
We thank the editor and two anonymous referees for the comments and for giving us the chance to 

improve the manuscript. Below are our point-by-point responses to the referees’ comments, followed by a 

revised manuscript showing all track changes made through the major revision.  

Response to comments by anonymous referee #1: 

Specific Comments: 

Q1: L66-67: Reading back through the manuscript, this seems at odds with the practice of using single flux 

towers to represent the larger ecoregion (section 4.2). I don’t actually have a problem with that research 

design, but this heterogeneity discussion may not be the best way to set things up. 

Response: We have improved the discussion on using flux towers while trying to evaluate the effect of 

heterogeneity in the revised manuscript (L67-L73). We agree that flux towers are mainly installed and 

maintained at relatively flat areas and thus provide fluxes and meteorological conditions that are not 

indicative of the heterogeneity in each ecoregion. Still, we believe that HPM models trained at these sites 

can capture the interactions among ET, 𝑅𝐸𝐶𝑂  and meteorological forcing and vegetation data and then 

reproduce at some extent the heterogeneity in ET and 𝑅𝐸𝐶𝑂 within the ecoregion based on the variability in 

meteorological forcing and vegetation data. We validated this approach in the Use Case 2.  While the results 

obtained in the various Uses cases show that the developed approach performed well, they also indicate the 

current limitations of this approach. The main limitation is due to insufficient resolution of meteorological 

reanalysis product, which did not reflect the corresponding heterogeneity. In addition, snow and soil 

moisture data could presumably improve HPM estimation especially during seasonally dry periods, 

however these datasets are difficult to be obtained over space and time. In the discussion section of the 

revised manuscript, we have also acknowledged ongoing research that focus on resolving data limitation 

issues caused by complex terrain, such as NASA’s Asteroid Redirect Mission and Surface Atmosphere 

Integrated Field Laboratory Data.  

Q2: L 73-75: Also uneven hydrologic distribution due to lateral flow in complex terrain (e.g., Chang et al. 

2018) that results in heterogeneous fluxes.  

Response: We have acknowledged this perspective (L83-L86).  

Q3: L109: Has NDVI been defined? 

Response: We have added the definition (L116). 

Q4: L142-144; L365-367: After reading through the manuscript once, I’m not convinced this objective was 

met or even really addressed, which was confusing because I kept expecting to come across these results. 

The small-scale heterogeneity results must be expanded or else it may not be a fatal flaw to just remove 

this language/objective if the analysis didn’t work out (as you intimate on L574-577). In any case, the 

current manuscript introduction/objectives/results are inconsistent with respect to the degree of focus on 

this topic.  

Response: We agreed that the particular objective of reconstructing small-scale heterogeneity was not 

entirely met. While the method has shown promising results for predicting ET at other locations in similar 

topographic position (i.e., flat area), we intended to investigate how meteorological forcing and vegetation 

heterogeneity influence ET and 𝑅𝐸𝐶𝑂 at the East River Watershed and the nearby SNOTEL stations. With 

comparison of meteorological forcing data between weather station and DAYMET data (Figure S3 and S4), 

we concluded that the insufficient resolution in meteorological reanalysis products limited the ability to 

estimate the spatiotemporal variability of ET and 𝑅𝐸𝐶𝑂  in mountainous watersheds where slope aspect 



influence the energy balance. This confirm the importance of improving meteorological reanalysis products. 

While we recognize the above limitation, the impact of vegetation on the ET and 𝑅𝐸𝐶𝑂 dynamics can be 

assessed as NDVI data are obtained at much higher resolution. This is what we focused on in section 4.4. 

The objective and related discussions have been modified and clarified (L147-L152, L365-L374).  

Q5: L143: Replace “CO” with “Colorado, USA” for the global audience.  

Response: We have made this change (L151). 

Q6: L150: I’m curious how you defined “mountainous watersheds” for this study. I’ve been to the Walnut 

Gulch sites and they didn’t strike me as the least bit mountainous. Also, with respect to my comment on 

L142-144, how important is the “mountainous” aspect anyway? I understand the broader impacts for water 

resources, but you’d reach a wider audience if the results were presented in a more general way. I see 

advantages and disadvantages to both mountain-specific and general analyses, but details/justification 

(mountain) or else re-framing (general) is needed in either case. 

Response: We define mountainous watersheds as watersheds where different microclimate are present for 

different elevations (e.g., montane, subalpine and alpine areas). In this study, we mainly refer to the East 

River Watershed in Colorado, USA as the representative site for mountainous watersheds (Use Case 4).  

The FLUXNET sites were selected to test HPM’s capability and limitations under different climate 

conditions, which may not necessarily locate in mountain regions. For example, US-Ton and the Walnut 

Gulch site should not be treated as mountainous watershed sites. We have justified these differences in 

revised manuscript (L158-L160, L162-L174).  

Q7: L162: How were the eight FLUXNET stations selected? Some justification needed here. Was it to 

facilitate the paired approach in section 4.2? 

Response: The Fluxnet sites were selected to sample different climate type, cover a wide range of 

meteorological and vegetation conditions, and provide continuous >5 years’ time series data. These sites 

represent different ecoregions from Californian Mediterranean, Sierra Madre Piedmont to Western 

Cordillera and Boreal Plain. Using sites in various ecosystems enabled us to evaluate the performance of 

HPM across different sites located in the same ecoregion and evaluate differences in processes driving the 

ET and 𝑅𝐸𝐶𝑂 response in various ecoregions. For example at ecoregions limited by energy conditions (e.g., 

CA-Oas), current HPM estimations are good, whereas at ecoregions with seasonally dry periods, additional 

variables (e.g., soil moisture data) might be needed to improve HPM accuracy. The choices of these sites 

not only facilitated the paired approach in Use Case 2 and 4, but also enabled us to assess HPM limitations 

at different ecoregions. In the recent revision of the manuscript, additional sets were considered, including 

US-Me2 (Q21).  

Q8: L164: Table 1 indicates that the Saskatchewan sites are colder than US-NR1.  

Response: We have corrected this mismatch (L164).  

Q9: Table 1: I assume the periods of records are truncated at 2015 because you used the FLUXNET2015 

product? This should be specified. Watch significant figures through-out this table. 

Response: Yes. We have clarified this point in the revised manuscript (L187).  

Q10: L227: Why was it necessary to treat this site different than the others? Please provide details about 

this “cleaning” procedure and why it was needed. 



Response: We have identified some data gaps and erroneous data for the ET data at US-NR1 from the 

FLUXNET2015 database. The data cleaning framework provided in Rungee et al., 2019 is well documented. 

We made this decision after visualizing the raw data at US-NR1, where measurements during winter periods 

are likely uncertain. (L229-L230)  

Q11: L367: The previous text makes it sounds like three (nor four) cases – confusion. 

Response: Thank you for your comment. We have clarified the paragraph (L365-L371).  

Q12: Table 3: You probably don’t need a table just to say that “sn” was included at three of the eight sites. 

Especially because you already have so many display items.  

Response: Thank you for your comments. We have made the recommended change.  

Q13: L378-380: I’m very curious as to whether this was also the case at the seasonally dry Walnut Gulch 

sites? If so, it speaks to systematic bias where the model captures ET dynamics during energy-limited but 

not water-limited periods. This strikes me as a major result (see general comments) and could be leveraged 

to make recommendations about the input variables that are necessary for various systems. 

Response: Thank you for your comments. We agree that the current HPM models with only meteorological 

attributes and NDVI as features generally captures ET dynamics during energy-limited but not water-

limited periods. Variables (i.e., precipitation and constructed index, sn) provide indirect information 

regarding water stress, and we have observed high prediction accuracy during winter time and early 

growing season. However prediction accuracy usually decreases during peak growing season (summer 

time), especially at ecoregions that experience dry periods (e.g., occurrence of drought (Sloat et al., 2015; 

Wainwright et al., 2020). Based on these observations, HPM performs better during energy-limited periods 

than water-limited periods. As soil moisture is the variable that directly quantifies subsurface moisture 

stress, including soil moisture as a key variable at HPM can be effective in improving HPM performance. 

However, soil moisture data highly depends on depth and other subsurface properties (more details provided 

in Q19). Due to these reasons, we decided not to include soil moisture at the current stage for HPM 

development (L333-L338) and emphasized the importance of including necessary variables when data 

becomes available for various systems (L616-L627).  

Q14: L383-395: Wouldn’t the model overestimate (not underestimate) Reco if it can’t account for soil 

moisture limitation during this time? Please clarify 

Response: LSTM captures the long-term temporal fluctuations over time really well. But less frequent 

signals from peak growing season can be neglected due to the decreasing statistical significance. The 

underestimation of 𝑅𝐸𝐶𝑂 during peak growing season is resulted from LSTM emphasizing on capturing 

long term dynamics and smoothing the larger values that occur less frequently.  

Q15: L408-411: Seemingly contradicts L66-67 

Response: We have further clarified this bullet point in the revised manuscript (L65-L73). Also see response 

for Q1 response. 

Q16: L493: Units mismatch 

Response: We have made the necessary correction (L519-L520). 

Q17: L495-505: Discussion 

Response: We have made the necessary changes. 



Q18: L516-518: In my mind, this is a missed opportunity to gain processed-based (and thus transferrable) 

insight. What about these sites could factor into ET differences that are so much greater than the Reco 

differences? See general comments.  

Response: Thank you for your comment. Through further investigating data inputs and model performance, 

we believe the ET and 𝑅𝐸𝐶𝑂 estimation at the East River Watershed are limited by the insufficient resolution 

of input data. There are two major factors that lead to the differences of ET and 𝑅𝐸𝐶𝑂 among these sites. 

The first perspective is that HPM ET model is more sensitive to temperature and radiation inputs compared 

to NDVI whereas NDVI, temperature and radiation are all influential for 𝑅𝐸𝐶𝑂 estimations. The second 

perspective is about data resolution and uncertainty. Data provided by SNOTEL weather stations are more 

accurate than DAYMET reanalysis data. We observed a greater differences in temperature and radiation at 

the SNOTEL sites whereas there’s very small differences at the East River sites (Figure S3). Summer 

temperature differences among SNOTEL sites can be over 3℃ but there’s a barely 0.2℃ differences in 

DAYMET data used for the East River sites. From Landsat data, we could distinguish the differences in 

NDVI at the East River sites (Figure 10) and these differences are well captured by HPM 𝑅𝐸𝐶𝑂 model. 

Considering both the model and data perspectives, it explained why we observed these differences in ET 

and 𝑅𝐸𝐶𝑂 at these sites. With the high prediction accuracy for Use Case I scenarios, we believe HPM is 

capable to capture the interactions among ET, 𝑅𝐸𝐶𝑂 and input variables. If high resolution meteorological 

data becomes available at the East River Watershed such as the Surface Atmosphere Integrated Field 

Laboratory (SAIL), we believe HPM can better distinguish how meteorological forcing heterogeneity 

controls ET and 𝑅𝐸𝐶𝑂 and more process-based interpretation can be learned from HPM estimations. These 

discussions have been implemented in the revised manuscript (e.g., L535-L551; L597-L604; L628-L637).  

Q19: L544-546: How hard would it be to add moisture into the model? Why wasn’t it added in the first 

place? I’m not suggesting that you re-do the analysis, but the readers will be very interested in this 

information. 

Response: For Use Case 1 situations, it is applicable and relatively easy to add soil moisture into the model. 

However for the other Use Cases where the model will be transferred over space, it is difficult to directly 

use soil moisture as an input variable given soil moisture measurements  is often made at various depths, 

and other aquifer characteristics that won’t necessarily be the same at different sites. This dependence on 

depth and other soil characteristics limits the model transferability at inadequately monitored watersheds 

(L333-L338). Thus we have decided not to include soil moisture as an input variable. In L616-L627 of the 

revised manuscript, we have recommended to include soil moisture and other important variables if data 

becomes available and researchers have more information regarding the site of focus. For example, at 

ecoregions that experience seasonally dry periods, it is useful to add soil moisture in HPM.  

Q20: L563-568: It’s not clear to me what model results “present similar dynamic trends” to the moisture 

limitation invoked by Hu et al. 2010 (and a host of larger scale, more recent work). My current 

understanding is that the model breaks down somewhat in the presence of moisture limitation, which I 

consider an interesting and valid result/contribution, but you can’t have it both ways i.e., the model either 

does or does not capture fluxes during periods of relative moisture limitation. Perhaps I’m missing 

something.  

Response: Thank you for your comment. We meant to say ET and 𝑅𝐸𝐶𝑂 estimation from HPM at the East 

River Watershed are comparable to the other studies. Specifically in Hu et al. (2010) at US-NR1, they were 

able to use snow, branch and soil sample data to conclude longer growing season lead to less carbon 

sequestration. At the East River Watershed, HPM estimated smaller 𝑅𝐸𝐶𝑂  for evergreen forest (592 to 

639𝑔𝐶𝑚−2) that have longer growing season, compared to deciduous forest (642 to 698 𝑔𝐶𝑚−2). In the 



revised manuscript, we also compared 2012 (earlier snowmelt and longer growing season length) to other 

years and discussed how these dynamics influence seasonal and annual ET and 𝑅𝐸𝐶𝑂 (L521-529).  

The current HPM model does not include soil moisture due to reasons in Q19, however other attributes, 

such as precipitation and sn, provide indirect information regarding the moisture inputs. Thus fluxes 

estimated from HPM during moisture limiting periods are still reasonable. In the revised manuscript, we 

have demonstrated this limitation of HPM and suggested to incorporate soil moisture data in addition to 

precipitation and sn when they become available.  

Q21: L609: Still need more convincing about how “mountainous” was defined and why these sites were 

chosen, in particular with respect to other “mountainous” sites in the FLUXNET2015 database. I’m 

thinking of sites in New Mexico and possibly Oregon off the top of my head. 

Response: Thank you for your comment. In our study, the representative site of mountainous watersheds is 

the East River Watershed, and the surrounding US-NR1 and SNOTEL sites. Other Fluxnet sites were 

selected to test the capability and limitations of HPM under other climate conditions (e.g., US-Ton, US-

Wkg) and are not considered as mountainous sites. We have also included US-Me2 (Oregon) in our study. 

We did not include US-VCM (New Mexico site) after recognizing the occurrence of fire in 2013. These 

changes have been clarified in the revised manuscript. We have also added the estimation of ET and 𝑅𝐸𝐶𝑂 

at US-Me2. Results of US-Me2 is attached here and also included as Figure A5 in the revised manuscript.  

 

Figure 1. Added HPM estimation of ET and 𝑅𝐸𝐶𝑂 at US-Me2. Data from 2011 are partially missing, 

which may decreases LSTM performance at US-Me2.  

 



Response to comments by anonymous referee #2: 

Q1: Row 34: why Reco? I can’t understand why the second variable considered in the study was the 

ecosystem respiration. It is not observed directly by FLUXNET network, but can be estimated indirectly 

from net ecosystem exchange (NEE) measurements made by eddy covariance towers during the night. The 

main term is NEE, why are you not considering it directly? NEE is the key variable considered world wide. 

Please, include NEE.  

Response: We agree that NEE is one of the key variables considered worldwide, and is directly measured 

by eddy covariance flux towers.  However, 𝑅𝐸𝐶𝑂 is also very important as it represents the total ecosystem 

carbon emissions from land to the atmosphere, and is very sensitive to climate change (Le Quéré et al., 

2009),  and thus quantifying and estimating 𝑅𝐸𝐶𝑂 is needed. This study is not the only one that concentrates 

on 𝑅𝐸𝐶𝑂. For example, Ai et al. (2018) developed a semi-empirical, physiologically based, remote sensing 

model to estimate 𝑅𝐸𝐶𝑂 using MODIS data; Solomon et al. (2013) estimated daily respiration rates using 

maximum likelihood fits of a free-water metabolism to quantify respiration dynamics in six lakes.  

