
 

 

DUE January 25th, 2021 

Reviewer Comments and Responses 

 

Reviewer #1: 

 

The reviewer’s comments are preceded by: Comment 

The authors responses are preceded by: Response 

 

---------------------------------------------------------------------- 

 

Comment:  

 

The article is interesting and innovative. The use of data measured by the community is a 

contribution to the simulation of snow distribution and a way of bringing the community closer to 

snow science and hydrology. The scientific quality of the article is good; however, the article could 

improve the analysis on some topics described below. 

 

First, despite mentioning that the distribution of snow by the wind is important, the article does 

not present results or analysis in this regard. Snowmodel allows you to export the results of wind 

redistribution. Showing these results would be a contribution to the analysis and discussion. 

 

Response:  

 

SnowTran-3d does allow for variables to be exported for analysis, and these variables include: 

snow depth (m), saltation transport (m), suspension transport (m), sublimation (m), snow 

redistribution at the time step (m), summed sublimation (m), and summed blowing snow transport 

(m). During the calibration of SnowModel for the domain, before measurements were assimilated, 

we tested the results of SnowModel simulations with SnowTran-3d turned off and with SnowTran-

3d turned on. These initial results showed that simulations using SnowTran-3d were consistently 

outperforming those without it, according to various calibration metrics at the Upper Tsaina 

SNOTEL location. At this point we determined that we should use SnowTran-3d for all 

simulations, both for the no assimilation case and the CSO assimilation case. 

 

The wind related variables exported by SnowTran-3d would not be altered by the data assimilation 

process, since SnowAssim only modifies the precipitation inputs and snowmelt factors, not the 

wind speed fields or wind direction fields. Additionally, the snow depth variable was exported and 

analyzed extensively throughout the manuscript, playing a key role in our methodology, validation, 

and final results. The authors believe that our analysis of the snow depth distributions in the 

manuscript are sufficient and the decision to use SnowTran-3d as a parameter tested in the 

calibration was prudent.   



 

 

 

---------------------------------------------------------------------- 

 

Comment:  

 

Also, a comparison simulation without wind redistribution (Windtrans off) would be a way to 

measure the improvement of using this tool. 

 

Response:  

 

See the answer above regarding the calibration workflow when we tested results with and without 

SnowTran-3d. See also Appendix A on line 605 which shows that SnowTran3d was tested before 

assimilation. The authors believe that any further exploration of the SnowTrand-3d sub-model 

results lies outside the scope of this manuscript, as our research questions are not directly related 

to the effects of CSO measurement assimilation on wind transportation processes. 

 

---------------------------------------------------------------------- 

 

Comment:  

 

Secondly, the assimilation in Snowmodel is highly dependent on swe point location, in addition to 

timing. It is important to consider in the analysis where the data used are located. And if they agree 

in time and place with the validation dataset. If the SWE data used for assimilation are located 

close to the validation point. Logically the result will be very similar to the validation point 

measure since the model corrects the precipitation or fusion to obtain a value close to the given 

one. For this reason, it is important to know how close the CSO data is to the field work data. If 

these two data are very close in time and location it does not make sense to use the field work data 

for validation. 

 

Response:  

 

The authors agree that it is necessary to be aware of the location of the CSO measurements in 

space and time in comparison to the validation datasets location in space and time. We provide the 

following explanation to clarify the location and timing of the CSO measurements assimilated.  

 

First, the time-series analysis validation metrics were quantified for all days of the water year in 

both years at the Upper Tsaina SNOTEL location. The CSO measurements that were assimilated 

in 2017 range in distance from 4.1 km to 30.5 km away from the SNOTEL station location. The 

CSO measurements that were assimilated in 2018 range in distance from 2.1 km to 17.4 km away 

from the SNOTEL station location. These distances mean the CSO measurements used in the 



 

 

assimilation do not coincide with the SNOTEL grid cell location and should be included in the 

section 6.1 time-series validation. 

 

Secondly, the 2018 fieldwork measurements (co-located snow depth and SWE) were used to 

validate the model results with assimilation. As noted in lines 478-479 in section 6.3, “we separated 

those [2018 fieldwork] measurement sites used in the assimilation scheme from the validation set 

when creating Table 3.” Due to this, we think the fieldwork measurements and analysis should be 

included in the section 6.3 fieldwork results.  

