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Abstract.  19 

 20 

A physically-based snowpack evolution and redistribution model was used to test the effectiveness of assimilating crowd-sourced 21 

measurements of snow depth by citizen scientists. The Community Snow Observations (CSO; communitysnowobs.org) project 22 

gathers, stores, and distributes measurements of snow depth recorded by recreational users and snow professionals in high 23 

mountain environments. These citizen science measurements are valuable since they come from terrain that is relatively under-24 

sampled and can offer in-situ snow information in locations where snow information is sparse or non-existent. The present study 25 

investigates 1) the improvements to model performance when citizen science measurements are assimilated and 2) the number of 26 

measurements necessary to obtain those improvements. Model performance is assessed by comparing time series of observed 27 

(snow pillow) and modeled snow water equivalent values, by comparing spatially-distributed maps of observed (remotely sensed) 28 

and modeled snow depth, and by comparing fieldwork results from within the study area. The results demonstrate that few citizen 29 

science measurements are needed to obtain improvements in model performance and these improvements are found in 62% to 78% 30 

of the ensemble simulations, depending on the model year. Model estimations of total water volume from a sub-region of the study 31 

area also demonstrate improvements in accuracy after CSO measurements have been assimilated. These results suggest that even 32 

modest measurement efforts by citizen scientists have the potential to improve efforts to model snowpack processes in high 33 

mountain environments, with implications for water resource management and process-based snow modeling.  34 

 35 

1 Introduction 36 

The importance of snow in ecosystem function, in both human and natural systems, and in water resource management in western 37 

North America cannot be overstated (Bales et al., 2006; Mankin et al., 2015; Viviroli et al., 2007). Internationally, more than a 38 

billion people live in watersheds where snow is an integral part of the hydrologic system (Barnett et al., 2005). Snowpack dynamics 39 

in mountainous, headwater catchments play an essential role connecting atmospheric processes and the hydrologic cycle with 40 
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downstream water users, agricultural systems, and municipal water systems (Fayad et al., 2017; Holko et al., 2011; Schneider et 41 

al., 2013).  42 

 43 

Information about snow distribution comes from many sources. First, there are snow datasets in the form of in-situ observations 44 

of snowpack conditions, often observations of snow depth or snow water equivalent (SWE). In the United States of America (U.S.), 45 

snow depth and SWE data are collected by the National Resources Conservation Service’s (NRCS) Snow Telemetry (SNOTEL) 46 

network using snow pillows and snow courses. Similar national in-situ snow observational networks exist in Europe, like the 47 

MeteoSwiss and MeteoFrance programs that include snow depth, snowfall, and SWE datasets. For a comprehensive overview of 48 

snow observations in Europe, including each program name, the location of observations, and agency websites, see the European 49 

Snow Booklet (Haberkorn et al., 2019). Snow course information is also collected by state programs such as the California 50 

Cooperative Snow Survey in the U.S. and, in the case of Canada, by provincial programs such as the British Columbia Snow 51 

Survey. These in-situ snow observations provide critical information on snow conditions and snow distribution worldwide but vast 52 

areas of snowpack remain unsampled.  53 

 54 

To fill the observational gaps associated with point measurements, we often turn to snow information in the form of remote sensing 55 

(RS) datasets, like the NASA-based Airborne Snow Observatory (Painter et al., 2016) that uses light detection and ranging 56 

(LiDAR) in catchment-scale study areas. Other catchment-scale snow RS datasets are collected using unmanned aerial systems, 57 

including high-elevation capable drones and balloon-based platforms in conjunction with structure-from-motion photogrammetry 58 

(Buhler et al. 2016; Li et al., 2019). There are also RS datasets covering hemispheric and global scales, like the daily snow covered 59 

area product from the MODIS satellite or the GlobSnow snow extent product from the European Space Agency (Hall & Riggs, 60 

2016; Luojus et al., 2010).  61 

 62 

Lastly, there are modeled snow datasets, like the Snow Data Assimilation project with a spatial extent that covers large portions of 63 

North America (SNODAS; NOHRSC, 2004). There are physically-based snow models that produce snow information on 64 

catchment- to hemisphere-scales, like iSnowBal, SnowModel, Alpine3D, PBSM, and SNOWPACK, among many others (Marks 65 

et al., 1999; Liston & Elder, 2006a; Lehning et al, 2006; Pomeroy et al., 1993; Lehning et al., 1999). Studies that integrate all of 66 

these types of snow information, in-situ observations, RS datasets, and process models, are becoming common in snow research 67 

because they often produce the best results (Sturm et al., 2015).  68 

 69 

Assimilation of data into process modeling is a strategy that seeks to incorporate measurements of environmental variables into 70 

the model chain as a ‘hybrid’ approach to predicting modeled state variables (Carrassi et al., 2017; Kalnay et al., 2003). There are 71 

many examples of data assimilation in the atmospheric sciences and weather prediction (Rabier et al., 2005), in weather reanalysis 72 

products (Gelaro et al., 2017; Kalnay et al., 2003; Messinger et al., 2006; Saha et al., 2011), in the hydrological sciences (Han et 73 

al., 2012; McLaughlin et al., 2002; McMillan et al., 2013; Park & Xu, 2013), and also in snow science (SNODAS; NOHRSC, 74 

2004; Carroll et al., 2001). Data assimilation schemes in snow science rest on the notion that modeled variables like SWE can be 75 

merged with an in-situ observed value at the same location and time using an objective function. This objective, or cost, function 76 

quantifies the differences between the modeled state variable and the observed state (Reichle et al., 2002; Reichle et al., 2008; 77 

McLaughlin, 2002). These methods can assimilate model state variables, like SWE, using a statistical method like a Kalman filter 78 

or they can assimilate model fluxes like snowfall precipitation or snowmelt rates (Carroll et al., 2001; Clark et al., 2006; Magnussen 79 

https://doi.org/10.5194/hess-2020-321
Preprint. Discussion started: 15 September 2020
c© Author(s) 2020. CC BY 4.0 License.



3 

 

et al., 2014; Reichle et al., 2008). Other direct insertion assimilation schemes in snow science run the model twice, once without 80 

the assimilated data, and a second time after the in-situ observations and correction factors are calculated in order to produce an 81 

updated state variable (Liston et al., 2008; Malik et al., 2012; Helmert et al., 2018). Regardless of the method of assimilation, the 82 

goal is the same: to produce a more accurate modeled state variable (snow depth or SWE) in space and time by using in-situ 83 

observations to modify the process model output.  84 

 85 

Snow depth measurements are a type of in-situ snowpack observation that can be made accurately and quickly by anyone with a 86 

measuring device. As a consequence, the current study turns to citizen scientists for snow data collection. Citizen science is a 87 

unique type of research in which scientists request input from the general public on data collection, data analysis, or data processing 88 

(McKinley et al., 2017; Silvertown, 2009; Wiggins and Crowston, 2011). Through citizen science efforts, researchers access data 89 

that are either highly decentralized or concentrated in space, as well as gather measurements frequently or randomly in time. The 90 

primary advantage is that many people can accomplish data collection at spatial and temporal scales well beyond the capacity of a 91 

single researcher or small group of scientists (Bonney et al., 2009; Cooper et al., 2007; Dickinson et al., 2010). Recent successful 92 

citizen science-based research includes the CrowdHydrology project that monitors stage heights of streams and rivers (Fienen & 93 

Lowry, 2012; Lowry & Fienen, 2013), and the CrowdWater project, which obtains multiple types of crowdsourced measurements 94 

of hydrological variables using a publicly available app (Seibert et al., 2019; van Meerveld et al., 2017). Buytaert et al. (2014) 95 

provides a comprehensive review of the recent challenges and motivations of citizen science in hydrology. This unique type of 96 

data collected by citizen scientists has been used in many natural sciences, and snow hydrology represents a new opportunity for 97 

citizen science-based research. 98 

 99 

The present study explores the assimilation of a unique type of citizen science-based data in snow modeling: snow depth 100 

measurements collected by citizen scientists traveling in snow covered landscapes worldwide. This new snow dataset and project 101 

is called Community Snow Observations (CSO; communitysnowobs.org). The CSO campaign relies on backcountry recreationists 102 

including skiers, snowboarders, snowmachiners, cross country skiers, snowshoers, and snow professionals, including avalanche 103 

forecasters and snow scientists, who visit snowy environments for work and recreation to obtain snow depth measurements of the 104 

snowpack (Hill et al., 2018; Yeeles, 2018). Other citizen science projects are underway in snow science, including research on the 105 

relationship between vernal windows and snow depth (Contosta et al., 2017; Burakowski et al., 2018), snow depth verification of 106 

satellite datasets in Canada using Twitter (Edmiston, 2012; Wiggins & Crowston, 2011), and the backyard precipitation 107 

measurement campaign called Community Collaborative Rain, Hail, and Snow Network (Reges et al., 2016). The CSO project 108 

adds to a growing body of research accomplished by citizen scientists in the natural sciences, and contributes to the connections 109 

between physics-based, process modeling and in-situ observations in data assimilation and snow science. 110 

