𝐶𝑂  over space in selected watersheds, where we developed HPM using existing FLUXNET data (Use 454 

Case 2; data-driven HPM, Section 4.2) or outputs from a mechanistic model (Use Case 3; physical-model-based 455 

HPM, Section 4.3). In Use Case 4, HPM was used to estimate ET and 𝑅𝐸𝐶𝑂  at selected sites within the East River 456 

Watershed and to distinguish how ET and 𝑅𝐸𝐶𝑂  dynamics varies in the East River Watershed (Section 4.4). 457 

Temporal resolution of HPM models for all Use Cases are at daily scale and the spatial resolution depends on the 458 

use of meteorological forcing data. These four use cases illustrate and demonstrate how HPM can be developed and 459 

applied at target watersheds where data are sparse.  460 

4.1 Use Case 1: ET and 𝑹𝑬𝑪𝑶 Time Series Estimation with HPM Developed at FLUXNET Sites 461 
Local HPMs were developed to estimate ET and 𝑅𝐸𝐶𝑂Reco using flux tower data obtained from FLUXNET 462 

sites listed in Table 1. At all FLUXNET sites, air temperature, precipitation, net radiation, NDVI and soil 463 

temperature were used. For US-NR1, CA-Oas and CA-Obs, sn is also included. The results, which are shown in 464 

FigureFig. 5, A1-A4 and Table 3, reveal that the HPM approach was effective for estimating ET. Adjusted 𝑅2 465 

between the HPM estimates and flux tower measurements are above 0.85 for all sites, and mean absolute errors are 466 

small at a level of ~0.2 𝑚𝑚/𝑑. Figure 5 displays the daily scale estimation of ET from HPM US-NR1 and CA-OAS 467 

(other sites provided in supplementary material), and presents monthly mean ET values of measurements, HPM 468 

estimations, and differences.Reco. The long-term trends in ET and Reco are well captured by HPM. At larger temporal 469 

scales (monthly or yearly), HPM provides reasonable estimation of ET at these sites. However, short-term 470 

fluctuations in ET and Reco during the summer periods are also not well captured by ET, specifically at California 471 

sites during the periods when plant transpirationHPM. For example, at US-Ton and US-Var, we observed an 472 

increasing discrepancy in summer month ET and Reco. This is mainly caused by insufficient training for summer 473 

extremes. At US-Me2, we observed significant increasing errors in the validation set, especially for Reco that are 474 

caused by significant differences in raw data between 2002-2010 (data used for training) and soil evaporation are 475 

constrained by soil moisture (Figure A2 panel apost-2011 (data used for validation).  476 
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 478 
Figure 5: ET and Reco estimation with data from FLUXNET sites at CA-OAS and US-NR1. Panels (a) and (c) illustrate 479 

the daily estimation of ET with red, green, and blue lines representing data used for training, validation, and prediction, 480 

respectively, and the black line showing the eddy covariance measurements. Pink points describe monthly mean 481 

difference between HPM estimation and measured data. Panels (b) and (db) show the scatter plots of daily (blue) and 482 

monthly (red) ET. and Reco between HPM estimation and FLUXNET data. Darker blue clouds represent greater density 483 

of data points. Panels (c) and (d) present the daily HPM estimation of ET and Reco separated by training, validation and 484 

prediction sets. Pink points depict monthly error between HPM estimation and FLUXNET data. Results for other sites 485 

are included in supplementary materials below (FiguresFig. A1 and, A2).  486 

  Similarly, Table 3 and Figure 6 reveal that HPM was also effective in estimating 𝑅𝐸𝐶𝑂 , leading to small 487 

MAE and adjusted 𝑅2  of 0.8 between estimated and measured 𝑅𝐸𝐶𝑂  except for US-Ton and US-Var. Figure 6 488 

presents HPM-estimated 𝑅𝐸𝐶𝑂 at US-NR1 and CA-OAS, with other sites presented in Figures, A3 and A4. Long-489 

term dynamics of 𝑅𝐸𝐶𝑂  are also successfully captured by HPM; however, HPM does not accurately capture 𝑅𝐸𝐶𝑂  490 

during peak growing seasons. For example, we observed an over estimation of 𝑅𝐸𝐶𝑂 during 2012 summer at US-491 

Whs, whereas at US-NR1 HPM-estimation during peak growing season are smaller than measured values. While 492 

soil moisture is important for 𝑅𝐸𝐶𝑂  during peak growing season (Ng et al., 2014; Wang et al., 2014), the developed 493 

HPM currently does not include soil moisture as a key attribute. HPM 𝑅𝐸𝐶𝑂  estimation at US-Ton and US-Var show 494 

higher uncertainties (i.e., 𝑀𝐴𝐸 > 0.4 and Adj. 𝑅2 < 0.8). At these sites limited by water conditions (e.g., US-Ton) 495 

Formatted: Font: 9 pt, Bold



and sites with seasonally dry periods (e.g., US-Whs), it is necessary to include variables that could provide 496 

information regarding moisture stresses in the subsurface. Soil moisture that directly quantify water stress can be 497 

helpful to increase 𝑅𝐸𝐶𝑂 prediction accuracy (Noormets et al., 2008). Underestimation of peak growing season 𝑅𝐸𝐶𝑂  498 

can also come from biases within LSTM training, which is strong in capturing long-term temporal trends but less 499 

effective in obtaining peak values, and thus lead to increasing prediction errors during growing season compared to 500 

other periods of time.  501 

 502 
Figure 6: 𝑹𝑬𝑪𝑶 estimation with data from FLUXNET sites at CA-OAS and US-NR1. Panels (a) and (c) present daily 503 

estimation of 𝑹𝑬𝑪𝑶 with red, green, and blue lines representing data used for training, validation, and prediction, and the 504 

black line shows the eddy covariance measurements. Pink points describe monthly mean difference between HPM 505 

estimation and measured data. Panels (b) and (d) show the scatter plots of daily (blue) and monthly (red) 𝑹𝑬𝑪𝑶. Darker 506 

blue clouds represent greater density of data points. Results for other sites are included in supplementary materials below 507 

(Figures A3 and A4).).  508 

Table 3: Statistical measures of HPM estimation of ET and 𝑹𝑬𝑪𝑶Reco 509 
Site ID Train 

MAE 

-ET 

[𝒎𝒎
/𝒅] 𝒅−𝟏] 

Test 

MAE 

- ET 

[𝒎𝒎
/𝒅] 𝒅−𝟏] 

Train Adj. 

𝑹𝟐 - ET 

Test Adj. 

𝑹𝟐 - ET 

Train MAE 

−𝑹𝑬𝑪𝑶𝐑𝐞𝐜𝐨 

[𝒈𝑪𝒎−𝟐𝒅−𝟏] 
 

Test MAE 

−𝑹𝑬𝑪𝑶𝐑𝐞𝐜𝐨 

[𝒈𝑪𝒎−𝟐𝒅−𝟏] 
 

Train 

Adj. 𝑹𝟐 

−𝑹𝑬𝑪𝑶𝐑𝐞𝐜𝐨 

 

Test Adj. 