An additional reason to consider 𝑅𝐸𝐶𝑂  and not NEE in this study is that one of the major objectives of this 

study is to provide an estimate of ET and 𝑅𝐸𝐶𝑂 at watersheds where flux towers are not available. The 

daytime and nighttime partitioning methods (van Gorsel et al., 2009; Reichstein et al., 2005) requires sub-

daily scale NEE data to compute daily scale 𝑅𝐸𝐶𝑂. However at these sparsely monitored watersheds, sub-

daily scale NEE data is not available and could not be predicted with weather reanalysis and remote sensing 

data that are at coarser temporal scales. Thus developing methods that estimate daily scale 𝑅𝐸𝐶𝑂 is still 

needed and will help advance our understanding of ecosystem dynamics and carbon cycling at the 

inadequately monitored watersheds.  

While we decided to not include NEE in our manuscript, we have tested the HPM approach to estimate 

NEE at CA-OAS. We observed a 𝑅2 larger than 0.8 between the measurements and predictions (Figure 2). 

With this result, we believe HPM can be an appropriate approach for estimating daily NEE with right 

choices of variables. However, we believe replacing 𝑅𝐸𝐶𝑂 with NEE will change the scope of this study, 

and thus we do not plan to include NEE at the current stage.  

 

Figure 2. HPM estimate of NEE at CA-OAS and US-NR1. 𝑅2 between estimation and measurements are 

0.87, 0.83 and 0.81 at CA-OAS; 0.94, 0.88 and 0.90 at US-NR1 for the training set, validation set and 

prediction set, respectively. Model inputs include air temperature, soil temperature, sn, precipitation and 

radiation.  



Q2: Rows 101-105: please, include also SENTINEL 2, the new satellite for NDVI observations with better 

time and spatial resolutions, available from 2015.  

Response: We considered using SENTINEL 2 data but our evaluation has shown that LANDSAT was more 

adapted for the period of time we are concentrating on in this study. From our knowledge, the Sentinel 2 

surface reflectance data has a 10m resolution for the red and near infrared band with an averaged revisit 

time of 5 days since March 2017 (Main-Knorn et al., 2017). In Use Case I, II and III scenarios, our HPM 

estimates covered the period up to 2016 as we were using FLUXNET2015 datasets. For Use Case IV, we 

have checked the data availability of Sentinel 2 surface reflectance data over the East River Watershed. A 

total of 106 Sentinel 2 dataset is available till 2018, however only 13 of them have a cloud cover less than 

10% during the sampling period. We tested with the additional Sentinel-2 NDVI data, but we did not 

observe notable changes in ET and 𝑅𝐸𝐶𝑂 estimations compared to previous ones with only Landsat data. 

Meanwhile, we also checked out other satellite products, including the Planet-Lab (McCabe et al., 2017); 

the harmonized Landsat-Sentinel product (Claverie et al., 2018) as well as other satellite data fusion 

products (Shao et al., 2019).  However, they still do not increase the temporal resolution prior to 2017. 

Based on the above assessment we decided to use Landsat data only. We agree that future work could 

expand HPM based ET and 𝑅𝐸𝐶𝑂 estimations using various combination of satellite products.  

Q3: Rows 162-165: mean annual precipitation of the watershed is 1200 mm/y. Hence, how can be 

representative these stations? 

Response: We agree the manuscript did not clearly describe the reason of using FLUXNET site with very 

different meteorological forcing from the East River watershed. We have improved the manuscript to make 

it clearer. The FLUXNET sites considered in this study is mainly used in Use Case I and Use Case II. We 

wanted to explore the capability of HPM under different climate conditions. For example, we selected US-

Ton to test whether HPM is able to provide reasonable estimate of ET and 𝑅𝐸𝐶𝑂 under Mediterrean climate 

(Csa) whereas at US-NR1 for subarctic environment (Dfc). We did not intend to use HPM developed at 

US-Ton and other FLUXNET sites to be representative stations for the East River Watershed. We have 

further clarified the major objective of and the various Use Cases in the revised manuscript (L166-L174, 

L365-L374).  

Q4: Rows 194-196: basin areas? slope? 

Response: We were describing the general characteristic of the East River Watershed, which include both 

basin areas and montane areas.   

Q5: Rows 207: why 16 locations? And not 10 or 20? Please, any sensitivity analysis? Any uncertainty 

estimate? 

Response: We focused on four main vegetation types within the East River Watershed, including deciduous 

forests, evergreen forests, riparian shrublands and meadow grasslands. We defined 16 locations to have 

some replicates to evaluate the spatial variability. Given the 30-m spatial resolution of Landsat, we tried to 

select locations at the center of vegetation patched and covered or at least strongly dominated by one 

vegetation type. We evaluated it manually and decided that 16 locations (4 for each vegetation type) was a 

pragmatic choice.  

Equation (1): this equation is the NDVI definition, you don’t need to include in the text, it is well known.  

Response: We have made the necessary change in the revised manuscript.  



Q6: Row 264: please, include the time resolution of the model, its space resolution, and the size of the 

domain. 

Response: The time resolution of HPM is daily. The spatial resolution depends on different Use Cases and 

spatial resolution of data inputs. We have made these changes in the revised manuscript, and also further 

clarified in each of the Use Cases in section 4 (L371-L374).  

Q7: Row 291: how is estimated g? 

Response: g is the hyperbolic tangent activation function. It is used to determine candidate cell states and 

update the hidden states (Hochreiter and Schmidhuber, 1997; Kratzert et al., 2019). g is not estimated. 

Q8: Row 300: how are estimated Wf, Uf, and bf? 

Response: We clarified this. 𝑊𝑓 , 𝑈𝑓 and 𝑏𝑓 are representing learnable parameters for the forget gates. There 

are other 𝑊, 𝑈 and 𝑏 for the internal states and hidden states. We used the Adam algorithm (Kingma and 

Ba, 2014) with a mean absolute error loss function built in Keras (Chollet, 2015). 

Q9: Row 318: how many parameters in total? 

Response: We thank the reviewer’s comment. There are 11600 and 7600 parameters for the first and second 

LSTM layers; 208 and 9 for the first and second dense layers and no parameters for the dropout layers. 

These information is available in Table 1 in the supplementary material.  

Q10: Equations (10) and (11): you don’t need to include these equations. These are statistical index very 

well known. 

Response: We have made the necessary change in the revised manuscript.  

Q11: Row 362-363: I looked at section 4.1 and it doesn’t estimate any temporal dependency. It just tested 

the model at a not very clear time scale. 

Response: We used the word “long term temporal dependency” in a deep learning (or statistical) context 

where there are significant temporal correlation and long time lags in time series. LSTM and recurrent 

neural networks are one of the very efficient and effective deep learning models that are capable to capture 

such long term dependencies. In the revised manuscript, we have been more careful in terms of the wording 

that overlap among different fields.  

Q12: Row 374: again, what is the time scale? 

Response: We thank the reviewer’s comment. Our ET and 𝑅𝐸𝐶𝑂 estimations are at daily scale. We have 

better clarified the time scale in the manuscript.  

Q13: Row 390: Is it always at monthly time scale? please, again, define the time scale. 

Response: We thank the reviewer’s comment. Our estimate is at daily scale, which are used to calculate 

monthly means. In figure 5 and following figures, we presented the results of both daily and monthly mean 

between HPM and measurements in order to check model performance. We also aggregated our daily 

estimates to 8-day mean at the East River sites, which enabled us to compare our results to Mu et al. (2013) 

as shown in Figure S1 

Q14: Row 396-307, ‘…which also indicates that soil moisture data is necessary to increase Reco prediction 

accuracy in this ecoregion…”. how can you support this statement? 



Response: We thank the reviewer’s comment. The decreasing prediction accuracy occurred at sites limited 

by water and moisture conditions (e.g., US-Ton and US-Var) where other studies investigated how 

ecosystem respond to subsurface water availability (Von Buttlar et al., 2018; Song et al., 2014). At sites 

with seasonally dry periods (e.g., US-NR1), other studies have also identified the occurrences of fore-

summer drought and water limiting condition (Sloat et al., 2015; Wainwright et al., 2020). Due to practical 

reasons, current HPM models did not include soil moisture as an input to capture these seasonally dry 

periods. Thus we believe modified HPM models with soil moisture as inputs can increase prediction 

accuracy in these ecoregions when soil moisture data becomes more available in space and time.  

Q15: Row 415: Are the model parameters changing for each site? What are the parameter values?  

Response: We thank the reviewer’s comment. Deep learning parameters for US-Ton, CA-Oas and US-Wkg 

are different as they are three different developed HPM models used to represent different ecoregions. As 

mentioned in the response to Q9, there are many deep learning parameters and it is not feasible to directly 

present the values of these learnable parameters here. But all of these parameter values are available in the 

data package we submitted to ESS-DIVE and can be downloaded at https://data.ess-

dive.lbl.gov/view/doi:10.15485/1633810 named ‘LSTM_model.zip’.  

Q16: Row 419-420: I don’t agree, Reco predictions are not good in US Whs and US Var 

Response: We thank the reviewer’s comment. HPM achieved a daily scale adjusted 𝑅2 of 0.70 and 0.78 

and 𝑀𝐴𝐸 at 0.67 and 0.22 at US-Whs and US-Var respectively, in Use Case II scenario. We agree that the 

statistical measure is not as satisfactory as 𝑅2 over 0.9. In the revised manuscript, we have made the 

necessary changes correspondingly (L430-L433).  

Q17: Row 518-519, “This result indicates small-scale meteorological forcing and vegetation heterogeneity 

are the major controls of differences in ET and Reco at the East River Watershed”: please, highlight and 

clarify what is the new finding. We know already that meteorological forcing (which is the model input), 

and vegetation heterogeneity (model parameter) are the controlling factors of the model. 

Response: We thank the reviewer for the comment. We have expanded our discussion on how ET and 𝑅𝐸𝐶𝑂 

dynamics vary at different years (e.g., years with earlier snowmelt versus later snowmelt). We have 

emphasized how vegetation types contribute to ET and 𝑅𝐸𝐶𝑂  spatiotemporal heterogeneities. We also 

discussed the limitations and practical perspectives of current HPM models in feature selection and how to 

improve estimation accuracy at seasonally dry periods. In addition, we clarified the role of meteorological 

forcing attributes and vegetation types in ET and 𝑅𝐸𝐶𝑂 dynamics at the East River Watershed and tested 

how these input variables contribute to ET and 𝑅𝐸𝐶𝑂 differences at different years among different sites. 

These findings have been revised in the result and discussion sections.  

Q18: Row 673: please add the journal name of this reference, I can’t find it. 

Response: We thank the reviewer’s comment. The journal name of this reference is ‘Journal of Geophysical 

Research: Biogeosciences’ (L727-L730). We have double checked and made sure the bibliography is 

correctly and clearly presented.   

https://data.ess-dive.lbl.gov/view/doi:10.15485/1633810
https://data.ess-dive.lbl.gov/view/doi:10.15485/1633810
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 7 
Abstract: Gradual changes in meteorological forcings (such as temperature and precipitation) are reshaping 8 

vulnerable ecosystems, leading to uncertain effects on ecosystem dynamics, including water and carbon fluxes. 9 

Estimating evapotranspiration (ET) and ecosystem respiration (𝑅𝐸𝐶𝑂) is essential for analyzing the effect of climate 10 

change on ecosystem behavior. To obtain a better understanding of these processes, we need to improve our estimation 11 

of water and carbon fluxes over space and time, which is difficult within ecosystems where wethat often have only 12 

sparse data. In this study, we developed a hybrid predictive modeling approach (HPM) that integrates eddy covariance 13 

measurements, physically-based model simulation results, meteorological forcings, and remote sensing datasets to 14 

estimate evapotranspiration (ET) and ecosystem respiration (𝑅𝐸𝐶𝑂) in high space-time resolution. HPM relies on a 15 

deep learning algorithm-long short term memory (LSTM)-as well as direct measurements or outputs from physically-16 

based models.  We tested and validated HPM estimation results at sites within various sites. We particularly focus on 17 

testing HPM in mountainous regions, given their importance for water resources, their vulnerability to climate change, 18 

and the recognized difficulties in estimating ET and 𝑅𝐸𝐶𝑂 in mountainoussuch regions. We benchmarked daily scale 19 

estimates of ET and  𝑅𝐸𝐶𝑂 obtained from the HPM method against measurements made at FLUXNET stations and 20 

outputs from the Community Land Model (CLM) at Rocky Mountain SNOTEL stations. At the mountainous East 21 

River Watershed site in the Upper Colorado River Basin, we explored how ET and 𝑅𝐸𝐶𝑂 dynamics estimated from the 22 

new HPM approach vary with different vegetation and meteorological forcings. The results of this study indicate that 23 

HPM is capable of identifying complicated interactions among meteorological forcings, ET, and 𝑅𝐸𝐶𝑂 variables, as 24 

well as providing reliable estimation of ET and 𝑅𝐸𝐶𝑂  across relevant spatiotemporal scales., even in challenging 25 

mountainous systems. With HPM estimation of ET and 𝑅𝐸𝐶𝑂 at the East River Watershed, we foundidentified that 26 

abiotic factors ofHPM ET models are sensitive to temperature and radiation predominantly explained ET spatial 27 

variability;inputs whereas NDVI, temperature and radiation all have crucial influences over 𝑅𝐸𝐶𝑂  variability was 28 

largely controlled by biotic factors, such as vegetation typedynamics. In general, our study demonstrated that the HPM 29 

approach can circumvent the typical lack of spatiotemporally dense data needed to estimate ET and 𝑅𝐸𝐶𝑂 over space 30 

and time, as well as the parametric and structural uncertainty inherent in mechanistic models. While the current 31 

limitations of the HPM approach are driven by the temporal and spatial resolution of available datasets (such as 32 

meteorological forcing and NDVI data), ongoing advances in remote sensing are expected to further improve accuracy 33 

and resolution of ET and 𝑅𝐸𝐶𝑂 estimation using HPM.  34 

1. Introduction: 35 

 Evapotranspiration (ET) and ecosystem respiration (𝑅𝐸𝐶𝑂) are key components of ecosystem water and 36 

carbon cycles. ET is an important link between the water and energy cycles: dynamic changes in ET can affect 37 



precipitation, soil moisture, and surface temperature, leading to uncertain feedbacks in the environment (Jung et al., 38 

2010; Seneviratne et al., 2006; Teuling et al., 2013). Thus, quantifying ET is particularly essential for improving our 39 

understanding of water and energy interactions and watershed response to abrupt and gradual changes in climate, 40 

which is critical for water resources management, agriculture, and other societal benefits (Anderson et al., 2012; Jung 41 

et al., 2010; Rungee et al., 2019; Viviroli et al., 2007; Viviroli and Weingartner, 2008). 𝑅𝐸𝐶𝑂  describes, which 42 

represents  the sum of autotrophic respiration and respiration by heterotrophic microorganisms  in a specific ecosystem 43 

and,  plays a vital role in the response of terrestrial ecosystem to global change (Jung et al., 2017; Reichstein et al., 44 

2005; Xu et al., 2004). As long term exchanges in 𝑅𝐸𝐶𝑂 have pivotal influences over the climate system (Cox et al., 45 