 

Thirdly, the remote sensing datasets were collected on April 29th in 2017 and April 7th/8th in 

2018. These validation datasets are essentially a spatial snapshot of snow depth from a single day 

in both water years. In water year 2017, there were a total of 9 CSO measurements submitted on 

April 29th, the same day as the remote sensing dataset collection. For the presented results in 

Section 6.2 from the highest performing (Best) simulation with assimilation and the median 

performing (Median) simulation with assimilation, none of these 9 CSO measurements from April 

29th were used. For water year 2018, the remote sensing dataset was collected on April 8th and 

the measurements were not assimilated in time until at least April 15th (see the experimental design 

outlined in Section 5 lines 354 to 369 which states that we selected the CSO measurements for 

assimilation that were collected on or after April 15th of each water year). Due to all of these 

factors, the remote sensing dataset validation should be included in section 6.2.  

 

Additionally, the remote sensing datasets are distinct, in both form and collection method, from 

the CSO measurements. All of the analysis in section 6.2 is aggregated to the entire spatial domain 

of the RS datasets, not at a single point like a CSO measurement location. This fact is why these 

datasets are important to include in the validation, because they can show the effects of assimilation 

throughout a complex and variable mountainous terrain.  

 

---------------------------------------------------------------------- 

 

Comment:  

 

Finally, the article should include a comparison between the data used: RS, CSO and field work 

data. The objective is to check if the data are consistent with each other and if they are very similar 

in time and location.  

 

Response:  

 

In our submitted manuscript, we did not find it necessary to include analysis comparing the remote 

sensing datasets, the CSO measurements, and the fieldwork measurements. This is primarily 



 

 

because there is not a single day of measurements that would work to make this comparison 

between all datasets.  

 

---------------------------------------------------------------------- 

 

Comment:  

 

Also, the article should include a comparison between the densities estimated to convert the CSO 

data to snow water equivalent and the densities measured in the field work. 

 

Response:  

 

The authors agree with the reviewer that comparing the SWE values measured at the 2018 

fieldwork sites to the SWE values estimated by Hill et al. (2019) would add clarity to the results 

and quantify the uncertainty that is added when converting the CSO snow depth measurements to 

SWE.  See the following sentences that will be added to section 6.3 Fieldwork Results: 

 

“Additionally, we can use the co-located snow depth and SWE measurements at the fieldwork 

sites to quantify the uncertainty that is added to the model during the snow depth to SWE 

conversion. By converting the fieldwork snow depth values to SWE using the Hill et al. (2019) 

method, we can compare the measured SWE to the approximated SWE values. The fieldwork 

measurement RMSE in SWE is 10.5 cm and the Bias in SWE is 0.6 cm when using the Hill method 

for all fieldwork sites.” 

 

---------------------------------------------------------------------- 

 

Comment:  

 

Some specific comments: 

 

1) Figure 1 and 3 should be next to each other or join them to be able to compare the distribution 

of the data used for assimilation and validation 

 

Response:  

 

The authors are amenable to combining figures 1 and 3 if the editor or the production design team 

thinks it’s a better use of space or would be easier for the readers to understand. We note that they 

include different types of data that are introduced in different sections of the manuscript, so 

keeping them separate may be easier for readers. 

 



 

 

---------------------------------------------------------------------- 

 

Comment:  

 

2) Point 3.2.5 Snow depth to snow water equivalent conversion. Add the uncertainty in the snow 

density estimation. 

 

Response:  

 

We changed the following sentence in section 3.2.5 of the submitted manuscript to include the bias 

and RMSE from Hill et al. 2019. 

 

“Second, it was found to outperform other bulk density methods such as Sturm et al. (2010) and 

Jonas et al. (2009) when tested against a wide variety of snow pillow and snow course datasets, 

with an overall bias of 2 mm and RMSE in SWE of 6 cm (Hill et al., 2019).” 

 

---------------------------------------------------------------------- 

 

Comment:  

 

3) Point 6 why the Sugarloaf Mountain station is not used to validate the results? 