𝑹𝟐 

−𝑹𝑬𝑪𝑶𝐑𝐞𝐜𝐨 

 

US-NR1 0.19 0.11 0.95 0.98 0.33 0.18 0.91 0.98 

CA-Oas 0.18 0.13 0.94 0.97 0.33 0.26 0.96 0.97 

CA-Obs 0.12 0.09 0.95 0.96 0.29 0.25 0.96 0.97 

US-SRM 0.22 0.17 0.92 0.94 0.24 0.19 0.80 0.87 

US-Ton 0.22 0.17 0.92 0.94 0.43 0.36 0.76 0.82 

US-Var 0.15 0.12 0.92 0.95 0.49 0.38 0.81 0.88 
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US-Whs 0.13 0.09 0.93 0.96 0.12 0.09 0.84 0.89 

US-Wkg 0.19 0.15 0.87 0.91 0.18 0.15 0.85 0.91 

US-Me2 0.36 0.43 0.81 0.75 0.75 0.83 0.88 0.85 

 510 
4.2 Use Case 2: Ecoregion-Based, Data-Driven HPM Model for ET and 𝑹𝑬𝑪𝑶 Estimation  511 

While the effort and cost involved in establishing flux towers naturally limit the spatial coverage of 512 

obtained measurements, point scale measurements from one FLUXNET station provides representative information 513 

about ecosystem dynamics at other locations within the same ecoregion. In this section, we explored the use of a 514 

data-driven HPM trained with one FLUXNET station to estimate ET and 𝑅𝐸𝐶𝑂Reco at other locations within the same 515 

ecoregion. To test this approach, we first trained HPM at a selected FLUXNET stations and validated these HPM 516 

models at other FLUXNET stations (ET and 𝑅𝐸𝐶𝑂  data at testing sites were only used for comparison with HPM 517 

prediction) within the same ecoregion. Specifically, we developed HPM models at US-Ton, CA-Oas and US-Wkg, 518 

and provided ET and 𝑅𝐸𝐶𝑂Reco estimations at US-Var, CA-Obs and US-Whs at three ecoregions, respectively.  519 

Table 4 summarizes how we developed the data-driven HPM models for spatially distributed estimation of 520 

ET and 𝑅𝐸𝐶𝑂Reco as well as the corresponding statistical summaries. Figures 76 and 8A5 present the time series of 521 

HPM-estimated ET and 𝑅𝐸𝐶𝑂 compared to measurements from flux towers. HPM estimation at US-Obs, US-Whs 522 

and US-Var achieved an adjusted 𝑅2 of 0.87, 0.88 and 0.91 for ET and 0.95, 0.70 and 0.78 for 𝑅𝐸𝐶𝑂 , respectively. 523 

These results show that HPM captures the seasonal and long-term dynamics of ET and 𝑅𝐸𝐶𝑂 . However, at sites that 524 

experience seasonally dry periods (e.g., US-Whs), prediction accuracy decreases during the peak growing season. 525 

For example, we observed large errors in HPM-based estimations compared to measurements during peak growing 526 

seasons (e.g., a 0.5 mm discrepancy in June mean ET). We interpret this discrepancy as the result that current HPM 527 

models did not capture water stress conditions, and it is necessary to include other key attributes (e.g., soil moisture) 528 

to improve prediction accuracy, especially at these sites with seasonally dry periods. Although the prediction 529 

accuracy is not as high as Use Case 1 (Section 4.1), this use case demonstrates that HPM can learn the complicated 530 

relationships between responses and features successfully, and that a local data-driven HPM can be used to fuse with 531 

data from other subsites for long-term estimation of ET and 𝑅𝐸𝐶𝑂  within the same ecoregions.  532 



 533 
Figure 7. ET estimation at CA-Oas (a), US-Var (c), and US-Whs (e) with HPM trained at US-Ton, US-Wkg, and CA-Oas, 534 

respectively. Red and black lines represent HPM estimation and real measurements, with green points denoting the 535 

monthly mean difference between HPM estimationss and measurements. Panels (b), (d), and (f) show the scatter plots of 536 

daily (blue) and monthly (red) ET at these three sites. Darker blue clouds represent greater density of data points. 537 



 538 



Figure 8. 𝑹𝑬𝑪𝑶 estimation at CA-Oas (a), US-Var (c), and US-Whs (e) with HPM trained at US-Ton, US-Wkg, and CA-539 
Oas,540 

 541 
Figure 6. ET and Reco estimation at CA-Obs using HPM trained at CA-Oas. Other sites are presented in Fig. A5.  542 

 respectively. Red and black lines represent HPM estimations and real measurements; green points denote the monthly 543 

mean difference between HPM estimation and measurements. Panels (b), (d), and (f) show the scatter plots of daily (blue) 544 

and monthly (red) 𝑹𝑬𝑪𝑶 at these three sites. Darker blue clouds represent greater density of data points. 545 

4.3 Use Case 3: Ecoregion-Based, Mechanistic HPM Estimation of ET  546 

Mechanistic HPM, which is trained with ET estimates from 1-D physically-based-model simulations, 547 

provides an avenue for estimating ET in ecoregions where direct measurements from eddy covariance tower are not 548 

available. In order to test the effectiveness of the mechanistic HPM, we focused on the three SNOTEL stations and 549 

US-NR1, which locates in the “Western Cordillera” ecoregion. Mechanistic HPM is coupled with CLM simulations 550 

at these sites (Tran et al., 2019). To ensure the CLM physically-based-model simulations can provide alternative 551 

datasets to develop mechanistic HPMs, we compared CLM estimation and direct measurements of ET at US-NR1 552 

(Figure S2). The consistent results between measured ET and CLM-estimated ET (adjusted 𝑅2 = 0.88; 𝑘 = 0.95) 553 

indicate independent CLM simulations can be effectively used to develop the mechanistic HPM. 554 

We applied mechanistic HPM trained with 1-Dupon physically-based model simulations, provides an 555 

avenue for estimating fluxes in ecoregions where flux towers are not available . Consistent results between measured 556 

ET and CLM-estimated ET at US-NR1 (adjusted 𝑅2 = 0.88 ; 𝑘 = 0.95 , Fig. S1) indicate independent CLM 557 
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simulations can be effectively used to develop the mechanistic HPM. We applied mechanistic HPM trained with 1-558 

Dimensional (vertical) CLM developed at ER-BT (Tran et al., 2019) to estimate ET at sites classified as part of the 559 

samewestern Cordillera ecoregion (i.e., ER-SP, ER-PK and US-NR1). We then compared ET estimation from HPM 560 

to independent CLM-based ET estimations at ER-SP and ER-PK and to direct measurements at US-NR1.. Figure 97 561 

shows a high consistency between HPM estimation and the validation data. For all scenarios, an adjusted 𝑅2 of 0.8 562 

or greater is observed (Table 4), which strongly indicates that mechanistic HPM can provide accurate ET estimation 563 

at sites of similar ecoregions. These results suggest the broad applicability of mechanistic HPM to estimate ET 564 

based on ecoregion characteristics. This approach is expected to be particularly useful for regions where flux towers 565 

are difficult to install or where measured fluxes are not representative of the landscape, such as in mountainous 566 

watersheds.  567 

Table 4. Statistical summary of HPM estimation over space with FLUXNET sites and SNOTEL stations with CLM 568 