 111 

The current study aims to answer two questions. First, can citizen scientists’ snow depth measurements be incorporated into the 112 

process model workflow in a way that improves model performance? This question is addressed by presenting an ensemble of 113 

modeled snow depth and SWE distribution results with two types of outputs: (a) a set of model outputs without any snow depth 114 

measurements assimilated and, (b) a set of model outputs with CSO snow depth measurements assimilated. To answer this first 115 

question, we characterize the results using temporal and spatial datasets for validation. These datasets include time-series SWE 116 

observations at a SNOTEL station in the study area and lidar- and photogrammetry-derived snow depth maps from 2017 and 2018. 117 

We rely upon common metrics for characterizing the spatial distribution of modeled versus observed continuous environmental 118 
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variables to assess the value of the CSO modified outputs (Reimann et al., 2010). Secondly, how do the results vary with the 119 

number of the CSO measurements assimilated? We address this question by randomly selecting and varying the quantity of CSO 120 

measurements in the ensemble members. The potential of mobilizing a new type of in-situ snow dataset collected by snow 121 

professionals and snow recreationists is significant because these participants often travel to remote mountainous environments 122 

worldwide where in-situ snow observations are sparse. 123 

 124 

2 Study Area 125 

The study focuses on a 5,736 km2 area of the eastern Chugach Mountains near Valdez, Alaska (Figure 1). This high-relief, glacier-126 

carved landscape ranges from sea-level in Port Valdez to rugged peaks exceeding 2200 m.a.s.l., and a mountain pass on the 127 

Richardson Highway, named Thompson Pass (815 m.a.s.l). This region of the Chugach mountains receives extreme amounts of 128 

snowfall, with Thompson Pass holding multiple snowfall records for the state of Alaska, including the 1-day total (1.57 m), 2-day 129 

total (3.06 m), and weekly total (4.75 m; Shulski & Wendler, 2007). Like other places in the Chugach Mountains, snow densities 130 

and snow depths in the region vary greatly across short distances (Wagner, 2012). There are deep, dense, and wet snowpacks found 131 

in the maritime snow climates near the coast. The interior regions of the Chugach Mountains further from the coast contain 132 

shallower, less-dense, and drier snow climates (Fieldwork 2018; Sturm et al., 1995; Sturm et al., 2010). These factors are important 133 

because the Thompson Pass region and the Chugach mountains are frequently accessed by backcountry skiers and snowboarders, 134 

backcountry snowmachiners, and multiple heli-skiing operations due to the exceptional access to steep terrain, and deep, mountain 135 

snowpack (Carter et al., 2006; Hendrikx et al., 2016). Due to the popularity of the area for backcountry snowsports and the risk of 136 

danger for avalanches affecting highway conditions, the Valdez Avalanche Center produces avalanche forecasts for many of the 137 

slopes adjacent to the Richardson Highway in the Thompson Pass region. The choice of a study area within a mountainous region 138 

visited regularly by snow recreationists and professionals is essential for the present study. For these reasons, the Thompson Pass 139 

region of the Chugach Mountains in Alaska was selected for the initial phases of the CSO project. 140 

 141 
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 142 

Figure 1: Study Area Map. 143 
The study area maps showing the Community Snow Observations (CSO) measurements, the modeling spatial extent, and the 144 

Thompson Pass region of the Chugach Mountains.  145 

3 Methods and Datasets 146 

3.1 Model Dataflow 147 

This study relies on a common research design in snow science that uses (1) in-situ snow observations, (2) physically-based process 148 

modelling, and (3) remote sensing of the snowpack to accomplish its primary objectives (Sturm et al., 2015). Figure 2 is a 149 

conceptual diagram of how the citizen scientists’ snow depth measurements fit into the model chain for the present study. The 150 

modeling process begins with the weather forcing products and citizen scientists’ snow depth observations as model inputs. Sub-151 

models for meteorological variable distribution, snow depth to SWE estimation, and for the assimilation of snow measurements 152 

are employed before the final simulation occurs. The process model outputs are then validated by the RS datasets, the UTS station 153 

record, and the 2018 field measurements. Incorporating the citizen scientists’ observations into the model chain is an attempt to 154 

modify the model outputs by in-situ snow depth observations.  155 

 156 
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 157 

Figure 2: Model Dataflow Diagram. 158 
The model chain begins with the weather forcing product and the Community Snow Observations (CSO) datasets. The arrows indicate 159 

dataflow through the series of sub-models to the process model output. The model output is then validated by the SNOTEL station 160 
time-series, the 2018 fieldwork, and the remote sensing datasets. 161 

 162 

3.2 Modeling Framework 163 

In this study we used a sequence of models to simulate SWE and snow depth distributions within the Thompson Pass study area 164 

during WY2017 and WY2018. The sections below provide brief information about the models used in this study. For more details, 165 

please refer to the source citations for each model.  166 

 167 

3.2.1 SnowModel 168 

SnowModel (Liston & Elder, 2006a) is a physically-based, spatially distributed process model for simulating the evolution of 169 

snowpacks in snowy environments, and has been used for high-resolution and hemispheric-scale modeling worldwide (Beamer et 170 

al., 2016; Beamer et al., 2017; Crumley et al., 2019; Liston & Heimstra, 2011; Mernild et al., 2017a-b). SnowModel is chosen for 171 

the Chugach Mountains study area since it contains a data assimilation sub-model, SnowAssim, and a snow transportation sub-172 

model, SnowTran3d. Within SnowModel, various other sub-models solve the energy budget for the snowpack, generate runoff 173 
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quantities, etc. The present study focuses on the snow depth and SWE distribution outputs from SnowModel from simulations with 174 

and without the data assimilation sub-model.  175 

 176 

3.2.2 MicroMet 177 

MicroMet (Liston & Elder, 2006b) is a meteorological distribution sub-model for weather station or reanalysis datasets that can be 178 

paired with SnowModel in spatially explicit modeling applications. MicroMet uses the Barnes objective analysis scheme for 179 

interpolating meteorological input variables to the gridded SnowModel domain for each model timestep (Barnes, 1964; Barnes, 180 

1973). In the present study, instead of using weather station data, the model is forced with reanalysis data and MicroMet uses the 181 

node locations as weather stations, accessing the reanalysis node surface level precipitation, wind speed and wind direction, relative 182 

humidity, air temperature, and elevation variables for the spatial interpolation. MicroMet has been paired with reanalysis weather 183 

products and SnowModel in many studies worldwide (Baha et al., 2018; Beamer et al., 2016; Liston & Heimstra, 2011; Mernild 184 

et al., 2017a).  185 

 186 

3.2.3 SnowTran3d 187 

Wind redistribution of snow is an important factor for the spatial distribution of snow depths and SWE distributions for snow 188 

modeling (Clark et al., 2011). Wind events build snow deposits in the gullies and the leeward side of bedrock features into drift 189 

depths greater than 10 m at times within the Thompson Pass study area. These events also leave some portions of the landscape 190 

completely scoured and void of snow based on fieldwork observations and the RS snow surveys from both years. SnowTran3d is 191 

a sub-model within SnowModel that redistributes the snow laterally in the model grid according to the processes that govern snow 192 

transportation: fetch, wind speed, wind direction, wind shear stress and the shear strength of the snowpack, saltation and turbulent 193 

suspension of the snow, and sublimation (Liston et al., 2007). SnowTran3d is suitable for use as a sub-routine within SnowModel 194 

when the model grid cell resolution is appropriate for the length scale of snow transportation processes to occur, for example, 195 

primarily at model resolutions less than 100 m. 196 

 197 

3.2.4 SnowAssim 198 

To assimilate the CSO measurements, we used the sub-model SnowAssim developed in tandem with SnowModel (Liston and 199 

Elder, 2008). For each water year (WY; defined as September 1st through August 31st) in the model time period, SnowModel 200 

creates a full, preliminary simulation using the meteorological forcing dataset and no observational SWE data. Next, SnowAssim 201 

compares the observed state SWE values at each location and time to the modelled state SWE values from the same grid locations 202 

and time iterations. Note that CSO measurements are submitted as snow depths (m) and SnowAssim requires observational inputs 203 

to be SWE depths (m), so a conversion from depth to SWE was necessary. The snow depth to SWE conversion method for the 204 

current study will be discussed in the following section. SnowAssim aggregates all the assimilated observations by date and creates 205 

a spatially varying correction surface that covers the entire model domain (Liston and Elder, 2008). These various correction 206 

surfaces are applied by adjusting the model precipitation fluxes and snowmelt factors between SWE observation dates during a 207 

second SnowModel simulation.  208 

https://doi.org/10.5194/hess-2020-321
Preprint. Discussion started: 15 September 2020
c© Author(s) 2020. CC BY 4.0 License.