 

Response:  

 

We used temperature data from the Sugarloaf SNOTEL station to calculate local lapse rates for 

the calibration analysis. Since the station does not have snow water equivalence measurements 

(stated in line 256), we did not use the data for any other purpose. This point could be made more 

clearly, and we suggest adding the following sentence to the manuscript section 3.4.1.: 

 

“The SLS station data was used to create local temperature lapse rates for the calibration and the 

UTS station data is used in the manuscript results section to create the SWE time series analysis.” 

 

---------------------------------------------------------------------- 

 

Comment:  

 

4) Point 6.2 The location or spatial distribution of CSO measurement used for the assimilation is 

as important as the number and should be and it should be analyzed here or elsewhere. 

 

Response:  



 

 

 

We specifically did not include the spatial distribution of CSO measurements in the research 

questions of this manuscript. In order to address questions about the spatial representativeness of 

CSO measurements, we think more extensive fieldwork measurement campaigns or coordinated 

CSO campaigns would be required. We think that taking regular measurements within a study area 

across 1) multiple elevational gradients, 2) a broad array of land cover types, 3) a representative 

sample of slope angles, and/or 4) a representative sample of aspects would help untangle these 

multiple landscape controls on the spatial distribution of the snowpack. The research design of the 

current study was not set up to incorporate this type of analysis, however we absolutely agree with 

the reviewer that this is an interesting and important question moving forward. We conducted some 

initial spatial analysis of the CSO measurement locations and metric ranking results, and this initial 

analysis was messy and complex. We note that the CSO modeling team has set up experiments in 

other locations in the continental U.S to address these various spatial distribution of CSO 

measurements questions. These include study areas where more measurements have been taken 

per water year and more SNOTEL stations exist for validation purposes. 

 

  



 

 

DUE January 25th, 2021 

Reviewer Comments and Responses 

 

Reviewer #2: 

 

The reviewer’s comments are preceded by: Comment 

The authors responses are preceded by: Response 

 

---------------------------------------------------------------------- 

 

Comment 

 

The manuscript describes use of a new citizen science dataset (snow depth) to guide simulations 

of SWE via data assimilation (DA). The motivation is to include observations gathered from 

locations in the landscape that might not be monitored otherwise. The study is focused on a 

maritime snow climate of Alaska. The model used (SnowModel) has a long history and is well 

established. A range of different observations (Snotel, field surveys with depth and SWE, and 

remotely-sensed snow depth) are used to gauge performance of the DA system, compared to 

simulations that do not include the depth observations. 

 

The results presented are interesting and there appears to be considerable potential for use of the 

citizen science depth observations. However, major revisions could help make the manuscript 

more useful. The following issues should be addressed: 

 

First, a more complete description of the DA approach is needed. In the introduction, a more 

detailed comparison of the approach used relative to other snow DA efforts should be provided – 

beyond what is currently included in the introduction (e.g., L80). How does the approach used 

compare to other methods, including direct insertion (e.g. Hedrick et al., 2018), particle-batch 

smoother (Margulis et al. 2019), particle filter (Smyth et al. 2019) and possibly EnKF.  

 

Response:  

 

The authors do not think this article needs to review all of the data assimilation methods used in 

snow science in great detail (particle filters, particle batch smoothers, Kalman filters, and ensemble 

Kalman filters). However, we understand the reviewer’s desire to add context to the manuscript 

regarding other types of data assimilation methods. We propose the following paragraphs to 

replace the single paragraph in the methods section 3.2.4, since these new paragraphs more clearly 

describe the way SnowAssim works and they compare SnowAssim to other assimilation methods. 

 



 

 

“To assimilate the CSO measurements, we used the sub-model SnowAssim developed in tandem 

with SnowModel (Liston and Hiemstra, 2008). The SnowAssim data assimilation scheme is 

relatively simple when compared to other assimilation methods. Direct insertion methods often 

insert the observed state values into the modeled field in the locations and times where data is 

available (McGuire et al., 2006; Fletcher et al., 2012). Hedrick et al. (2018) outlines a ‘modified’ 

direct insertion method, where Airborne Snow Observatory LiDAR-based snow depth 

distributions are input into the iSnobal workflow in order to modify model state variables before a 

new initialization of the model begins. Liston and Heimstra (2008) describe a different type of 

modified direct insertion assimilation scheme (SnowAssim) used in the present study. Differences 

between the observed SWE depths and modeled SWE depths in time and location are calculated 

and interpolated to the entire model domain in the form of a correction surface. The final correction 

surface is spatially distributed (for each day of observations) using the Barnes interpolation 

scheme.  