Target 

Site 

Training 

Site 

Level II Ecoregion ET MSE 

(monthly)[𝑚𝑚/
𝑑] 𝑑−1] 

ET 

Adj. 𝑅2 

RECOReco 

MSE(monthly)[𝑔𝐶𝑚−2𝑑−1] 
RECOReco 

Adj. 𝑅2 

CA-Obs CA-Oas Boreal Plain 0.39 0.88 0.36 0.97 

US-Var US-Ton Mediterrean 

California 

0.34 0.70 0.67 0.70 

US-Whs US-Wkg Western Serra Madre 

Pidemont 

0.13 0.94 0.17 0.85 

ER-SP ER-BT Western Cordillera 0.20 0.92 - - 

ER-PK ER-BT Western Cordillera 0.24 0.90 - - 

US-NR1 ER-BT Western Cordillera 0.23 0.90   



 569 



 570 
Figure 97. HPMs trained with CLM simulation at ER-BT are used to estimate ET at ER-SP, ER-PK, and US-NR1ER-PK. 571 

Panels (a), (c),) and (ec) display the time series of HPM estimation of ET (red lines), as well asand independent CLM 572 

estimation at ER-SP, and ER-PK, and eddy covariance measurements at US-NR1 (black lines).. Panels (b),) and (d), and 573 

(f) show the scatter plots of daily (blue) and monthly (red) ET at these three sites. Darker blue clouds represent greater 574 

density of data points. 575 

4.4 Exploration of How ET and 𝑹𝑬𝑪𝑶 Varies with Meteorological forcingsUse Case 4: HPM approach 576 
improved our prediction capability and Vegetation Heterogeneityprocess understanding at the East River 577 
Watershed 578 

ET and 𝑅𝐸𝐶𝑂  estimated from the HPM model at the mountainous East River Watershed in CO enabled us to 579 

analyze how vegetation heterogeneity and meteorological forcings heterogeneity influence estimated ET and 𝑅𝐸𝐶𝑂  580 

dynamics, and to identify limitations in the developed approach for estimating ET and 𝑅𝐸𝐶𝑂  across mountainous and 581 

heterogeneous watersheds.  582 

NDVI time-series data provide high-resolution (30m scale) information about vegetation variability across 583 

the East River Watershed. The spatial distribution of vegetation cover presented in Figure 2 (from Falco et al. 2019) 584 

enables us to distinguish different patches of deciduous forests, evergreen forests, meadow grassland and riparian 585 

shrublands and retrieve corresponding NDVI time-series. NDVI time series is related with snowmelt processes, 586 

whereas earlier snowmelt triggers earlier vegetation growth and result in earlier rise NDVI values  (Pedersen et al., 587 

2018). Figure 10 shows Landsat-derived and reconstructed NDVI values for the four different vegetation types 588 



within the East River Watershed. March, April and May mean NDVI values in 2012 for site DF1 are 0.07, 0.22 and 589 

0.37 respectively compared to 0.06, 0.15 and 0.33 in 2015. The early rise of NDVI values observed in April 2012 is 590 

consistent with the fact that snowmelt occurred much earlier in 2012 than in 2015, as recorded by the SNOTEL 591 

Butte station. Earlier increase of NDVI in earlier snowmelt year (2012) was also observed for other vegetation types.  592 

In addition, evergreen forests have an extended growing season compared to the other vegetation types. For 593 

example, March-mean NDVI for EF1, RS1 and MS1 in 2012 are 0.30, 0.13, 0.11 compared to 0.28, 0.11, 0.08 in 594 

2015, respectively whereas May-mean NDVI for EF1, RS1 and MS1 in 2012 are 0.38, 0.33, 0.35 compared to 0.34, 595 

0.29 and 0.31 in 2015, respectively. Though earlier snowmelt triggers earlier increase in vegetation growth, 596 

significant faster greenness was observed for deciduous forests, meadow grasslands and shrublands compared to 597 

evergreen forests, where NDVI increased by 0.08, 0.20, 0.24 and 0.30 for evergreen forests, shrublands, grasslands 598 

and deciduous forests in 2012, respectively. In addition, peak NDVI is generally smaller in evergreen forests 599 

compared to deciduous forests, meadow grasslands and riparian shrublands. NDVI ranges from 0.2 to 0.6 for 600 

evergreen forests, whereas larger fluctuations in NDVI are observed for deciduous forests, shrublands and 601 

grasslands. The NDVI values during the winter are likely sensing both snow and forest density, due to pixel spatial 602 

averaging from Landsat images. Similar to Qiao et al. (2016), we also found that the NDVI of deciduous forests 603 

exhibits a significant increase during the growing season, followed by a sharp decline (likely caused by defoliation), 604 

and that evergreen forests had a more stable NDVI. Similar sharp decreases in the NDVI of riparian shrublands and 605 

meadow grasslands are observed.  606 

 607 
Figure 10With the proposed HPM approach (e.g., mechanistic HPM), we were able to estimate ET and Reco 608 

at selected locations at the East River Watershed, CO, USA with only meteorological forcings and remote sensing 609 

data. Our estimations are comparable to other independent studies, such as Mu et al. (2013) (Fig. S2) and Berryman 610 

et al. (2018). HPM estimations enhanced our understanding of watershed processes and enabled us to explore the 611 

limitations in the developed HPM approach especially at mountainous watersheds.  612 

Physiology differences among vegetation types and dynamic changes in meteorological conditions were 613 

well captured by input features and HPM at the East River Watershed. Not surprisingly, the reconstructed NDVI 614 

indicated that deciduous forests have the highest peak NDVI followed by grasslands, shrublands and evergreen 615 

forests whereas annual variation of NDVI in evergreen forests is smaller than the other vegetation types (Fig. 8). 616 



Year 2012 is regarded as a fore-summer drought year with earlier than normal snowmelt, and year 2015 is regarded 617 

as a normal water year. The Palmer drought severity index (PDSI) is -5.2 and -1.5 for June and -4.6 and 1.1 for 618 

August in 2012 and 2015, respectively. Dynamic changes in meteorological conditions between 2012 and 2015 were 619 

also reflected in the reconstructed NDVI time series. We observed an earlier rise of NDVI in 2012: March, April and 620 

May mean NDVI values for deciduous forest sites are 0.07, 0.2 and 0.37 compared to 0.06, 0.15 and 0.33 in 2015. 621 

Similar trends were observed for other vegetation types during spring months as well. NDVI values remain high 622 

during the peak growing season (deciduous forest > grassland > shrubland > evergreen forest) for both 2012 and 623 

2015. However, we observed NDVI declines for grasslands and shrublands since August in 2012 but not until 624 

September in 2015. During autumn periods, NDVI declines significantly following the sharp decline in radiation.  625 

