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Abstract.  19 

 20 

A physically-based snowpack evolution and redistribution model was used to test the effectiveness of assimilating crowd-sourced 21 

measurements of snow depth by citizen scientists. The Community Snow Observations (CSO; communitysnowobs.org) project 22 

gathers, stores, and distributes measurements of snow depth recorded by recreational users and snow professionals in high 23 

mountain environments. These citizen science measurements are valuable since they come from terrain that is relatively under-24 

sampled and can offer in-situ snow information in locations where snow information is sparse or non-existent. The present study 25 

investigates 1) the improvements to model performance when citizen science measurements are assimilated and 2) the number of 26 

measurements necessary to obtain those improvements. Model performance is assessed by comparing time series of observed 27 

(snow pillow) and modeled snow water equivalent values, by comparing spatially-distributed maps of observed (remotely sensed) 28 

and modeled snow depth, and by comparing fieldwork results from within the study area. The results demonstrate that few citizen 29 

science measurements are needed to obtain improvements in model performance and these improvements are found in 62% to 78% 30 

of the ensemble simulations, depending on the model year. Model estimations of total water volume from a sub-region of the study 31 

area also demonstrate improvements in accuracy after CSO measurements have been assimilated. These results suggest that even 32 

modest measurement efforts by citizen scientists have the potential to improve efforts to model snowpack processes in high 33 

mountain environments, with implications for water resource management and process-based snow modeling.  34 

 35 

1 Introduction 36 

The importance of snow in ecosystem function, in both human and natural systems, and in water resource management in western 37 

North America cannot be overstated (Bales et al., 2006; Mankin et al., 2015; Viviroli et al., 2007). Internationally, more than a 38 

billion people live in watersheds where snow is an integral part of the hydrologic system (Barnett et al., 2005). Snowpack dynamics 39 

in mountainous, headwater catchments play an essential role connecting atmospheric processes and the hydrologic cycle with 40 
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downstream water users, agricultural systems, and municipal water systems (Fayad et al., 2017; Holko et al., 2011; Schneider et 41 

al., 2013).  42 

 43 

Information about snow distribution comes from many sources. First, there are snow datasets in the form of in-situ observations 44 

of snowpack conditions, often observations of snow depth or snow water equivalent (SWE). In the United States of America (U.S.), 45 

snow depth and SWE data are collected by the National Resources Conservation Service’s (NRCS) Snow Telemetry (SNOTEL) 46 

network using snow pillows and snow courses. Similar national in-situ snow observational networks exist in Europe, like the 47 

MeteoSwiss and MeteoFrance programs that include snow depth, snowfall, and SWE datasets. For a comprehensive overview of 48 

snow observations in Europe, including each program name, the location of observations, and agency websites, see the European 49 

Snow Booklet (Haberkorn, 2019). Snow course information is also collected by state programs such as the California Cooperative 50 

Snow Survey in the U.S. and, in the case of Canada, by provincial programs such as the British Columbia Snow Survey. These in-51 

situ snow observations provide critical information on snow conditions and snow distribution worldwide but vast areas of 52 

snowpack remain unsampled.  53 

 54 

To fill the observational gaps associated with point measurements, we often turn to snow information in the form of remote sensing 55 

(RS) datasets, like the NASA-based Airborne Snow Observatory (Painter et al., 2016) that uses light detection and ranging 56 

(LiDAR) in catchment-scale study areas. Other catchment-scale snow RS datasets are collected using unmanned aerial systems, 57 

including high-elevation capable drones and balloon-based platforms in conjunction with structure-from-motion photogrammetry 58 

(Bühler et al., 2016; Li et al., 2019). There are also RS datasets covering hemispheric and global scales, like the daily snow covered 59 

area product from the MODIS satellite or the GlobSnow snow extent product from the European Space Agency (Hall and Riggs, 60 

2016; Luojus et al., 2010).  61 

 62 

Lastly, there are modeled snow datasets, like the Snow Data Assimilation project with a spatial extent that covers large portions of 63 

North America (SNODAS; NOHRSC, 2004). There are physically-based snow models that produce snow information on 64 

catchment- to hemisphere-scales, like iSnowBal, SnowModel, Alpine3D, PBSM, and SNOWPACK, among many others (Marks 65 

et al., 1999; Liston & Elder, 2006a; Lehning et al, 2006; Pomeroy et al., 1993; Lehning et al., 1999). Studies that integrate all of 66 

these types of snow information, in-situ observations, RS datasets, and process models, are becoming common in snow research 67 

because they often produce the best results (Sturm, 2015).  68 

 69 

Assimilation of data into process modeling is a strategy that seeks to incorporate measurements of environmental variables into 70 

the model chain as a ‘hybrid’ approach to predicting modeled state variables (Carrassi et al., 2018; Kalnay, 2003). There are many 71 

examples of data assimilation in the atmospheric sciences and weather prediction (Rabier, 2005), in weather reanalysis products 72 

(Gelaro et al., 2017; Kalnay et al., 1996; Messinger et al., 2006; Saha et al., 2010), in the hydrological sciences (Han et al., 2012; 73 

McLaughlin, 2002; McMillan et al., 2013; Park and Xu, 2013), and also in snow science (SNODAS; NOHRSC, 2004; Carroll et 74 

al., 2001). Data assimilation schemes in snow science rest on the notion that modeled variables like SWE can be merged with an 75 

in-situ observed value at the same location and time using an objective function. This objective, or cost, function quantifies the 76 

differences between the modeled state variable and the observed state (Reichle et al., 2002; Reichle, 2008; McLaughlin, 2002). 77 

These methods can assimilate model state variables, like SWE, using a statistical method like a Kalman filter or they can assimilate 78 

model fluxes like snowfall precipitation or snowmelt rates (Carroll et al., 2001; Clark et al., 2006; Magnussen et al., 2014; Reichle, 79 
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2008). Other direct insertion assimilation schemes in snow science run the model twice, once without the assimilated data, and a 80 

second time after the in-situ observations and correction factors are calculated in order to produce an updated state variable (Liston 81 

and Hiemstra, 2008; Malik et al., 2012; Helmert et al., 2018). Regardless of the method of assimilation, the goal is the same: to 82 

produce a more accurate modeled state variable (snow depth or SWE) in space and time by using in-situ observations to modify 83 

the process model output.  84 

 85 

Snow depth measurements are a type of in-situ snowpack observation that can be made accurately and quickly by anyone with a 86 

measuring device. Consequently, the current study turns to citizen scientists for snow data collection. Citizen science is a unique 87 

type of research in which scientists request input from the general public on data collection, data analysis, or data processing 88 

(McKinley et al., 2017; Silvertown, 2009; Wiggins and Crowston, 2011). Through citizen science efforts, researchers access data 89 

that are either highly decentralized or concentrated in space, as well as gather measurements frequently or randomly in time. The 90 

primary advantage is that many people can accomplish data collection at spatial and temporal scales well beyond the capacity of a 91 

single researcher or small group of scientists (Bonney et al., 2009; Cooper et al., 2007; Dickinson et al., 2010). Recent successful 92 

citizen science-based research includes the CrowdHydrology project that monitors stage heights of streams and rivers (Fienen and 93 

Lowry, 2012; Lowry and Fienen, 2013), and the CrowdWater project, which obtains multiple types of crowdsourced measurements 94 

of hydrological variables using a publicly available app (Seibert et al., 2019; van Meerveld et al., 2017). Buytaert et al. (2014) 95 

provides a comprehensive review of the recent challenges and motivations of citizen science in hydrology. This unique type of 96 

data collected by citizen scientists has been used in many natural sciences, and snow hydrology represents a new opportunity for 97 

citizen science-based research. 98 

 99 

The present study explores the assimilation of a unique type of citizen science-based data in snow modeling: snow depth 100 

measurements collected by citizen scientists traveling in snow covered landscapes worldwide. This new snow dataset and project 101 

is called Community Snow Observations (CSO; communitysnowobs.org). The CSO campaign relies on backcountry recreationists 102 

including skiers, snowboarders, snowmachiners, cross country skiers, snowshoers, and snow professionals, including avalanche 103 

forecasters and snow scientists, who visit snowy environments for work and recreation to obtain snow depth measurements of the 104 

snowpack (Hill et al., 2018; Yeeles, 2018). Other citizen science projects are underway in snow science, including research on the 105 

relationship between vernal windows and snow depth (Contosta et al., 2017), snow depth observations using Twitter (King et al., 106 

2009), and the backyard precipitation measurement campaign called Community Collaborative Rain, Hail, and Snow Network 107 

(Reges et al., 2016). The CSO project adds to a growing body of research accomplished by citizen scientists in the natural sciences, 108 

and demonstrates how CSO measurements can be assimilated into the process model workflow using SnowAssim to sometimes 109 

improve model results. 110 

 111 

The current study aims to answer two questions. First, can citizen scientists’ snow depth measurements be incorporated into the 112 

process model workflow in a way that improves model performance? This question is addressed by presenting an ensemble of 113 

modeled snow depth and SWE distribution results with two types of outputs: (a) a set of model outputs without any snow depth 114 

measurements assimilated and, (b) a set of model outputs with CSO snow depth measurements assimilated. To answer this first 115 

question, we characterize the results using temporal and spatial datasets for validation. These datasets include time-series SWE 116 

observations at a SNOTEL station in the study area and LiDAR- and photogrammetry-derived snow depth maps from 2017 and 117 

2018. We rely upon common metrics for characterizing the spatial distribution of modeled versus observed continuous 118 
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environmental variables to assess the value of the CSO modified outputs (Riemann et al., 2010). Secondly, how do the results vary 119 

with the number of the CSO measurements assimilated? We address this question by randomly selecting and varying the quantity 120 

of CSO measurements in the ensemble members. The potential of mobilizing a new type of in-situ snow dataset collected by snow 121 

professionals and snow recreationists is significant because these participants often travel to remote mountainous environments 122 

worldwide where in-situ snow observations are sparse. 123 

 124 

2 Study Area 125 

The study focuses on a 5,736 km2 area of the eastern Chugach Mountains near Valdez, Alaska (Figure 1). This high-relief, glacier-126 

carved landscape ranges from sea-level in Port Valdez to rugged peaks exceeding 2200 m.a.s.l., and a mountain pass on the 127 