 

Note that CSO measurements are submitted as snow depths (m) and SnowAssim requires 

observational inputs to be SWE depths (m), so a conversion from depth to SWE was necessary. 

The snow depth to SWE conversion method for the current study will be discussed in the following 

section. Next, the model determines the dominant snow season phase (accumulation or ablation), 

and applies the correction factor surface to either a) the precipitation fluxes or b) the snowmelt 

factors during a second model simulation. Additionally, the Barnes interpolation scheme 

determines outliers within the observed dataset and determines the degree to which the assimilated 

values fit the modeled values. This determination creates a smoothed representation of the 

observed dataset in the assimilation results. For extensive details about the data assimilation 

scheme, see Liston and Heimstra (2008), their section 3, 4, and 5.  

 

Other data assimilation methods include particle-batch smoother and particle filters.  These 

methods are Bayesian data assimilation methods used to estimate system state variables using 

predicted estimates (modeled) and noisy measurement data (observed). These types of data 

assimilation methods rely heavily on characterizing and incorporating the predicted estimate 

uncertainties and measurement uncertainties into the analysis using probability distribution 

functions (Magnusson et al. 2017; Margulis et al. 2015). In direct insertion or modified direct 

insertion methods like SnowAssim, modeled and observed state variable uncertainties are not 

explicitly characterized.” 

 

The authors also think that we should clarify a statement we made about assimilation in lines 108-

110 of the submitted. As originally written, this sentence may be too strong of a claim to make 

based on the results of this paper, which was not our intent. We suggest replacing this sentence 

with the following, more accurate, sentence: 

 



 

 

Previous sentence: “The CSO project adds to a growing body of research accomplished by citizen 

scientists in the natural sciences, and contributes to the connections between physics-based, 

process modeling and in-situ observations in data assimilation and snow science.” 

 

New sentence: “The CSO project adds to a growing body of research accomplished by citizen 

scientists in the natural sciences, and demonstrates how CSO measurements can be assimilated 

into the process model workflow using SnowAssim to sometimes improve model results.” 

 

Hedrick, A.R., Marks, D., Havens, S., Robertson, M., Johnson, M., Sandusky, M., Marshall, H.P., 

Kormos, P.R., Bormann, K.J. and Painter, T.H., 2018. Direct insertion of NASA Airborne Snow 

Observatory‐derived snow depth time series into the iSnobal energy balance snow model. Water 

Resources Research, 54(10), pp.8045-8063. 

 

Liston, G.E. and Hiemstra, C.A., 2008. A simple data assimilation system for complex snow 

distributions (SnowAssim). Journal of Hydrometeorology, 9(5), pp.989-1004. 

 

Magnusson, J., Winstral, A., Stordal, A.S., Essery, R. and Jonas, T., 2017. Improving physically 

based snow simulations by assimilating snow depths using the particle filter. Water Resources 

Research, 53(2), pp.1125-1143. 

 

Margulis, S.A., Girotto, M., Cortés, G. and Durand, M., 2015. A particle batch smoother approach 

to snow water equivalent estimation. Journal of Hydrometeorology, 16(4), pp.1752-1772. 

 

---------------------------------------------------------------------- 

 

Comment: 

 

The methods section provides only a limited description of how the model is adjusted for mismatch 

with observations (“SnowAssim aggregates all the assimilated observations by date and creates a 

spatially varying cor- rection surface that covers the entire model domain (Liston and Elder, 2008). 

These various correction surfaces are applied by adjusting the model precipitation fluxes and 

snowmelt factors between SWE observation dates during a second SnowModel simulation”). The 

‘adjustments’ to the model are central to the effort, so the method should be described more 

completely in the manuscript.  