8 

 

 209 

3.2.5 Snow Depth to Snow Water Equivalent Conversion 210 

CSO participants take measurements of snow depth yet SnowAssim requires SWE observation inputs. A conversion from snow 211 

depth to SWE must be performed. A body of research exists on the best methods for converting point measurements from snow 212 

depth to SWE, using either bulk density estimations, snow climate classifications, statistical models, or atmospheric conditions 213 

and energy balance approaches (Sturm et al., 1995; Sturm et al., 2010; McCreight and Small 2014; Jonas et al., 2009; Pagano et 214 

al., 2009; Hill et al., 2019; Pistocchi, 2016). The Hill et al. (2019) model was chosen for two reasons. First, the data requirements 215 

are minimal for this model, requiring only location, day of water year (DOY) and readily-available climatological information 216 

based on input location. These minimal requirements align with the information available from CSO measurements. Second, it 217 

was found to outperform other bulk density methods such as Sturm et al. (2010) and Jonas et al. (2009) when tested against a wide 218 

variety of snow pillow and snow course datasets (Hill et al., 2019).  219 

 220 

3.3 Model Input Datasets 221 

3.3.1 Elevation and Land Cover 222 

SnowModel requires a digital elevation model (DEM) and a land cover model as two of the three primary input datasets. The DEM 223 

is the National Elevation Dataset (NED) from the United State Geological Survey downloaded at 30 m resolution and then rescaled 224 

to 100 m spatial resolution (Gesch et al., 2002). The land cover model is the National Land Cover Database (NLCD) 2011 dataset 225 

at 30 m spatial resolution and then also resampled to 100 m resolution (Homer et al., 2011). The NLCD dataset is also reclassified 226 

to match the land cover input classes required by SnowModel. Initially, we test results from model simulations at two spatial 227 

resolutions, 30 m and 100 m, covering the model domain in the Thompson Pass region of the Chugach mountains. After calibrating 228 

the model, the results section only includes the 30m resolution.  229 

 230 

3.3.2 Weather Forcing Datasets 231 

Various weather reanalysis products have been used in remote portions of Alaska in previous studies (Beamer et al., 2016; Beamer 232 

et al., 2017; Crumley et al., 2019; Liston & Heimstra, 2011). In Alaska, each reanalysis product shows bias corresponding to 233 

meteorological variable, regional location, and season of the year (Lader et al., 2016; see their Figures 3 and 4). For this reason, 234 

the current study considered two weather reanalysis products that differ in their biases in temperature and precipitation in the 235 

Thompson Pass region during the winter and the summer seasons. We used the Climate Forecast System Reanalysis version 2 236 

product (CFSv2) and the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA2) product for the 237 

weather forcing inputs for SnowModel. The CFSv2 product from the National Centers for Environmental Prediction is an extension 238 

of the Climate Forecast System Reanalysis (CFSR) version 1 product that began in 1979, albeit at a lower spatial resolution (Saha 239 

et al., 2010). The CFSv2 data are available at a spatial resolution of 0.2 arc degrees, and a 6 hr temporal resolution (Saha et al., 240 

2014). This CFSv2 dataset was downloaded using Google Earth Engine (GEE), a platform for accessing and analyzing scientific 241 

datasets with global coverage. The MERRA2 weather reanalysis product from NASA’s Global Modeling and Assimilation office 242 

is the second meteorological forcing dataset tested in the present study (Gelaro et al., 2017). The MERRA2 data are available at a 243 
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spatial resolution of 0.667 degrees by 0.5 degrees, with a 3 hr temporal resolution beginning in 1979. MERRA2 replaces the older 244 

version product with updated assimilation processes to include more weather datasets.  245 

 246 

3.4 Snow Datasets 247 

3.4.1 Snow Telemetry Station Data 248 

The study area contains two SNOTEL stations operated by NRCS. The first station is the Upper Tsaina SNOTEL (UTS) station 249 

located at 534 m.a.s.l. on the NE side of Thompson Pass reporting the full standard set of sensor variables, including precipitation, 250 

temperature, snow depth, and SWE. The second station is the Sugarloaf Mountain SNOTEL (SLS) station, located near the Valdez 251 

Arm of the Prince William Sound at 168 m a.s.l. in the SW corner of the study area and records only precipitation, temperature, 252 

and snow depth, but not SWE (Figure 1). Detailed information about the SNOTEL sensors and climate monitoring instruments 253 

can be found at the SNOTEL website (https://www.wcc.nrcs.usda.gov/snow/) and Serreze et al. (1999). Direct links to the 254 

SNOTEL websites for the UTS and SLS stations can also be found in the Data Availability section below.  255 

 256 

3.4.2 LiDAR and Photogrammetry Derived Data 257 

The airborne photogrammetry survey was conducted on April 29, 2017 with a Nikon D800 36.2 megapixel camera and flown on 258 

a fixed-wing aircraft above a portion of the Thompson Pass study area, see Figure 3 for location and extent. An onboard Trimble 259 

Global Navigation Satellite System (GNSS) and a base-station were used for positional control. Post-processing was completed 260 

with structure-from-motion software to create a digital surface model (DSM) of the photogrammetry-derived snow surface. The 261 

airborne LiDAR survey was collected on April 7th and 8th, 2018, using a Riegl VUX1-LR laser scanner flown on a fixed-wing 262 

aircraft. An onboard integrated inertial measurement unit (IMU) and GNSS, and a base-station were used to provide positional 263 

control for the LiDAR-derived snow DSM. Both RS datasets were evaluated against a previously collected photogrammetry-264 

derived DSM from 2014 when no snow was present. An interpolation scheme was used to gap-fill some of the negative values in 265 

the snow DSM due to vegetation cover effects.  266 

 267 

3.4.3 Chugach 2018 Fieldwork Data 268 

Three weeks of fieldwork in the Thompson Pass region were conducted in March, April, and May of 2018. Snow depth and SWE 269 

were measured throughout the study area with an avalanche probe and a Federal Snow Sampler. At each fieldwork measuring site, 270 

a central SWE measurement was taken using the Federal Sampler. Avalanche probes were used in the surrounding 100 m2 to take 271 

a series of 8 snow depth measurements extending 5 m in each direction from the central SWE measurement. The fieldwork 272 

sampling protocol was designed to consider: (1) variability in snow depth in small areas less than 100 m2, (2) month-to-month 273 

changes in snow depth and SWE, and (3) spatial gradients in snow density throughout the entire study area. A diagram of the 274 

location of each observational site can be found in Figure 3. The 2018 fieldwork dataset was used for validation with two purposes 275 

in mind. First, the 2018 fieldwork SWE measurements were used as a validation dataset for the 2018 SWE distribution results. 276 

Secondly, since the data collected in the spring of 2018 contains measured snow depths and SWE at 70 observational sites (n = 277 
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560; 8 per site), we conducted an analysis of the sub-grid scale variability in snow depth found at each observational site and these 278 

results are found in the discussion section.  279 

 280 

 281 

Figure 3: Validation Datasets Map.  282 
The 2018 fieldwork includes 72 sites with co-located snow water equivalent and snow depth measurements. The remote sensing 283 

datasets from 2017 and 2018 are overlain on the map, along with the location of the Upper Tsaina SNOTEL station. 284 

 285 

3.4.4 Community Snow Observations Data 286 

The CSO program collects snow depth data from citizen scientists in snowy environments worldwide. Full details including links 287 

to smartphone apps and tutorials are found at http://communitysnowobs.org. Citizen scientists take several (2 to 4) snow depth 288 

measurements within a small area (< 4 m2) using an avalanche probe or other depth measuring device (meterstick, etc.). These 289 

measurements are then averaged by the participant and submitted using the app or program preferred by the participant. The 290 

submitted data include the global positioning system (GPS) location in latitude and longitude, time and date, and snow depth 291 

measurement (cm). The accuracy of the GPS system for each participants’ mobile device determines the location error of the GPS, 292 

with common errors for mobile phones ranging between +/- 4 to 7 m (Garnett & Stewart, 2015; Schaefer & Woodyer, 2015). Since 293 

the model resolution is 30 m and 100 m, this level of horizontal error in GPS location is acceptable for the purposes of our research 294 

questions. All collected data are made freely available on the CSO website for visualization and download (see Section 9 for Data 295 

Availability). Thousands of measurements have been recorded by participants in CSO globally since it began in January 2017 with 296 

initial measurement campaigns in Alaska and other frequently visited locations in mountain regions across North America (Figure 297 

4). In the modeling domain of the current study, 442 CSO measurements were available for WY2017 and 104 CSO measurements 298 
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for WY2018. These measurements were concentrated in the Thompson Pass region of the study area (Figure 1) and range from 25 299 

m to 1400 m in elevation. 300 

 301 

 302 

Figure 4: CSO Participation in North America. 303 
Participation in the Community Snow Observations (CSO) project in North America aggregated by the number of observations 304 

recorded in each U.S. state or Canadian province between January 1st, 2017 and December 31st, 2019.  305 

 306 

4 Calibration 307 

We performed model calibration using five years of the historical record of the UTS station from WY2012 through the end of 308 

WY2016. The calibration was focused on adjustments to temperature lapse rates, precipitation lapse rates, wind adjustment factors, 309 

and use of the SnowTran3d sub-model. We chose temperature lapse rates and precipitation lapse rates for calibration because 310 

SnowModel is known to be limited by these factors when large elevational differences exist within the model domain (Liston and 311 

Elder, 2006). We chose wind adjustment factors and the wind transportation sub-model for calibration because wind redistribution 312 

of snow plays a significant role in the study area based on the 2018 fieldwork and the RS surveys from 2017 and 2018. Since the 313 