Richardson Highway, named Thompson Pass (815 m.a.s.l). This region of the Chugach mountains receives extreme amounts of 128 

snowfall, with Thompson Pass holding multiple snowfall records for the state of Alaska, including the 1-day total (1.57 m), 2-day 129 

total (3.06 m), and weekly total (4.75 m; Shulski and Wendler, 2007). Like other places in the Chugach Mountains, snow densities 130 

and snow depths in the region vary greatly across short distances (Wagner, 2012). There are deep, dense, and wet snowpacks found 131 

in the maritime snow climates near the coast. The interior regions of the Chugach Mountains further from the coast contain 132 

shallower, less-dense, and drier snow climates (Sturm et al., 1995; Sturm et al., 2010a). These factors are important because the 133 

Thompson Pass region and the Chugach mountains are frequently accessed by backcountry skiers and snowboarders, backcountry 134 

snowmachiners, and multiple heli-skiing operations due to the exceptional access to steep terrain, and deep, mountain snowpack 135 

(Carter et al., 2006; Hendrikx et al., 2016). Due to the popularity of the area for backcountry snowsports and the risk of danger for 136 

avalanches affecting highway conditions, the Valdez Avalanche Center produces avalanche forecasts for many of the slopes 137 

adjacent to the Richardson Highway in the Thompson Pass region. The choice of a study area within a mountainous region visited 138 

regularly by snow recreationists and professionals is essential for the present study. For these reasons, the Thompson Pass region 139 

of the Chugach Mountains in Alaska was selected for the initial phases of the CSO project. 140 

 141 
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 142 

Figure 1: Study Area Map. 143 
The study area maps showing the Community Snow Observations (CSO) measurements, the modeling spatial extent, and the 144 

Thompson Pass region of the Chugach Mountains.  145 

3 Methods and Datasets 146 

3.1 Model Dataflow 147 

This study relies on a common research design in snow science that uses (1) in-situ snow observations, (2) physically-based process 148 

modeling, and (3) remote sensing of the snowpack to accomplish its primary objectives (Sturm, 2015). Figure 2 is a conceptual 149 

diagram of how the citizen scientists’ snow depth measurements fit into the model chain for the present study. The modeling 150 

process begins with the weather forcing products and citizen scientists’ snow depth observations as model inputs. Sub-models for 151 

meteorological variable distribution, snow depth to SWE estimation, and for the assimilation of snow measurements are employed 152 

before the final simulation occurs. The process model outputs are then validated by the RS datasets, the SNOTEL station record, 153 

and the 2018 field measurements. Incorporating the citizen scientists’ observations into the model chain is an attempt to modify 154 

the model outputs by in-situ snow depth observations.  155 

 156 
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 157 

Figure 2: Model Dataflow Diagram. 158 
The model chain begins with the weather forcing product and the Community Snow Observations (CSO) datasets. The arrows indicate 159 

dataflow through the series of sub-models to the process model output. The model output is then validated by the SNOTEL station 160 
time-series, the 2018 fieldwork, and the remote sensing datasets. 161 

 162 

3.2 Modeling Framework 163 

In this study we used a sequence of models to simulate SWE and snow depth distributions within the Thompson Pass study area 164 

during WY2017 and WY2018. The sections below provide brief information about the models used in this study. For more details, 165 

please refer to the source citations for each model.  166 

 167 

3.2.1 SnowModel 168 

SnowModel (Liston & Elder, 2006a) is a physically-based, spatially distributed process model for simulating the evolution of 169 

snowpacks in snowy environments, and has been used for high-resolution and hemispheric-scale modeling worldwide (Beamer et 170 

al., 2016; Beamer et al., 2017; Crumley et al., 2019; Liston and Hiemstra, 2011; Mernild et al., 2017a-b). SnowModel is chosen 171 

for the Chugach Mountains study area since it contains a data assimilation sub-model, SnowAssim, and a snow transportation sub-172 

model, SnowTran3d. Within SnowModel, various other sub-models solve the energy budget for the snowpack, generate runoff 173 
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quantities, etc. The present study focuses on the snow depth and SWE distribution outputs from SnowModel from simulations with 174 

and without the data assimilation sub-model.  175 

 176 

3.2.2 MicroMet 177 

MicroMet (Liston & Elder, 2006b) is a meteorological distribution sub-model for weather station or reanalysis datasets that can be 178 

paired with SnowModel in spatially explicit modeling applications. MicroMet uses the Barnes objective analysis scheme for 179 

interpolating meteorological input variables to the gridded SnowModel domain for each model timestep (Barnes, 1964; Barnes, 180 

1973). In the present study, instead of using local weather station data, the model is forced with reanalysis data and MicroMet uses 181 

the node locations as weather stations, accessing the reanalysis node surface level precipitation, wind speed and wind direction, 182 

relative humidity, air temperature, and elevation variables for the spatial interpolation. MicroMet has been paired with reanalysis 183 

weather products and SnowModel in many studies worldwide (Baba et al., 2018; Beamer et al., 2016; Liston & Hiemstra, 2011; 184 

Mernild et al., 2017a).  185 

 186 

3.2.3 SnowTran3d 187 

Wind redistribution of snow is an important factor for the spatial distribution of snow depths and SWE distributions for snow 188 

modeling (Clark et al., 2011). Wind events build snow deposits in the gullies and the leeward side of bedrock features into drift 189 

depths greater than 10 m at times within the Thompson Pass study area. These events also leave some portions of the landscape 190 

completely scoured and void of snow based on fieldwork observations and the RS snow surveys from both years. SnowTran3d is 191 

a sub-model within SnowModel that redistributes the snow laterally in the model grid according to the processes that govern snow 192 

transportation: fetch, wind speed, wind direction, wind shear stress and the shear strength of the snowpack, saltation and turbulent 193 

suspension of the snow, and sublimation (Liston et al., 2007). SnowTran3d is suitable for use as a sub-routine within SnowModel 194 

when the model grid cell resolution is appropriate for the length scale of snow transportation processes to occur, for example, 195 

primarily at model resolutions less than 100 m. 196 

 197 

3.2.4 SnowAssim 198 

To assimilate the CSO measurements, we used the sub-model SnowAssim developed in tandem with SnowModel (Liston and 199 

Hiemstra, 2008). The SnowAssim data assimilation scheme is relatively simple when compared to other assimilation methods. 200 

Direct insertion methods often insert the observed state values into the modeled field in the locations and times where data is 201 

available (McGuire et al., 2006; Fletcher et al., 2012). Hedrick et al. (2018) outlines a ‘modified’ direct insertion method, where 202 

Airborne Snow Observatory LiDAR-based snow depth distributions are input into the iSnobal workflow in order to modify model 203 

state variables before a new initialization of the model begins. Liston and Hiemstra (2008) describe a different type of modified 204 

direct insertion assimilation scheme (SnowAssim) used in the present study. Differences between the observed SWE depths and 205 

modeled SWE depths in time and location are calculated and interpolated to the entire model domain in the form of a correction 206 

surface. The final correction surface is spatially distributed (for each day of observations) using the Barnes interpolation scheme.  207 

 208 
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Note that CSO measurements are submitted as snow depth (m) and SnowAssim requires observational inputs to be SWE depth 209 

(m), so a conversion from depth to SWE was necessary. The snow depth to SWE conversion method for the current study will be 210 

discussed in the following section. Next, the model determines the dominant snow season phase (accumulation or ablation), and 211 

applies the correction factor surface to either a) the precipitation fluxes or b) the snowmelt factors during a second model 212 

simulation. Additionally, the Barnes interpolation scheme determines outliers within the observed dataset and determines the 213 

degree to which the assimilated values fit the modeled values. This determination creates a smoothed representation of the observed 214 

dataset in the assimilation results. For extensive details about the data assimilation scheme, see Liston and Hiemstra (2008), their 215 

section 3, 4, and 5.  216 

 217 

Other data assimilation methods include particle-batch smoother and particle filters.  These methods are Bayesian data assimilation 218 

methods used to estimate system state variables using predicted estimates (modeled) and noisy measurement data (observed). 219 

These types of data assimilation methods rely heavily on characterizing and incorporating the predicted estimate uncertainties and 220 

measurement uncertainties into the analysis using probability distribution functions (Magnusson et al. 2017; Margulis et al. 2015). 221 

In direct insertion or modified direct insertion methods like SnowAssim, modeled and observed state variable uncertainties are not 222 

explicitly characterized. 223 

 224 

3.2.5 Snow Depth to Snow Water Equivalent Conversion 225 

CSO participants take measurements of snow depth yet SnowAssim requires SWE observation inputs. A conversion from snow 226 

depth to SWE was necessary for the present study. A body of research exists on the best methods for converting point measurements 227 

from snow depth to SWE, using either bulk density estimations, snow climate classifications, statistical models, or atmospheric 228 

conditions and energy balance approaches (Sturm et al., 1995; Sturm et al., 2010a; McCreight et al., 2014; Jonas et al., 2009; 229 

Pagano et al., 2009; Hill et al., 2019; Pistocchi, 2016). The Hill et al. (2019) model was chosen for two reasons. First, the data 230 

requirements are minimal for this model, requiring only location, day of water year (DOY) and readily-available climatological 231 

information based on input location. These minimal requirements align with the information available from CSO measurements. 232 