 

Response:  

 

The authors note that the literature on SnowAssim (Liston and Heimstra, 2008) is cited in the 

methods section 3.2.4 and we make efforts to not repeat information from that publication. First, 

see Figure RC1 (Figure 6a from Liston and Heimstra, 2008) included in our response below for 



 

 

the reviewer’s ease, as an example of a correction surface referenced above. We do not include an 

example of the correction surface in the manuscript because it is explained in the original literature. 

However, see the previous answer for additional information that will be added to the manuscript’s 

method section 3.2.4. 

 

---------------------------------------------------------------------- 

 

Comment: 

 

The results (or discussion) do not include any documentation of the ‘adjustments’ to the model, 

yet one of the benefits of DA is that the merging of data and models is one way to more completely 

understand the entire system (e.g., see Magnusson et al., 2014 and 2017 and their retrieved 

precipitation correction factor). 

 

Response: 

 

The authors agree that including some additional information from the correction factor 

adjustments during assimilation would benefit the arguments we make in the manuscript and 

elucidate the entire modeling/assimilation system. See Table RC1, which includes data from the 

best ranked assimilation runs using the time-series and spatial analysis. We plan to add the 

following paragraph to a new section (6.6) in the results.  

 

“ 6.6 Correction Factor Results 

SnowAssim generates a set of correction factors for each of the CSO ensemble member 

simulations. These factors correspond to the observed and measured differences in the SWE 

variable and are used to create a correction surface with the Barnes objective analysis. Table [RC1] 

reviews a subset of the correction factors, including data from the Best ranked CSO simulations 

according to the various temporal and spatial metrics previously reviewed in sections 6.1 and 6.2. 

The number of observations varies for the Best ranked simulation, as well as the precipitation 

correction factors, the use of a melt correction factor, and whether or not an interpolated correction 

surface was created. These correction factor results show that relatively few measurements are 

needed during assimilation and that there are multiple paths to improving model performance when 

assimilating CSO observations using SnowAssim.” 

 

---------------------------------------------------------------------- 

 

Comment: 

 

Second, uncertainty of the observations and validation data should be described and incorporated 

into the analysis. One of the benefits of DA is that the magnitude of uncertainty can be explicitly 



 

 

included in the analysis (e.g., Magnusson et al., 2014 and 2017). It appears that uncertainty of the 

assimilated observations is not included in the analysis – is this the case? If not, why not? 

 

The spatial representativeness of the depth measurements is mentioned in the discussion. One 

component of uncertainty is related to the conversion from depth to SWE, using the density 

estimation described in Hill (2019). In the region analyzed, SWE estimates based on density from 

Hill (2019) have an RMSE of 0.2-0.25 (normalized to snow season precipitation). Is this 

considered in the DA approach? Uncertainty (or biases) of the validation data is not described, 

thus it is implied that the data are ‘perfect’. What is the error or uncertainty associated with the 

federal sampler data? 

 

Response: 

 

The authors think that the reviewer brings up an important point about the need for further 

uncertainty analysis in the manuscript. We note that SnowModel is a deterministic model and 

SnowAssim does not include an explicit characterization of uncertainties, so any perturbations 

need to be based on fieldwork measurements or other previously reported error values. We took 

this opportunity to characterize multiple sources of uncertainty mentioned by the reviewer in table 

RC2.  

 

One of the sources of uncertainty mentioned by the reviewer comes from the conversion of snow 

depth to SWE using the Hill et al. (2019) method. We can quantify this source of error using the 

reported values from Hill et al. (2019) or using the fieldwork measurements of co-located snow 

depth and SWE (see Table RC2 above).  Another source of uncertainty is the spatial 

representativeness of the depth measurements across short distances. The average standard 

deviation of snow depth at all 70 fieldwork sites is 22 cm of snow depth, and after conversion to 

SWE, the average is 8.7 cm of SWE. We can assume that the spatial variability of snow depth 

plays a role in the conversion method uncertainty, so we decided to choose one of these values and 

perturb SWE measurements used in the data assimilation scheme. In an attempt to be conservative 

with our error estimates, we chose the highest reported/measured error value of 10.5 cm to create 

an envelope of uncertainty around our SWE values reported in the assimilation runs at the Upper 

Tsaina SNOTEL station. Figure RC2 contains the results of these additional model runs. This 

uncertainty analysis displays improved simulation results, even after the error estimation from 

these sources of uncertainty have been taken into consideration. This figure further contextualizes 

the temporal results in section 6.1 and we suggest adding it to the manuscript with the following 

sentences. 