2000;  Gao et al., 2017; IPCC, 2019; Suleau et al., 2011), approaches are needed to estimate and monitor 𝑅𝐸𝐶𝑂 over 46 

relevant spatiotemporal scales. As described below, there are many different strategies for measuring and estimating 47 

ET and 𝑅𝐸𝐶𝑂, each of which has advantages and limitations. The motivation for this study is the recognition that 48 

current methods cannot provide ET and 𝑅𝐸𝐶𝑂 at space and time scales (e.g., daily) needed to improve prediction of 49 

changing terrestrial system behavior, particularly in challenging mountainous watersheds.  50 

 Several ground-based approaches have been used to provide 𝑖𝑛 𝑠𝑖𝑡𝑢 estimates or measurements of ET and 51 

𝑅𝐸𝐶𝑂. Ground based flux chambers capture and measure trace gases emitted from the land surface, which can be used 52 

to estimate ET and 𝑅𝐸𝐶𝑂 (Livingston and Hutchinson, 1995; Pumpanen et al., 2004). However, the microclimate of 53 

the environment is affected by the chamber, and the laborious acquisition process and small chamber size typically 54 

lead to information with coarse spatiotemporal resolution (Baldocchi, 2014). The eddy covariance method uses a tower 55 

with installed instruments to autonomously measure fluxes of trace gases between ecosystem and atmosphere 56 

(Baldocchi, 2014; Wilson et al., 2001). The covariance between the vertical velocity and mixing ratios of the target 57 

scalar is computed to obtain the fluxes of carbon, water vapor, and other trace gases emitted from the land surface. ET 58 

is then calculated from the latent heat flux, and 𝑅𝐸𝐶𝑂 is calculated from the net carbon fluxes using night-time or 59 

daytime partitioning approaches (van Gorsel et al., 2009; Lasslop et al., 2010; Reichstein et al., 2005). The spatial 60 

footprint of obtained fluxes is on the order of hundreds of meters, and the temporal resolution of the measurements 61 

range from hours to decades (Wilson et al., 2001). Such in situ measurements of fluxes have been integrated into the 62 

global network of AmeriFlux (http://ameriflux.lbl.gov/) and FLUXNET (https://FLUXNET.fluxdata.org/),) networks, 63 

where such data have strongly supported scientists ingreatly benefited process understandinginvestigations and model 64 

development. Given undertaken by a wide scientific community. However, given the cost, effortseffort, and power 65 

required to install and maintain a flux tower, eddy covariance towers are typically sparse relative to the scale of study 66 

sites used to address ecosystem questions. Additionally, the location of a flux tower within a watershed greatly 67 

influences measurement representativeness. For example, for logistical reasons, eddy covariance towers are usually 68 

installed at valley bottoms of mountainous watersheds (Strachan et al., 2016), and estimates obtained there may not 69 

be representative of fluxes across a range of elevations or slope aspects within the watershed. The limited number of 70 

towers and their limited ability to sample different portions of a watershed thus limit the usefulness of flux towers for 71 

estimating ET and 𝑅𝐸𝐶𝑂  in high resolution over space and time.. However, microclimate caused by complex 72 

mountainous terrains (e.g., slope, aspect and elevation) can have different radiation inputs and moisture dynamics 73 

compared to flat areas where flux towers are mostly installed. Flux measurements from eddy covariance towers 74 

http://ameriflux.lbl.gov/
https://fluxnet.fluxdata.org/


provide a representation of major driver and controls on ET and 𝑅𝐸𝐶𝑂 in an ecoregion while meteorological forcing 75 

variability needs to be accounted to possibly represent various aspects introduced by complex terrain. Thus, though 76 

measurements from a single flux tower may not capture heterogeneity in ET and 𝑅𝐸𝐶𝑂 due to complex terrain, they 77 

support the development of statistical or physical-based models integrated with other types of data to provide ET and 78 

𝑅𝐸𝐶𝑂 estimation in high resolution over space and time.  79 

 Physically-based models, which numerically represent land-surface energy and water balance, have also been 80 

used to estimate ET and 𝑅𝐸𝐶𝑂 (Tran et al., 2019; Williams et al., 2009). These physically-based models solve physical 81 

equations to simulate the exchanges of energy, heat, water and carbon across atmosphere-canopy-soil compartments. 82 

Examples include the Community Land Model (CLM, Oleson et al., 2013). Performance of these models depend on 83 

the accuracy of inputs and parameters, such as soil type and leaf area index, which can be difficult to obtain at 84 

sufficiently high spatiotemporal resolution. The lack of measurements to infer parameters needed for models often 85 

leads to large discrepancies between model-based and flux-tower-based ET and 𝑅𝐸𝐶𝑂 estimates. Conceptual model 86 

uncertainty inherent in mechanistic models can also lead to ET and 𝑅𝐸𝐶𝑂  estimation uncertainty and errors. For 87 

example, Keenan et al. (2019) suggested that current terrestrial carbon cycle models neglect inhibition of leaf 88 

respiration that occurs during daytime, which can result in a bias of up to 25%. Chang et al. (2018) used virtual 89 

experiments with 3-D terrestrial integrated modeling system to investigate why a lower ratio of transpiration to ET is 90 

always produced by large scale land surface models. Their study suggested heterogeneous fluxes caused by uneven 91 

hydraulic distribution due to complex terrain are not always considered in process-based models. These conceptual 92 

uncertainties, in addition to data sparseness and data uncertainty, further limit the applicability of physically-based 93 

models to estimate ET and 𝑅𝐸𝐶𝑂 at high spatiotemporal scales. Semi-analytical formulations based on combinations 94 

of meteorological and empirical parameters provide a reference condition for the water and energy balance. Examples 95 

used to estimate potential ET include the Budyko framework and its extensions (Budyko, 1961; Greve et al., 2015; 96 

Zhang et al., 2008); the Penman-Monteith’s equation (Allen et al., 1998), and the Priestley-Taylor equation (Priestley 97 

and Taylor, 1972). Actual ET can then be approximated by multiplying a coefficient associated with water deficit (De 98 

Bruin, 1983; Williams & Albertson, 2004). However, even with these empirical formulations many attributes are still 99 

difficult to obtain globally at high temporal scales, such as water-vapor deficit, leaf area index, and aerodynamic 100 

conductance of different plants.  101 

Remote sensing products, such as Landsat imagery (Irons et al., 2012), Sentinel-2 (Main-Knorn et al., 2017) 102 

and the moderate-resolution imaging spectroradiometer (MODIS, NASA. 2008), have also been integrated to estimate 103 

ET and 𝑅𝐸𝐶𝑂 with empirical, statistical, or semi-physical relations (Abatzoglou et al., 2014; Daggers et al., 2018; 104 

Mohanty et al., 2017; Paca et al., 2019). Due to the high spatial coverage of remote sensing products, global-scale 105 

estimates of ET and 𝑅𝐸𝐶𝑂 have become feasible. For example, Ryu et al. (2011) proposed the Breathing Earth System 106 

Simulator approach, which integrates mechanistic models and MODIS data to quantify ET and GPP with a spatial 107 

resolution of 1-5 km and a temporal resolution of 8 days. Ai et al. (2018) extracted enhanced vegetation index, fraction 108 

of absorbed photosynthetically active radiation, and leaf area index from the MODIS dataset—and used the rate-109 

temperature curve and strong correlations between terrestrial carbon exchange and temperature to estimate 𝑅𝐸𝐶𝑂 at 1 110 



km spatial resolution and 8-day temporal resolution. Ma et al. (2018) developed a data fusion scheme that fused 111 

Landsat-like-scale datasets and MODIS data to estimate ET and irrigation water efficiency at a spatial scale of ~100 112 

meters. However, even though remote sensing data cover large areas of the earth surface, they typically do not provide 113 

information over both high spatial and temporal resolution, and are also subject to cloudy conditions. For example, 114 

Landsat has average return periods of 16 days with a spatial resolution of 30 m (visible and near-infrared), whereas 115 

MODIS has 1-2 days temporal resolution with a 250 m or 1 km spatial resolution depending on the sensors. These 116 

resolutions are typically too coarse to enable exploration of how aspects such as plant phenology, snowmelt, and 117 

rainfall impact integrated ecosystem water and energy dynamics.  118 

Combining machine-learning models with remote sensing products and meteorological inputs offers another 119 

option for large-scale estimation of ET and 𝑅𝐸𝐶𝑂. Remotely sensed data arecan be good proxies for plant productivity 120 

and can be easily implemented into machine-learning models for ET and 𝑅𝐸𝐶𝑂 estimation, such as for an enhanced 121 

vegetation index, land surface water index and NDVInormalized differences vegetation index (NDVI) (Gao et al., 122 

2015; Jägermeyr et al., 2014; Migliavacca et al., 2015). Li and Xiao (2019) developed a data-driven model forto 123 

estimate gross primary production at a spatial and temporal resolution of 0.05° and 8 days, respectively, using MODIS 124 

and meterological reanalysis data. Berryman et al. (2018) demonstrated the value of a Random Forest model to predict 125 

growing season soil respiration from subalpine forests in the Southern Rocky Mountains ecoregion. Jung et al. (2009) 126 

developed a model tree ensemble approach to upscale FLUXNET data, where they have successfully estimated ET 127 

and GPP. Other methods have used support vector machines, artificial neural networks, random forest, and piecewise 128 

regression (Bodesheim et al., 2018; Metzger et al., 2013; Xiao et al., 2014; Xu et al., 2018). These models were trained 129 

with ground-measured flux observations and other variables, and then applied to estimate ET over continental or 130 

global scales with remote sensing and meteorological inputs. Some of the most important inputs include the enhanced 131 

vegetation index, aridity index, temperature, and precipitation. However, the spatiotemporal resolution of these 132 

approaches is constrained by the resolution of remote sensing products and meteorological inputs. Additionally, 133 

parameters such as leaf area index, cloudiness, and the vegetation types required by those models may not be available 134 

at the required resolution, accuracy or location. For example, in systems that have significant elevation gradients, 135 

errors may result when valley-based FLUXNET data are used for training and then applied to hillslope or ridge ET 136 

and 𝑅𝐸𝐶𝑂 estimation. 137 

Development of hybrid models that link direct measurements and/or interpretable mechanistic models with 138 

data-driven methods can benefit ET and 𝑅𝐸𝐶𝑂 estimation (Reichstein et al., 2019). While remote sensing data that 139 

cover large regions provide promise for informing models, quantitative interpretation of these data needed for input 140 

into mechanistic models is still challenging (Reichstein et al., 2019). Physically-based models can provide estimates 141 

of ET and 𝑅𝐸𝐶𝑂, but the estimate error can be high, owing to parametric, structural, and conceptual uncertainties as 142 

described above. Hybrid data-driven frameworks are potentially advantageous because they enable the integration of 143 

remote sensing datasets, meteorological forcings, and mechanistic model outputs of ET and 𝑅𝐸𝐶𝑂 into one model. 144 

Machine-learning approaches are then applied to extract the spatiotemporal patterns for ET and 𝑅𝐸𝐶𝑂  prediction. 145 

Hybrid models can utilize the high spatial coverage of remote sensing data (e.g., 30 m of Landsat) and high temporal 146 



resolution of direct measurement from flux towers or simulation results from mechanistic models (e.g., daily or hourly 147 

scales), thus providing alternative approaches for next-stage, more accurate estimation of ET and 𝑅𝐸𝐶𝑂  at greater 148 

spatial and finer temporal scales—and enhancing our process understanding of water and carbon cycling under climate 149 

change.  150 

In this study, we developed a hybrid predictive modeling approach (HPM) to better estimate daily ET and 151 

𝑅𝐸𝐶𝑂 over space and time with easily acquired meteorological data (i.e., air temperature, precipitation and radiation) 152 

and remote sensing products (i.e., NDVI). HPM is hybrid as it can use deep learning models to integrate direct 153 

measurements from flux towers and physically-based model results (e.g., CLM) with meteorological and remote 154 

sensing inputs to capture the complex physical interactions within the watershed ecosystem. After development, we 155 

validated HPM performance with the FLUXNET dataset and benchmarked the CLM model at select sites. We then 156 

used the HPM for ET and 𝑅𝐸𝐶𝑂  estimation at the mountainous East River Watershed in COColorado, USA and 157 

investigated how small-scale heterogeneity influences ET and 𝑅𝐸𝐶𝑂 dynamics.  varies within the East River Watershed. 158 

The remainder of this paper is organized as follows. Section 2 mainly describes the sites considered in this 159 

study and how data were acquired and processed. Section 3 presents the methodology of the HPM approach, followed 160 

by the results of various use cases presented in Section 4. Discussion and conclusion are provided in Sections 5 and 161 

6, respectively. 162 

2. Site Information, Data Acquisition and Processing 163 

 We selected various sites to develop and validate our approaches. We focused on mountainous watersheds 164 

because they provide significant water resources to the world (Viviroli et al., 2007), but also included sites to test 165 

HPM’s capabilities under different climate and vegetation conditions. Mountainous watersheds are very sensitive to 166 

changes in temperature and precipitation patterns, which can significantly threaten downgradient water resources and 167 

associated societal benefits (Breshears et al., 2005; Ernakovich et al., 2014; Immerzeel et al., 2019). As mountainous 168 

regions are extremely important for regional and global assessment and management of water resources and carbon 169 

storage and emission (Knowles et al., 2015; Schimel et al., 2002), accurate estimation of ET and 𝑅𝐸𝐶𝑂 in these regions 170 

is critical, though challenging due to complex heterogeneity and complicated interactions among the hydrosphere, 171 

biosphere and the atmosphere (Pelletier et al., 2018; Speckman et al., 2015). Thus, we focused on estimating ET and 172 

𝑅𝐸𝐶𝑂 at various sites along the Rocky Mountains, including the East River Watershed  (Hubbard et al., 2018) of the 173 

Upper Colorado River Basin.  174 

 The HPM method was tested using data from a range of different ecosystem types to explore its performance 175 

under different conditions. However, we place a particular focus on mountainous sites, given their regional and global 176 

importance yet challenges associated with ET and 𝑅𝐸𝐶𝑂 as described above.  177 

2.1 FLUXNET Stations and Ecoregions 178 

 EightNine FLUXNET stations were selected for this study (Table 1 and Figure 1), which cover a wide range 179 

of climate and vegetation types.elevations. These stations have elevations from 129 m (US-Var) to 3050 m (US-NR1), 180 



mean annual air temperature from 1.5℃  (US-NR1 0.34℃  (CA-Oas) to 17.92 ℃  (US-SRM), and mean annual 181 

precipitation from 320 mm (US-Whs) to 800 mm (US-NR1). These FLUXNET stations also cover a wide range of 182 

vegetation types (i.e., evergreen forest, deciduous forest, and shrublands). As indicated by Hargrove et al. (2003), 183 

FLUXNET stations provide a good representation of different ecoregions, which are areas that display recurring 184 

patterns of similar combinations of soil, vegetation and landform characteristics (Omernik, 2004). Omernik & Griffith. 185 

(2014) delineated the boundaries of ecoregions through pattern analysis that consider the spatial correlation of both 186 

physical and biological factors (i.e., soils, physiography, vegetation, land use, geology and hydrology) in a hierarchical 187 

level. FLUXNET stations considered in this study mainly locate in 4 unique ecoregions (Table 1). As is described 188 

below, we developed local-scale (i.e., point scale) HPM that are representative for different ecoregions using data 189 

provided at these FLUXNET stations to estimate ET and 𝑅𝐸𝐶𝑂, and validated the HPM estimates with measurements 190 

from stations within the same ecoregion.   191 

2.2 SNOTEL Stations 192 

 For reasons described below, we performed a deeper exploration of HPM performance within one of the 193 

mountainous watershed sites (the East River Watershed of the Upper Colorado River Basin), which is located in the 194 