Second, it was found to outperform other bulk density methods such as Sturm et al. (2010) and Jonas et al. (2009) when tested 233 

against a wide variety of snow pillow and snow course datasets, with an overall bias of 2 mm and RMSE in SWE of 6 cm (Hill et 234 

al., 2019).  235 

 236 

3.3 Model Input Datasets 237 

3.3.1 Elevation and Land Cover 238 

SnowModel requires a digital elevation model (DEM) and a land cover model as two of the three primary input datasets. The DEM 239 

is the National Elevation Dataset (NED) from the United State Geological Survey downloaded at 30 m resolution and then rescaled 240 

to 100 m spatial resolution (Gesch et al., 2009). The land cover model is the National Land Cover Database (NLCD) 2011 dataset 241 

at 30 m spatial resolution and then resampled to 100 m resolution (Homer et al., 2015). The NLCD dataset was reclassified to 242 

match the land cover input classes required by SnowModel. Initially, we tested results from model simulations at two spatial 243 
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resolutions, 30 m and 100 m, covering the model domain in the Thompson Pass region of the Chugach mountains. After calibrating 244 

the model, the results section only includes the 30m resolution.  245 

 246 

3.3.2 Weather Forcing Datasets 247 

Various weather reanalysis products have been used in remote portions of Alaska in previous studies (Beamer et al., 2016; Beamer 248 

et al., 2017; Crumley et al., 2019; Liston and Hiemstra, 2011). In Alaska, each reanalysis product shows bias corresponding to 249 

meteorological variable, regional location, and season of the year (Lader et al., 2016; see their Figures 3 and 4). For this reason, 250 

the current study considered two weather reanalysis products that differ in their biases in temperature and precipitation in the 251 

Thompson Pass region during the winter and the summer seasons. We used the Climate Forecast System Reanalysis version 2 252 

product (CFSv2) and the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA2) product for the 253 

weather forcing inputs for SnowModel. The CFSv2 product from the National Centers for Environmental Prediction is an extension 254 

of the lower spatial resolution Climate Forecast System Reanalysis (CFSR) version 1 product that began in 1979 (Saha et al., 255 

2010). The CFSv2 data are available at a spatial resolution of 0.2 arc degrees, and a 6 hr temporal resolution (Saha et al., 2014). 256 

The CFSv2 dataset was downloaded using Google Earth Engine (GEE), a platform for accessing and analyzing scientific datasets 257 

with global coverage. The MERRA2 weather reanalysis product from NASA’s Global Modeling and Assimilation office is the 258 

second meteorological forcing dataset tested in the present study (Gelaro et al., 2017). The MERRA2 data are available at a spatial 259 

resolution of 0.667 degrees by 0.5 degrees, with a 3 hr temporal resolution beginning in 1979. MERRA2 replaces the older version 260 

product with updated assimilation processes to include more weather datasets.  261 

 262 

3.4 Snow Datasets 263 

3.4.1 Snow Telemetry Station Data 264 

The study area contains two SNOTEL stations operated by NRCS. The first station is the Upper Tsaina SNOTEL (UTS) station 265 

located at 534 m.a.s.l. on the NE side of Thompson Pass reporting the full standard set of sensor variables, including precipitation, 266 

temperature, snow depth, and SWE. The second station is the Sugarloaf Mountain SNOTEL (SLS) station, located near the Valdez 267 

Arm of the Prince William Sound at 168 m a.s.l. in the SW corner of the study area and records only precipitation, temperature, 268 

and snow depth, but not SWE (Figure 1). The SLS station data was used to create local temperature lapse rates for the calibration 269 

and the UTS station data was used in the manuscript results section to create the SWE time series analysis. Detailed information 270 

about the SNOTEL sensors and climate monitoring instruments can be found at the SNOTEL website 271 

(https://www.wcc.nrcs.usda.gov/snow/) and Serreze et al. (1999). Direct links to the SNOTEL websites for the UTS and SLS 272 

stations can also be found in the Data Availability section below.  273 

 274 

3.4.2 LiDAR and Photogrammetry Derived Data 275 

An airborne photogrammetry survey was conducted on April 29, 2017 with a Nikon D800 36.2 megapixel camera and flown on a 276 

fixed-wing aircraft above a portion of the Thompson Pass study area, see Figure 3 for location and extent. An onboard Trimble 277 

Global Navigation Satellite System (GNSS) and a base-station were used for positional control. Post-processing was completed 278 
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with structure-from-motion software to create a digital surface model (DSM) of the photogrammetry-derived snow surface. An 279 

airborne LiDAR survey was collected on April 7th and 8th, 2018, using a Riegl VUX1-LR laser scanner flown on a fixed-wing 280 

aircraft. An onboard integrated inertial measurement unit (IMU) and GNSS, and a base-station were used to provide positional 281 

control for the LiDAR-derived snow DSM. Both RS datasets were evaluated against a previously collected photogrammetry-282 

derived DSM from 2014 when no snow was present. An interpolation scheme was used to gap-fill some of the negative values in 283 

the snow DSM due to vegetation cover effects. There is uncertainty associated with the RS dataset acquisitions, and the sources of 284 

error are related to flight trajectory and geometry, laser scan angle, density of vegetation and canopy, and steep gradients in the 285 

terrain (Deems and Painter, 2006). The vertical RMSE in snow depth for the photogrammetry and LiDAR datasets are estimated 286 

at 31.0 cm and 10.2 cm, respectively. While we acknowledge and report these error estimations, they are integrated into the results 287 

in Table 3 in Section 6.4 but not used in the spatial results reported in Section 6.2. 288 

 289 

3.4.3 Chugach 2018 Fieldwork Data 290 

Three weeks of fieldwork in the Thompson Pass region were conducted in March, April, and May of 2018. Snow depth and SWE 291 

were measured throughout the study area with an avalanche probe and a Federal Snow Sampler. At each fieldwork measuring site, 292 

a central SWE measurement was taken using the Federal Sampler. Avalanche probes were used in the surrounding 100 m2 to take 293 

a series of 8 snow depth measurements extending 5 m in each direction from the central SWE measurement. Federal sampler data 294 

collection introduces uncertainty in the form of measurement error due to variable snow conditions and densities, hard impenetrable 295 

crusts, and loss during extraction. Dixon and Boon (2012) report the results of several studies showing that the Federal Sampler 296 

error, as a percentage of SWE depth, ranges from 4.6% to 11.2%. Our results presented in Section 6.4 include field measurements 297 

of SWE that use the higher 11.2% value for conservative SWE error estimation.  298 

 299 

The fieldwork sampling protocol was designed to consider: (1) variability in snow depth in small areas less than 100 m2, (2) month-300 

to-month changes in snow depth and SWE, and (3) spatial gradients in snow density throughout the entire study area. A diagram 301 

of the location of each observational site can be found in Figure 3. The 2018 fieldwork dataset was used for validation with two 302 

purposes in mind. First, the 2018 fieldwork SWE measurements were used as a validation dataset for the 2018 SWE distribution 303 

results. Secondly, since the data collected in the spring of 2018 contains measured snow depths and SWE at 70 observational sites 304 

(n = 560; 8 per site), we conducted an analysis of the sub-grid scale variability in snow depth found at each observational site and 305 

these results are found in the discussion section.  306 

 307 
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 308 

Figure 3: Validation Datasets Map.  309 
The 2018 fieldwork includes 72 sites with co-located snow water equivalent and snow depth measurements. The remote sensing 310 

datasets from 2017 and 2018 are overlain on the map, along with the location of the Upper Tsaina and Sugarloaf SNOTEL stations. 311 

 312 

3.4.4 Community Snow Observations Data 313 

The CSO program collects snow depth data from citizen scientists in snowy environments worldwide. Full details including links 314 

to smartphone apps and tutorials are found at http://communitysnowobs.org. Citizen scientists take several (2 to 4) snow depth 315 

measurements within a small area (< 4 m2) using an avalanche probe or other depth measuring device (meterstick, etc.). These 316 

measurements are then averaged by the participant and submitted using the app or program preferred by the participant. The 317 

submitted data include the global positioning system (GPS) location in latitude and longitude, time and date, and snow depth 318 

measurement (cm). The accuracy of the GPS system for each participants’ mobile device determines the location error of the GPS, 319 

with common errors for mobile phones ranging between ±4 to 7 m (Garnett and Stewart, 2015; Schaefer & Woodyer, 2015). Since 320 

the model resolution is 30 m and 100 m, this level of horizontal error in GPS location is acceptable for the purposes of our research 321 

questions. All collected data are made freely available on the CSO website for visualization and download (see Section 9 for Data 322 

Availability). Thousands of measurements have been recorded by participants in CSO globally since it began in January 2017 with 323 

initial measurement campaigns in Alaska and other frequently visited locations in mountain regions across North America (Figure 324 

4). In the modeling domain of the current study, 442 CSO measurements were available for WY2017 and 104 CSO measurements 325 

for WY2018. These measurements were concentrated in the Thompson Pass region of the study area (Figure 1) and range from 25 326 

m to 1400 m in elevation. 327 

 328 
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 329 

Figure 4: CSO Participation in North America. 330 
Participation in the Community Snow Observations (CSO) project in North America aggregated by the number of observations 331 

recorded in each U.S. state or Canadian province between January 1st, 2017 and December 31st, 2019.  332 

 333 

4 Calibration 334 

We performed model calibration using five years of the historical record of the UTS station from WY2012 through the end of 335 

WY2016. The calibration was focused on adjustments to temperature lapse rates, precipitation lapse rates, wind adjustment factors, 336 

and use of the SnowTran3d sub-model. We chose temperature lapse rates and precipitation lapse rates for calibration because 337 

SnowModel is known to be limited by these factors when large elevational differences exist within the model domain (Liston and 338 

Elder, 2006a). We chose wind adjustment factors and the wind transportation sub-model for calibration because wind redistribution 339 

of snow plays a significant role in the study area based on the 2018 fieldwork and the RS surveys from 2017 and 2018. Since the 340 