SnowAssim sub-model requires a single layer snowpack, no adjustments were made to the snowpack layer structure. For each 314 

weather reanalysis product a full calibration was performed for the 30m and 100m model resolutions, in the event that spatial 315 

resolution plays a significant role in parameter selection. See Appendix A for the descriptions of the model parameters tested 316 

during the calibration. 317 

 318 

The daily SWE output from each calibration simulation is compared with the UTS observed SWE for the duration of the 5-year 319 

calibration time period using root mean squared error (RMSE), the Nash Sutcliffe Efficiency (NSE), the Kling-Gupta Efficiency 320 

(KGE), and mean bias error (Bias) to assess the calibration simulations. Table 1 lists the best 30m and 100m calibration simulations, 321 

based on their time-series RMSE, NSE, KGE, and Bias scores. We acknowledge that measurement errors can occur with SNOTEL 322 
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snow pillows and that these well known errors may affect the accuracy of the observational dataset (Johnson and Schaeffer, 2002; 323 

Johnson, 2004). 324 

 325 

Table 1: Model Calibration Results. 326 
The best calibration results are given for each set of simulations for water years 2012-2016, along with the root mean squared error 327 

(RMSE), the Nash Sutcliffe Efficiency (NSE), the Kling-Gupta Efficiency (KGE), and the mean bias error (Bias). 328 

Reanalysis Product 

& Resolution Time Step 

Number of 

Simulations 

RMSE 

SWE 

(cm) NSE KGE 

Bias 

SWE 

(+/- cm) 

MERRA2, 30m 3hrly 45 24 -0.29 0.08 +16 

MERRA2, 100m 3hrly 45 26 -0.10 -0.10 +19 

CFSv2, 30m 6hrly 45 22 -0.15 -0.01 +17 

CFSv2, 100m 6hrly 45 22 -0.15 -0.01 +17 

 329 

Calibration results in Table 1 show that the 30m model grid resolution slightly outperforms the 100m model grid resolution in the 330 

MERRA2-forced calibration simulations. However, the CFSv2-forced simulations show no difference between the model grid 331 

resolutions. The CFSv2 product slightly outperforms the MERRA2 product in terms of SWE RMSE. Overall, the differences 332 

between the top performing model grid resolution and reanalysis product are mixed and potentially negligible, varying by metric. 333 

The NSE and KGE model performance metrics in the calibration simulations are lower than expected, due primarily to precipitation 334 

inputs from the reanalysis products that were consistently higher than measured precipitation at the UTS station. Since SnowAssim 335 

adjusts the precipitation fields during assimilation, these input deficiencies are acceptable for the purposes of this study. The 336 

SnowModel default parameter values notably and consistently produce the top performing simulations, see Appendix B for details. 337 

Due to each of these factors, the calibrated model for the remainder of the study uses the CFSv2 reanalysis product, the 30m model 338 

grid resolution, and the SnowModel default parameter values. 339 

 340 

One of the primary obstacles for process modeling is the use of accurate weather input data, and the related uncertainties with 341 

weather inputs are a well-known complication in snow and hydrological modelling (Rivington et al., 2005; Schmucki et al., 2013; 342 

Schlogl et al., 2016). Initial tests of modeled precipitation fields using Micromet versus the observed precipitation at the UTS 343 

station revealed that both reanalysis products overestimated the amount of precipitation observed in the study area at the UTS 344 

station. With these obstacles in mind, we designed an experiment to supplement the main findings of this research. For this 345 

experiment we introduced a model precipitation adjustment factor similar to the method outlined in Mernild et al. (2006). We 346 

applied this scalar value to the precipitation fields as a bias correction of the precipitation inputs. We tested 11 precipitation 347 

adjustment factors ranging from 0.95 to 0.45 and applied them to the meteorological forcing inputs during the 5-year calibration 348 

time period. For more details about the precipitation adjustment factor results, see Appendix C. This experiment, presented in 349 

section 6.5, allows us test improvements to model performance when the precipitation inputs are bias corrected prior to model 350 

assimilation of CSO measurements. 351 

 352 
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5 Experimental Design 353 

With the model calibrated, we carried out a series of simulations in order to (1) quantify the improvement in model performance 354 

due to the assimilation of CSO measurements and to (2) understand the effects of the number of CSO data points selected for 355 

assimilation. Model simulations without using CSO measurements provide a baseline for comparison, referred to as the NoAssim 356 

case. Ensemble model simulations were also carried out with various numbers of CSO measurements assimilated, referred to as 357 

the CSO simulation case. An ensemble of 60 trials per year were carried out with n = 1, n = 2, n = 4, n = 8, n = 16, and n = 32, 358 

where n equals the number of CSO measurements assimilated per WY. In each instance (n value), 10 realizations of the numerical 359 

experiment were carried out.  360 

 361 

The timeframe of the assimilating CSO measurements was restricted to the peak SWE period or later. According to the UTS station, 362 

peak SWE in the study area generally occurs mid- to late-April and consequently the earliest assimilation date was set to April 363 

15th. The CSO measurements were aggregated by week because initial simulations suggested that daily increments were not 364 

producing realistic results by SnowAssim. Additionally, CSO participation in the Thompson Pass region during the early 365 

accumulation season was infrequent in WY2018 and non-existent in WY2017. Since peak SWE is important for mountain 366 

hydrology and ecology, with many snow studies using it as an indicator metric, the time restrictions are acceptable for the research 367 

questions addressed in this study (Bohr and Aguado, 2001; Trujillo et al., 2012; Kapnick and Hall, 2012; Mote et al., 2018; 368 

Wrzesien et al., 2017). 369 

 370 

6 Results 371 

The following results reflect the three types of available validation datasets: 1) time-series SWE results at the UTS station, 2) 372 

spatial snow depth distributions from the RS datasets, and 3) point-based snow depth and SWE measurements from the 2018 373 

fieldwork.  374 

 375 

6.1 Temporal Results Using the Upper Tsaina SNOTEL Station 376 

The temporal results compare the UTS station SWE time-series to the ensemble member SWE time-series during WY2017 and 377 

WY2018. Figure 5 displays the temporal cycle of snowpack accumulation and ablation, and the timing of peak SWE. At the UTS 378 

station in the study area, the average WY day of peak SWE is 228, or April 15th. Before this day, the snowpack is generally 379 

increasing in SWE and afterwards the snowpack generally enters the ablation period with a reduction in SWE. This temporal cycle 380 

can be observed in Figure 5 by following the color gradient. The highest performing (Best) CSO simulation (Figure 5b,e) corrects 381 

the slope of the snowpack accumulation and ablation phases when contrasted with the NoAssim accumulation and ablation phases 382 

and slopes (Figure 5a,d). These time-series results, in terms of model performance metrics and the snowpack temporal cycle, 383 

exhibit SnowAssim’s ability to incorporate CSO measurements and improve modeled SWE outputs at the UTS station location 384 

throughout the entire snow season.  385 

 386 
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 387 

Figure 5: Time Series at Upper Tsaina SNOTEL Station. 388 
The Upper Tsaina SNOTEL snow water equivalent (SWE) observations versus the modeled SWE for the no assimilation case (a,d), the 389 

Best CSO simulation (b,e), and the Median CSO simulation (c,f). The timeseries color gradient corresponds to the day of the water 390 
year. 391 

 392 

Figure 5 summarizes the temporal results for the Best and median performing (Median) CSO simulations, including the NoAssim 393 

case. Each ensemble member is evaluated by their KGE, NSE, RMSE, and Bias scores. For results presented in this section, the 394 

KGE score is used to rank the ensemble simulations. A full accounting of each ensemble member and their time-series ranking can 395 

be found in Appendix D. Modeled SWE depths for the NoAssim case are consistently higher than the UTS station SWE 396 

observations for both WYs (Figure 5a,d). The modeled SWE depths for the Best CSO simulation outperform the NoAssim case 397 

throughout the entirety of the time-series and represent an improvement in model performance scores according to all of the time-398 

series metrics (Figure 5b,e). The modeled SWE depths for the Median CSO simulation for WY2017 outperform the NoAssim case 399 

by all metrics, and the WY2018 Median CSO results are mixed. The ensemble simulation KGE scores outperform the NoAssim 400 

KGE scores among 70% of the WY2017 ensemble members, and among 67% of the WY2018 ensemble members. Any number 401 

of CSO measurements assimilated show improvements in model performance, a key finding in the time-series results. 402 

 403 

6.2 Spatial Results Using the Remote Sensing Datasets 404 

The ensemble results are summarized in Figure 6 using the Kolmogorov-Smirnov statistic (KS; Massey 1951). The KS statistic 405 

quantifies the difference between a reference dataset of a continuous variable and a sample dataset of the same variable. The KS 406 

statistic represents the maximum distance between the empirical cumulative distribution function (ECDF) of the reference and 407 

sample datasets, with KS scores ranging from zero to one, with zero representing perfect dataset agreement (Reimann et al., 2010). 408 