 

“Using the snow depth to SWE conversion method during assimilation introduces uncertainty into 

the modeling process. Instead of using the global estimates of error reported in Hill et al. (2019; 

RMSE in SWE = 5.9 cm) we decided to calculate this source of error using our fieldwork site 



 

 

measurements. The RMSE in SWE due to the conversion method is 10.5 cm and we perturbed the 

CSO observations by this amount to depict the upper and lower boundaries of error associated with 

this source of uncertainty. Figure [RC2] displays the Best CSO simulation temporal results for 

each WY, along with the UTS station SWE record and the NoAssim case. These perturbations to 

the assimilated SWE show improved modeled SWE values at the UTS station when compared to 

the NoAssim case, even after this source of uncertainty has been accounted for.”  

 

Since there is additional uncertainty associated with the federal sampler data, we decided to add 

the following sentence to the methods section 3.2.3: 

 

“Federal sampler data collection introduces uncertainty in the form of measurement error due to 

variable snow conditions and densities, hard impenetrable crusts, and loss during extraction. Dixon 

and Boon (2012) report the results of several studies showing that the Federal Sampler error, as a 

percentage of SWE depth, ranges from 4.6% to 11.2%. Our results presented in Section 6.4 include 

field measurements of SWE that use the higher 11.2% value for conservative SWE error 

estimation.” 

 

Because of this uncertainty we modified Table 4 in line 510 (Section 6.4) of the submitted 

manuscript to include a range of estimated densities and SWE (+/- 11.2%) instead of using only 

the measured values without the error estimation. See Table RC3 for the new values that will be 

added to the original Table 4 in red.  

 

Lastly, we know there is uncertainty associated with the remote sensing acquisitions, and the 

sources of this error include flight trajectory and geometry, laser scan angle, density of canopy, 

steep gradients in the terrain, and more (Deems and Painter, 2006). We decided to report the 

estimated uncertainty for the RS datasets in the methods section 3.4.2 and also include them in the 

new version of Table 4. The following sentences will be added to the methods section 3.4.2: 

 

“There is uncertainty associated with the RS dataset acquisitions, and the sources of error are 

related to flight trajectory and geometry, laser scan angle, density of vegetation and canopy, and 

steep gradients in the terrain (Deems and Painter, 2006). The mean error in snow depth for the 

photogrammetry and LiDAR datasets are estimated at 10.4 cm and 1.1 cm, respectively. The 

vertical RMSE in snow depth are estimated at 31.0 cm for the photogrammetry and 10.2 cm for 

the LiDAR dataset. While we acknowledge and report these error estimations, they are integrated 

into the results in Table 4 in Section 6.4 but not used in the spatial results reported in Section 6.2.”    

 

Dixon, D. and Boon, S., 2012. Comparison of the SnowHydro snow sampler with existing snow 

tube designs. Hydrological Processes, 26(17), pp.2555-2562. 

 



 

 

Deems, J.S. and Painter, T.H., 2006, October. Lidar measurement of snow depth: accuracy and 

error sources. In Proceedings of the 2006 International Snow Science Workshop: Telluride, 

Colorado, USA, International Snow Science Workshop (pp. 330-338). 

 

---------------------------------------------------------------------- 

 

Comment: 

 

Third, something seems strange about the calibration and validation methods and results. Are the 

NSE values in Table 1 correct? If the best simulation has NSE < 0, this would suggest that the 

calibration is not working very well. Additional details are required.  

 

Response:  

 

The values in Table 1 in the manuscript are correct and they were the impetus for including the 

precipitation adjustment experiment in the manuscript. The initial calibration model runs and the 

final No Assimilation model runs were displaying time-series SWE values that were consistently 

high, throughout both water years, with both reanalysis products (see original Figure 5a and 5d). 