 626 

Figure 8: Reconstructed NDVI time series at selected locations in the East River Watershed for 2011 to 2018 (panel a) and 627 

for 2015 (panel b, normal water year). Black, red, green, and blue lines represent the time series of NDVI for deciduous 628 

forests, meadow grasslands, evergreen forests and riparian shrubland, respectively.  629 

HPM-estimated ET and 𝑅𝐸𝐶𝑂Reco also show different dynamics with different vegetation types as a result of 630 

differences in snowmelt timing,and meteorological forcing and vegetation heterogeneity.conditions. Figure 11a9a 631 

and 11b9b present the time series of estimated ET and 𝑅𝐸𝐶𝑂Reco associated with deciduous forests, respectively. 632 

Figure 11c9c and d9d present the ET and 𝑅𝐸𝐶𝑂 Reco differences between deciduous forests sites and evergreen 633 

forests, shrublands and grasslands. Before peak growing season, evergreen forests have the greatest ET and 634 

𝑅𝐸𝐶𝑂 Reco compared to the other vegetation types. ET of evergreen forests is about 10% greater than deciduous 635 

forests, whereas ET of deciduous forests during peak growing season is greater than evergreen forests , shrublands 636 

and meadows. After growing season, the NDVI of deciduous forests is less than 0.2 (loss of leaves) compared to the 637 

NDVI of evergreen forests. Before peak growing season, 𝑅𝐸𝐶𝑂 Reco of evergreen forests is slightly greater than 638 

deciduous forests, meadow grasslands and shrublands. During peak growing season, we observed largest 𝑅𝐸𝐶𝑂Reco 639 

for deciduous forests sites (~ 6 𝑔𝐶𝑚−2𝑑−1) followed by meadows, shrublands and evergreen forests. 𝑅𝐸𝐶𝑂Reco of 640 

deciduous forests is around 17 % greater than 𝑅𝐸𝐶𝑂 Reco of evergreen forests. However, we did not observe 641 

significant differences in annual ET among these four vegetation types (e.g., DF1DF: 535 to 573 mm, MS1MS: 534 642 

to 570 mm, RS1RS: 532 to 567 mm and EF1EF: 532 to 569 mm across 7 years in this study). Total annual 𝑅𝐸𝐶𝑂Reco 643 

of deciduous forests is greater than the other vegetation types (DF1: 642 to 698 𝑔𝐶𝑚−2, MS1: 588 to 636 𝑔𝐶𝑚−2, 644 



RS1: 589 to 636 𝑔𝐶𝑚−2 and EF1: 592 to 639𝑔𝐶𝑚−2). These results indicate HPM Reco models are sensitive to 645 

vegetation types and HPM ET models are mostly constrained by meteorological conditions.  646 

Considering the inter-annual variability in meteorological forcings, we further selected year 2014 (large 647 

snow precipitation ~ 587 𝑚𝑚 but small rain precipitation ~ 275 𝑚𝑚) in addition to 2012 (drought year) and 2015 648 

(small snow precipitation ~ 383 mm and large rain precipitation ~ 477 𝑚𝑚) to test HPM performance. As HPM 649 

does not have the capability to identify snow and monsoon precipitation’s contribution to fluxes, we separated 650 

annual ET and Reco into pre-June (January-June) and post-July (July-December) to quantify the contribution from 651 

snow and monsoon. Earlier snowmelt that occurred in 2012 boosted spring ET and Reco and we observed larger 652 

March-mean ET and Reco compared to 2014 and 2015 that are characterized by later snowmelt. Occurrences of fore-653 

summer drought in 2012 led to moisture limiting conditions, resulting in large fluctuations of ET and Reco during 654 

May and June. ET fluctuated from 2.9 to 1.9 𝑚𝑚 𝑑−1 during late May, and 3.53 to 2.6 𝑚𝑚 𝑑−1 during early June. 655 

However, early occurrence of monsoon in 2012 led to a peak ET in early July. Due to late snowmelt, ET did not 656 

significantly fluctuate in 2014 and 2015. However, peak ET shifted towards late July in 2014. Regarding Reco 657 

dynamics, fore-summer drought conditions led to variations in Reco from ~ 4 to 6 𝑔𝐶𝑚−2 𝑑−1 in 2012. In 2014, we 658 

observed more steady increase of Reco during the early and peak growing seasons. For late-summer and autumn 659 

months (August – October), ET decreased steadily in all three years regardless of monsoon precipitation inputs, 660 

following the significant decline in radiation. Pre-June ET and Reco (255𝑚𝑚  and 217 𝑔𝐶𝑚−2 𝑑−1 ) were both 661 

greater in 2012 compared to 2014 (223 𝑚𝑚 and 178 𝑔𝐶𝑚−2 𝑑−1) and 2015 (230 𝑚𝑚 and 197 𝑔𝐶𝑚−2 𝑑−1) in 662 

deciduous forests. While there were no significant differences in post-July ET among the three years (318, 316 and 663 

306 𝑚𝑚), 2012 was the highest. Within deciduous forests and annually over 2012, 2014 and 2015, ET was 573 mm, 664 

539 mm and 536 mm and Reco was 698 𝑔𝐶𝑚−2, 642 𝑔𝐶𝑚−2 and 652 𝑔𝐶𝑚−2, respectively. Considering the inter-665 

annual variability in snow dynamics, we observed annual ET at 569 𝑚𝑚  and 532 𝑚𝑚  and annual 𝑅𝐸𝐶𝑂  at 666 

639 𝑔𝐶𝑚−2 and 602 𝑔𝐶𝑚−2 at EF1 for 2012 and 2015, respectively. We observed an earlier increase in ET and 667 

𝑅𝐸𝐶𝑂  in 2012 with March-mean ET and 𝑅𝐸𝐶𝑂  at 0.69 𝑚𝑚/𝑑𝑎𝑦 and 0.51 𝑔𝐶𝑚−2𝑑−1  compared to 0.60 𝑚𝑚/𝑑𝑎𝑦 668 

and 0.47 𝑔𝐶𝑚−2𝑑−1 in 2015. During peak growing season, we observed July-mean ET at 3.43 and 3.33 𝑚𝑚/𝑑𝑎𝑦 669 

and 𝑅𝐸𝐶𝑂  at 4.73  and 4.47  0.47  𝑔𝐶𝑚−2𝑑−1  for 2012 and 2015, respectively. Though earlier snowmelt usually 670 

triggers summer drought conditions, we observed a significantly greater amount of monsoon precipitation in 2012 671 

(3.06𝑚𝑚𝑑−1) compared to 2015 (1.87𝑚𝑚𝑑−1). Water stress situation caused by earlier snowmelt was largely 672 

compensated by earlier monsoon in 2012, and thus we observed higher March, July and annual ET and 𝑅𝐸𝐶𝑂  673 

compared to 2015. Similar trends have also been observed for deciduous forests, shrublands and meadows in 2012 674 

and 2015.  675 
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 676 
. Similar trends were observed for other vegetation types.  677 