“western cordillera” ecoregion. At this site, we utilized meteorological forcings data from three snow telemetry 195 

(SNOTEL) stations. These sites include the Butte (ER-BT, id: 380), Porphyry Creek (ER-PK, id: 701) and Schofield 196 

Pass (ER-SP, id: 737) sites. A CLM model was developed at these SNOTEL stations that provides physically-model-197 

based ET estimation (Tran et al., 2019). Table 1 summarizes the SNOTEL stations used in this study and the 198 

corresponding climate characteristics. Figure 1 shows the geographical locations of FLUXNET and SNOTEL stations 199 

selected in this study.  200 

Table 1. Summary of FLUXNET stations and SNOTEL stations information. * denotes SNOTEL stations and all others 201 

are FLUXNET stations. Dfc, Bsk, Csa represent subarctic or boreal climates, semi-arid climate, Mediterranean hot summer 202 

climates, respectively. ENF, DBF, WSA, GRA, and OSH represent evergreen needleleaf forest, deciduous broadleaf forests, 203 

woody savannas, grasslands, open shrubland, respectively. FLUXNET data were obtained from the FLUXNET2015 204 

database. 205 

Site 

ID 
Site Name Latitude, 

Longitude 
Elevation 

(m) 
Mean 

Annual 
temperature 

(°∁) 

Mean 

Annual  
Precipitation 

(m) 

Climate 

Koeppen 
Vegetation 

IGBP 
Ecoregions 

(Level II) 

Period 

of 
Record  

US-

NR1 
Niwot Ridge (40.0329, -

105.5464) 
3050 1.5 800 Dfc ENF Western 

Cordillera 

2000-

2014 

CA-
Oas 

Saskatchewan-
Aspen 

(53.6289, -
106.1978) 

530 0.34 428.53 Dfc DBF Boreal Plain 1997-
2010 

CA-

Obs 
Saskatchewan-

Black Spruce 

(53.9872, -

105.1178) 
628.94 0.79 405.6 Dfc ENF Boreal Plain 1999-

2010 
US-

SRM 
Santa Rita 

Mesquite 
(31.8214, -

110.8661) 
1120 17.92 380 Bsk WSA Western 

Sierra Madre 

Piedmont 

2005-

2015 

US-

Ton 

Tonzi Ranch (38.4316, -

120.9660) 

177 15.8 559 Csa WSA Mediterranean 

California 

2002-

2015 

US-
Var 

Vaira Ranch-
lone 

(38.4133, -
120.9507) 

129 15.8 559 Csa GRA Mediterranean 
California 

2002-
2015 

US-

Whs 

Walnut Gulch 

Lucky Hills 
Shrub 

(31.7438, -

110.0522) 

1370 17.6 320 Bsk OSH Western 

Sierra Madre 
Piedmont 

2008-

2015 



US-

Wkg 

Walnut Gulch 

Kendall 
Grasslands 

(31.7365, -

109.9419) 

1531 15.64 407 Bsk GRA Western 

Sierra Madre 
Piedmont 

2005-

2015 

US-

Me2 

Metolius 

mature 
ponderosa 

pine 

(44.4523, -

121.5574) 

1253 6.28 523 Csb ENF Western 

Cordillera 

2012-

2015 

ER-
BT* 

East River-
Butte 

(38.894, -
106.945) 

3096 2.38 821 Dfc N/A Western 
Cordillera 

1995-
2017 

ER-

SP* 

East River-

Schofield Pass 

(39.02, -

107.05) 

3261 2.46 1064 Dfc N/A Western 

Cordillera 

1995-

2017 
ER-

PK* 

East River-

Porphyry 

Creek 

(38.49, -

106.34) 

3280 1.97 574 Dfc N/A Western 

Cordillera 

1995-

2017 

 206 

 207 



  208 

Figure 1. Location of sites considered in this study. Note: US-Ton and US-Var; US-Whs and US-Wkg are at the same 209 

locations.   East River Watershed is located next to ER-BT. The white lines delineate Western US states and Canadian 210 

provinces. 211 

2.3 East River Watershed and Previous Analyses 212 

 Data from the East River Watershed were used to explore how ET and 𝑅𝐸𝐶𝑂 dynamics estimated from the 213 

developed HPM vary with different vegetation and meteorological forcings. The East River Watershed is located 214 

northeast of the town of Crested Butte, Colorado. This watershed has an average elevation of 3266 m, with significant 215 

gradients in topography, hydrology, geomorphology, vegetation, and weather. The watershed has a mean annual 216 

temperature around 0℃ , with an average of 1200 mm yr−1 total precipitation (Hubbard et al., 2018). Consisting of 217 

montane, subalpine, and alpine life zones, each with distinctive vegetation biodiversity, the East River Watershed is a 218 

testbed for the US Department of Energy Watershed Function Scientific Focus Area Project, led by the Lawrence 219 

Berkeley National Laboratory (LBNL; (Hubbard et al., 2018). The project has acquired a range of datasets, including 220 

hydrological, biogeochemical, remote sensing, and geophysical datasets.  221 

Recently completed studies at the East River Watershed were used in this study to inform HPM and to assess 222 

the results. For example, physically-model-based estimations of ET at this site (Tran et al., 2019) were used herein for 223 

HPM development and validation. Falco et al. (2019) used machine-learning-based remote sensing methods to 224 

characterize the spatial distribution of vegetation types, slopes, and aspects within a hillslope at the East River 225 



Watershed, which were used with obtained HPM estimates to explore how small-scale vegetation heterogeneity 226 

influences ET and 𝑅𝐸𝐶𝑂 dynamics. To perform this assessment, we computed the spatial distribution of vegetation 227 

types at watershed scale, based on Falco et al. (2019), and selected 16 locations within the East River Watershed 228 

having different vegetation types and slope aspects. These 16 locations were chosen at a level to be distinguishable 229 

by Landsat images and maintain the same vegetation type (given a spatial resolution of 30 m), and also possess small-230 

scale heterogeneity.Falco et al. (2019) used machine-learning-based remote sensing methods to characterize the spatial 231 

distribution of vegetation types, slopes, and aspects within a hillslope at the East River Watershed, which were used 232 

with obtained HPM estimates to explore how vegetation heterogeneity influences ET and 𝑅𝐸𝐶𝑂 dynamics. To perform 233 

this assessment, we computed the spatial distribution of vegetation types at watershed scale based on Falco et al. 234 

(2019). We evaluated manually and selected 16 locations within the East River Watershed having different vegetation 235 

types and slope aspects. These 16 locations were chosen to be at the center of vegetation patched and covered by one 236 

vegetation type. A summary of the locations is presented in Table 2; the spatial distribution of the locations is shown 237 

in Figure 2. 238 

Table 2: Location and vegetation types of East River Watershed sampling points (Figure 2) 239 

Easting (m) Northing (m) Vegetation Type Aspect Elevation (m) 

327085 4309878 Deciduous Forest South 2983 
326288 4312504 Deciduous Forest South 3177 

330012 4313132 Deciduous Forest North 3108 

326854 4313192 Deciduous Forest South 3098 
328246 4312832 Meadow South 3095 

327010 4315059 Meadow South 2790 

328738 4306139 Meadow North 2890 
334270 4309465 Meadow  North 2929 

333406.5 4308340 Riparian Shrubland South 2760 

327846 4312497 Riparian Shrubland South 2723 
334641 4305632 Riparian Shrubland North 2740 

330760 4310097 Riparian Shrubland South 2855 

329573 4314569 Evergreen Forest South 3026 
333106 4307313 Evergreen Forest North 3102 

325056 4310456 Evergreen Forest South 2961 

335141 4309614 Evergreen Forest North 3131 

  240 



 241 

Figure 2: Vegetation classification of the East River, CO Watershed from Falco et al. (2019)Falco et al. (2019). East River 242 

sites selected in this study are denoted by black circles. 243 

2.4 Data Collection and Processing 244 

To enhance transferability of the developed HPM strategy to less intensively characterized watersheds, we 245 

selected only “easy to measure” or “widely available” attributes, such as precipitation, temperature, radiation and 246 

NDVI, as inputs to the HTM model. The data sources used for these inputs include FLUXNET data 247 

(https://fluxnet.fluxdata.org/), SNOTEL data (https://www.wcc.nrcs.usda.gov/snow/) and developed CLM model 248 

(Tran et al., 2019) at SNOTEL stations, DAYMET meteorological inputs (Thornton et al., 2017) and remote sensing 249 

data from Landsat imageries (Irons et al., 2012).   250 

 A variety of measured data and model outputs were used to train and validate HPM.  We obtained daily 251 

meteorological data, including air temperature, precipitation, radiation, ET, and 𝑅𝐸𝐶𝑂  data, from the FLUXNET 252 

database at the selected FLUXNET sites. The pipeline of data processing for FLUXNET dataset is provided at 253 

https://FLUXNET.fluxdata.org/. ETWe identified some data gaps and erroneous data (especially during winter 254 

seasons) for the ET estimates at US-NR1, which were cleaned following the procedures presented in Rungee et al. 255 

(2019). The meteorological data were used as inputs for HPM development, and ET and 𝑅𝐸𝐶𝑂 data from these sites 256 

were used for HPM validation. At the three selected SNOTEL stations, we obtained air temperature, precipitation, and 257 

snow-water-equivalent data from the SNOTEL database. Air temperature data at these three SNOTEL stations were 258 

processed following Oyler et al. (2015), given potential systematic artifacts. Snow-water-equivalent data are not easily 259 

acquired, and thus were not considered as inputs for HPM. However, a categorical variable was constructed to 260 

assimilate information regarding snow (Section 3.2.1). CLM models were generated following Tran et al. (2019) for 261 

the SNOTEL stations and US-NR1 to assess the spatiotemporal variability of ET at the East River Watershed and for 262 

training and validating HPM (Section 4.3). The DAYMET dataset (Thornton et al., 2017) provided gridded daily 263 

https://fluxnet.fluxdata.org/
https://www.wcc.nrcs.usda.gov/snow/
https://fluxnet.fluxdata.org/


weather-forcings-attribute estimates at a 1 km spatial resolution. We obtained the incident radiation data from 264 

DAYMET at the SNOTEL stations as inputs for HPM. For the East River Watershed sites, meteorological forcings 265 

data, including air temperature, precipitation and radiation, were also obtained from DAYMET. The low spatial 266 

resolution of DAYMET data introduces uncertainty in HPM estimation of ET and 𝑅𝐸𝐶𝑂, which will be discussed in 267 

the following sections. We calculated the NDVI time series from the red band (RED) and near-infrared band (NIR) 268 

from Landsat 5, 7, and 8 images following Equation 1 at all selected FLUXNET sites, SNOTEL stations, and East 269 

River Watershed sites at a spatial scale of 30 m.  270 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
                                                                                  (1) 271 

Since cloud conditions can severely decrease data quality, we used the cloud-scoring algorithm provided in the Google 272 

Earth Engine to mask clouds in all retrieved data, only selecting the ones that had a simple cloud score below 20 to 273 

ensure data quality. Given the different calibration sensors used in Landsat 5, 7, and 8, we also followed the processes 274 

described in Homer et al. (2015) and Vogelmann et al. (2001) to keep NDVI computations consistent over time. 275 

Landsat satellites have a return period of 16 days, and thus we performed a reconstruction of NDVI time series to 276 

obtain daily scale time data (Section 3.2.2).  277 

3. Hybrid Predictive Modeling Framework 278 

 In this section, we illustrate the steps for building an HPM model for ET and 𝑅𝐸𝐶𝑂 estimation over time and 279 

space. Figure 3 presents the general framework of HPM, which includes modules for data preprocessing, model 280 

development, model validation, and predictive modeling.  281 

3.1 Model Framework  282 

HPM establishes relationships among meteorological forcings attributes, NDVI, ET, and 𝑅𝐸𝐶𝑂 (Figure 3). 283 

Both input data (e.g., meteorological forcings) and output data (ET and 𝑅𝐸𝐶𝑂) used for training and validation are 284 

preprocessed for gap filling, smoothing, and data updating. HPM “learns” the complex space-time relationship among 285 

meteorological forcings, NDVI, ET, and 𝑅𝐸𝐶𝑂 using a deep-learning-based module (deeply connected neural networks 286 

and a long short-term memory recurrent neural network). HPM then can be used for ET and 𝑅𝐸𝐶𝑂  estimation at 287 

sparsely monitored watersheds. Individual HPM models can be trained in two different ways using ET and 𝑅𝐸𝐶𝑂 288 

information: with data obtained from flux towers (“data-driven HPM”) or with outputs from 1-D physically-based 289 

models (“mechanistic HPM”). In both cases, the models obtained with local data are then used to estimate ET and 290 

𝑅𝐸𝐶𝑂 at other sites in the same ecoregion (see Section 2.1). For ecoregions not represented by FLUXNET sites, it is 291 

necessary to develop mechanistic HPM that enables ET and 𝑅𝐸𝐶𝑂 estimation over space and time.  292 

 HPM has several additional modules, including model development, model validation, and model prediction 293 

modules. In the HPM model development module, deep-learning algorithms are trained with input features and 294 

response data until a pre-defined “stopping criteria” (e.g., root mean squared error, RMSE) is met, indicating 295 

subsequent training would lead to minimal improvement. In the validation module, estimation outputs from the 296 



“trained HPM models” are compared with other ET and 𝑅𝐸𝐶𝑂  data obtained from other independent sites or 297 

mechanistic models within the same ecoregion. Statistical measures, including adjusted 𝑅2 and mean absolute error 298 

(MAE), are computed to evaluate the performance of HPM models. In the predictive model module, meteorological 299 

forcings data and remote sensing data are processed at target sites of interest, and the validated HPM model is used to 300 

estimate ET and 𝑅𝐸𝐶𝑂 at these sites. ET and 𝑅𝐸𝐶𝑂 outputs estimated from HPM at sparsely monitored watersheds then 301 

provide alternative datasets for process understanding within the target watersheds.  302 

 303 

Figure 3: Hybrid Predictive Model (HPM) Framework. The HPM model mainly consists of four modules: Input Attributes, 304 

Model Development, Model Validation and Model Prediction, represented by rectangles with colors. Arrows represent the 305 

linkages among different modules. Choices of data-driven HPM or mechanistic HPM depend on the ecoregion of target 306 

watershed and data availability. 307 

Long short-term memory (LSTM, Hochreiter & Schmidhuber, 1997) is capable of identifying long-term 308 

dependencies between climate and environmental data. For example, Kratzert et al. (2018) successfully used LSTM 309 

to learn the long-term dependencies in hydrological data (e.g., storage effects within catchments, time lags between 310 

precipitation inputs and runoff generation) for rainfall-runoff modeling. LSTM has also been used for gap filling in 311 

hydrological monitoring networks in the spatiotemporal domain  (Ren et al., 2019). In this study, the outputs (ET or 312 