SnowAssim sub-model requires a single layer snowpack, no adjustments were made to the snowpack layer structure. For each 341 

weather reanalysis product a full calibration was performed for the 30m and 100m model resolutions, in the event that spatial 342 

resolution plays a significant role in parameter selection. See Appendix A for the descriptions of the model parameters tested 343 

during the calibration. 344 

 345 

The daily SWE output from each calibration simulation is compared with the UTS observed SWE for the duration of the 5-year 346 

calibration time period using root mean squared error (RMSE), the Nash Sutcliffe Efficiency (NSE), the Kling-Gupta Efficiency 347 

(KGE), and mean bias error (Bias) to assess the calibration simulations. Table 1 lists the best 30m and 100m calibration simulations, 348 

based on their time-series RMSE, NSE, KGE, and Bias scores. We acknowledge that measurement errors can occur with SNOTEL 349 

snow pillows and that these well known errors may affect the accuracy of the observational dataset (Johnson and Schaeffer, 2002; 350 

Johnson, 2003). 351 

 352 
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Table 1: Model Calibration Results. 353 
The best calibration results are given for each set of simulations for water years 2012-2016, along with the root mean squared error 354 

(RMSE), the Nash Sutcliffe Efficiency (NSE), the Kling-Gupta Efficiency (KGE), and the mean bias error (Bias). 355 

Reanalysis Product 

& Resolution Time Step 

Number of 

Simulations 

RMSE 

SWE 

(cm) NSE KGE 

Bias 

SWE 

(+/- cm) 

MERRA2, 30m 3hrly 45 24 -0.29 0.08 +16 

MERRA2, 100m 3hrly 45 26 -0.10 -0.10 +19 

CFSv2, 30m 6hrly 45 22 -0.15 -0.01 +17 

CFSv2, 100m 6hrly 45 22 -0.15 -0.01 +17 

 356 

Calibration results in Table 1 show that the 30m model grid resolution slightly outperforms the 100m model grid resolution in the 357 

MERRA2-forced calibration simulations. However, the CFSv2-forced simulations show no difference between the model grid 358 

resolutions. The CFSv2 product slightly outperforms the MERRA2 product in terms of SWE RMSE. Overall, the differences 359 

between the top performing model grid resolution and reanalysis product are mixed and potentially negligible, varying by metric. 360 

The NSE and KGE model performance metrics in the calibration simulations are lower than expected, due primarily to precipitation 361 

inputs from the reanalysis products that were consistently higher than measured precipitation at the UTS station. Since SnowAssim 362 

adjusts the precipitation fields during assimilation, these input deficiencies are acceptable for the purposes of this study. The 363 

SnowModel default parameter values notably and consistently produce the top performing simulations, see Appendix B for details. 364 

Due to each of these factors, the calibrated model for the remainder of the study uses the CFSv2 reanalysis product, the 30m model 365 

grid resolution, and the SnowModel default parameter values. 366 

 367 

One of the primary obstacles for process modeling is the use of accurate weather input data, and the related uncertainties with 368 

weather inputs are a well-known complication in snow and hydrological modelling (Rivington et al., 2006; Schmucki et al., 2014; 369 

Schlögl et al., 2016). Initial tests of modeled precipitation fields using Micromet versus the observed precipitation at the UTS 370 

station revealed that both reanalysis products overestimated the amount of precipitation observed in the study area at the UTS 371 

station, see Appendix C. With these obstacles in mind, we designed an experiment to supplement the main findings of this research. 372 

For this experiment we introduced a model precipitation adjustment factor similar to the method outlined in Mernild et al. (2006). 373 

We applied this scalar value to the precipitation fields as a bias correction of the precipitation inputs. We tested 11 precipitation 374 

adjustment factors ranging from 0.95 to 0.45 and applied them to the meteorological forcing inputs during the 5-year calibration 375 

time period. For more details about the precipitation and precipitation adjustment factor results, see Appendix D. This experiment, 376 

presented in section 6.5, allows us test improvements in model performance when the precipitation inputs are bias corrected prior 377 

to model assimilation of CSO measurements. 378 

 379 

5 Experimental Design 380 

With the model calibrated, we carried out a series of simulations in order to (1) quantify the improvement in model performance 381 

due to the assimilation of CSO measurements and to (2) understand the effects of the number of CSO data points selected for 382 

assimilation. Model simulations without CSO measurements provide a baseline for comparison, referred to as the NoAssim case. 383 
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Ensemble model simulations were also carried out with various numbers of CSO measurements assimilated, referred to as the CSO 384 

simulation case. An ensemble of 60 trials per year were carried out with n = 1, n = 2, n = 4, n = 8, n = 16, and n = 32, where n 385 

equals the number of CSO measurements assimilated per WY. In each instance (n value), 10 realizations of the numerical 386 

experiment were carried out.  387 

 388 

The timeframe of assimilating CSO measurements was restricted to the peak SWE period or later. According to the UTS station, 389 

peak SWE in the study area generally occurs mid- to late-April and consequently the earliest assimilation date was set to April 390 

15th. The CSO measurements were aggregated by week because initial simulations suggested that daily increments were not 391 

producing realistic results by SnowAssim. Additionally, CSO participation in the Thompson Pass region during the early 392 

accumulation season was infrequent in WY2018 and non-existent in WY2017. Since peak SWE is important for mountain 393 

hydrology and ecology, with many snow studies using it as an indicator metric, the time restrictions are acceptable for the research 394 

questions addressed in this study (Bohr and Aguado, 2001; Trujillo et al., 2012; Kapnick and Hall, 2012; Mote et al., 2018; 395 

Wrzesien et al., 2017). 396 

 397 

6 Results 398 

The following results reflect the three types of available validation datasets: 1) time-series SWE results at the UTS station, 2) 399 

spatial snow depth distributions from the RS datasets, and 3) point-based snow depth and SWE measurements from the 2018 400 

fieldwork.  401 

 402 

6.1 Temporal Results Using the Upper Tsaina SNOTEL Station 403 

The temporal results compare the UTS station SWE time-series to the ensemble member SWE time-series during WY2017 and 404 

WY2018. Figure 5 displays the temporal cycle of snowpack accumulation and ablation, and the timing of peak SWE. At the UTS 405 

station in the study area, the average WY day of peak SWE is 228, or April 15th. Before this day, the snowpack is generally 406 

increasing in SWE and afterwards the snowpack generally enters the ablation period with a reduction in SWE. This temporal cycle 407 

can be observed in Figure 5 by following the color gradient. The highest performing (Best) CSO simulation (Figure 5b,e) corrects 408 

the slope of the snowpack accumulation and ablation phases when contrasted with the NoAssim accumulation and ablation phases 409 

and slopes (Figure 5a,d). These time-series results, in terms of model performance metrics and the snowpack temporal cycle, 410 

exhibit SnowAssim’s ability to incorporate CSO measurements and improve modeled SWE outputs at the UTS station location 411 

throughout the entire snow season.  412 

 413 
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 414 

Figure 5: Time Series at Upper Tsaina SNOTEL Station. 415 
The Upper Tsaina SNOTEL snow water equivalent (SWE) observations versus the modeled SWE for the no assimilation case (a,d), the 416 

Best CSO simulation (b,e), and the Median CSO simulation (c,f). The timeseries color gradient corresponds to the day of the water 417 
year. 418 

 419 

Figure 5 summarizes the temporal results for the Best and median performing (Median) CSO simulations, including the NoAssim 420 

case. Each ensemble member is evaluated by their KGE, NSE, RMSE, and Bias scores. For results presented in this section, the 421 

KGE score is used to rank the ensemble simulations. A full accounting of each ensemble member and their time-series ranking can 422 

be found in Appendix E. Modeled SWE depths for the NoAssim case are consistently higher than the UTS station SWE 423 

observations for both WYs (Figure 5a,d). The modeled SWE depths for the Best CSO simulation outperform the NoAssim case 424 

throughout the entirety of the time-series and represent an improvement in model performance scores according to all of the time-425 

series metrics (Figure 5b,e). The modeled SWE depths for the Median CSO simulation for WY2017 outperform the NoAssim case 426 

by all metrics, and the WY2018 Median CSO results are mixed. The ensemble simulation KGE scores outperform the NoAssim 427 

KGE scores among 70% of the WY2017 ensemble members, and among 67% of the WY2018 ensemble members. Any number 428 

of CSO measurements assimilated show improvements in model performance, a key finding in the time-series results. 429 

 430 

Using the snow depth to SWE conversion method during assimilation introduces uncertainty into the modeling process. Instead of 431 

using the global estimates of error reported in Hill et al. (2019; RMSE in SWE = 5.9 cm) we decided to calculate this source of 432 

error using our fieldwork site measurements. The RMSE in SWE due to the conversion method is 10.5 cm and we perturbed the 433 

CSO observations by this amount to depict the upper and lower boundaries of error associated with this source of uncertainty.  434 

Figure 6 displays the Best CSO simulation temporal results for each WY, along with the UTS station SWE record and the NoAssim 435 

case. These perturbations to the assimilated SWE show improved modeled SWE values at the UTS station when compared to the 436 

NoAssim case, even after this source of uncertainty has been accounted for.  437 
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 438 

Since the timing of snow disappearance is important for ecological systems in alpine environments and water resources managers, 439 

we calculated the range in snow disappearance dates from the Best simulations from both water years (see Figure 6 where SWE 440 

depth reaches zero between day 250 and 280). In WY2017 and WY2018, the snow disappearance date for the NoAssim case is 10 441 

and 7 days later than the UTS station record, respectively. In WY2017, the snow disappearance date in the Best CSO simulation, 442 

accounting for measurement uncertainty, ranges from 3 days earlier to 8 days later than the UTS station. In WY2018, the range is 443 

from 10 days to 1 day earlier than the UTS station. These ranges in snow disappearance date are acceptable and show improvements 444 

in model performance for some, but not all, of the Best CSO simulations after accounting for measurement uncertainty. 445 

 446 

 447 

Figure 6: Snow water equivalent (SWE) time series results with measurement uncertainty included. The simulations with ±10.5 cm of 448 