In the KS analysis, the reference dataset is the RS derived snow depth distribution and the sample datasets are each of the ensemble 409 
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snow depth distributions, including the NoAssim case. Figure 6 shows that in WY2017 the CSO simulations are an improvement 410 

from the 2017 NoAssim case among 62% of the ensemble members, and in WY2018 among 78% of the ensemble members. Note 411 

that only the KS values that fall below the NoAssim line represent an improvement in model performance during the CSO 412 

simulations. The spatial results reveal that improvements in model performance are not dependent upon the number of CSO 413 

measurements that are assimilated in WY2018. However, WY2017 has a smaller range in KS values as the number of assimilated 414 

measurements increases, with more CSO simulations outperforming the NoAssim case. These results also vary according to model 415 

performance metric and by WY, with no clear pattern emerging from the number of measurements assimilated. 416 

 417 

 418 

Figure 6: Swarmplots of Kolomogorov-Smirnov Scores. 419 
The ensemble simulations are ranked by Kolmogorov-Smirnov (KS) score per year and plotted according to the number of 420 

measurements assimilated, including the no assimilation (NoAssim) case. 421 

 422 

The snow depth distribution maps in Figure 7 display the RS datasets (a,b), the results from the highest performing CSO simulation 423 

(c,d), and the NoAssim case for each WY (e,f). Refer to Figure 2 for the RS dataset location within the study area. We present the 424 

Best CSO simulation as the focus of Section 6.2 ranked according to KS score ranking (Figure 6). A full accounting of each 425 

ensemble member and their spatial distribution ranking can be found in Appendix E. In the RS datasets, there is more variation 426 

and heterogeneity in snow depth across short distances (Figure 7a-b). This spatial diversity is evident even after the RS dataset has 427 

been aggregated to correspond to the model resolution at 30 m, as depicted in Figure 7. The NoAssim case and Best CSO simulation 428 

show less spatial diversity, and the NoAssim case broadly overstimates snow depth when compared to the Best CSO simulation 429 

for both WYs. The visualization of the snow depth distributions in Figure 7 illustrate the challenges of accurately representing the 430 

process scale through physics-based modeling at low resolutions (Blöschl 1999), and some of these challenges will be examined 431 

further in the discussion section. 432 

 433 

 434 
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 435 

Figure 7: Snow Depth Distribution Maps. 436 
(a,b) The remote sensing (RS) datasets from 2017 and 2018. (c,d) The best CSO simulation results corresponding to the RS dataset 437 

spatial extent. (e,f) The no assimilation results corresponding to the RS dataset spatial extent. The total model area that corresponds to 438 
the RS dataset in 2017 is 104 km2 and 149 km2 in 2018. 439 
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 440 

Figure 8 presents  histograms and empirical cumulative distribution functions (ECDFs) for the RS datasets, the NoAssim case, and 441 

the Best CSO simulation. In WY2017 (Figure 8a), when the NoAssim case overestimates snow depths, the Best CSO simulation 442 

ECDF shifts left, towards the RS dataset ECDF. To a greater degree, in WY2018 (Figure 8c) when the NoAssim case more broadly 443 

overestimates the snow depths, the Best CSO simulation ECDF shifts further left, towards the RS dataset ECDF. The shifts in the 444 

EDCFs are evident in the histograms and the median value of each dataset is indicated with a dashed line (Figure 8b,d). The same 445 

shifts are evident in the snow depth distribution maps (Figure 7c,d,e,f). Even though the shifts in ECDFs and histograms are in the 446 

correct direction in the Best CSO simulations, SnowAssim is not adjusting the distribution of snow depth values, which can be 447 

seen in the multimodal shape of the histograms.  448 

 449 

 450 

Figure 8: Histogram and Distribution Plots. 451 
The empirical cumulative distribution functions (ECDFs) and histograms from the best CSO simulation, the no assimilation case, and 452 

the remote sensing (RS) datasets during WY2017 (a,b) and WY2018 (c,d). 453 

 454 

The multimodal distribution of snow depths in the modeled results can be explained by their relationship to the elevation of the 455 

surrounding terrain. The input DEM and the snow depth distributions were compared on a grid-cell-to-grid-cell basis using a two-456 

dimensional histogram (2DH). Figure 9 is a series of 2DHs that display snow depth (x axes) versus the input DEM (y axes) in the 457 

RS area from both years. Darker colors indicate a higher frequency of snow depth and elevation values corresponding to each 458 

dataset. The 2DHs show a proportional relationship between the modeled snow depths (Figure 9 a,b,e,f) and the input DEM values. 459 

As elevation increases, snow depth also increases linearly in the modeled results. Still, the range of snow depths from Best CSO 460 
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simulation shifts towards the RS dataset in both years, but the elevation relationship remains largely intact. The RS snow depths 461 

are less dependent on elevation, with snow depth values between 0 and 1 appearing at all elevations between 0 and 1250m. The 462 

2DH analysis supports the findings from the snow depth distribution maps where the variability of snow depth observed in the RS 463 

dataset is not replicated in the NoAssim case or the Best CSO simulation (Figure 7).  464 

 465 

 466 

Figure 9: Two-dimensional Histograms. 467 
The remote sensing (RS) dataset vs. the (a) water year (WY) 2017 no assimilation case, (b) WY2018 no assimilation case, (c) WY2017 468 

best CSO simulation, and (d) WY2018 best CSO simulation. 469 

 470 

6.3 Fieldwork 2018 Results 471 

To validate the WY2018 SWE distributions from the NoAssim case and the Best CSO simulation we used ground-truth data from 472 

our field campaign in April 2018. The locations of the 70 SWE and snow depth measurement sites from 2018 are depicted in 473 

Figure 3. Figure 10 shows the co-located SWE depth measurements (y axes) versus the snow depth measurements (x axes) from 474 

each site aggregated by month. The bars in Figure 10 represent the variability in snow depth within the surrounding 100m2 of the 475 

SWE measurement, including the average, minimum, and maximum of 8 snow depth measurements at each site. Table 3 shows 476 

the results at the SWE measurement sites, comparing the NoAssim case versus the Best CSO simulation using RMSE, bias, and 477 

mean absolute error (MAE) metrics for evaluation. Since each measurement site corresponds to a single CSO snow depth 478 
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submission, we separated those measurement sites used in the assimilation scheme from the validation set when creating Table 3. 479 

The Best CSO simulation outperforms the NoAssim case according to all metrics in all months. The 2018 fieldwork results from 480 

April show that the Best CSO simulation has a bias of +3 cm, while the NoAssim case is +97 cm. The April 2018 fieldwork results 481 

agree with the histogram and ECDF analysis that displayed broad overestimation of SWE in the NoAssim case in WY2018 (Figure 482 

7b; Figure 8d).  483 

 484 

 485 

Figure 10: Fieldwork 2018 Measurements by Month 486 
The 70 in-situ snow water equivalent (SWE) measurements (y axes) from 2018 are plotted by month along with their co-located snow 487 

depth measurements (x axes). The bars show the minimum, maximum, and average of each fieldwork site where 8 snow depth 488 
measurements were obtained in a 100 m2 area.  489 

Table 3: Fieldwork 2018 Results 490 
 The 70 SWE measurements from the 2018 fieldwork compared to the Best CSO simulation and the no assimilation (NoAssim) case 491 

using the three model performance metrics: root mean squared error (RMSE), mean bias error (Bias), and mean absolute error 492 
(MAE).   493 

 

Bias SWE (cm) RMSE SWE (cm) MAE SWE (cm) 

Best CSO NoAssim Best CSO NoAssim Best CSO NoAssim 

All  -11 86 28 100 22 86 

March -3 77 15 95 13 77 

April 3 97 21 114 16 97 

May -25 84 37 95 31 84 

 494 

6.4 Spatially Averaged Snow Water Equivalent Results 495 

Another way to quantify the ability of CSO measurements to constrain SnowModel output is to investigate the modeled SWE 496 

averaged over a large area. Table 4 contains the spatially averaged SWE estimations from the RS survey area in WY2018, and 497 

includes the RS dataset, the Best CSO simulation, and the NoAssim case. We focus on WY2018 because the fieldwork 498 

measurements include estimated bulk density values at each measurement site. These bulk density estimations were measured 499 

during April 2018 and were partitioned from the larger dataset and spatially averaged over the RS region only (n=22). The 500 

fieldwork estimated bulk density value was then applied to the spatially averaged RS snow depth. For the Best CSO simulation 501 

and the NoAssim case, the spatially averaged snow depth, SWE, and snow density values were taken directly from the model 502 
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results. The SWE estimation results in Table 4 demonstrate that SnowAssim can constrain the SWE output over a large region 503 

based on a few, randomly chosen CSO measurements. Importantly, the accuracy of the total modeled water volume from the RS 504 

region in 2018 improves when CSO measurements are included, a key finding that has implications for water resource management 505 

decisions in snowy, data-limited, mountain environments.  506 

 507 

Table 4: Spatially Averaged Variables in the RS Region 508 
The spatially averaged results were calculated using the RS region in WY2018, the RS dataset, and the modeled results. The spatially 509 

averaged SWE depth for the RS survey was estimated using the average density measured during April 2018 fieldwork.  510 

Dataset 

Spatially Averaged  

Snow Depth (cm) 