𝑅𝐸𝐶𝑂) denoted as 𝑦 are predicted from the input 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑇], consisting of the last 𝑇consecutive time steps of 313 

attributes, such as meteorological forcings attributes (e.g., air temperature and precipitation) and remote sensing 314 

attributes (i.e., NDVI). In a recurrent neural network (RNN), ℎ𝑡 represents the internal state at every time step 𝑡 that 315 

takes in current input value 𝑥𝑡  and previous internal state ℎ𝑡−1, and is recomputed along the time axis using the 316 

following equation: 317 

ℎ𝑡 = 𝑔(𝑊𝑥𝑡 + 𝑈ℎ𝑡−1 + 𝑏),                                                                              (21) 318 

where 𝑔 represents the hyperbolic tangent activation function, 𝑊 and 𝑈 are trainable weight metrices of the hidden 319 

state ℎ, and 𝑏 is a bias vector. W, U and 𝑏 are all trainable through optimization. LSTM introduces the cell state 𝑐𝑡, 320 



which makes LSTM powerful in identifying long-term dependencies in a statistical manner. The cell state 𝑐𝑡 has three 321 

gates structures, including “forget gates” (which determine what information from previous cell states will be 322 

forgotten), “input gates” (which determine what information will be conveyed from the forget gate) and “output gates” 323 

(which return information from cell state 𝑐𝑡  to a new state ℎ𝑡). With these gate structures, the cell state 𝑐𝑡 controls 324 

what information will be forgotten, conveyed, and updated over time. The forget gate is formulated as follows:  325 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓),                                                                               (32) 326 

where 𝑓𝑡 results in a value between 0 and 1 indicating the degree of information to be forgotten; 𝜎 is the logistic 327 

sigmoid function, 𝑎𝑛𝑑 𝑊𝑓 , 𝑈𝑓  and 𝑏𝑓  are trainable parameters. Next, the input gate decides which values will be 328 

updated in the current cell state, and creates a vector of candidate values 𝑐𝑡̃ in the range of (-1, 1) through a 𝑡𝑎𝑛ℎ layer, 329 

which will be used to update the current state. With the candidate values calculated from the current state, and the 330 

information conveyed from the forget gate, we can calculate the current cell state as follows: 331 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖),                                                                                (43) 332 

𝑐𝑡̃ = 𝑡𝑎𝑛 ℎ(𝑊𝑐̃𝑥𝑡 + 𝑈𝑐̃ℎ𝑡−1 + 𝑏𝑐̃),                                                                         (54) 333 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐𝑡̃ ,                                                                                      (65) 334 

where 𝑖𝑡 is the input gate that defines which information of 𝑐𝑡̃ will be used to update the current cell state and is in the 335 

range of (0, 1); 𝑐𝑡 represents the current cell state; and 𝑊𝑐̃, 𝑈𝑐̃, 𝑏𝑐̃, 𝑊𝑖 , 𝑈𝑖 ,  𝑎𝑛𝑑 𝑏𝑖  are trainable parameters. Finally, the 336 

output gate 𝑜𝑡 controls the information of cell state 𝑐𝑡 to a new hidden state ℎ𝑡, which is computed using the following 337 

equation: 338 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜),                                                                              (76) 339 

ℎ𝑡 = tanh(𝑐𝑡) ∗ 𝑜𝑡 ,                                                                                        (87) 340 

With the new hidden state calculated, ET and 𝑅𝐸𝐶𝑂 can be calculated using a one unit dense layer: 341 

𝑦𝑡 =  𝑊𝑑ℎ𝑡 + 𝑏𝑑 ,                                                                                         (98) 342 

where 𝑊𝑑 and 𝑏𝑑 are additional trainable parameters. In summary, the LSTM unit calculates the internal state using 343 

current meteorological forcings and remote sensing data at every time step. The forget gate, input gate, and output 344 

gate decide what information from previous time steps will be kept, updated, and conveyed to the new hidden state. 345 

Finally, with a single dense layer, the algorithm will output ET and 𝑅𝐸𝐶𝑂 estimation from the trained model.  346 

A 70%-30% split between training and validation time series data was applied here, where the first 70% of the data 347 

were used for HPM development as a learning process, and 30% of the data were used as validation sets at individual 348 

sites. At the East River Watershed, HPM results were also validated with benchmark CLM outputs from Tran et al. 349 

(2019) and FLUXNET measurements. We used the mean absolute error (MAE), and adjusted 𝑅2 as the statistical 350 

measure to determine model performance.  351 



𝑀𝐴𝐸 =
∑ |𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡−𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑|𝑛

𝑖=1

𝑛
,                                                                    (10)   352 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆
,                                                                                  (11) 353 

where SSE represents the sum of squared errors, SS is the sum of squares of the response attributes (i.e., ET or 𝑅𝐸𝐶𝑂), 354 

and n is the number of data points. In most models, the configuration of the neural networks includes a first LSTM 355 

layer with 50 units, a second LSTM layer with 25 units, and a dense layer with 8 units having L2 regularizers and a 356 

final output dense layer. Dropout layers are also embedded in the model to prevent overfitting. There are 11600 and 357 

7600 parameters for the first and second LSTM layers; 208 and 9 for the first and second dense layers and no 358 

parameters for the dropout layers. Other configurations of networks may provide better estimation results; however, 359 

they are not assessed in this study. as the proposed configuration already provide reasonable results. More information 360 

about the LSTM-RNN method is provided by (Olah, 2015)Olah. (2015). 361 

3.2 Feature Selection 362 

 Given data availability and the practicability of applying HPM to estimate ET and 𝑅𝐸𝐶𝑂 at sparsely monitored 363 

watersheds, we also selected, constructed, and augmented certain attributes as features for HPM. Key properties 364 

influencing ET and 𝑅𝐸𝐶𝑂  dynamics are linked to snow processes, plant dynamics, moisture stresses, radiation inputs 365 

and other relevant processes. However, at sparsely monitored watersheds, only weather reanalysis data and remote 366 

sensing data are commonly available. Thus we mainly considered temperature, radiation, precipitation, vegetation 367 

indices (e.g., NDVI) and variables inferred from these data as inputs for HPM. Other key attributes that depend on 368 

depth and site specific characteristics such as soil moisture and snow depth are not used in current HPM models due 369 

to data availability.  370 

3.2.1 Snow information 371 

In mountainous watersheds, snow dynamics significantly influence water and carbon fluxes. Because of the 372 

difficulties in measuring snow time series over space, we did not directly use attributes such as snow water equivalent 373 

as input to HPM. Instead, we separated precipitation data into snow precipitation (air temperature < 0) and rainfall 374 

precipitation (air temperature > 0). This is in line with what has been used in hydrological models such as CLM 375 

(Oleson et al., 2013). Note that for certain sites in this study, snow is not present (e.g., US-Ton). In order to capture 376 

the dynamics of snow processes, such as accumulation and melting, we constructed a categorical variable (sn), as 377 

follows: 378 

𝒔𝒏 = {
0, 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑛𝑜𝑤 𝑎𝑐𝑐𝑢𝑚𝑙𝑎𝑡𝑖𝑜𝑛;   𝑆𝑊𝐸 > 0 𝑎𝑛𝑑 𝑆𝑊𝐸 < 𝑝𝑒𝑎𝑘 𝑆𝑊𝐸

1, 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑛𝑜𝑤 𝑚𝑒𝑙𝑡𝑖𝑛𝑔; 𝑆𝑊𝐸 > 0 𝑎𝑛𝑑  𝑆𝑊𝐸 ≤ 𝑝𝑒𝑎𝑘 𝑆𝑊𝐸 
2, 𝑛𝑜 𝑠𝑛𝑜𝑤; 𝑆𝑊𝐸 =  0

,                             (129) 379 

Since data on peak SWE are rarely available because of the difficulties in measuring snow, we also define a 380 

proxy categorical variable, sn. When no SWE measurements were available, we estimated sn using air and soil 381 

temperature data following Knowles et al. (2016), who found significant correlations between the day of peak snow 382 

accumulation and first day of air temperature above 0 degrees Celsius, as follows: 383 



𝒔𝒏 = {

0, 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑛𝑜𝑤 𝑎𝑐𝑐𝑢𝑚𝑙𝑎𝑡𝑖𝑜𝑛;   𝐴𝑖𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 < 0
1, 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑛𝑜𝑤 𝑚𝑒𝑙𝑡𝑖𝑛𝑔; 𝐴𝑖𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 > 0 𝑤ℎ𝑖𝑙𝑒 𝑆𝑜𝑖𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ≤ 0

2, 𝑛𝑜 𝑠𝑛𝑜𝑤; 𝐴𝑖𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑛𝑑 𝑆𝑜𝑖𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 > 0
,         (1310) 384 

3.2.2 Vegetation information 385 

 To mitigate the long return periods of satellites and the presence of clouds, we reconstructed daily NDVI 386 

values based on meteorological forcings data (e.g., air temperature, precipitation, radiation) using deep-learning 387 

recurrent neural networks, leading to estimates of NDVI at daily temporal resolution. For example, Figure 4 represents 388 

Landsat-derived NDVI and reconstructed NDVI values for two sites at the East River, CO watershed: Butte (ER-BT), 389 

and Schofield Pass (ER-SP). Figure 4 reveals that based on meteorological forcings data only, the reconstructions 390 

achieved an adjusted R2 of 0.65. Though not ideal, as satellites continue to advance and more training data becomes 391 

available, the accuracy of NDVI temporal reconstruction willis expected to increase. 392 

 393 

Figure 4: Temporal reconstruction of NDVI at ER-BT (left) and ER-SP (right). Black line representslines represent 394 
reconstructed daily NDVI. Red points are used for training and blue points are used for validation 395 

4. Results 396 

We tested HPM’s capabilities using four different use cases to explore different conditions. First, we tested 397 

the capability of HPM to estimate long-term temporal dependency among meteorological forcings, ET, and 𝑅𝐸𝐶𝑂 (Use 398 

Case 1; presented in Section 4.1). Second, we validated HPM’s capability to estimate the spatial distribution of ET 399 

and 𝑅𝐸𝐶𝑂 over space in selected watersheds, where we developed HPM using existing FLUXNET data (Use Case 2; 400 

data-driven HPM, Section 4.2) or outputs from a mechanistic model (Use Case 3; physical-model-based HPM, Section 401 

4.3). ThirdIn Use Case 4, HPM was used to estimate ET and 𝑅𝐸𝐶𝑂 at selected sites within the East River Watershed 402 

and to distinguish how local factors (e.g., vegetation heterogeneity) influence ET and 𝑅𝐸𝐶𝑂 dynamics varies in the 403 

East River Watershed (Section 4.4). Temporal resolution of HPM models for all Use Cases are at daily scale and the 404 

spatial resolution depends on the use of meteorological forcing data. These four use cases illustrate and demonstrate 405 

how HPM can be developed and applied at target watersheds, where data are sparse.  406 



4.1 Use Case 1: ET and 𝑹𝑬𝑪𝑶 Time Series Estimation with HPM Developed at FLUXNET Sites 407 

Local HPMs were developed to estimate ET and 𝑅𝐸𝐶𝑂 using flux tower data obtained from FLUXNET sites 408 

listed in Table 1. AttributesAt all FLUXNET sites, air temperature, precipitation, net radiation, NDVI and soil 409 

temperature were used to train these individual HPM are documented in Table 3.   410 

Table 3. Attributes used for HPM development in Use Case 1 411 

Site ID Site Name Attributes 

US-NR1 Niwot Ridge Air Temperature, precipitation, net radiation, sn, NDVI, soil temperature 

CA-Oas Saskatchewan- 

Aspen 

Air Temperature, precipitation, net radiation, sn, NDVI, soil temperature 

CA-Obs Saskatchewan- 

Black Spruce 

Air Temperature, precipitation, net radiation, sn, NDVI, soil temperature 

US-SRM Santa Rita Mesquite Air Temperature, precipitation, net radiation, NDVI, soil temperature 

US-Ton Tonzi Ranch Air Temperature, precipitation, net radiation, NDVI, soil temperature 

US-Var Vaira Ranch-lone Air Temperature, precipitation, net radiation, NDVI, soil temperature 

US-Whs Walnut Gulch Lucky Hills Shrub Air Temperature, precipitation, net radiation, NDVI, soil temperature 

US-Wkg Walnut Gulch Kendall Grasslands Air Temperature, precipitation, net radiation, NDVI, soil temperature 

. For US-NR1, CA-Oas and CA-Obs, sn is also included. The results, which are shown in Figure 5 and Table 412 

43, reveal that the HPM approach was effective for estimating ET. Adjusted 𝑅2 between the HTMHPM estimates and 413 

flux tower measurements are above 0.85 for all sites, and mean absolute errors are small at a level of ~0.2 𝑚𝑚/𝑑. 414 

Figure 5 displays the daily scale estimation of ET from HPM US-NR1 and CA-OAS (other sites provided in 415 

supplementary material), and presents monthly mean ET values of measurements, HPM estimations, and differences. 416 

The long-term trends in ET are well captured by HPM. At larger temporal scales (monthly or yearly), HPM provides 417 

reasonable estimation of ET at these sites. However, short-term fluctuations during the summer are also not well 418 

captured by ET, specifically at California sites during the periods when plant transpiration and soil evaporation are 419 

constrained by soil moisture (Figure A2 panel a).  420 



 421 

Figure 5: ET estimation with data from FLUXNET sites at CA-OAS and US-NR1. Panels (a) and (c) illustrate the daily 422 

estimation of ET with red, green, and blue lines representing data used for training, validation, and prediction, respectively, 423 

and the black line showing the eddy covariance measurements. Pink points describe monthly mean difference between 424 

HPM estimation and measured data. Panels (b) and (d) show the scatter plots of daily (blue) and monthly (red) ET. Darker 425 

blue clouds represent greater density of data points. Results for other sites are included in supplementary materials below 426 

(Figures A1 and A2).  427 

  Similarly, Table 43 and Figure 6 reveal that HPM was also effective in estimating 𝑅𝐸𝐶𝑂, leading to small 428 

MAE and adjusted 𝑅2 of 0.8 between estimated and measured 𝑅𝐸𝐶𝑂 except for US-Ton and US-Var. Figure 6 presents 429 

HPM-estimated 𝑅𝐸𝐶𝑂 at US-NR1 and CA-OAS, with other sites presented in Figures A3 and A4. Long-term dynamics 430 

of 𝑅𝐸𝐶𝑂  are also successfully captured by HPM; however, HPM underestimatesdoes not accurately capture 𝑅𝐸𝐶𝑂 431 

during peak growing seasons. For example, we observed an over estimation of 𝑅𝐸𝐶𝑂 during 2012 summer at US-Whs, 432 

whereas at US-NR1, error increased HPM-estimation during thepeak growing season, when estimates of 𝑅𝐸𝐶𝑂  are 433 

smaller than measured 𝑅𝐸𝐶𝑂.values. While soil moisture can limitis important for 𝑅𝐸𝐶𝑂 during peak growing season 434 

(Ng et al., 2014; Wang et al., 2014), the developed HPM currently does not include soil moisture as a key attribute. 435 

As such, HPM underestimates 𝑅𝐸𝐶𝑂 during peak growing season, leading to higher 𝑀𝐴𝐸 than other times of the year. 436 

In addition, HPM 𝑅𝐸𝐶𝑂 estimation at US-Ton and US-Var show higher uncertainties (i.e., 𝑀𝐴𝐸 > 0.4 and Adj. 𝑅2 <437 

0.8 ), which also indicates that soil moisture data is necessary to increase 𝑅𝐸𝐶𝑂  prediction accuracy in this 438 



ecoregion.𝑅2 < 0.8). At these sites limited by water conditions (e.g., US-Ton) and sites with seasonally dry periods 439 

(e.g., US-Whs), it is necessary to include variables that could provide information regarding moisture stresses in the 440 

subsurface. Soil moisture that directly quantify water stress can be helpful to increase 𝑅𝐸𝐶𝑂  prediction accuracy 441 

(Noormets et al., 2008). Underestimation of peak growing season 𝑅𝐸𝐶𝑂  can also come from biases within LSTM 442 

training, which is strong in capturing long-term temporal trends but less effective in obtaining peak values, and thus 443 

lead to increasing prediction errors during growing season compared to other periods of time.  444 

 445 

Figure 6: 𝑹𝑬𝑪𝑶  estimation with data from FLUXNET sites at CA-OAS and US-NR1. Panels (a) and (c) present daily 446 

estimation of 𝑹𝑬𝑪𝑶 with red, green, and blue lines representing data used for training, validation, and prediction, and the 447 

black line shows the eddy covariance measurements. Pink points describe monthly mean difference between HPM 448 

estimation and measured data. Panels (b) and (d) show the scatter plots of daily (blue) and monthly (red) 𝑹𝑬𝑪𝑶. Darker 449 

blue clouds represent greater density of data points. Results for other sites are included in supplementary materials below 450 

(Figures A3 and A4).  451 

Table 43: Statistical measures of HPM estimation of ET and 𝑹𝑬𝑪𝑶 452 

Site ID Train 

MAE 

-ET 

[𝒎𝒎/𝒅] 

Test 

MAE 

- ET 

[𝒎𝒎/𝒅] 

Train 

Adj. 𝑹𝟐 - 

ET 

Test Adj. 