SWE represent the upper and lower boundaries of error introduced when converting snow depth measurements to SWE using the Hill 449 

et al. (2019) method.  450 

6.2 Spatial Results Using the Remote Sensing Datasets 451 

The ensemble results are summarized in Figure 7 using the Kolmogorov-Smirnov statistic (KS; Massey, 1951). The KS statistic 452 

quantifies the difference between a reference dataset of a continuous variable and a sample dataset of the same variable. The KS 453 

statistic represents the maximum distance between the empirical cumulative distribution function (ECDF) of the reference and 454 

sample datasets, with KS scores ranging from zero to one, with zero representing perfect dataset agreement (Riemann et al., 2010). 455 

In the KS analysis, the reference dataset is the RS derived snow depth distribution and the sample datasets are each of the ensemble 456 

snow depth distributions, including the NoAssim case. Figure 7 shows that in WY2017 the CSO simulations are an improvement 457 

from the 2017 NoAssim case among 62% of the ensemble members, and in WY2018 among 78% of the ensemble members. Note 458 

that only the KS values that fall below the NoAssim line represent an improvement in model performance during the CSO 459 

simulations. The spatial results reveal that improvements in model performance are not dependent upon the number of CSO 460 

measurements that are assimilated in WY2018. However, WY2017 has a smaller range in KS values as the number of assimilated 461 

measurements increases, with more CSO simulations outperforming the NoAssim case. These results also vary according to model 462 

performance metric and by WY, with no clear pattern emerging from the number of measurements assimilated. 463 

 464 
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 465 

Figure 7: Swarmplots of Kolomogorov-Smirnov Scores. 466 
The ensemble simulations are ranked by Kolmogorov-Smirnov (KS) score per year and plotted according to the number of 467 

measurements assimilated, including the no assimilation (NoAssim) case. 468 

 469 

The snow depth distribution maps in Figure 8 display the RS datasets (a,b), the results from the highest performing CSO simulation 470 

(c,d), and the NoAssim case for each WY (e,f). Refer to Figure 2 for the RS dataset location within the study area. We present the 471 

Best CSO simulation as the focus of Section 6.2 ranked according to KS score ranking (Figure 7). A full accounting of each 472 

ensemble member and their spatial distribution ranking can be found in Appendix F. In the RS datasets, there is more variation 473 

and heterogeneity in snow depth across short distances (Figure 8a-b). This spatial diversity is evident even after the RS dataset has 474 

been aggregated to correspond to the model resolution at 30 m, as depicted in Figure 8. The NoAssim case and Best CSO simulation 475 

show less spatial diversity, and the NoAssim case broadly overstimates snow depth when compared to the Best CSO simulation 476 

for both WYs. The visualization of the snow depth distributions in Figure 8 illustrate the challenges of accurately representing the 477 

process scale through physics-based modeling at low resolutions (Blöschl, 1999), and some of these challenges will be examined 478 

further in the discussion section. 479 

 480 

 481 



18 

 

 482 

Figure 8: Snow Depth Distribution Maps. 483 
(a,b) The remote sensing (RS) datasets from 2017 and 2018. (c,d) The best CSO simulation results corresponding to the RS dataset 484 

spatial extent. (e,f) The no assimilation results corresponding to the RS dataset spatial extent. The total model area that corresponds to 485 
the RS dataset in 2017 is 104 km2 and 149 km2 in 2018. 486 
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 487 

Figure 9 presents histograms and empirical cumulative distribution functions (ECDFs) for the RS datasets, the NoAssim case, and 488 

the Best CSO simulation. In WY2017 (Figure 9a), when the NoAssim case overestimates snow depths, the Best CSO simulation 489 

ECDF shifts left, towards the RS dataset ECDF. To a greater degree, in WY2018 (Figure 9c) when the NoAssim case more broadly 490 

overestimates the snow depths, the Best CSO simulation ECDF shifts further left, towards the RS dataset ECDF. The shifts in the 491 

EDCFs are evident in the histograms and the median value of each dataset is indicated with a dashed line (Figure 9b,d). The same 492 

shifts are evident in the snow depth distribution maps (Figure 8c,d,e,f). Even though the shifts in ECDFs and histograms are in the 493 

correct direction in the Best CSO simulations, SnowAssim is not adjusting the distribution of snow depth values, which can be 494 

seen in the multimodal shape of the histograms.  495 

 496 

 497 

Figure 9: Histogram and Distribution Plots. 498 
The empirical cumulative distribution functions (ECDFs) and histograms from the best CSO simulation, the no assimilation case, and 499 

the remote sensing (RS) datasets during WY2017 (a,b) and WY2018 (c,d). 500 

 501 

The multimodal distribution of snow depths in the modeled results can be explained by their relationship to the elevation of the 502 

surrounding terrain. The input DEM and the snow depth distributions were compared on a grid-cell-to-grid-cell basis using a two-503 

dimensional histogram (2DH). Figure 10 is a series of 2DHs that display snow depth (x axes) versus the input DEM (y axes) in the 504 

RS area from both years. Darker colors indicate a higher frequency of snow depth and elevation values corresponding to each 505 

dataset. The 2DHs show a proportional relationship between the modeled snow depths (Figure 10a,b,e,f) and the input DEM values. 506 

As elevation increases, snow depth also increases linearly in the modeled results. Still, the range of snow depths from Best CSO 507 



20 

 

simulation shifts towards the RS dataset in both years, but the elevation relationship remains largely intact. The RS snow depths 508 

are less dependent on elevation, with snow depth values between 0 and 1 appearing at all elevations between 0 and 1250m. The 509 

2DH analysis supports the findings from the snow depth distribution maps where the variability of snow depth observed in the RS 510 

dataset is not replicated in the NoAssim case or the Best CSO simulation (Figure 8).  511 

 512 

 513 

Figure 10: Two-dimensional Histograms. 514 
The remote sensing (RS) dataset vs. the (a) water year (WY) 2017 no assimilation case, (b) WY2018 no assimilation case, (c) WY2017 515 

best CSO simulation, and (d) WY2018 best CSO simulation. 516 

 517 

6.3 Fieldwork 2018 Results 518 

To validate the WY2018 SWE distributions from the NoAssim case and the Best CSO simulation we used ground-truth data from 519 

our field campaign in April 2018. The locations of the 70 SWE and snow depth measurement sites from 2018 are depicted in 520 

Figure 3. Figure 11 shows the co-located SWE depth measurements (y axes) versus the snow depth measurements (x axes) from 521 

each site aggregated by month. The bars in Figure 11 represent the variability in snow depth within the surrounding 100m2 of the 522 

SWE measurement, including the average, minimum, and maximum of 8 snow depth measurements at each site. Table 2 shows 523 

the results at the SWE measurement sites, comparing the NoAssim case versus the Best CSO simulation using RMSE, bias, and 524 

mean absolute error (MAE) metrics for evaluation. Since each measurement site corresponds to a single CSO snow depth 525 
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submission, we separated those measurement sites used in the assimilation scheme from the validation set when creating Table 2. 526 

The Best CSO simulation outperforms the NoAssim case according to all metrics in all months. The 2018 fieldwork results from 527 

April show that the Best CSO simulation has a bias of +3 cm, while the NoAssim case is +97 cm. The April 2018 fieldwork results 528 

agree with the histogram and ECDF analysis that displayed broad overestimation of SWE in the NoAssim case in WY2018 (Figure 529 

8b; Figure 9d).  530 

 531 

Additionally, we used the co-located snow depth and SWE measurements at the fieldwork sites to quantify the uncertainty that is 532 

added to the model during the snow depth to SWE conversion. By converting the fieldwork snow depth values to SWE using the 533 

Hill et al. (2019) method, we can compare the measured SWE to the approximated SWE values. The fieldwork measurement 534 

RMSE in SWE is 10.5 cm and the Bias in SWE is 0.6 cm when using the Hill method for all fieldwork sites. 535 

 536 

 537 

Figure 11: Fieldwork 2018 Measurements by Month 538 
The 70 in-situ snow water equivalent (SWE) measurements (y axes) from 2018 are plotted by month along with their co-located snow 539 

depth measurements (x axes). The bars show the minimum, maximum, and average of each fieldwork site where 8 snow depth 540 
measurements were obtained in a 100 m2 area.  541 

Table 2: Fieldwork 2018 Results 542 
 The 70 SWE measurements from the 2018 fieldwork compared to the Best CSO simulation and the no assimilation (NoAssim) case 543 

using the three model performance metrics: root mean squared error (RMSE), mean bias error (Bias), and mean absolute error 544 
(MAE).   545 

 

Bias SWE (cm) RMSE SWE (cm) MAE SWE (cm) 

Best CSO NoAssim Best CSO NoAssim Best CSO NoAssim 

All  -11 86 28 100 22 86 

March -3 77 15 95 13 77 

April 3 97 21 114 16 97 

May -25 84 37 95 31 84 

 546 

6.4 Spatially Averaged Snow Water Equivalent Results 547 

Another way to quantify the ability of CSO measurements to constrain SnowModel output is to investigate the modeled SWE 548 

averaged over a large area. Table 3 contains the spatially averaged SWE estimations from the RS survey area in WY2018, and 549 
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includes the RS dataset, the Best CSO simulation, and the NoAssim case. We focus on WY2018 because the fieldwork 550 

measurements include estimated bulk density values at each measurement site. These bulk density estimations were measured 551 

during April 2018 and were partitioned from the larger dataset and spatially averaged over the RS region only (n=22). The 552 

fieldwork estimated bulk density value was then applied to the spatially averaged RS snow depth. The uncertainty estimations for 553 

the RS survey dataset and the Federal Sampler collected data are also added to Table 3 to create a range of estimation of water 554 

volume. For the Best CSO simulation and the NoAssim case, the spatially averaged snow depth, SWE, and snow density values 555 

were taken directly from the model results. The SWE estimation results in Table 3 demonstrate that SnowAssim can constrain the 556 