 678 

Figure 119: ET (a) and 𝑹𝑬𝑪𝑶Reco (b) estimation for the deciduous forest site DF1 at the East River Watershed. Panels (c) 679 

and (d) show the differences in ET and 𝑹𝑬𝑪𝑶Reco among various vegetation types and DF1.deciduous forest. Red, green, 680 

and blue lines represent the differences in evergreen forest, meadow, and riparian shrubland compared to DF1.deciduous 681 

forest. Panels (e) and (f) zoom into 2015 to better display seasonal variations. 682 

ET and 𝑅𝐸𝐶𝑂  estimation at the East River Watershed from the HPM model further enabledThough HPM 683 

estimations allowed us to assess the role of input attributes andexplore differences in ET and Reco across vegetation 684 

types and meteorological forcings heterogeneity, it is necessary to investigate the limitations of the HPM approach. 685 

Figure 1210 shows the absolute value of monthly mean difference in ET (Fig. 12a10a and Fig. 12b10b) and 686 



𝑅𝐸𝐶𝑂Reco (Fig. 12c10c and Fig. 12d10d) across SNOTEL stations (ER-BT, ER-SP and ER-PK) and within selected 687 

East River locations. Landsat data enabled us to capture NDVI differences at these sites (Figure 10), but we have 688 

identified the insufficient resolution of input meteorological forcing data at the East River sites. We observed a We 689 

observed greater differences in air temperature and radiation at the SNOTEL sites whereas there’sand very small 690 

differences at the East River sites (Figure S3). SummerS4). June air temperature differences among SNOTEL sites 691 

can bewere occasionally over 3℃ but there’s a barely 0.2℃ differences in, while the DAYMET data used forfrom 692 

the East River sitesrarely revealed 0.2℃ differences. In addition, a ~80 𝑊/𝑚2 𝑚−2 of radiation differences iswas 693 

observed with SNOTEL data whereas radiation differences stays around 30 𝑊/𝑚2 𝑚−2  for East River sites. 694 

Correspondingly, we observed 2.5 times greater differences in ET across SNOTEL stations compared to the sites 695 

within the East River watershed. We observed similar level of differences (around 0.8 𝑔𝐶𝑚−2) in 𝑅𝐸𝐶𝑂Reco within 696 

East River Watershed and across SNOTEL stations. Landsat data enabled us to capture NDVI differences at these 697 

sites, but we have identified the insufficient resolution of input meteorological forcing data at the East River sites. 698 

These results indicate uncertainties in meteorological forcing attributes (e.g., radiation and air temperature) can have 699 

a huge influence over HPM ET estimation and HPM Reco model is more sensitive to temperature and radiation 700 

inputs whereas NDVI, temperature and radiation are all influential for HPM 𝑅𝐸𝐶𝑂  models. Differences in ET and 701 

𝑅𝐸𝐶𝑂  among SNOTEL sites and East River sites are resulted from the differences in input meteorological forcing 702 

dataNDVI datasets. If high resolution meteorological data becomes available for the East River watershed, we 703 

believe the HPM approach can better capture heterogeneities in ET and 𝑅𝐸𝐶𝑂Reco at the East River watershed and 704 

better distinguish the roles of meteorological forcing and vegetation heterogeneity on ET and 𝑅𝐸𝐶𝑂Reco distribution.  705 

 706 



 707 

Figure 1210. Absolute differences in monthly mean ET and 𝑹𝑬𝑪𝑶Reco across SNOTEL stations and within East River 708 

Watershed. Panels (a) and (c) describe the absolute differences in monthly mean ET and 𝑹𝑬𝑪𝑶Reco between ER-BT, ER-709 

SP, and ER-PK. Panels (b) and (d) describe the absolute differences in monthly mean ET and 𝑹𝑬𝑪𝑶Reco within East River 710 

Watershed between deciduous forest (DF1),forests, evergreen forest (EF1),forests, meadow (MS1),grasslands, and 711 

riparian shrubland (RS1).shrublands. 712 

5. Discussion  713 

Our study demonstrates that HPM provides reliable estimations of ET and 𝑅𝐸𝐶𝑂Reco under various climate 714 

and vegetation conditions, including data-based HPMs that are trained with FLUXNET data as well as physical-715 

model-based HPMs that are coupled with simulations results. The unique gated structures and cell states of LSTM 716 

allow HPM to track information from mechanistic models (i.e., CLM in this study). With 70earlier times and decide 717 

which information to pass along and which information to forget. This effective configuration allows LSTM to 718 

effectively capture the long-term dependencies and ecological memory effects among meteorological forcings, 719 

NDVI, ET and Reco. With 70 % of the data used for training (model development), ET and 𝑅𝐸𝐶𝑂Reco estimation from 720 

HPM achieves an average adjusted 𝑅2 of 0.9 compared to eddy covarianceflux tower measurements. With this high 721 

estimation accuracy, we demonstrated that this approach could be usedTo demonstrate HPM’s applicability for 722 

predicting ET and 𝑅𝐸𝐶𝑂 over time. HPM is capable of “learning” the complex interactions among meteorological 723 

forcings, vegetation dynamics, and water and carbon fluxes. The underlying relationships acquired by HPM can 724 

serve as a local ecohydrological model for long-term monitoring of ET and 𝑅𝐸𝐶𝑂  with the aid of remote sensing 725 

data, and can fill in gap data during occasional equipment failure. HPM was also successful at estimating the spatial 726 



distribution ofproviding ET and 𝑅𝐸𝐶𝑂 through exploiting an ecoregion concept.  Using the representative FLUXNET 727 

sites in different ecoregions, HPM provided estimates ofReco estimation at sparsely monitored watersheds, we 728 

presented four use cases, including prediction ET and 𝑅𝐸𝐶𝑂 at locations using learned relationshipsReco in the time 729 

domain, data-driven HPMs and mechanistic HPMs. Results from other sites having the same ecoregion 730 

classification. For conditions where no FLUXNET sites are within the same ecoregion, our study showed that 731 

physically-based models that utilize weather forcings data can provide alternatives for developing mechanistic HPM 732 

to the four use cases suggest HPM is a powerful approach to estimate ET and 𝑅𝐸𝐶𝑂 .  733 

With the proposed HPM approach, we investigated the variability in ET and 𝑅𝐸𝐶𝑂  estimations across 734 

different proportions of the East River Watersheds. While we currently do not have continuous measurements of ET 735 

Reco at target watersheds requiring only 5 commonly available input data and 𝑅𝐸𝐶𝑂 at the East River Watershed for 736 

validation, our results are comparable to other studies that focus on sites within the same ecoregion. HPM -based ET 737 

estimation at East River Watershed is comparable to Mu et al. (2013), where ET is computed based upon the logic 738 

of the Penman-Monteith equation and MODIS remote sensing data (Figure S1), and the HPM-based 𝑅𝐸𝐶𝑂  739 

estimation is comparable to what Berryman et al. (2018) discovered, with growing season 𝑅𝐸𝐶𝑂 ranging between 740 