𝑹𝟐 - ET 

Train MAE 

−𝑹𝑬𝑪𝑶 

[𝒈𝑪𝒎−𝟐𝒅−𝟏] 
 

Test MAE 

−𝑹𝑬𝑪𝑶 

[𝒈𝑪𝒎−𝟐𝒅−𝟏] 
 

Train 

Adj. 𝑹𝟐 

−𝑹𝑬𝑪𝑶 

Test Adj. 

𝑹𝟐 

−𝑹𝑬𝑪𝑶 

US-NR1 0.19 0.11 0.95 0.98 0.33 0.18 0.91 0.98 

CA-Oas 0.18 0.13 0.94 0.97 0.33 0.26 0.96 0.97 

CA-Obs 0.12 0.09 0.95 0.96 0.29 0.25 0.96 0.97 

US-SRM 0.22 0.17 0.92 0.94 0.24 0.19 0.80 0.87 



US-Ton 0.22 0.17 0.92 0.94 0.43 0.36 0.76 0.82 

US-Var 0.15 0.12 0.92 0.95 0.49 0.38 0.81 0.88 

US-Whs 0.13 0.09 0.93 0.96 0.12 0.09 0.84 0.89 

US-Wkg 0.19 0.15 0.87 0.91 0.18 0.15 0.85 0.91 

 453 

4.2 Use Case 2: Ecoregion-Based, Data-Driven HPM Model for ET and 𝑹𝑬𝑪𝑶 Estimation  454 

While the effort and cost involved in establishing flux towers naturally limit the spatial coverage of obtained 455 

measurements, point scale measurements from one FLUXNET station provides representative information about 456 

ecosystem dynamics at other locations within the same ecoregion. In this section, we explored the use of a data-driven 457 

HPM trained with one FLUXNET station to estimate ET and 𝑅𝐸𝐶𝑂 at other locations within the same ecoregion. To 458 

test this approach, we first trained HPM at a selected FLUXNET stations and validated these HPM models at other 459 

FLUXNET stations (ET and 𝑅𝐸𝐶𝑂 data at testing sites were only used for comparison with HPM prediction) within 460 

the same ecoregion. Specifically, we developed HPM models at US-Ton, CA-Oas and US-Wkg, and provided ET and 461 

𝑅𝐸𝐶𝑂 estimations at US-Var, CA-Obs and US-Whs at three ecoregions, respectively.  462 

Table 54 summarizes how we developed the data-driven HPM models for spatially distributed estimation of 463 

ET and 𝑅𝐸𝐶𝑂 as well as the corresponding statistical summaries.  The estimation led to an adjusted 𝑅2 greater than 464 

0.85 for US-Obs and US-Whs and 0.70 for US-Var. Figures 7 and 8 present the time series of HPM-estimated ET and 465 

𝑅𝐸𝐶𝑂 compared to measurements from flux towers. The figuresHPM estimation at US-Obs, US-Whs and US-Var 466 

achieved an adjusted 𝑅2 of 0.87, 0.88 and 0.91 for ET and 0.95, 0.70 and 0.78 for 𝑅𝐸𝐶𝑂, respectively. These results 467 

show that HPM captures the seasonal and longerlong-term dynamics of ET and 𝑅𝐸𝐶𝑂 well, as indicated by the high 468 

adjusted 𝑅2.. However at sites that experience seasonally dry periods (e.g., US-Whs), prediction accuracy decreases 469 

during the peak growing season. For example, we observed an increased errorlarge errors in HPM-based estimations 470 

compared to measurements during peak growing seasons (e.g., a 0.5 mm discrepancy in June mean ET). Higher 471 

prediction accuracy forWe interpret this discrepancy as the two ecoregions presented by US-Whsresult that current 472 

HPM models did not capture water stress conditions, and CA-Obs are observed compared to US-Ton, which indicatesit 473 

is necessary to include other key attributes (e.g., soil moisture) are necessary to improve prediction accuracy, 474 

especially forat these sites limited by moisture conditionswith seasonally dry periods. Although the prediction 475 

accuracy is not as high as Use Case 1 (Section 4.1), this use case demonstrates that HPM can learn the complicated 476 

relationships between responses and features successfully, and that a local data-driven HPM can be used to fuse with 477 

data from other subsites for long-term estimation of ET and 𝑅𝐸𝐶𝑂 within the same ecoregions.  478 



 479 

Figure 7. ET estimation at CA-Oas (a), US-Var (c), and US-Whs (e) with HPM trained at US-Ton, US-Wkg, and CA-Oas, 480 

respectively. Red and black lines represent HPM estimation and real measurements, with green points denoting the monthly 481 

mean difference between HPM estimationss and measurements. Panels (b), (d), and (f) show the scatter plots of daily (blue) 482 

and monthly (red) ET at these three sites. Darker blue clouds represent greater density of data points. 483 



 484 

Figure 8. 𝑹𝑬𝑪𝑶 estimation at CA-Oas (a), US-Var (c), and US-Whs (e) with HPM trained at US-Ton, US-Wkg, and CA-485 

Oas, respectively. Red and black lines represent HPM estimations and real measurements; green points denote the 486 

monthly mean difference between HPM estimation and measurements. Panels (b), (d), and (f) show the scatter plots of 487 

daily (blue) and monthly (red) 𝑹𝑬𝑪𝑶 at these three sites. Darker blue clouds represent greater density of data points. 488 

4.3 Use Case 3: Ecoregion-Based, Mechanistic HPM Estimation of ET  489 

Mechanistic HPM, which is trained with ET estimates from 1-D physically-based-model simulations, 490 

provides an avenue for estimating ET in ecoregions where direct measurements from eddy covariance tower are not 491 



available. In order to test the effectiveness of the mechanistic HPM, we focused on the three SNOTEL stations and 492 

US-NR1, which locates in the “Western Cordillera” ecoregion. Mechanistic HPM is coupled with CLM simulations 493 

at these sites (Tran et al., 2019). To ensure the CLM physically-based-model simulations can provide alternative 494 

datasets to develop mechanistic HPMs, we compared CLM estimation and direct measurements of ET at US-NR1 495 

(Figure S2). The consistent results between measured ET and CLM-estimated ET (adjusted 𝑅2 = 0.88; 𝑘 = 0.95) 496 

indicate independent CLM simulations can be effectively used to develop the mechanistic HPM. 497 

We applied mechanistic HPM trained with 1-D CLM developed at ER-BT (Tran et al., 2019) to estimate ET 498 

at sites classified as part of the same ecoregion (i.e., ER-SP, ER-PK and US-NR1). We then compared ET estimation 499 

from HPM to independent CLM-based ET estimations at ER-SP and ER-PK and to direct measurements at US-NR1. 500 

Figure 9 shows a high consistency between HPM estimation and the validation data. For all scenarios, an adjusted 𝑅2 501 

of 0.8 or greater is observed (Table 54), which strongly indicates that mechanistic HPM can provide accurate ET 502 

estimation at sites of similar ecoregions. These results suggest the broad applicability of mechanistic HPM to estimate 503 

ET based on ecoregion characteristics. This approach is expected to be particularly useful for regions where flux 504 

towers are difficult to install or where measured fluxes are not representative of the landscape, such as in mountainous 505 

watersheds.  506 

Table 54. Statistical summary of HPM estimation over space with FLUXNET sites and SNOTEL stations with CLM 507 

Target 

Site 

Training 

Site 

Level II Ecoregion ET MSE 

(monthly)[𝑚𝑚/𝑑] 
ET 

Adj. 𝑅2 

RECO 

MSE(monthly)[𝑔𝐶𝑚−2𝑑−1] 
RECO 

Adj. 𝑅2 

CA-Obs CA-Oas Boreal Plain 0.39 0.88 0.36 0.97 

US-Var US-Ton Mediterrean 

California 

0.34 0.70 0.67 0.70 

US-Whs US-Wkg Western Serra Madre 

Pidemont 

0.13 0.94 0.17 0.85 

ER-SP ER-BT Western Cordillera 0.20 0.92 - - 

ER-PK ER-BT Western Cordillera 0.24 0.90 - - 

US-NR1 ER-BT Western Cordillera 0.23 0.90   



 508 

Figure 9. HPMs trained with CLM simulation at ER-BT are used to estimate ET at ER-SP, ER-PK, and US-NR1. Panels 509 

(a), (c), and (e) display HPM estimation of ET (red lines), as well as independent CLM estimation at ER-SP, ER-PK, and 510 

eddy covariance measurements at US-NR1 (black lines). Panels (b), (d), and (f) show the scatter plots of daily (blue) and 511 

monthly (red) ET at these three sites. Darker blue clouds represent greater density of data points. 512 

4.4 Exploration of How ET and 𝑹𝑬𝑪𝑶 Varies with Meteorological forcings and Vegetation Heterogeneity at 513 
the East River Watershed 514 

ET and 𝑅𝐸𝐶𝑂 estimated from the HPM model at the mountainous East River Watershed in CO enabled us to 515 

analyze how vegetation heterogeneity and meteorological forcings heterogeneity influence estimated ET and 𝑅𝐸𝐶𝑂 516 



dynamics, and to identify limitations in the developed approach for estimating ET and 𝑅𝐸𝐶𝑂  across mountainous and 517 

heterogeneous watersheds.  518 

NDVI time-series data provide high-resolution (30m scale) information about vegetation variability across 519 

the East River Watershed. The spatial distribution of vegetation cover presented in Figure 2 (from Falco et al. 520 

2019Falco et al. 2019) enables us to distinguish different patches of deciduous forests, evergreen forests, meadow 521 

grassland and riparian shrublands and retrieve corresponding NDVI time-series. NDVI time series is related with 522 

snowmelt processes, whereas earlier snowmelt triggers earlier vegetation growth and result in earlier rise NDVI values 523 

(Pedersen et al., 2018). Figure 10 shows Landsat-derived and reconstructed NDVI values for the four different 524 

vegetation types within the East River Watershed. Evergreen forests have an extended growing season compared to 525 

deciduous forests. However, peak NDVI is smaller in evergreen forests compared to deciduous forests.March, April 526 

and May mean NDVI values in 2012 for site DF1 are 0.07, 0.22 and 0.37 respectively compared to 0.06, 0.15 and 527 

0.33 in 2015. The early rise of NDVI values observed in April 2012 is consistent with the fact that snowmelt occurred 528 

much earlier in 2012 than in 2015, as recorded by the SNOTEL Butte station. Earlier increase of NDVI in earlier 529 

snowmelt year (2012) was also observed for other vegetation types.  In addition, evergreen forests have an extended 530 

growing season compared to the other vegetation types. For example, March-mean NDVI for EF1, RS1 and MS1 in 531 

2012 are 0.30, 0.13, 0.11 compared to 0.28, 0.11, 0.08 in 2015, respectively whereas May-mean NDVI for EF1, RS1 532 

and MS1 in 2012 are 0.38, 0.33, 0.35 compared to 0.34, 0.29 and 0.31 in 2015, respectively. Though earlier snowmelt 533 

triggers earlier increase in vegetation growth, significant faster greenness was observed for deciduous forests, meadow 534 

grasslands and shrublands compared to evergreen forests, where NDVI increased by 0.08, 0.20, 0.24 and 0.30 for 535 

evergreen forests, shrublands, grasslands and deciduous forests in 2012, respectively. In addition, peak NDVI is 536 

generally smaller in evergreen forests compared to deciduous forests, meadow grasslands and riparian shrublands. 537 

NDVI ranges from 0.2 to 0.6 for evergreen forests, whereas larger fluctuations in NDVI are observed for deciduous 538 

forests (-0.2 to 0.8). , shrublands and grasslands. The NDVI values during the winter are likely sensing both snow and 539 

forest density, due to pixel spatial averaging from Landsat images. Similar to Qiao et al. (2016), we also found that 540 

the NDVI of deciduous forests exhibits a significant increase during the growing season, followed by a sharp decline 541 

(likely caused by defoliation), and that evergreen forests had a more stable NDVI. Similar sharp decreases in the 542 

NDVI of riparian shrublands and meadow grasslands are observed.  543 

 544 



Figure 10: Reconstructed NDVI time series at selected locations in the East River Watershed for 2011 to 2018 (panel a) and 545 

for 2015 (panel b, normal water year). Black, red, green, and blue lines represent the time series of NDVI for deciduous 546 

forests, meadow grasslands, evergreen forests and riparian shrubland, respectively.  547 

HPM-estimated ET and 𝑅𝐸𝐶𝑂 also show different dynamics in evergreen forests and deciduous forests.with 548 

different vegetation types as a result of differences in snowmelt timing, meteorological forcing and vegetation 549 

heterogeneity. Figure 11a and 11b present the time series of estimated ET and 𝑅𝐸𝐶𝑂 associated with deciduous forests, 550 

respectively. Figure 11c and d present the ET and 𝑅𝐸𝐶𝑂 differences between deciduous forests sites and sites with 551 

other vegetation (e.g., evergreen forests shown in red)., shrublands and grasslands. Before peak growing season, 552 

evergreen forests have the greatest ET and 𝑅𝐸𝐶𝑂 compared to the other vegetation types. ET of evergreen forests is 553 

about 10% greater than deciduous forests, whereas ET of deciduous forests during peak growing season is greater 554 

than evergreen forests., shrublands and meadows. After growing season, the NDVI of deciduous forests is less than 555 

0.2 (loss of leaves) compared to the NDVI of evergreen forests. Before peak growing season, 𝑅𝐸𝐶𝑂 of evergreen forests 556 

is slightly greater than deciduous forests., meadow grasslands and shrublands. During peak growing season, we 557 

observed largest 𝑅𝐸𝐶𝑂 for deciduous forests sites (~ 6 𝑔𝐶𝑚−2𝑑−1) followed by meadows, shrublands and evergreen 558 

forests. 𝑅𝐸𝐶𝑂 of deciduous forests is around 17% greater than 𝑅𝐸𝐶𝑂of evergreen forests. Total However, we did not 559 

observe significant differences in annual ET between evergreen and deciduous forests is very close (among these four 560 

vegetation types (e.g., DF1: 535 to 573 mm, MS1: 534 to 570 mm, RS1: 532 to 567 mm and EF1: 532 to 569 mm 561 

across 7 years in this study). Total annual 𝑅𝐸𝐶𝑂  of evergreendeciduous forests is smallergreater than deciduous 562 

foreststhe other vegetation types (DF1: 642 to 698 𝑔𝐶𝑚−2𝑑−1, MS1: 588 to 636 𝑔𝐶𝑚−2, RS1: 589 to 636 𝑔𝐶𝑚−2 and 563 