SWE output over a large region based on a few, randomly chosen CSO measurements. Importantly, the accuracy of the total 557 

modeled water volume from the RS region in 2018 improves when CSO measurements are included, a key finding that has 558 

implications for water resource management decisions in snowy, data-limited, mountain environments.  559 

 560 

Table 3: Spatially Averaged Variables in the RS Region 561 
The spatially averaged results were calculated using the RS region in WY2018, the RS dataset (±1cm error), the spatially averaged 562 
density, and the modeled results. The spatially averaged SWE depth for the RS survey was estimated using the average density (± 563 

11.2%) measured during April 2018 fieldwork.  564 

Dataset 

Spatially Averaged  

Snow Depth (cm) 

Spatially Averaged 

Density (kg/m3) 

Spatially Averaged 

SWE Depth (cm) 

Total RS Region 

Water Volume (km3) 

RS Survey 2018 130 ±1 (RS survey) 331 ±37 (fieldwork) 38 - 48 (estimated) 0.06 – 0.07 (estimated) 

Best CSO Simulation 2018 130 (modeled) 400 (modeled) 52 (modeled) 0.08 (modeled) 

NoAssim 2018 267 (modeled) 430 (modeled) 115 (modeled) 0.17 (modeled) 

 565 

 566 

6.5 Precipitation Adjustment Experiment 567 

The experimental design of the present study was developed for remote locations where a long-term precipitation dataset was not 568 

available to bias correct the precipitation inputs. However, since a long-term precipitation dataset may be available in other 569 

locations, we decided to test the results with a precipitation experiment. In this experiment we applied a scalar to the CFSv2 570 

precipitation fields for bias correction and all other model parameters and input datasets were held constant. The experiment results 571 

show that some of the CSO ensemble simulations still outperformed the NoAssim case with the precipitation adjustment, both 572 

spatially and temporally. For example, the spatial results show that 43% percent of the ensemble runs in WY2017 and 20% of the 573 

ensemble runs in WY2018 outperformed the NoAssim case when the precipitation was bias corrected, according to their KS score 574 

(Figure 12). Similarly, the temporal results show that 42% of the ensemble runs in WY2017 and 58% of the ensemble runs in 575 

WY2018 outperformed the NoAssim case when the precipitation was bias corrected, according to their KGE score. The ECDF 576 

and histogram analysis from the precipitation adjustment factor experiment also show model improvements when there was broad 577 

underestimation of snow depths in the NoAssim case in WY2017 and broad overestimation in WY2018. These results demonstrate 578 

that using CSO measurements for assimilation can improve model performance when the available weather forcing dataset has 579 

known biases (no precipitation adjustment factor case) but when those biases have been decreased (precipitation adjustment factor 580 

case) the improvements become less clear, they vary from year to year, and are less consistent between spatial and temporal results.  581 

 582 
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 583 

 584 

Figure 12: Swarmplots of Kolmogorov-Smirnov Scores with Precipitation Adjustment Factor. 585 
The ensemble simulations are ranked by Kolmogorov-Smirnov (KS) score per water year (WY) and plotted according to the number 586 

of CSO measurements assimilated, including the no assimilation (NoAssim) case. 587 

 588 

6.6 Correction Factor Results 589 

SnowAssim generates a set of correction factors for each of the CSO ensemble member simulations. These factors correspond to 590 

the observed and measured differences in the SWE variable and are used to create a correction surface with the Barnes objective 591 

analysis. Table 4 reviews a subset of the correction factors, including data from the Best ranked CSO simulations according to the 592 

various temporal and spatial metrics previously reviewed in sections 6.1 and 6.2. The number of observations varies for the Best 593 

ranked simulation, as well as the precipitation correction factors, the use of a melt correction factor, and whether or not an 594 

interpolated correction surface was created. These correction factor results show that relatively few measurements are needed 595 

during assimilation and that there are multiple paths to improving model performance when assimilating CSO observations using 596 

SnowAssim. 597 

 598 

Table 4: Correction factors from the assimilation scheme for the best ranked simulations from both water years. The model 599 

determination for precipitation vs melt correction factors is included and whether or not the Barnes objective analysis created a 600 

spatially distributed correction surface. 601 

Type Ranking Year # of Obs 

Precipitation 

 Correction Factors 

Melt Correction 

Factors (-) 

Interpolated 

Surface? Dates 

Temporal Best 2017 2 0.45, 1.04 n/a Yes 4/29/17 

Temporals Best 2018 2 0.68, 0.76 n/a Yes 5/15/18 

Spatial Best 2017 8 0.30, 0.50, 0.73, 0.86, 1.36 6.32, 2.29, 22.6 Yes 

4/29/17; 

5/8/17 

Spatial Best 2018 1 0.32 n/a No 5/22/18 

 602 
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7 Discussion 603 

An important consideration in the results of the present study involves ranking the CSO ensemble members by various spatial and 604 

temporal metrics. The time series results (Section 6.1), the spatially distributed results (Section 6.2), and the spatially averaged 605 

results (Section 6.4) did not have the same ranking order for the CSO ensemble members. For example, the Best CSO simulation 606 

in WY2017 from the time-series analysis was an ensemble member with two CSO measurements assimilated according to the 607 

KGE metric. The time-series results represent a single point in the domain at the UTS station. By contrast, the Best CSO simulation 608 

in WY2017 from the spatial distribution analysis was an ensemble member with eight CSO measurements assimilated using the 609 

KS score. The spatially distributed results represent the entire RS survey area. The improvements in model performance are 610 

determined by the type of validation dataset available and the metric used to quantify those improvements. In other words, one 611 

size does not fit all when it comes to quantifying improvements to model performance using CSO measurements.  612 

 613 

The variability of snow depth and SWE in mountain catchments and the spatial patterning of snowpack conditions in complex 614 

terrain is a well-known challenge in snow modeling and snow remote sensing research (Anderton et al., 2004; López-Moreno et 615 

al., 2013; Luce et al., 1998; Molotch et al., 2005; Rice and Bales, 2010; Sturm and Wagner, 2010b). The RS results reveal that 616 

variability in snow depth across short distances is largely a function of wind redistribution and drifting and not primarily a function 617 

of elevation (Figure 9c,f; Figure 7a,b). Thompson Pass is a notoriously windy location, and the RS dataset shows complex drifting 618 

patterns throughout the surveyed area (Figure 7a,b). The wind inputs from the reanalysis product used in Micromet and 619 

SnowTran3d may not be adequate for the steepness and ruggedness of the terrain. Although wind scaling factors were tested in the 620 

calibration, the only suitable calibration dataset was the SNOTEL site. SNOTEL stations are often situated in locations where the 621 

effects of wind redistribution of the snowpack are dampened and SNOTEL station data are often not representative of the spatial 622 

variability of the surrounding areas (Dressler et al., 2006; Molotch and Bales, 2005). The inability of SnowTran3d to resolve the 623 

wind redistribution of the snowpack more accurately, the course wind field inputs from the reanalysis products, and the use of a 624 

single SNOTEL station for calibration, together represent a model and input data limitation of the current study. 625 

 626 

The ensemble results highlight a deeper question in snow hydrology and process modeling in general, regarding the sub-grid scale 627 

variability of the modeled state variable within a single model grid cell. The scale of the in-situ observations (measured with an 628 

avalanche probe) and the scale of the model resolution (30 m grid) versus the scale of the physical process being modeled (true 629 

patterns and true variance in space and time) can create scale effects that need to be accounted for (Blöschl et al., 1999). In this 630 

way, the 2018 fieldwork has a significant role to play in our understanding of the sub-grid scale variability in snow depth 631 

distributions. CSO participants average a few point measurements over a 1 to 4 m2 area. The model resolution is 30 m, or 900 m2 632 

per grid model grid cell. If participants move slightly one direction or another, their averaged and submitted measurements would 633 

likely be different, but their measurements would potentially lie within the same 30 m model grid cell. This difference, in turn, 634 

would modify the SWE depth inputs for SnowAssim. To better characterize the sub-grid scale variability of snow depth we 635 

investigate the 8 avalanche probe depths taken over 100 m2 at each of the 70 observation sites during the 2018 fieldwork (see also 636 

Figure 11). From these data, a picture of the sub-grid scale variability emerges. The largest range in snow depth values at a single 637 

100 m2 observation site is 2.11 m and the smallest range in snow depth values at a single site is 0.09 m. The highest standard 638 

deviation (sd) found at a single observation site is 0.71 m and the lowest sd is 0.04 m. This shows that a significant amount of 639 

variation, and therefore uncertainty, is being added to the model chain simply by the sub-grid scale variability of snow depth 640 
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distributions within a single model grid cell, distributions that the model will not be able to resolve at the low model spatial 641 

resolution. Sub-grid scale variability is a well known problem in snow science and represents a limitation of the improvements that 642 

can be made by assimilating CSO measurements (Blöschl and Kirnbauer, 1993; Elder et al., 1998; Liston and Hiemstra, 2008; 643 

Schmucki et al., 2013). 644 

 645 

One of the limitations of the present study is that the physical and temporal characteristics of the CSO measurements like aspect, 646 

elevation, and early-season measurements were not fully tested. Initial simulations demonstrated that SnowAssim performs best 647 

when the assimilated measurements were located close in time to the validation dataset. This factor influenced our choice to focus 648 

on the late-season time period of CSO measurements since the RS surveys were conducted in the late-season. Additionally, since 649 

the majority of the CSO measurements for both WYs occurred between March 15th and May 15th, future research should be in a 650 

location where CSO measurements are obtained frequently throughout the accumulation season. A research project with many 651 

measurements throughout the accumulation period may provide more insights into the temporal aspects of assimilation of CSO 652 

measurements. We decided not to subset the CSO measurements by geophysical characteristics like aspect, elevation, and land 653 

cover type because these require additional analysis that is outside of the scope of the current study. Understanding the effects of 654 

temporal and spatial restrictions of CSO measurements on model performance will likely be an area of future research. 655 