555 to 607 𝑔𝐶𝑚−2  and mean growing season 𝑅𝐸𝐶𝑂  ranging between 3.01 𝑡𝑜 3.30 𝑔𝐶𝑚−2 . Annual ET between 741 

deciduous forests and evergreen forests are not statistically different, which is similar to Mu et al. (2013). Annual 742 

𝑅𝐸𝐶𝑂  differences between evergreen forests and deciduous forests are around 50 𝑔𝐶𝑚−2, which is comparable to 743 

Berryman et al. 2018.can advance our understanding of watershed processes.  744 

We confirmed the important role of vegetation heterogeneity in modeling ET and 𝑅𝐸𝐶𝑂 dynamics, which 745 

further enabled us to better understand ecosystem dynamics at the East River Watershed. As indicated HPM was 746 

capable incorporating information from NDVI time series (Fig 10), to delineate the physiological differences among 747 

deciduous forests, evergreen forests, shrublands and grasslands. In our study, NDVI data indicated evergreen forests 748 

have a longer growing season compared to other vegetation types; however, and deciduous forests have higher peak 749 

NDVI values. Correspondingly, we also observed an earlier increase in ET and 𝑅𝐸𝐶𝑂 Reco for evergreen forests 750 

(before May), but larger ET and 𝑅𝐸𝐶𝑂Reco for deciduous forests during peak growing season (around June and July).  751 

Similar dynamics were also observed at regions that have different climate conditions. Through assessing the 752 

differential mechanisms of deciduous forests and evergreen forests at various sites under Mediterranean climates,  753 

Baldocchi et al. (2010) found that deciduous forests had a shorter growing season, but showed a greater capacity for 754 

assimilating carbon during the growing season. Evergreen forests, on the other hand, had an extended growing 755 

season but with a smaller capacity for gaining carbon. These results were identified through analyzing the 756 

relationships among leaf ages, leaf nitrogen level, leaf area, and water use efficiencies of these tree species at the 757 

selected Mediterranean sites. They found older leaves tend to have smaller leaf nitrogen and stomata conductance 758 

that lead to smaller ET and 𝑅𝐸𝐶𝑂Reco during peak growing seasons. Though our approach were not able to quantify 759 

the physiology differences among vegetation types, HPM estimation indicated evergreen forests  that maintain leaves 760 

throughout the year have smaller ET and 𝑅𝐸𝐶𝑂 during peak growing season compared to other vegetation types.  761 

Dynamic changes in the inter-annual variability of meteorological conditions result in varying growing 762 

season length and spatiotemporal variability in ET and 𝑅𝐸𝐶𝑂 . Earlier snowmelt triggers earlier growth of vegetation, 763 



causing earlier rise in ET and 𝑅𝐸𝐶𝑂 . However, earlier growth in vegetation and increasing demand for water results 764 

in drought conditions (Sloat et al., 2015; Wainwright et al., 2020) that decrease ET and 𝑅𝐸𝐶𝑂 . Timing and amount of 765 

monsoon precipitation are also important monsoons can relieve water stress and lead to increases in ET and 𝑅𝐸𝐶𝑂 . 766 

Combination of these events jointly determine the magnitude of annual ET and 𝑅𝐸𝐶𝑂 . Hu et al. (2010) analyzed flux 767 

data at US-NR1 to determine the relationships between growing season lengths and carbon sequestration, and found 768 

that extended growing season length resulted in less annual 𝐶𝑂2 uptake. They found that the duration of growing 769 

seasons substantially decreases snow water storage, which significantly decreases forest carbon uptake. Wieder et al. 770 

(2017) used point-scale CLM to better understand how complex terrain controls landscape-level variation of water, 771 

carbon and energy fluxes in the Niwot Ridge mountain ecosystems. With synthetic scenarios (e.g., different snow 772 

accumulation dynamics, fluctuations in air temperature), their simulation indicated earlier snowmelt and warmer 773 

summertime temperatures might drive divergent plant responses across the landscape. In our study, the combination 774 

of early snowmelt and early vegetation growth resulted in higher March ET and 𝑅𝐸𝐶𝑂  in 2012 compared to 2015. 775 

The earlier start of growing season led to occurrences of fore-summer drought that decreases ET and 𝑅𝐸𝐶𝑂 . 776 

However, the substantial earlier monsoon precipitation in 2012 relieved subsurface water stress whereas we 777 

observed higher July ET and 𝑅𝐸𝐶𝑂   compared to other years. In addition, we observed smaller annual ET and 𝑅𝐸𝐶𝑂  778 

for evergreen forests that have longer growing season compared to other vegetation types. These results suggested 779 

HPM is capable of translating these variabilities in meteorological forcing and vegetation variables to ET and 𝑅𝐸𝐶𝑂 780 

dynamics. found that extended growing season length resulted in less annual 𝐶𝑂2 uptake at Niwot Ridge, USA. 781 

They found increasing growing season length is usually correlated with decreasing snow water storage and 782 

decreasing forest carbon uptake. Xu et al. (2020) suggested canopy photosynthetic capacity is the driving force that 783 

lead to different resources use efficiencies (RUEs) between deciduous forests and evergreen forests. Novick et al. 784 

(2015) focused on the net ecosystem exchange of CO2 and also suggested seasonality is less important for evergreen 785 

forests, where significant amounts of carbon were assimilated outside of active season.  These findings are similar to 786 

what we found in HPM estimations, where we observed a greater ET and Reco contribution during early and later 787 

seasons for evergreen forests compared to deciduous forests that have significantly greater peak ET and R eco during 788 

peak growing season. As HPM only requires 5 input features and NDVI is the only variable related with vegetation 789 

types, we were not able to perform detailed analysis delinearing the physiological control on ET and Reco dynamics. 790 

But we believe HPM models are still useful as they can be provide initial ET and Reco estimation that help with site 791 

selection and field campaign designs.   792 

Through comparing the HPM estimation results at different ecoregions, we also identified and assessed the 793 

limitations of current selection of input parameters. In the current study, we only used meteorological forcing and 794 

remote sensing based variables as inputs for HPM models, because these data are generally acquirable from weather 795 

reanalysis datasets and remote sensing products. HPM models with these variables provided reasonable estimates of 796 

ET and 𝑅𝐸𝐶𝑂  for ecoregions limited by energy conditions, however we observed a decreasing prediction accuracy 797 

for ecoregions that experience seasonally dry periods. For example, HPM estimates at US-NR1 and CA-OAS 798 

achieved very high 𝑅2 and small MAE; but prediction accuracy decreases especially during peak growing season at 799 