Spatially Averaged 

Density (kg/m3) 

Spatially Averaged 

SWE Depth (cm) 

Total RS Region 

Water Volume (km3) 

RS Survey 2018 130 (RS survey) 331 (fieldwork) 43 (estimated) 0.06 (estimated) 

Best CSO Simulation 2018 130 (modeled) 400 (modeled) 52 (modeled) 0.08 (modeled) 

NoAssim 2018 267 (modeled) 430 (modeled) 115 (modeled) 0.17 (modeled) 

 511 

 512 

6.5 Precipitation Adjustment Experiment 513 

The experimental design of the present study was developed for remote locations where a long-term precipitation dataset was not 514 

available to bias correct the precipitation inputs. However, since a long-term precipitation dataset may be available in other 515 

locations, we decided to test the results with a precipitation experiment. In this experiment we applied a scalar to the CFSv2 516 

precipitation fields for bias correction and all other model parameters and input datasets were held constant. The experiment results 517 

show that some of the CSO ensemble simulations still outperformed the NoAssim case with the precipitation adjustment, both 518 

spatially and temporally. For example, the spatial results show that 43% percent of the ensemble runs in WY2017 and 20% of the 519 

ensemble runs in WY2018 outperformed the NoAssim case when the precipitation was bias corrected, according to their KS score 520 

(Figure 11). Similarly, the temporal results show that 42% of the ensemble runs in WY2017 and 58% of the ensemble runs in 521 

WY2018 outperformed the NoAssim case when the precipitation was bias corrected, according to their KGE score. The ECDF 522 

and histogram analysis from the precipitation adjustment factor experiment also show model improvements when there was broad 523 

underestimation of snow depths in the NoAssim case in WY2017 and broad overestimation in WY2018. These results demonstrate 524 

that using CSO measurements for assimilation can improve model performance when the available weather forcing dataset has 525 

known biases (no precipitation adjustment factor case) but when those biases have been decreased (precipitation adjustment factor 526 

case) the improvements become less clear, they vary from year to year, and are less consistent between spatial and temporal results.  527 

 528 
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 529 

 530 

Figure 11: Swarmplots of Kolmogorov-Smirnov Scores with Precipitation Adjustment Factor. 531 
The ensemble simulations are ranked by Kolmogorov-Smirnov (KS) score per water year (WY) and plotted according to the number 532 

of CSO measurements assimilated, including the no assimilation (NoAssim) case. 533 

 534 

7 Discussion 535 

An important consideration in the results of the present study involves ranking the CSO ensemble members by various spatial and 536 

temporal metrics. The time series results (Section 6.1), the spatially distributed results (Section 6.2), and the spatially averaged 537 

results (Section 6.4) did not have the same ranking order for the CSO ensemble members. For example, the Best CSO simulation 538 

in WY2017 from the time-series analysis was an ensemble member with two CSO measurements assimilated according to the 539 

KGE metric. The time-series results represent a single point in the domain, the UTS station. By contrast, the Best CSO simulation 540 

in WY2017 from the spatial distribution analysis was an ensemble member with eight CSO measurements assimilated using the 541 

KS score. The spatially distributed results represent the entire RS survey area. The improvements in model performance are 542 

determined by the type of validation dataset available and the metric used to quantify those improvements. In other words, one 543 

size does not fit all when it comes to quantifying improvements to model performance using CSO measurements.  544 

 545 

The variability of snow depth and SWE in mountain catchments and the spatial patterning of snowpack conditions in complex 546 

terrain is a well-known challenge in snow modeling and snow remote sensing research (Anderton et al., 2004; Lopez-Moreno et 547 

al., 2013; Luce et al., 1998; Molotch et al., 2005; Rice and Bales, 2010; Sturm et al., 2010b). The RS results reveal that variability 548 

in snow depth across short distances is largely a function of wind redistribution and drifting and not primarily a function of elevation 549 

(Figure 9c,f; Figure 7a,b). Thompson Pass is a notoriously windy location, and the RS dataset shows complex drifting patterns 550 

throughout the surveyed area (Figure 7a,b). The wind inputs from the reanalysis product used in Micromet and SnowTran3d may 551 

not be adequate for the steepness and ruggedness of the terrain. Although wind scaling factors were tested in the calibration, the 552 

only suitable calibration dataset was the SNOTEL site. SNOTEL stations are often situated in locations where the effects of wind 553 

redistribution of the snowpack are dampened and SNOTEL station data are often not representative of the spatial variability of the 554 

surrounding areas (Dressler et al., 2006; Molotch and Bales, 2005). The inability to of SnowTran3d to resolve the wind 555 
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redistribution of the snowpack more accurately, the course wind field inputs from the reanalysis products, and the use of a single 556 

SNOTEL station for calibration, together represent a model and input data limitation of the current study. 557 

 558 

The ensemble results highlight a deeper question in snow hydrology and process modeling in general, regarding the sub-grid scale 559 

variability of the modeled state variable within a single model grid cell. The scale of the in-situ observations (measured with an 560 

avalanche probe) and the scale of the model resolution (30 m grid) versus the scale of the physical process being modeled (true 561 

patterns and true variance in space and time) can create scale effects that need to be accounted for (Blöschl et al., 1999). In this 562 

way, the 2018 fieldwork has a significant role to play in our understanding of the sub-grid scale variability in snow depth 563 

distributions. CSO participants average a few point measurements over a 1-4 m2 area. The model resolution is 30 m, or 900 m2 per 564 

grid model grid cell. If participants move slightly one direction or another, their averaged and submitted measurements would 565 

likely be different, but their measurements would potentially lie within the same 30 m model grid cell. This difference, in turn, 566 

would modify the SWE depth inputs for SnowAssim. To better characterize the sub-grid scale variability of snow depth we 567 

investigate the 8 avalanche probe depths taken over 100 m2 at each of the 70 observation sites during the 2018 fieldwork (see also 568 

Figure 11). From these data, a picture of the sub-grid scale variability emerges. The largest range in snow depth values at a single 569 

100 m2 observation site is 2.11 m and the smallest range in snow depth values at a single site is 0.09 m. The highest standard 570 

deviation (sd) found at a single observation site is 0.71 m and the lowest sd is 0.04 m. This shows that a significant amount of 571 

variation, and therefore uncertainty, is being added to the model chain simply by the sub-grid scale variability of snow depth 572 

distributions within a single model grid cell, distributions that the model will not be able to resolve at the 30 m or 100 m resolution. 573 

Sub-grid scale variability is a well known problem in snow science and represents a limitation of the improvements that can be 574 

made by assimilating CSO measurements (Elder et al., 1993, Blöschl et al., 1999; Liston et al., 2008; Schmucki et al., 2013). 575 

 576 

One of the limitations of the present study is that the physical and temporal characteristics of the CSO measurements like aspect, 577 

elevation, and early-season measurements were not fully tested. Initial simulations demonstrated that SnowAssim performs best 578 

when the assimilated measurements were located close in time to the validation dataset. This factor influenced our choice to focus 579 

on the late-season time period of CSO measurements since the RS surveys were conducted in the late-season. Additionally, since 580 

the majority of the CSO measurements for both WYs occurred between March 15th and May 15th, future research should be in a 581 

location where CSO measurements are obtained frequently throughout the accumulation season. A research project with many 582 

measurements throughout the accumulation period may provide more insights into the temporal aspects of assimilation of CSO 583 

measurements. We decided not to subset the CSO measurements by geophysical characteristics like aspect, elevation, and land 584 

cover type because these require additional analysis that is outside of the scope of the current study. Understanding the effects of 585 

temporal and spatial restrictions of CSO measurements on model performance will likely be an area of future research. 586 

Additionally, it may be necessary to test other process models and alternate assimilation schemes in the future to improve the 587 

spatial distribution of model results and determine if CSO measurements can be used in other modeling contexts.  588 

 589 

7 Conclusions 590 

In this study we use a new snow dataset collected by participants in the Community Snow Observations (CSO) project in coastal 591 

Alaska to improve snow depth and snow water equivalence (SWE) outputs from a snow process model. Ensemble simulations 592 

https://doi.org/10.5194/hess-2020-321
Preprint. Discussion started: 15 September 2020
c© Author(s) 2020. CC BY 4.0 License.