Additionally, it may be necessary to test other process models and alternate assimilation schemes in the future to improve the 656 

spatial distribution of model results and determine if CSO measurements can be used in other modeling contexts.  657 

 658 

7 Conclusions 659 

In this study we use a new snow dataset collected by participants in the Community Snow Observations (CSO) project in coastal 660 

Alaska to improve snow depth and snow water equivalence (SWE) outputs from a snow process model. Ensemble simulations 661 

were carried out during the 2017 and 2018 snow seasons to investigate the effects of incorporating citizen science measurements 662 

into the model chain using an assimilation scheme. Time series SNOTEL station records, remotely sensed photogrammetry and 663 

light detection and ranging surveys, and fieldwork observations are used to validate the modeled snow depth and snow water 664 

equivalent distributions. Any number of CSO measurements assimilated improves model performance, from 1 to 32. Our results 665 

demonstrate that using CSO measurements for assimilation can improve model performance when the available weather forcing 666 

dataset has known biases and also when those biases have been decreased by using a precipitation adjustment factor. The 667 

improvements in model performance from CSO measurements occur in 62% to 78% of the ensemble simulations both spatially 668 

and temporally, and in cases when the model broadly overestimates or underestimates snow depth and SWE. Model estimations 669 

of total water volume from a sub-region of the study area also demonstrate improvements in accuracy after CSO measurements 670 

have been assimilated. This study has implications for water resource management and snow modeling in locations where in-situ 671 

snow information is limited but snow enthusiasts often visit, since even small numbers of assimilated CSO measurements can 672 

improve the snow model outputs. 673 

 674 

 675 
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8 Appendices 676 

Appendix A: Model calibration parameters and their descriptions. 677 

Parameter # of Options Format Description 

Temperature Lapse Rate 3 sets Monthly PRISM Climatologies; Local Weather Station Data; 

SnowModel Default 

Precipitation Lapse Rate 5 sets Monthly Monthly Coefficients of ¼, ½, ¾, 1(SnowModel Default), 

PRISM Climatologies 

Wind Adjustment Factor 3 Coefficient Coefficients of 1(SnowModel Default),2,3 

SnowTran3d 2 On/Off  

 678 

 679 

Appendix B: Top performing parameter configurations from the calibration simulations. 680 

Rank 

Temperature Lapse 

Rate  

Precipitation 

Scaling Factor 

Wind 

Adjustment 

Factor 

SnoTran 

on/off 

Tied for first Default Default Default On 

Tied for first Local Weather Station Default Default On 

Tied for first PRISM Climatologies Default Default On 

 681 

 682 

 683 

Appendix C: Precipitation totals at the Upper Tsaina SNOTEL station compared to the CFSv2-forced model totals and the CFSv2-684 

forced model totals with a precipitation adjustment factor. This overestimation of precipitation by the reanalysis product is a major 685 

factor in the quality of the calibration results. 686 

 687 

 688 

Appendix D: Precipitation Adjustment Factor Results. 689 
 The best precipitation adjustment factors are shown, along with the root mean squared error (RMSE), the Nash Sutcliffe Efficiency 690 

(NSE), the Kling-Gupta Efficiency (KGE), and the mean bias error (Bias). 691 

Reanalysis, 

Resolution 

Time 

Period 

(WY) 

Time 

Step 

Number of 

Simulations 

Precipitation 

Adjustment 

Factor 

RMSE 

Precipitation 

(mm) NSE KGE 

Bias 

Precipitation 

(+/- mm) 
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MERRA2, 30m 2012-2016 3hrly 11 0.55 7.5 0.07 0.20 0.0 

MERRA2, 100m 2012-2016 3hrly 11 0.55 7.5 0.07 0.20 0.0 

CFSv2, 30m 2012-2016 6hrly 11 0.60 6.7 0.27 0.35 -0.1 

CFSv2, 100m 2012-2016 6hrly 11 0.60 6.7 0.27 0.35 -0.1 

 692 

 693 

Appendix E: Ranked Temporal Results. 694 
Ensemble results from ranked by Kling-Gupta efficiency (KGE) score for water year (WY) 2017 (a) and WY2018 (b). Also included 695 

are the Nash Sutcliffe Efficiency (NSE) and the mean bias error (Bias) values. 696 

(a) WY2017 697 

Rank 

Number of CSO 

Measurements Iteration KGE NSE 

Bias  

(cm) 

1 2 2 0.97 0.99 0 

2 1 8 0.97 0.99 0 

3 4 1 0.94 0.93 0 

4 2 6 0.93 0.92 0 

5 8 9 0.93 0.89 -1 

6 16 8 0.90 0.84 -1 

7 32 3 0.88 0.96 -1 

8 4 4 0.88 0.91 -2 

9 1 10 0.80 0.95 -3 

10 4 3 0.80 0.89 2 

11 16 2 0.78 0.82 -3 

12 8 1 0.77 0.81 2 

13 32 8 0.77 0.79 -3 

14 2 8 0.77 0.93 -3 

15 16 7 0.76 0.93 -3 

16 16 1 0.75 0.87 -3 

17 4 6 0.74 0.92 -3 

18 1 6 0.71 0.89 4 

19 16 3 0.67 0.88 -4 

20 32 4 0.66 0.79 -5 

21 32 5 0.65 0.78 -5 

22 32 1 0.65 0.78 -5 

23 32 7 0.64 0.80 -5 

24 2 3 0.63 0.80 4 

25 4 9 0.62 0.83 -5 

26 16 9 0.62 0.82 -5 

27 2 10 0.61 0.82 -5 

28 16 4 0.60 0.75 -5 

29 32 6 0.59 0.82 -5 

30 8 8 0.59 0.76 5 

31 32 2 0.57 0.78 6 

32 16 5 0.56 0.73 -6 

33 4 8 0.56 0.73 -6 

34 8 10 0.55 0.72 -6 

35 8 7 0.54 0.73 -6 

36 16 6 0.54 0.70 -6 

37 1 3 0.54 0.74 6 

38 8 2 0.52 0.68 -6 

39 8 4 0.52 0.71 -6 

40 1 2 0.51 0.72 -6 

41 4 10 0.50 0.67 -7 

42 32 10 0.49 0.66 -7 

43 4 7 0.46 0.63 -7 

NoAssim NoAssim NoAssim 0.47 0.66 7 
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44 8 3 0.43 0.66 -7 

45 32 9 0.41 0.63 -8 

46 8 5 0.39 0.54 -8 

47 2 1 0.36 0.53 -8 

48 8 6 0.34 0.49 -9 

49 1 4 0.33 0.49 -9 

50 1 7 0.29 0.42 -9 

51 2 4 0.28 0.41 -9 

52 16 10 0.26 0.37 -10 

53 2 5 0.22 0.32 -10 

54 1 5 0.17 0.23 -11 

55 1 9 0.08 0.05 -12 

56 2 7 0.08 0.05 -12 

57 4 2 0.06 0.02 -12 

58 4 5 0.03 -0.03 -12 

59 2 9 -0.02 -0.13 -13 

60 1 1 -0.07 -0.24 -14 

 698 

(b) WY2018 699 

Rank 

Number of CSO 

Measurements Iteration KGE NSE 

Bias  

(m) 

1 2 7 0.95 0.96 0 

2 8 9 0.91 0.90 2 

3 8 5 0.90 0.89 2 

4 2 9 0.88 0.91 2 

5 2 4 0.87 0.93 -2 

6 4 7 0.87 0.97 3 

7 4 8 0.84 0.97 -2 

8 1 5 0.84 0.95 -2 

9 1 6 0.84 0.95 -2 

10 4 10 0.82 0.95 4 

11 2 2 0.77 0.92 5 

12 4 9 0.77 0.88 -4 

13 16 9 0.76 0.85 -4 

14 16 5 0.76 0.53 -2 

15 16 4 0.76 0.53 -2 

16 4 6 0.75 0.84 -4 

17 32 10 0.74 0.49 -2 

18 4 5 0.71 0.72 -5 

19 2 6 0.71 0.89 6 

20 1 8 0.71 0.83 -5 

21 1 1 0.71 0.83 -5 

22 1 9 0.71 0.83 -5 

23 8 7 0.69 0.80 -6 

24 16 8 0.68 0.58 -6 

25 16 2 0.65 0.77 -6 

26 32 2 0.65 0.53 -6 

27 32 5 0.64 0.50 -6 

28 32 8 0.64 0.49 -6 

29 32 7 0.62 0.47 -6 

30 32 9 0.62 0.47 -6 

31 32 4 0.62 0.46 -6 

32 32 1 0.62 0.46 -6 

33 8 10 0.57 0.42 -7 

34 4 1 0.53 0.65 -9 

35 2 1 0.52 0.65 -9 

36 32 3 0.49 0.18 6 

37 4 4 0.48 0.60 -10 

38 4 2 0.47 0.60 -10 

39 4 3 0.45 0.57 -10 

40 8 6 0.43 0.52 11 



29 

 

41 2 3 0.38 0.46 -11 

42 1 7 0.33 0.38 -12 

43 8 4 0.30 0.29 -13 

44 1 2 0.30 0.36 15 

45 16 1 0.24 0.14 -14 

46 32 6 0.24 0.13 -14 

47 1 4 0.23 0.29 16 

48 1 10 0.07 -0.09 -17 

49 8 8 0.01 -0.21 -18 

50 8 3 0.00 -0.24 -18 

51 1 3 -0.07 -0.37 -20 

52 16 3 -0.15 -1.18 18 

53 16 7 -0.16 -1.15 18 

54 16 6 -0.16 -1.15 18 

55 8 1 -0.16 -1.14 18 

56 16 10 -0.16 -1.13 19 

57 2 8 -0.23 -1.05 21 

58 8 2 -0.28 -1.07 23 

59 2 5 -0.37 -1.18 27 

60 2 10 -0.58 -2.00 32 

 700 

 701 

Appendix F: Ranked Spatial Results. 702 
Spatial distribution ensemble results ranked by Kolmogorov-Smirnov (KS) score for water year (WY) 2017 (a) and WY2018 (b). Also 703 

included are the root mean squared error (RMSE) and the median values. 704 

(a) WY2017 Results 705 

Rank 

Number of CSO 

Measurements Iteration 

KS Score 

(0 - 1) 