EF1: 592 to 639𝑔𝐶𝑚−2).  564 

Considering the inter-annual variability in snow dynamics, we observed annual ET at 569 𝑚𝑚 and 532 𝑚𝑚 565 

and annual 𝑅𝐸𝐶𝑂  at 639 𝑔𝐶𝑚−2 and 602 𝑔𝐶𝑚−2 at EF1 for 2012 and 2015, respectively. We observed an earlier 566 

increase in ET and 𝑅𝐸𝐶𝑂 in 2012 with March-mean ET and 𝑅𝐸𝐶𝑂 at 0.69 𝑚𝑚/𝑑𝑎𝑦 and 0.51 𝑔𝐶𝑚−2𝑑−1 compared to 567 

0.60 𝑚𝑚/𝑑𝑎𝑦 and 0.47 𝑔𝐶𝑚−2𝑑−1 in 2015. During peak growing season, we observed July-mean ET at 3.43 and 568 

3.33 𝑚𝑚/𝑑𝑎𝑦 and 𝑅𝐸𝐶𝑂 at 4.73 and 4.47 0.47 𝑔𝐶𝑚−2𝑑−1 for 2012 and 2015, respectively. Though earlier snowmelt 569 

usually triggers summer drought conditions, we observed a significantly greater amount of monsoon precipitation in 570 

2012 (3.06𝑚𝑚𝑑−1) compared to 2015 (1.87𝑚𝑚𝑑−1). Water stress situation caused by earlier snowmelt was largely 571 

compensated by earlier monsoon in 2012, and thus we observed higher March, July and annual ET and 𝑅𝐸𝐶𝑂 compared 572 

to 2015. Similar trends have also been observed for deciduous forests, shrublands and meadows in 2012 and 2015.  573 



 574 

Figure 11: ET (a) and 𝑹𝑬𝑪𝑶 (b) estimation for the deciduous forest site DF1 at the East River Watershed. Panels (c) and (d) 575 

show the differences in ET and 𝑹𝑬𝑪𝑶 among various vegetation types and DF1. Red, green, and blue lines represent the 576 

differences in evergreen forest, meadow, and riparian shrubland compared to DF1. Panels (e) and (f) zoom into 2015 to 577 

better display seasonal variations. 578 

ET and 𝑅𝐸𝐶𝑂 estimation at the East River Watershed from the HPM model further enabled us to assess the 579 

role of input attributes and investigate limitations of the HPM approach. Figure 12 shows the absolute value of monthly 580 



mean difference in ET (Fig. 12a and Fig. 12b) and 𝑅𝐸𝐶𝑂 (Fig. 12c and Fig. 12d) across SNOTEL stations (ER-BT, 581 

ER-SP and ER-PK) and within selected East River locations. Landsat data enabled us to capture NDVI differences at 582 

these sites (Figure 10), but we have identified the insufficient resolution of input meteorological forcing data at the 583 

East River sites. We observed a greater differences in temperature and radiation at the SNOTEL sites whereas there’s 584 

very small differences at the East River sites (Figure S3). Summer temperature differences among SNOTEL sites can 585 

be over 3℃ but there’s a barely 0.2℃ differences in DAYMET data used for the East River sites. In addition, a ~80 586 

𝑊/𝑚2 of radiation differences is observed with SNOTEL data whereas radiation differences stays around 30 𝑊/𝑚2 587 

for East River sites. Correspondingly, we observed 2.5 times greater differences in ET across SNOTEL stations 588 

compared to the sites within the East River watershed. We observed similar level of differences (around 0.8 𝑔𝐶𝑚−2) 589 

in 𝑅𝐸𝐶𝑂 within East River Watershed and across SNOTEL stations. These results indicate HPM ET model is sensitive 590 

to temperature and radiation inputs whereas NDVI, temperature and radiation are all influential for HPM 𝑅𝐸𝐶𝑂 models. 591 

Differences in ET and 𝑅𝐸𝐶𝑂 among SNOTEL sites and East River sites are resulted from the differences in input 592 

meteorological forcing data. If high resolution meteorological data becomes available for the East River watershed, 593 

we believe the HPM approach can better capture heterogeneities in ET and 𝑅𝐸𝐶𝑂 at the East River watershed and better 594 

distinguish the roles of meteorological forcing and vegetation heterogeneity on ET and 𝑅𝐸𝐶𝑂 distribution.  595 

 596 

Figure 12. Absolute differences in monthly mean ET and 𝑹𝑬𝑪𝑶 across SNOTEL stations and within East River Watershed. 597 

Panels (a) and (c) describe the absolute differences in monthly mean ET and 𝑹𝑬𝑪𝑶 between ER-BT, ER-SP, and ER-PK. 598 



Panels (b) and (d) describe the absolute differences in monthly mean ET and 𝑹𝑬𝑪𝑶 within East River Watershed between 599 

deciduous forest (DF1), evergreen forest (EF1), meadow (MS1), and riparian shrubland (RS1). 600 

5. Discussion  601 

Our study demonstrates that HPM provides reliable estimations of ET and 𝑅𝐸𝐶𝑂 under various climate and 602 

vegetation conditions, including data-based HPMs that are trained with FLUXNET data as well as physical-model-603 

based HPMs that are coupled with simulations results from mechanistic models (i.e., CLM in this study). With 70% 604 

of the data used for training (model development), ET and 𝑅𝐸𝐶𝑂 estimation from HPM achieves an adjusted 𝑅2 of 0.9 605 

compared to eddy covariance measurements. With this high estimation accuracy, we demonstrated that this approach 606 

could be used for predicting ET and 𝑅𝐸𝐶𝑂 over time. HPM is capable of “learning” the complex interactions among 607 

meteorological forcings, vegetation dynamics, and water and carbon fluxes. The underlying relationships acquired by 608 

HPM can serve as a local ecohydrological model for long-term monitoring of ET and 𝑅𝐸𝐶𝑂 with the aid of remote 609 

sensing data, and can fill in gap data during occasional equipment failure. HPM was also successful at estimating the 610 

spatial distribution of ET and 𝑅𝐸𝐶𝑂 through exploiting an ecoregion concept.  Using the representative FLUXNET 611 

sites in different ecoregions, HPM provided estimates of ET and 𝑅𝐸𝐶𝑂 at locations using learned relationships from 612 

other sites having the same ecoregion classification. For conditions where no FLUXNET sites are within the same 613 

ecoregion, our study showed that physically-based models that utilize weather forcings data can provide alternatives 614 

for developing mechanistic HPM to estimate ET and 𝑅𝐸𝐶𝑂.  615 

With the proposed HPM approach, we investigated the variability in ET and 𝑅𝐸𝐶𝑂  estimations across 616 

different proportions of the East River Watersheds. While we currently do not have continuous measurements of ET 617 

and 𝑅𝐸𝐶𝑂 at the East River Watershed for validation, our results are comparable to other studies that focus on sites 618 

within the same ecoregion. HPM-based ET estimation at East River Watershed is comparable to Mu et al. (2013), 619 

where ET is computed based upon the logic of the Penman-Monteith equation and MODIS remote sensing data.  At 620 

the East River Watershed, data retrieved from Mu et al. (2013) indicate annual ET ranges from 554 to 585 mm at 621 

deciduous forests sites and 540 to 593 mm at evergreen forests sites. The 𝑅2 between 8-day aggregated HPM-based 622 

ET estimation and data retrieved from Mu et al. (2013) achieves 0.65 (Figure S1). Berryman et al. (2018) developed 623 

a random forest model to predict growing season soil respiration at subalpine forests in the Southern Rocky Mountain 624 

ecoregions. Their results suggest a consistent respiration rate from 2004 to 2006, with 150-day sums of 625 

542.8, 544.3 𝑎𝑛𝑑 536.5 𝑔𝐶𝑚−2, respectively, with a mean measured growing season respiration across sites and 626 

years of 3.37 𝑔𝐶𝑚−2 . HPM-based 𝑅𝐸𝐶𝑂  estimation is also (Figure S1), and the HPM-based 𝑅𝐸𝐶𝑂  estimation is 627 

comparable to what Berryman et al. (2018) discovered, with growing season 𝑅𝐸𝐶𝑂 ranging between 555 to 607 𝑔𝐶𝑚−2 628 

and mean growing season 𝑅𝐸𝐶𝑂 ranging between 3.01 𝑡𝑜 3.30 𝑔𝐶𝑚−2. While we currently do not have a time-series 629 

measurement of ET and 𝑅𝐸𝐶𝑂 at the East River Watershed for validation, our results are comparable to other studies 630 

that focus on sites within the same ecoregion (e.g.,Annual ET between deciduous forests and evergreen forests are not 631 

statistically different, which is similar to Mu et al. (2013). Annual 𝑅𝐸𝐶𝑂 differences between evergreen forests and 632 

deciduous forests are around 50 𝑔𝐶𝑚−2, which is comparable to Berryman et al., 2018). 633 



Berryman et al. 2018.  634 

We confirmed the important role of 635 

 636 

Figure 11: ET (a) and 𝑹𝑬𝑪𝑶 (b) estimation for the deciduous forest site DF1 at the East River Watershed. Panels (c) and (d) 637 

show the differences in ET and 𝑹𝑬𝑪𝑶 among various vegetation types and DF1. Red, green, and blue lines represent the 638 

differences in evergreen forest, meadow, and riparian shrubland compared to DF1. Panels (e) and (f) zoom into 2015 to 639 

better display seasonal variations. 640 



ET and 𝑅𝐸𝐶𝑂 estimation at the East River Watershed from the HPM model further enabled us to assess the 641 

impacts of small-scale (e.g., hillslope scale) heterogeneity in vegetation type on ET and 𝑅𝐸𝐶𝑂 dynamics. Figure 12 642 

shows the absolute value of monthly mean difference in ET (Fig. 12a and Fig. 12b) and 𝑅𝐸𝐶𝑂 (Fig. 12c and Fig. 12d) 643 

across SNOTEL stations (ER-BT, ER-SP and ER-PK) and within selected East River locations. A comparison of 644 

meteorological forcings data within selected East River locations and across SNOTEL stations are given in Figure S3.  645 

We observed 2.5 times greater differences in ET across SNOTEL stations compared to the sites within the East River 646 

watershed, whereas the differences in 𝑅𝐸𝐶𝑂 across SNOTEL stations are at the same level compared to the sites within 647 

East River Watershed (around 0.8 𝑔𝐶𝑚−2). This result indicates small-scale meteorological forcings and vegetation 648 

heterogeneity are the major controls of differences in ET and 𝑅𝐸𝐶𝑂 at the East River Watershed.  649 

 650 

Figure 12. Absolute differences in monthly mean ET and 𝑹𝑬𝑪𝑶 across SNOTEL stations and within East River Watershed. 651 

Panels (a) and (c) describe the absolute differences in monthly mean ET and 𝑹𝑬𝑪𝑶 between ER-BT, ER-SP, and ER-PK. 652 

Panels (b) and (d) describe the absolute differences in monthly mean ET and 𝑹𝑬𝑪𝑶 within East River Watershed between 653 

deciduous forest (DF1), evergreen forest (EF1), meadow (MS1), and riparian shrubland (RS1). 654 

5. Discussion  655 

Our study demonstrates that HPM provides reliable estimations of ET and 𝑅𝐸𝐶𝑂 under various climate and 656 

vegetation conditions, including data-based HPMs that are trained with FLUXNET data and physical-model-based 657 

HPMs that are coupled with simulations results from mechanistic models (i.e., CLM in our case). With 70% of the 658 



data used for training (model development), ET and 𝑅𝐸𝐶𝑂  estimation from HPM achieves an adjusted 𝑅2  of 0.9 659 

compared to eddy covariance measurements. With this high estimation accuracy, we demonstrated that this approach 660 

could be used for predicting ET and 𝑅𝐸𝐶𝑂 over time. HPM is capable of “learning” the complex interactions among 661 

meteorological forcings, vegetation dynamics, and water and carbon fluxes. The underlying relationships acquired by 662 

HPM can serve as a local ecohydrological model for long-term monitoring of ET and 𝑅𝐸𝐶𝑂, with the aid of remote 663 

sensing data, and can fill in gap data during occasional equipment failure.  664 

HPM was also successful at estimating the spatial distribution of ET and 𝑅𝐸𝐶𝑂  through exploiting an 665 

ecoregion concept.  Using the representative FLUXNET sites in different ecoregions, HPM provided estimates of ET 666 

and 𝑅𝐸𝐶𝑂  at locations using learned relationships from other sites having the same ecoregion classification. For 667 

conditions where no FLUXNET sites are within the same ecoregion, our study showed that physically-based models 668 

that can utilize weather forcings data can provide alternatives for developing mechanistic HPM to estimate ET and 669 

𝑅𝐸𝐶𝑂. We found that HPM performance was more reliable when trained and applied at different watersheds in the 670 

same ecoregion. For example, HPM that only relies on energy-related parameters was able to successfully estimate 671 

ET and 𝑅𝐸𝐶𝑂 at US-NR1 and CA-OAS, where radiation and temperature are key components that regulate ET and 672 

𝑅𝐸𝐶𝑂 dynamics. However, HPM with the same input features do not yield desired results at sites limited by water 673 

conditions (e.g., US-Ton and US-Var), due to lack of soil moisture data. This change indicates that parameter 674 

optimization and attributes selection may be needed for sites that are limited by moisture conditions, because important 675 

features can be subject to local conditions that potentially lower HPM performance.  676 

We confirmed the important role of small-scale vegetation heterogeneity in modeling ET and 𝑅𝐸𝐶𝑂 dynamics, 677 

which further enabled us to better understand ecosystem dynamics at the East River Watershed. As indicated from 678 

NDVI time series (Fig 10), evergreen forests have a longer growing season compared to deciduous forestsother 679 

vegetation types; however, deciduous forests have greaterhigher peak NDVI values. Correspondingly, we also 680 

observed an earlier increase in ET and 𝑅𝐸𝐶𝑂 for evergreen forests (before May), but larger ET and 𝑅𝐸𝐶𝑂 for deciduous 681 

forests during peak growing season (around June and July). Annual ET between deciduous forests and evergreen 682 

forests are not statistically different, which is similar to (Berryman et al., 2018; Mu et al., 2013)Similar dynamics were 683 

also observed at regions that have different climate conditions.. Annual 𝑅𝐸𝐶𝑂 differences between evergreen forests 684 

and deciduous forests are around 50 𝑔𝐶𝑚−2, which is comparable to Berryman et al. 2018). Similar dynamics were 685 

also observed at regions that are have different climate conditions. Through assessing the differential mechanisms of 686 

deciduous forests and evergreen forests at various sites under Mediterranean climates, Baldocchi et al. (2010) found 687 

that deciduous forests had a shorter growing season, but showed a greater capacity for assimilating carbon during the 688 

growing season. Evergreen forests, on the other hand, had an extended growing season but with a smaller capacity for 689 

gaining carbon. These results were identified through analyzing the relationships among leaf ages, leaf nitrogen level, 690 

leaf area, and water use efficiencies of these tree species at the selected Mediterranean sites. OlderThey found older 691 

leaves tend to have smaller leaf nitrogen and stomata conductance, and thus that lead to smaller ET and 𝑅𝐸𝐶𝑂 during 692 

peak growing seasons. Though our approach were not able to quantify the physiology differences among vegetation 693 

types, HPM estimation indicated evergreen forestforests that maintain leaves throughout the year have smaller ET and 694 