23 

 

were carried out during the 2017 and 2018 snow seasons to investigate the effects of incorporating citizen science measurements 593 

into the model chain using an assimilation scheme. Time series SNOTEL station records, remotely sensed photogrammetry and 594 

light detection and ranging surveys, and fieldwork observations are used to validate the modeled snow depth and snow water 595 

equivalent distributions. Any number of CSO measurements assimilated improves model performance, from 1 to 32. Our results 596 

demonstrate that using CSO measurements for assimilation can improve model performance when the available weather forcing 597 

dataset has known biases and also when those biases have been decreased by using a precipitation adjustment factor. The 598 

improvements in model performance from CSO measurements occur in 62% to 78% of the ensemble simulations both spatially 599 

and temporally, and in cases when the model broadly overestimates or underestimates snow depth and SWE. Model estimations 600 

of total water volume from a sub-region of the study area also demonstrate improvements in accuracy after CSO measurements 601 

have been assimilated. This study has implications for water resource management and snow modeling in locations where in-situ 602 

snow information is limited but snow enthusiasts often visit, since even small numbers of assimilated CSO measurements can 603 

improve the snow model outputs. 604 

8 Appendices 605 

Appendix A: Model calibration parameters and their descriptions. 606 

Parameter # of Options Format Description 

Temperature Lapse Rate 3 sets Monthly PRISM Climatologies; Local Weather Station Data; 

SnowModel Default 

Precipitation Lapse Rate 5 sets Monthly Monthly Coefficients of ¼, ½, ¾, 1(SnowModel Default), 

PRISM Climatologies 

Wind Adjustment Factor 3 Coefficient Coefficients of 1(SnowModel Default),2,3 

SnowTran3d 2 On/Off  

 607 

 608 

Appendix B: Top performing parameter configurations from the calibration simulations. 609 

Rank 

Temperature Lapse 

Rate  

Precipitation 

Scaling Factor 

Wind 

Adjustment 

Factor 

SnoTran 

on/off 

Tied for first Default Default Default On 

Tied for first Local Weather Station Default Default On 

Tied for first PRISM Climatologies Default Default On 

 610 

 611 

Appendix C: Precipitation Adjustment Factor Results. 612 
 The best precipitation adjustment factors are shown, along with the root mean squared error (RMSE), the Nash Sutcliffe Efficiency 613 

(NSE), the Kling-Gupta Efficiency (KGE), and the mean bias error (Bias). 614 

Reanalysis, 

Resolution 

Time 

Period 

(WY) 

Time 

Step 

Number of 

Simulations 

Precipitation 

Adjustment 

Factor 

RMSE 

Precipitation 

(mm) NSE KGE 

Bias 

Precipitation 

(+/- mm) 

MERRA2, 30m 2012-2016 3hrly 11 0.55 7.5 0.07 0.20 0.0 

MERRA2, 100m 2012-2016 3hrly 11 0.55 7.5 0.07 0.20 0.0 

CFSv2, 30m 2012-2016 6hrly 11 0.60 6.7 0.27 0.35 -0.1 

CFSv2, 100m 2012-2016 6hrly 11 0.60 6.7 0.27 0.35 -0.1 
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 615 

 616 

Appendix D: Ranked Temporal Results. 617 
Ensemble results from ranked by Kling-Gupta efficiency (KGE) score for water year (WY) 2017 (a) and WY2018 (b). Also included 618 

are the Nash Sutcliffe Efficiency (NSE) and the mean bias error (Bias) values. 619 

(a) WY2017 620 

Rank 

Number of CSO 

Measurements Iteration KGE NSE 

Bias  

(cm) 

1 2 2 0.97 0.99 0 

2 1 8 0.97 0.99 0 

3 4 1 0.94 0.93 0 

4 2 6 0.93 0.92 0 

5 8 9 0.93 0.89 -1 

6 16 8 0.90 0.84 -1 

7 32 3 0.88 0.96 -1 

8 4 4 0.88 0.91 -2 

9 1 10 0.80 0.95 -3 

10 4 3 0.80 0.89 2 

11 16 2 0.78 0.82 -3 

12 8 1 0.77 0.81 2 

13 32 8 0.77 0.79 -3 

14 2 8 0.77 0.93 -3 

15 16 7 0.76 0.93 -3 

16 16 1 0.75 0.87 -3 

17 4 6 0.74 0.92 -3 

18 1 6 0.71 0.89 4 

19 16 3 0.67 0.88 -4 

20 32 4 0.66 0.79 -5 

21 32 5 0.65 0.78 -5 

22 32 1 0.65 0.78 -5 

23 32 7 0.64 0.80 -5 

24 2 3 0.63 0.80 4 

25 4 9 0.62 0.83 -5 

26 16 9 0.62 0.82 -5 

27 2 10 0.61 0.82 -5 

28 16 4 0.60 0.75 -5 

29 32 6 0.59 0.82 -5 

30 8 8 0.59 0.76 5 

31 32 2 0.57 0.78 6 

32 16 5 0.56 0.73 -6 

33 4 8 0.56 0.73 -6 

34 8 10 0.55 0.72 -6 

35 8 7 0.54 0.73 -6 

36 16 6 0.54 0.70 -6 

37 1 3 0.54 0.74 6 

38 8 2 0.52 0.68 -6 

39 8 4 0.52 0.71 -6 

40 1 2 0.51 0.72 -6 

41 4 10 0.50 0.67 -7 

42 32 10 0.49 0.66 -7 

43 4 7 0.46 0.63 -7 

NoAssim NoAssim NoAssim 0.47 0.66 7 

44 8 3 0.43 0.66 -7 

45 32 9 0.41 0.63 -8 

46 8 5 0.39 0.54 -8 

47 2 1 0.36 0.53 -8 

48 8 6 0.34 0.49 -9 

49 1 4 0.33 0.49 -9 

50 1 7 0.29 0.42 -9 
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51 2 4 0.28 0.41 -9 

52 16 10 0.26 0.37 -10 

53 2 5 0.22 0.32 -10 

54 1 5 0.17 0.23 -11 

55 1 9 0.08 0.05 -12 

56 2 7 0.08 0.05 -12 

57 4 2 0.06 0.02 -12 

58 4 5 0.03 -0.03 -12 

59 2 9 -0.02 -0.13 -13 

60 1 1 -0.07 -0.24 -14 

 621 

(b) WY2018 622 

Rank 

Number of CSO 

Measurements Iteration KGE NSE 

Bias  

(m) 

1 2 7 0.95 0.96 0 

2 8 9 0.91 0.90 2 

3 8 5 0.90 0.89 2 

4 2 9 0.88 0.91 2 

5 2 4 0.87 0.93 -2 

6 4 7 0.87 0.97 3 

7 4 8 0.84 0.97 -2 

8 1 5 0.84 0.95 -2 

9 1 6 0.84 0.95 -2 

10 4 10 0.82 0.95 4 

11 2 2 0.77 0.92 5 

12 4 9 0.77 0.88 -4 

13 16 9 0.76 0.85 -4 

14 16 5 0.76 0.53 -2 

15 16 4 0.76 0.53 -2 

16 4 6 0.75 0.84 -4 

17 32 10 0.74 0.49 -2 

18 4 5 0.71 0.72 -5 

19 2 6 0.71 0.89 6 

20 1 8 0.71 0.83 -5 

21 1 1 0.71 0.83 -5 

22 1 9 0.71 0.83 -5 

23 8 7 0.69 0.80 -6 

24 16 8 0.68 0.58 -6 

25 16 2 0.65 0.77 -6 

26 32 2 0.65 0.53 -6 

27 32 5 0.64 0.50 -6 

28 32 8 0.64 0.49 -6 

29 32 7 0.62 0.47 -6 

30 32 9 0.62 0.47 -6 

31 32 4 0.62 0.46 -6 

32 32 1 0.62 0.46 -6 

33 8 10 0.57 0.42 -7 

34 4 1 0.53 0.65 -9 

35 2 1 0.52 0.65 -9 

36 32 3 0.49 0.18 6 

37 4 4 0.48 0.60 -10 

38 4 2 0.47 0.60 -10 

39 4 3 0.45 0.57 -10 

40 8 6 0.43 0.52 11 

41 2 3 0.38 0.46 -11 

42 1 7 0.33 0.38 -12 

43 8 4 0.30 0.29 -13 

44 1 2 0.30 0.36 15 

45 16 1 0.24 0.14 -14 

46 32 6 0.24 0.13 -14 

47 1 4 0.23 0.29 16 
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48 1 10 0.07 -0.09 -17 

49 8 8 0.01 -0.21 -18 

50 8 3 0.00 -0.24 -18 

51 1 3 -0.07 -0.37 -20 

52 16 3 -0.15 -1.18 18 

53 16 7 -0.16 -1.15 18 

54 16 6 -0.16 -1.15 18 

55 8 1 -0.16 -1.14 18 

56 16 10 -0.16 -1.13 19 

57 2 8 -0.23 -1.05 21 

58 8 2 -0.28 -1.07 23 

59 2 5 -0.37 -1.18 27 

60 2 10 -0.58 -2.00 32 

 623 

 624 

Appendix E: Ranked Spatial Results. 625 
Spatial distribution ensemble results ranked by Kolmogorov-Smirnov (KS) score for water year (WY) 2017 (a) and WY2018 (b). Also 626 

included are the root mean squared error (RMSE) and the median values. 627 

(a) WY2017 Results 628 

Rank 

Number of CSO 

Measurements Iteration 

KS Score 

(0 - 1) 

RMSE  

(m) 

Median  

(m) 

Mean 

(m) 