US-Ton and other water-limiting sites. These results indicate other key variables are necessary in order to capture 800 



dynamics during the seasonally dry periods, such as soil moisture measurement. The current HPM models did not 801 

use soil moisture as an input variable due to data availability reasons, but we believe and recommend adding soil 802 

moisture as well as other key variables to HPMs to further improve model performance at these seasaonlly dry 803 

ecoregions when such data becomes available.   804 

Parameterization and spatiotemporal resolution of meteorological forcing data still remain a challenge for 805 

improving ET and 𝑅𝐸𝐶𝑂  estimation at sparsely monitred watersheds. Microcliamte and heterogeneities in 806 

meteorological forcing attributes control the mangnitude and timing of ET and 𝑅𝐸𝐶𝑂 dynamics. Other fieldTemporal 807 

variability in meteorological conditions also leads to unique ET and Reco responses at the East River Watershed, as 808 

shown by HPM estimations. Three years with a diverse combination of snow and rain precipitation were analyzed. 809 

In 2012, a year that experienced earlier snowmelt, both ET and Reco increased early in the season. However, earlier 810 

growth in vegetation and increasing demand for water resulted in fore-summer drought conditions that led to 811 

decreases in ET and Reco in late May and June. In 2014, HPM estimated a steady increase in ET and Reco during 812 

spring months following radiation and air temperature trends, with no subsequent significant decline in ET and Reco. 813 

This indicates that energy was still the key limiting factor for spring dynamics in 2014, leading to a smaller pre-June 814 

ET and Reco compared to 2012. Following an earlier arrival of monsoon in 2012 compared to 2014 and 2015, we 815 

observed higher mean ET and Reco in July than in June, which indicates the earlier arrival of monsoon precipitation 816 

greatly reduced the moisture limiting condition caused by fore-summer drought and led to subsequent increase in ET 817 

and Reco. During late summer and autumn months, radiation declined significantly with ~ 30 % decrease in August 818 

and ~ 40 % decrease in September. Though 2012, 2014 and 2015 had diverse monsoon precipitation during these 819 

periods, HPM did not estimate significant differences in post-July ET. This result indicates the East River watershed 820 

is mainly under energy-limiting rather than moisture-limiting conditions during late-summer and autumn; and timing 821 

of monsoon arrival is more important than the absolute amount of monsoon precipitation for ET dynamics. This 822 

result is consistent with findings in Carroll et al. (2020). Their study also indicated earlier arrival of summer 823 

monsoon was effectively supporting ET and that the monsoon precipitation was quickly consumed by vegetation, 824 

whereas later arrival of summer monsoon water mainly contributed to streamflow under energy-limiting conditions. 825 

Uncertainties of HPM models arise from several aspects. First, current choices of only five input features 826 

based on data availability may decrease estimation accuracy in certain environments, such as sites with seasonally 827 

dry periods. Though the LSTM component within HPMs can capture the memory effects and long-term 828 

dependencies of watershed dynamics, rare extreme values are difficult to be captured by LSTM due to insufficient 829 

training data for such cases. For example, we observed a decreasing prediction accuracy for ET and Reco estimation 830 

at sites that experience drought conditions. Current use of meteorological forcings data and NDVI may not provide 831 

sufficient data for LSTM to identify droughts implicitly. Other key variables (e.g., soil moisture) when available can 832 

potentially be useful to help LSTM better quantify these rare events and increase model performance . Secondly, 833 

parameterization and insufficient spatiotemporal resolution of meteorological data still remain a challenge. F ield 834 

observations along the Rocky Mountain ranges have shown that south-facing hillslopes have significantly earlier 835 

snowmelt compared to north-facing hillslopes (Kampf et al., 2015; Webb et al., 2018), which are hypothesized to 836 

result in significant differences in ET and 𝑅𝐸𝐶𝑂  dynamics. We compared ET and 𝑅𝐸𝐶𝑂  differences among SNOTEL 837 



sites and East River sites and identified ET differences among SNOTEL sites are greater than the differences a mong 838 

East River sites but 𝑅𝐸𝐶𝑂  differences are similar between the two groups. Data from weather stations (SNOTEL 839 

sites) captured the spatiotemporal heterogeneity in radiation and temperature, however DAYMET data suggested 840 

very small differences in radiation and temperature (Figure S3 and S4). The insufficient spatial resolution of input 841 

meteorological forcing data limits HPM performance at the East River Watershed. Uncertainties in meteorological 842 

inputs can result in large errors (i.e., >20% MAE) and reduce accuracy by 10-30% in ET and 𝑅𝐸𝐶𝑂  estimations as 843 

suggested by. However, we did not observe same level of heterogeneities in radiation and air temperature in 844 

reanalysis data compared to weather station data (Fig. S4 and S5). Mu et al. (2013) and Zhang et al. (2019). Thus, 845 

there is still a significant need for high-spatial-resolution suggested uncertainties in meteorological-forcing data 846 

products to enable better estimates of ET inputs can result in large errors (i.e., > 20 % MAE) and 𝑅𝐸𝐶𝑂  and assess 847 

the governing factors that regulate their spatiotemporal variability.   848 

In addition to the quality of meteorological datareduce accuracy by 10 – 30 %. Additionally, HPM is also 849 

influenced by remote sensing inputs accuracy. Incorrectly calculated or pixel-averaged NDVI values from Landsat 850 

images can greatly alter HPM outputs for ET and 𝑅𝐸𝐶𝑂 . Satellite images with different, including but not limited to 851 

insufficient resolution, cloud cover have a slight influence over the NDVI values calculated, which do not represent 852 

real-time vegetation conditions. Algorithms used to reconstruct daily NDVI time series are also subject to 853 

uncertainties, spatial averaging, temporal reconstruction, any other algorithms involved. But with recent advances in 854 

remote sensing and satellite technologies (McCabe et al., 2017) and harmonized Landsat-Sentinel datasets (Claverie 855 

et al., 2018), the spatial and temporal resolution should greatly increase in the future (i.e., 3 m resolution  and daily). 856 

These advances will lead to more accurate classification of vegetation types and NDVI calculations, which are 857 

expected to decrease uncertainty associated with flux estimationFinally, errors can stem from the HPM hybrid 858 

approaches and conceptual model uncertainties. Any original errors in mechanistic models will be passed  onto HPM 859 

estimations of ET and Reco. We recommend to train data-driven HPM and mechanistic HPM using long time series 860 

(e.g., > 5 years) with high quality data or simulations, which enables HPMs to better memorize long-term 861 

dependencies of ecosystem dynamics. Though some of the uncertainties still remain a challenge, efforts have been 862 

made to minimize them through the technical advances described herein. Future HPM models can potentially be 863 

jointly trained on FLUXNET and process-based simulations to bypass certain limitations and provide more accurate 864 

ET and Reco at sparsely monitored watersheds.  865 

Another source of uncertainty in HPM arises from the choice of hybrid approaches and any parameter 866 

uncertainties in mechanistic models. Since HPM relies on accurate ET and 𝑅𝐸𝐶𝑂  inputs from flux towers or 867 

mechanistic models, any uncertainties in measuring or modeling ET and 𝑅𝐸𝐶𝑂 will propagate to HPM. If HPM is 868 

developed with a mechanistic model that has such missing components, these biases will be passed on to HPM 869 

estimation of ET and 𝑅𝐸𝐶𝑂 . Parameter and conceptual model uncertainties in mechanistic models also restrict 870 