𝑅𝐸𝐶𝑂 are smaller during the peak growing season compared to deciduous forests, yet maintain a relatively high level 695 

before the peakother vegetation types.  696 

Dynamic changes in the inter-annual variability of meteorological conditions result in varying growing 697 

season or during defoliation.length and spatiotemporal variability in ET and 𝑅𝐸𝐶𝑂. Earlier snowmelt triggers earlier 698 

growth of vegetation, causing earlier rise in ET and 𝑅𝐸𝐶𝑂 . However, earlier growth in vegetation and increasing 699 

demand for water results in drought conditions (Sloat et al., 2015; Wainwright et al., 2020) that decrease ET and 𝑅𝐸𝐶𝑂. 700 

Timing and amount of monsoon precipitation are also important monsoons can relieve water stress and lead to 701 

increases in ET and 𝑅𝐸𝐶𝑂. Combination of these events jointly determine the magnitude of annual ET and 𝑅𝐸𝐶𝑂. Hu 702 

et al. (2010) analyzed flux data at US-NR1 to determine the relationships between growing season lengths and carbon 703 

sequestration, and found that extended growing season length resulted in less annual 𝐶𝑂2 uptake. They also found that 704 

the duration of growing seasons substantially decreases snow water storage, which significantly decreases forest 705 

carbon uptake. While we were not able in this study to assess the differential advatanges and physiological 706 

mechanisms among vegetation types, HPM-based estimation of ET and 𝑅𝐸𝐶𝑂 presented similar dynamic trends to 707 

those found in Berryman et al. (2018); Hu et al. (2018); and Mu et al. (2013).Wieder et al. (2017) used point-scale 708 

CLM to better understand how complex terrain controls landscape-level variation of water, carbon and energy fluxes 709 

in the Niwot Ridge mountain ecosystems. With synthetic scenarios (e.g., different snow accumulation dynamics, 710 

fluctuations in air temperature), their simulation indicated earlier snowmelt and warmer summertime temperatures 711 

might drive divergent plant responses across the landscape. In our study, the combination of early snowmelt and early 712 

vegetation growth resulted in higher March ET and 𝑅𝐸𝐶𝑂 in 2012 compared to 2015. The earlier start of growing 713 

season led to occurrences of fore-summer drought that decreases ET and 𝑅𝐸𝐶𝑂 . However, the substantial earlier 714 

monsoon precipitation in 2012 relieved subsurface water stress whereas we observed higher July ET and 𝑅𝐸𝐶𝑂  715 

compared to other years. In addition, we observed smaller annual ET and 𝑅𝐸𝐶𝑂 for evergreen forests that have longer 716 

growing season compared to other vegetation types. These results suggested HPM is capable of translating these 717 

variabilities in meteorological forcing and vegetation variables to ET and 𝑅𝐸𝐶𝑂 dynamics.  718 

Microclimate and small-scale heterogeneity in meteorological forcings attributes control the magnitude and 719 

timing of ET and 𝑅𝐸𝐶𝑂  dynamics. For example, otherThrough comparing the HPM estimation results at different 720 

ecoregions, we also identified and assessed the limitations of current selection of input parameters. In the current study, 721 

we only used meteorological forcing and remote sensing based variables as inputs for HPM models, because these 722 

data are generally acquirable from weather reanalysis datasets and remote sensing products. HPM models with these 723 

variables provided reasonable estimates of ET and 𝑅𝐸𝐶𝑂 for ecoregions limited by energy conditions, however we 724 

observed a decreasing prediction accuracy for ecoregions that experience seasonally dry periods. For example, HPM 725 

estimates at US-NR1 and CA-OAS achieved very high 𝑅2  and small MAE; but prediction accuracy decreases 726 

especially during peak growing season at US-Ton and other water-limiting sites. These results indicate other key 727 

variables are necessary in order to capture dynamics during the seasonally dry periods, such as soil moisture 728 

measurement. The current HPM models did not use soil moisture as an input variable due to data availability reasons, 729 



but we believe and recommend adding soil moisture as well as other key variables to HPMs to further improve model 730 

performance at these seasaonlly dry ecoregions when such data becomes available.   731 

Parameterization and spatiotemporal resolution of meteorological forcing data still remain a challenge for 732 

improving ET and 𝑅𝐸𝐶𝑂  estimation at sparsely monitred watersheds. Microcliamte and heterogeneities in 733 

meteorological forcing attributes control the mangnitude and timing of ET and 𝑅𝐸𝐶𝑂  dynamics. Other field 734 

observations along the Rocky Mountain ranges have shown that south-facing hillslopes have significantly earlier 735 

snowmelt compared to north-facing hillslopes (Kampf et al., 2015; Webb et al., 2018), which are hypothesized to 736 

result in significant differences in ET and 𝑅𝐸𝐶𝑂 dynamics. As a result, estimation of small-scaleWe compared ET and 737 

𝑅𝐸𝐶𝑂 dynamics requires high spatial resolution meteorological inputs, which is currently a challenge. We originally 738 

intended to investigate aspect impacts on ET differences among SNOTEL sites and 𝑅𝐸𝐶𝑂 dynamics at East River 739 

Watershed by selectingsites and identified ET differences among SNOTEL sites are greater than the differences among 740 

East River sites with different slope orientations. However, small-scale meteorological-forcingsbut 𝑅𝐸𝐶𝑂 differences 741 

are similar between the two groups. Data from weather stations (SNOTEL sites) captured the spatiotemporal 742 

heterogeneity and microclimate were not available due to the relatively low spatial resolution of meteorological 743 

forcings inputs (DAYMET, 1 km scale). Whilein radiation and temperature, however DAYMET data suggest that 744 

differences in air temperature and solar radiation are suggested very small for sites located at different portions of the 745 

watershed, the three weather stations at the site reveal that spatial heterogeneitydifferences in radiation and 746 

temperature (Figure S3 and S4). The insufficient spatial resolution of input meteorological forcing attributes do exist, 747 

especially air temperature (Figure S4). Even though the small-scale meteorological forcings heterogeneity is partly 748 

embedded in NDVI time series, the heterogeneity in ET and 𝑅𝐸𝐶𝑂 estimated from data limits HPM performance at the 749 

East River Watershed is potentially underestimated, due to the insufficient spatial resolution of meteorological inputs. 750 

In addition to limitations imposed from the spatial resolution, uncertainties. Uncertainties in meteorological inputs 751 

can also result in large errors (i.e., >20% MAE) and reduce accuracy by 10-30% in ET and 𝑅𝐸𝐶𝑂  estimations as 752 

suggested by Mu et al. (2013) and Zhang et al. (2019). Thus, there is still a significant need for high-spatial-resolution 753 

meteorological-forcing data products, such as data provided by the Surface Atmosphere Integrated Field Laboratory 754 

(SAIL) that can capture small-scale heterogeneity for implementing into HPM, which will then  to enable us to better 755 

estimates of ET and 𝑅𝐸𝐶𝑂 and assess the governing factors that regulate small-scale heterogeneity in ET and 𝑅𝐸𝐶𝑂.their 756 

spatiotemporal variability.   757 

In addition to the quality of meteorological data, HPM is also influenced by remote sensing inputs accuracy. 758 

Incorrectly calculated or pixel-averaged NDVI values from Landsat images can greatly alter HPM outputs for ET and 759 

𝑅𝐸𝐶𝑂. Satellite images with different cloud cover have a slight influence over the NDVI values calculated, which do 760 

not represent real-time vegetation conditions. Algorithms used to reconstruct daily NDVI time series are also subject 761 

to uncertainties. However,But with recent advances in remote sensing and satellite technologies (McCabe et al., 2017), 762 

the spatial and temporal resolution should greatly increase in the future (i.e., and harmonized Landsat-Sentinel datasets 763 

(Claverie et al., 2018), the spatial and temporal resolution should greatly increase in the future (i.e., 3 m resolution 764 



and daily). These advances will lead to more accurate classification of vegetation types and NDVI calculations, which 765 

are expected to decrease uncertainty associated with flux estimation 766 

Another source of uncertainty in HPM arises from the choice of hybrid approaches and any parameter 767 

uncertainties in mechanistic models. Since HPM relies on accurate ET and 𝑅𝐸𝐶𝑂  inputs from flux towers or 768 

mechanistic models, any uncertainties in measuring or modeling ET and 𝑅𝐸𝐶𝑂 will propagate to HPM. If HPM is 769 

developed with a mechanistic model that has such missing components, these biases will be passed on to HPM 770 

estimation of ET and 𝑅𝐸𝐶𝑂. Parameter and conceptual model uncertainties in mechanistic models also restrict HPM’s 771 

ability to “learn” the ecosystem dynamics. In order to reduce potential biasedness, we trained data-based HPM and 772 

physical-model-based HPM upon long time series (e.g., > 5 years) with quality assessed data or simulation results, 773 

which also enables HPM to better memorize long time dependencies of ecosystem dynamics. Though the 774 

quantification of uncertainties remains challenging, efforts have been made to lower these uncertainties using the 775 

technical advances described here.  776 

6. Conclusion 777 

In this study, we developed and tested a Hybrid Predictive Modeling (HPM) approach for ET and 𝑅𝐸𝐶𝑂 778 

estimation, with a focus on mountainous watersheds. in the Rocky Mountains. We developed individual HPM models 779 

at various FLUXNET sites and at sites where data can supports the proper development of a mechanistic model (e.g., 780 

CLM). These models were validated against eddy covariance measurements and CLM outputs. We further used these 781 

models for ET and 𝑅𝐸𝐶𝑂 estimation at watersheds within the same ecoregion to test HPM’s capability of providing 782 

estimation over space, where only meteorological forcings data and remote sensing data were available. Lastly, we 783 

applied the HPM to provide long-term estimation of ET and 𝑅𝐸𝐶𝑂 and test the sensitivity of HPM to various vegetation 784 

types at various sites within the East River Watershed of CO.  785 

Given the promising results of HPM, this work offers an avenue for estimating ET and 𝑅𝐸𝐶𝑂 using easy-to-786 

acquire or commonly available datasets. This study also suggests that the spatial heterogeneity of meteorological 787 

forcings and vegetation dynamics have significant impacts on ET and 𝑅𝐸𝐶𝑂  dynamics, which may be currently 788 

underestimated due to typically coarse spatial resolution of data inputs. Parameters related to energy and soil moisture 789 

conditions can be implemented into HPM to increase HPM’s accuracy, especially for sites in ecoregions limited by 790 

soil moisture conditions. Lastly, it should be pointed out that HPM is not restricted to estimation of ET and 𝑅𝐸𝐶𝑂 only. 791 

We focused here on developing HPM for ET and 𝑅𝐸𝐶𝑂 , but HPM also has great potential for estimating other 792 

parameters important for water and carbon cycles. given the right choice of input variables. Indeed, other attributes, 793 

such as GPPnet ecosystem exchange (Figure A6) and sensible heat flux, might also be accurately captured and 794 

represented with HPM, given the right choice of features.  795 

Data availability. The data used in this study are from publicly available datasets. FLUXNET measurements can be 796 

accessed at https://FLUXNET.fluxdata.org. SNOTEL data are available at https://www.wcc.nrcs.usda.gov/snow/. 797 

DAYMET data can be found at (Thornton et al., 2017) or via Google Earth Engine. Landsat data are available on 798 

https://fluxnet.fluxdata.org/
https://www.wcc.nrcs.usda.gov/snow/
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Appendix 1074 

 1075 
1. ET and 𝑹𝑬𝑪𝑶 Estimation over Time at other Fluxnet sites 1076 



1077 

Figure A1: ET estimation with data from selected FLUXNET sites at CA-OBS, US-Wkg, and US-SRM. Panels (a), (c), and 1078 

(e) present daily estimations of ET with red, green, and blue lines representing data used for training, validation, and 1079 

prediction, respectively, and the black line representing the eddy covariance measurement. Pink points describe monthly 1080 

mean difference between HPM estimation and measured data. Panels (b), (d), and (f) show the scatter plots of daily (blue) 1081 

and monthly (red) ET. Darker blue clouds represent greater density of data points.  1082 

 1083 



 1084 

Figure A2: ET estimation with data from selected FLUXNET sites at US-Ton,  US-Var, and US-Whs. Panels (a), (c), and 1085 

(e) present daily estimations of ET with red, green, and blue lines representing data used for training, validation, and 1086 

prediction, respectively, and the black line representing the eddy covariance measurement. Pink points describe monthly 1087 

mean difference between HPM estimation and measured data. Panels (b), (d), and (f) show the scatter plots of daily (blue) 1088 

and monthly (red) ET. Darker blue clouds represent greater density of data points.  1089 

 1090 

 1091 



1092 
Figure A3: 𝑹𝑬𝑪𝑶 estimation with data from selected FLUXNET sites at CA-OBS, US-Wkg, and US-SRM. Panels (a), (c), 1093 

and (e) present daily estimations of 𝑹𝑬𝑪𝑶 with red, green, and blue lines representing data used for training, validation, and 1094 

prediction, respectively, and the black line is eddy covariance measurement. Pink points describe the monthly mean 1095 

difference between HPM estimation and measured data. Panels (b), (d), and (f) show the scatter plots of daily (blue) and 1096 

monthly (red) 𝑹𝑬𝑪𝑶. Darker blue clouds represent greater density of data points.  1097 

 1098 



 1099 

Figure A4: 𝑹𝑬𝑪𝑶 estimation with data from selected FLUXNET sites at US-Ton, US-Var, and US-Whs. Panels (a), (c), and 1100 

(e) present daily estimations of 𝑹𝑬𝑪𝑶 with red, green, and blue lines representing data used for training, validation, and 1101 

prediction, respectively, and the black line representing the eddy covariance measurement. Pink points describe monthly 1102 

mean difference between HPM estimation and measured data. Panels (b), (d), and (f) show the scatter plots of daily (blue) 1103 

and monthly (red) 𝑹𝑬𝑪𝑶. Darker blue clouds represent greater density of data points. 1104 

 1105 

  1106 



 1107 

Figure A5: ET and 𝑹𝑬𝑪𝑶 estimation at US-Me2. Panels (a) and (b) show the scatter plots of daily (blue) and monthly (red) 1108 

ET and 𝑹𝑬𝑪𝑶. Darker blue clouds represent greater density of data points. Panels (c), and (d) present daily estimations of 1109 

𝑹𝑬𝑪𝑶 with red, green, and blue lines representing data used for training, validation, and prediction, respectively, and the 1110 

black line representing the eddy covariance measurement. Pink points describe monthly mean difference between HPM 1111 

estimation and measured data.  1112 
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2. Tested NEE Estimation over Time at CA-OAS and US-NR1 1114 

 1115 



Figure A6. HPM estimate of NEE at CA-OAS and US-NR1. 𝑹𝟐 between estimation and measurements are 0.87, 0.83 and 1116 
0.81 at CA-OAS; 0.94, 0.88 and 0.90 at US-NR1 for the training set, validation set and prediction set, respectively. Model 1117 
inputs include air temperature, soil temperature, sn, precipitation and radiation.  1118 
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