RMSE  

(m) 

Median  

(m) 

Mean 

(m) 

1 8 9 0.17 1.171 1.071 1.198 

2 1 8 0.17 1.173 1.066 1.192 

3 2 2 0.17 1.173 1.064 1.190 

4 4 1 0.18 1.164 1.096 1.225 

5 2 6 0.19 1.159 1.116 1.248 

6 4 4 0.19 1.202 0.983 1.100 

7 32 2 0.21 1.149 1.156 1.393 

8 32 3 0.21 1.222 0.931 1.044 

9 8 8 0.21 1.148 1.166 1.402 

10 1 10 0.22 1.243 0.888 0.995 

11 16 8 0.22 1.287 0.693 0.883 

12 16 1 0.23 1.251 0.872 0.978 

13 2 8 0.23 1.256 0.861 0.966 

14 4 2 0.23 1.135 1.250 1.396 

15 4 3 0.23 1.135 1.250 1.396 

16 4 6 0.24 1.267 0.840 0.942 

17 16 7 0.24 1.270 0.834 0.936 

18 8 1 0.24 1.133 1.281 1.430 

19 1 6 0.24 1.133 1.281 1.430 

20 16 2 0.25 1.321 0.651 0.814 

21 32 4 0.25 1.293 0.801 0.891 

22 32 5 0.25 1.293 0.794 0.892 

23 16 3 0.26 1.306 0.770 0.866 

24 32 1 0.26 1.310 0.761 0.855 

25 32 7 0.27 1.316 0.754 0.847 

26 4 9 0.27 1.320 0.749 0.843 

27 16 4 0.27 1.324 0.738 0.832 

28 2 10 0.27 1.328 0.731 0.825 

29 16 9 0.27 1.328 0.730 0.824 

30 2 3 0.27 1.135 1.406 1.567 

31 8 10 0.28 1.344 0.715 0.804 

32 1 3 0.28 1.137 1.426 1.589 
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33 16 5 0.28 1.349 0.696 0.788 

34 4 8 0.29 1.350 0.694 0.786 

35 32 6 0.29 1.351 0.692 0.784 

36 16 6 0.29 1.355 0.685 0.777 

37 8 7 0.29 1.360 0.678 0.769 

NoAssim NoAssim NoAssim 0.30 1.145 1.482 1.651 

38 8 2 0.30 1.370 0.663 0.753 

39 32 10 0.30 1.384 0.649 0.731 

40 1 2 0.30 1.381 0.644 0.734 

41 4 10 0.30 1.384 0.639 0.729 

42 32 8 0.31 1.404 0.461 0.667 

43 8 4 0.31 1.400 0.614 0.703 

44 4 7 0.32 1.402 0.612 0.701 

45 8 3 0.33 1.426 0.573 0.662 

46 8 5 0.34 1.438 0.565 0.649 

47 32 9 0.34 1.448 0.546 0.630 

48 8 6 0.35 1.469 0.521 0.603 

49 2 1 0.36 1.468 0.514 0.600 

50 1 4 0.37 1.484 0.490 0.576 

51 1 7 0.38 1.510 0.453 0.539 

52 2 4 0.38 1.510 0.453 0.539 

53 16 10 0.39 1.529 0.426 0.512 

54 2 5 0.41 1.559 0.385 0.472 

55 1 5 0.44 1.601 0.330 0.418 

56 1 9 0.50 1.684 0.223 0.314 

57 2 7 0.50 1.684 0.223 0.314 

58 4 5 0.53 1.724 0.175 0.268 

59 2 9 0.57 1.770 0.119 0.217 

60 1 1 0.61 1.812 0.067 0.173 

 706 

 707 

 708 

 709 

(b) WY2018 Results 710 

Rank 

Number of CSO 

Measurements Iteration 

KS Score 

(0 - 1) 

RMSE 

(m) 

Median 

(m) 

Mean 

(m) 

1 1 10 0.30 1.210 0.838 0.905 

2 8 3 0.34 1.246 0.756 0.810 

3 8 8 0.34 1.246 0.756 0.810 

4 1 7 0.38 1.146 1.124 1.238 

5 16 1 0.38 1.150 1.127 1.237 

6 32 6 0.38 1.150 1.127 1.237 

7 8 4 0.38 1.150 1.127 1.237 

8 2 3 0.39 1.146 1.182 1.304 

9 1 3 0.41 1.319 0.621 0.655 

10 4 3 0.41 1.153 1.261 1.392 

11 4 1 0.42 1.147 1.292 1.437 

12 4 2 0.42 1.155 1.279 1.413 

13 4 4 0.42 1.165 1.305 1.435 

14 2 1 0.43 1.166 1.335 1.474 

15 8 7 0.46 1.205 1.487 1.651 

16 16 2 0.47 1.261 1.568 1.708 

17 1 1 0.47 1.221 1.521 1.684 

18 1 9 0.47 1.221 1.521 1.684 

19 1 8 0.47 1.221 1.523 1.686 

20 16 8 0.48 1.233 1.553 1.746 

21 32 1 0.48 1.233 1.553 1.746 

22 32 2 0.48 1.233 1.553 1.746 

23 32 4 0.48 1.233 1.553 1.746 

24 32 5 0.48 1.233 1.553 1.746 
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25 32 7 0.48 1.233 1.553 1.746 

26 32 8 0.48 1.233 1.553 1.746 

27 32 9 0.48 1.233 1.553 1.746 

28 4 9 0.48 1.244 1.577 1.753 

29 4 5 0.48 1.248 1.580 1.748 

30 4 6 0.48 1.248 1.580 1.748 

31 1 5 0.49 1.259 1.607 1.780 

32 1 6 0.49 1.259 1.607 1.780 

33 4 8 0.49 1.259 1.607 1.780 

34 8 10 0.49 1.259 1.607 1.780 

35 16 9 0.49 1.281 1.628 1.801 

36 2 4 0.51 1.318 1.714 1.893 

37 2 7 0.53 1.353 1.777 1.968 

38 16 4 0.54 1.401 1.848 2.068 

39 16 5 0.54 1.401 1.848 2.068 

40 32 10 0.54 1.401 1.848 2.068 

41 8 9 0.55 1.453 1.922 2.131 

42 4 7 0.55 1.454 1.928 2.132 

43 2 9 0.56 1.461 1.939 2.148 

44 8 5 0.56 1.500 1.977 2.189 

45 4 10 0.56 1.493 1.980 2.191 

46 2 2 0.58 1.540 2.043 2.263 

47 2 6 0.59 1.606 2.128 2.350 

NoAssim NoAssim NoAssim 0.64 1.861 2.411 2.678 

48 1 2 0.65 1.894 2.436 2.721 

49 32 3 0.65 1.928 2.466 2.764 

50 8 6 0.65 1.928 2.466 2.764 

51 1 4 0.66 2.009 2.567 2.852 

52 16 10 0.77 2.932 3.466 3.839 

53 16 3 0.77 2.932 3.466 3.839 

54 16 6 0.77 2.932 3.466 3.839 

55 16 7 0.77 2.932 3.466 3.839 

56 2 10 0.77 2.932 3.466 3.839 

57 2 5 0.77 2.932 3.466 3.839 

58 2 8 0.77 2.932 3.466 3.839 

59 8 1 0.77 2.932 3.466 3.839 

60 8 2 0.77 2.932 3.466 3.839 

 711 

9 Code and Data Availability 712 

The datasets used in this study can be found at the following locations. 713 

 714 

1.  Community Snow Observations website and snow depth data download at http://app.communitysnowobs.org/ 715 

(last accessed 30 April 2020). 716 

 717 

2.  The snow depth to snow water equivalence calculator (Hill et al., 2019) can be downloaded via Github at 718 

https://github.com/communitysnowobs/snowdensity (last accessed: 30 April 2020). 719 

 720 

3.  Snow Telemetry data for the Upper Tsaina River station near Valdez, Alaska is available at the Natural Resources 721 

Conservation Service website: https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=1055 (last accessed: 30 April 2020). 722 

 723 
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4.  Climate Forecast System Reanalysis version 2 (CFSv2) data (Saha et al., 2011) is available for download at 724 

https://rda.ucar.edu/datasets/ds094.0/#!description. 725 

 726 

5.  The CFSv2 data was accessed using Google Earth Engine at https://developers.google.com/earth-727 

engine/datasets/catalog/NOAA_CFSV2_FOR6H (last accessed: 30 April 2020). A javascript version of the Earth Engine 728 

code written for this project is available at https://github.com/snowmodel-tools/preprocess_javascript (last accessed: 30 729 

April 2020). 730 

 731 

6.  To convert the CFSv2 data downloaded from Google Earth Engine to the necessary input file for MicroMet we 732 

wrote Matlab scripts that can be downloaded via Github at https://github.com/snowmodel-tools/preprocess_matlab (last 733 

accessed: 30 April 2020). 734 

 735 

7.  The MERRA2 weather reanalysis product from NASA’s Global Modeling and Assimilation office (Gelaro et 736 

al., 2017) can be downloaded at https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/ (last accessed: 30 April 737 

2020). 738 

 739 

8.  The National Elevation Dataset is (Gesch et al., 2002)  available for download at 740 

https://catalog.data.gov/dataset/usgs-national-elevation-dataset-ned (last accessed: 30 April 2020). 741 

 742 

9.  The National Land Cover Database 2011 dataset (Homer et al., 2011) is available for download at the Multi-743 

Resolution Land Characteristics Consortium at https://www.mrlc.gov/data?f%5B0%5D=category%3Aland%20cover 744 

(last accessed: 30 April 2020). 745 
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