1 8 9 0.17 1.171 1.071 1.198 

2 1 8 0.17 1.173 1.066 1.192 

3 2 2 0.17 1.173 1.064 1.190 

4 4 1 0.18 1.164 1.096 1.225 

5 2 6 0.19 1.159 1.116 1.248 

6 4 4 0.19 1.202 0.983 1.100 

7 32 2 0.21 1.149 1.156 1.393 

8 32 3 0.21 1.222 0.931 1.044 

9 8 8 0.21 1.148 1.166 1.402 

10 1 10 0.22 1.243 0.888 0.995 

11 16 8 0.22 1.287 0.693 0.883 

12 16 1 0.23 1.251 0.872 0.978 

13 2 8 0.23 1.256 0.861 0.966 

14 4 2 0.23 1.135 1.250 1.396 

15 4 3 0.23 1.135 1.250 1.396 

16 4 6 0.24 1.267 0.840 0.942 

17 16 7 0.24 1.270 0.834 0.936 

18 8 1 0.24 1.133 1.281 1.430 

19 1 6 0.24 1.133 1.281 1.430 

20 16 2 0.25 1.321 0.651 0.814 

21 32 4 0.25 1.293 0.801 0.891 

22 32 5 0.25 1.293 0.794 0.892 

23 16 3 0.26 1.306 0.770 0.866 

24 32 1 0.26 1.310 0.761 0.855 

25 32 7 0.27 1.316 0.754 0.847 

26 4 9 0.27 1.320 0.749 0.843 

27 16 4 0.27 1.324 0.738 0.832 

28 2 10 0.27 1.328 0.731 0.825 

29 16 9 0.27 1.328 0.730 0.824 

30 2 3 0.27 1.135 1.406 1.567 

31 8 10 0.28 1.344 0.715 0.804 

32 1 3 0.28 1.137 1.426 1.589 

33 16 5 0.28 1.349 0.696 0.788 

34 4 8 0.29 1.350 0.694 0.786 

35 32 6 0.29 1.351 0.692 0.784 

36 16 6 0.29 1.355 0.685 0.777 

37 8 7 0.29 1.360 0.678 0.769 

NoAssim NoAssim NoAssim 0.30 1.145 1.482 1.651 

38 8 2 0.30 1.370 0.663 0.753 
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39 32 10 0.30 1.384 0.649 0.731 

40 1 2 0.30 1.381 0.644 0.734 

41 4 10 0.30 1.384 0.639 0.729 

42 32 8 0.31 1.404 0.461 0.667 

43 8 4 0.31 1.400 0.614 0.703 

44 4 7 0.32 1.402 0.612 0.701 

45 8 3 0.33 1.426 0.573 0.662 

46 8 5 0.34 1.438 0.565 0.649 

47 32 9 0.34 1.448 0.546 0.630 

48 8 6 0.35 1.469 0.521 0.603 

49 2 1 0.36 1.468 0.514 0.600 

50 1 4 0.37 1.484 0.490 0.576 

51 1 7 0.38 1.510 0.453 0.539 

52 2 4 0.38 1.510 0.453 0.539 

53 16 10 0.39 1.529 0.426 0.512 

54 2 5 0.41 1.559 0.385 0.472 

55 1 5 0.44 1.601 0.330 0.418 

56 1 9 0.50 1.684 0.223 0.314 

57 2 7 0.50 1.684 0.223 0.314 

58 4 5 0.53 1.724 0.175 0.268 

59 2 9 0.57 1.770 0.119 0.217 

60 1 1 0.61 1.812 0.067 0.173 

 629 

 630 

 631 

 632 

(b) WY2018 Results 633 

Rank 

Number of CSO 

Measurements Iteration 

KS Score 

(0 - 1) 

RMSE 

(m) 

Median 

(m) 

Mean 

(m) 

1 1 10 0.30 1.210 0.838 0.905 

2 8 3 0.34 1.246 0.756 0.810 

3 8 8 0.34 1.246 0.756 0.810 

4 1 7 0.38 1.146 1.124 1.238 

5 16 1 0.38 1.150 1.127 1.237 

6 32 6 0.38 1.150 1.127 1.237 

7 8 4 0.38 1.150 1.127 1.237 

8 2 3 0.39 1.146 1.182 1.304 

9 1 3 0.41 1.319 0.621 0.655 

10 4 3 0.41 1.153 1.261 1.392 

11 4 1 0.42 1.147 1.292 1.437 

12 4 2 0.42 1.155 1.279 1.413 

13 4 4 0.42 1.165 1.305 1.435 

14 2 1 0.43 1.166 1.335 1.474 

15 8 7 0.46 1.205 1.487 1.651 

16 16 2 0.47 1.261 1.568 1.708 

17 1 1 0.47 1.221 1.521 1.684 

18 1 9 0.47 1.221 1.521 1.684 

19 1 8 0.47 1.221 1.523 1.686 

20 16 8 0.48 1.233 1.553 1.746 

21 32 1 0.48 1.233 1.553 1.746 

22 32 2 0.48 1.233 1.553 1.746 

23 32 4 0.48 1.233 1.553 1.746 

24 32 5 0.48 1.233 1.553 1.746 

25 32 7 0.48 1.233 1.553 1.746 

26 32 8 0.48 1.233 1.553 1.746 

27 32 9 0.48 1.233 1.553 1.746 

28 4 9 0.48 1.244 1.577 1.753 

29 4 5 0.48 1.248 1.580 1.748 

30 4 6 0.48 1.248 1.580 1.748 

31 1 5 0.49 1.259 1.607 1.780 
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32 1 6 0.49 1.259 1.607 1.780 

33 4 8 0.49 1.259 1.607 1.780 

34 8 10 0.49 1.259 1.607 1.780 

35 16 9 0.49 1.281 1.628 1.801 

36 2 4 0.51 1.318 1.714 1.893 

37 2 7 0.53 1.353 1.777 1.968 

38 16 4 0.54 1.401 1.848 2.068 

39 16 5 0.54 1.401 1.848 2.068 

40 32 10 0.54 1.401 1.848 2.068 

41 8 9 0.55 1.453 1.922 2.131 

42 4 7 0.55 1.454 1.928 2.132 

43 2 9 0.56 1.461 1.939 2.148 

44 8 5 0.56 1.500 1.977 2.189 

45 4 10 0.56 1.493 1.980 2.191 

46 2 2 0.58 1.540 2.043 2.263 

47 2 6 0.59 1.606 2.128 2.350 

NoAssim NoAssim NoAssim 0.64 1.861 2.411 2.678 

48 1 2 0.65 1.894 2.436 2.721 

49 32 3 0.65 1.928 2.466 2.764 

50 8 6 0.65 1.928 2.466 2.764 

51 1 4 0.66 2.009 2.567 2.852 

52 16 10 0.77 2.932 3.466 3.839 

53 16 3 0.77 2.932 3.466 3.839 

54 16 6 0.77 2.932 3.466 3.839 

55 16 7 0.77 2.932 3.466 3.839 

56 2 10 0.77 2.932 3.466 3.839 

57 2 5 0.77 2.932 3.466 3.839 

58 2 8 0.77 2.932 3.466 3.839 

59 8 1 0.77 2.932 3.466 3.839 

60 8 2 0.77 2.932 3.466 3.839 

 634 

9 Code and Data Availability 635 

The datasets used in this study can be found at the following locations. 636 

 637 

1.  Community Snow Observations website and snow depth data download at http://app.communitysnowobs.org/ 638 

(last accessed 30 April 2020). 639 

 640 

2.  The snow depth to snow water equivalence calculator (Hill et al., 2019) can be downloaded via Github at 641 

https://github.com/communitysnowobs/snowdensity (last accessed: 30 April 2020). 642 

 643 

3.  Snow Telemetry data for the Upper Tsaina River station near Valdez, Alaska is available at the Natural Resources 644 

Conservation Service website: https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=1055 (last accessed: 30 April 2020). 645 

 646 

4.  Climate Forecast System Reanalysis version 2 (CFSv2) data (Saha et al., 2011) is available for download at 647 

https://rda.ucar.edu/datasets/ds094.0/#!description. 648 

 649 

5.  The CFSv2 data was accessed using Google Earth Engine at https://developers.google.com/earth-650 

engine/datasets/catalog/NOAA_CFSV2_FOR6H (last accessed: 30 April 2020). A javascript version of the Earth Engine 651 
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code written for this project is available at https://github.com/snowmodel-tools/preprocess_javascript (last accessed: 30 652 

April 2020). 653 

 654 

6.  To convert the CFSv2 data downloaded from Google Earth Engine to the necessary input file for MicroMet we 655 

wrote Matlab scripts that can be downloaded via Github at https://github.com/snowmodel-tools/preprocess_matlab (last 656 

accessed: 30 April 2020). 657 

 658 

7.  The MERRA2 weather reanalysis product from NASA’s Global Modeling and Assimilation office (Gelaro et 659 

al., 2017) can be downloaded at https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/ (last accessed: 30 April 660 

2020). 661 

 662 

8.  The National Elevation Dataset is (Gesch et al., 2002)  available for download at 663 

https://catalog.data.gov/dataset/usgs-national-elevation-dataset-ned (last accessed: 30 April 2020). 664 

 665 

9.  The National Land Cover Database 2011 dataset (Homer et al., 2011) is available for download at the Multi-666 

Resolution Land Characteristics Consortium at https://www.mrlc.gov/data?f%5B0%5D=category%3Aland%20cover 667 

(last accessed: 30 April 2020). 668 
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