HPM’s ability to “learn” the ecosystem dynamics. In order to reduce potential biasedness, we trained data-based 871 

HPM and physical-model-based HPM upon long time series (e.g., > 5 years) with quality assessed data or 872 

simulation results, which also enables HPM to better memorize long time dependencies of ecosystem dynamics. 873 



Though the quantification of uncertainties remains challenging, efforts have been made to lower these uncertainties 874 

using the technical advances described here.  875 

6. Conclusion 876 

In this study, we developed and tested a Hybrid Predictive Modeling (HPM) approach for ET and 𝑅𝐸𝐶𝑂Reco 877 

estimation, with aan enhanced focus on mountainous watershedsa watershed in the Rocky Mountains. We developed 878 

individual HPM models at various FLUXNET sites and at sites where data can supportscould support the proper 879 

development of a mechanistic model (e.g., CLM). These models were validated against eddy covariance 880 

measurements and CLM outputs. We further used these models for ET and 𝑅𝐸𝐶𝑂Reco estimation at watersheds within 881 

the same ecoregion to test HPM’s capability of providing estimation over space , where only meteorological forcings 882 

data and remote sensing data were available. Lastly, we applied the HPM to provide long-term estimation of ET and 883 

𝑅𝐸𝐶𝑂Reco and test the sensitivity of HPM to various vegetation types at various sitesand meteorological conditions 884 

within the East River Watershed of CO, USA.  885 

Given the promising results of HPM, this workthe approach offers an avenue for estimating ET and 886 

𝑅𝐸𝐶𝑂 Reco using easy-to-acquire or commonly available datasets. This study also suggests that the spatial 887 

heterogeneity of meteorological forcings and vegetation dynamics have significant impacts on ET and 𝑅𝐸𝐶𝑂 Reco 888 

dynamics, which may be currently underestimated due to typically coarse spatial resolution of data inputs. 889 

Parameters related to energy and soil moisture conditions can be implemented into HPM to increase HPM’s 890 

accuracy, especially for sites in ecoregions limited by soil moisture conditions. Lastly, it should be pointed out that 891 

HPM is not restricted to estimation of ET and 𝑅𝐸𝐶𝑂  only. We focused here on developing HPM for ET and 𝑅𝐸𝐶𝑂, 892 

butReco only. HPM also has great potential for estimating other parameters important for water and carbon cycles 893 

given the right choice of input variables. Indeed, other attributes, such as net ecosystem exchange (Figure A6)). 894 

Thus, we believe the proposed HPM model can improve our prediction capabilities of ET and sensible heat flux, 895 

might also be accurately capturedReco at sparsely monitored watersheds and represented with HPM, given the right 896 

choice of featuresadvance our understanding of watershed dynamics.  897 
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1. ET and 𝑹𝑬𝑪𝑶 Estimation over Time at other Fluxnet sites 1180 
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 1182 

Figure A1: ET estimation with data from selected FLUXNET sites at CA-OBS, US-WkgNR1, US-SRM, and US-SRMTon. 1183 

Panels (a), (c), (e) and (eg) present daily estimations of ET with red, green, and blue lines representing data usedseparated 1184 

for training, validation, and prediction, respectively, and the black line representing the eddy covariance measurement.. 1185 

Pink points describedepict monthly mean differenceerror between HPM estimation and measuredFLUXNET data. Panels 1186 



(b), (d), (f) and (fh) show the scatter plots of daily (blue) and monthly (red) ET. Darker blue clouds represent greater 1187 

density of data points.  1188 
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 1191 

Figure A2: ET estimation with data from selected FLUXNET sites at US-Ton,  US-Var, and US-Whs. , US-Wkg and US-1192 

Me2. Panels (a), (c), and (e) and (g) present daily estimations of ET with red, green, and blue lines representing data 1193 

usedseparated for training, validation, and prediction, respectively, and the black line representing the eddy covariance 1194 

measurement.. Pink points describedepict monthly mean differenceerror between HPM estimation and 1195 

measuredFLUXNET data. Panels (b), (d), (f) and (fh) show the scatter plots of daily (blue) and monthly (red) ET. Darker 1196 

blue clouds represent greater density of data points.  1197 
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 1201 

Figure A3: 𝑹𝑬𝑪𝑶Reco estimation with data from selected FLUXNET sites at CA-OBS, US-WkgNR1, US-SRM, and US-1202 

SRMTon. Panels (a), (c), and (e) and (g) present daily estimations of 𝑹𝑬𝑪𝑶  with red, green, and blue lines representing 1203 

data usedReco separated for training, validation, and prediction, respectively, and the black line is eddy covariance 1204 

measurement.. Pink points describe thedepict monthly mean differenceerror between HPM estimation and 1205 



measuredFLUXNET data. Panels (b), (d), and (f) and (h) show the scatter plots of daily (blue) and monthly (red) 1206 

𝑹𝑬𝑪𝑶.Reco. Darker blue clouds represent greater density of data points.  1207 

 1208 

 1209 



 1210 

Figure A4: 𝑹𝑬𝑪𝑶Reco estimation with data from selected FLUXNET sites at US-Ton, US-Var, and US-Whs., US-Wkg and 1211 

US-Me2. Panels (a), (c), and (e) and (g) present daily estimations of 𝑹𝑬𝑪𝑶 with red, green, and blue lines representing data 1212 

usedReco separated for training, validation, and prediction, respectively, and the black line representing the eddy 1213 

covariance measurement.. Pink points describedepict monthly mean differenceerror between HPM estimation and 1214 



measuredFLUXNET data. Panels (b), (d), and (f) and (h) show the scatter plots of daily (blue) and monthly (red) 1215 

𝑹𝑬𝑪𝑶.Reco. Darker blue clouds represent greater density of data points.  1216 
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 1219 
Figure A5: ET and 𝑹𝑬𝑪𝑶 estimation at US-Me2. Panels (a) and (b) show the scatter plots of daily (blue) and monthly (red) 1220 

ET and 𝑹𝑬𝑪𝑶. Darker blue clouds represent greater density of data points. Panels (c), and (d) present daily estimations of 1221 

𝑹𝑬𝑪𝑶 with red, green, and blue lines representing data used for training, validation, and prediction, respectively, and the 1222 

black line representing the eddy covariance measurement. Pink points describe monthly mean difference between HPM 1223 

estimation and measured data.  1224 
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 1226 

Figure A5: Use case 2. ET and Reco estimation at US-Var and US-Whs from HPM trained at US-Ton and US-Wky, 1227 

respectively.   1228 

 1229 

2. Tested NEE Estimation over Time at CA-OAS and US-NR1 1230 
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 1232 
Figure A6. HPM estimate of NEE at CA-OAS and US-NR1. 𝑹𝟐 between estimation and measurements are 0.87, 0.83 and 1233 
0.81 at CA-OAS; 0.94, 0.88 and 0.90 at US-NR1 for the training set, validation set and prediction set, respectively. Model 1234 
inputs include air temperature, soil temperature, sn, precipitation and radiation.  1235 
 1236 
 1237 
 1238 
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