We know that biases in meteorological forcings are one of the most important factors in estimating 

snow depth and SWE magnitudes correctly (Liston and Heimstra, 2008; Margulis et al., 2015). So 

we decided to take a closer look at the precipitation totals with the CFSv2 product. See Figure RC3 

that shows the total amount of precipitation over the calibration period when compared to the 

Upper Tsaina Snotel station and compared to when a precipitation adjustment factor is used. The 

authors would like to add this figure to the appendix to clarify the need for precipitation 

adjustments, whether via data assimilation or the precipitation adjustment experiment. 

 

Because of this bias in the meteorological inputs, and after a conversation with the model developer 

about the calibration challenges in this region of Alaska, the authors were confident that making 

adjustments to the model parameters would only slightly improve our snow depth and SWE 

distributions and magnitudes (see Appendix A for a full list of the model parameter adjustments 

made during calibration). The improvements that could be made by adjusting model parameters 

were insignificant when compared to adjusting the precipitation fields. 

 

Importantly, the reviewer’s question speaks directly to why we think SnowAssim is the correct 

assimilation method for this research. SnowAssim adjusts the precipitation fluxes and/or snowmelt 

factors using only the additional observations provided by CSO participants. Nothing else is 

changed and no additional information is required for this type of data assimilation. Recall that we 

are not forcing the model with in-situ weather station data because the required meteorological 

variables are not available within the domain. Even with biased and coarse reanalysis forcing data, 

SnowModel and SnowAssim are able to make snow depth and SWE magnitude improvements by 



 

 

the simple addition of several in-situ snow depth observations, strengthening our key claim that 

“that even modest measurement efforts by citizen scientists have the potential to improve efforts 

to model snowpack processes in high mountain environments.”  

 

Liston, G.E. and Hiemstra, C.A., 2008. A simple data assimilation system for complex snow 

distributions (SnowAssim). Journal of Hydrometeorology, 9(5), pp.989-1004. 

 

Margulis, S.A., Girotto, M., Cortés, G. and Durand, M., 2015. A particle batch smoother approach 

to snow water equivalent estimation. Journal of Hydrometeorology, 16(4), pp.1752-1772. 

 

---------------------------------------------------------------------- 

 

Comment: 

 

Is calibration for the entire year? The entire snow year? Why not at peak SWE?  

 

Response:  

 

As mentioned in lines 308 to 309 in the submitted manuscript, the calibration time period is for 

the entire water year, for 5 years. The calibration statistics cover the entire 5 year period. Two 

months (July and August) of data per water year, in which no snow was modeled, measured, or 

expected at the Upper Tsaina SNOTEL station in the domain, were removed from the calibration 

metrics. This was in an attempt to not bias the results of the RMSE and mean bias error metrics 

with months of corresponding zeros from the observed and modeled vectors.     

 

---------------------------------------------------------------------- 

 

Comment: 

 

Results in Fig 5 also seem strange. Fig 5e: how can this be the ‘best’ simulation? There is a clear 

problem during the ablation period; is it really a “best” simulation if ablation is too rapid? If stats 

are calculated throughout the season, and ablation season is short, it is easy to discount the errors 

during this time of year. But doesn’t timing of snow disappearance matter? Perhaps a metric of 

snow disappearance date should be included? One could argue the result in 5f is much worse than 

5d, so that assimilation is not improving the simulations, but actually making it worse. 

 

Response:  

 

Figure 5e represents the data from the Best ranked simulation according to the time-series data 

from water year 2018. The decision-making for characterizing the Best ranking is explained in 



 

 

lines 381 through 383 and also qualified in the discussion section, in lines 536 through 542 of the 

submitted manuscript. Characterizing and focusing on the Best results for some figures in the 

manuscript was a decision made by the authors to show a sampling of the many model runs we 

conducted during the analysis, instead of overwhelming the reader with too many figures. We 

acknowledge that if we focused on just the accumulation phase or just the ablation phase, the 

characterization of the Best results would indeed look different. The ablation phase of the 

snowpack in Figure 5e is not a perfect match to the 1:1 identity line, but the corresponding metrics 

(NSE, KGE, RMSE, Bias) all show improvements when compared to the No Assimilation case 

when averaging over the water year. The new SWE figure that includes error perturbations shows 

that the timing of the last day of SWE (snow disappearance date) in the Best CSO simulation in 

WY2018 is 6 days earlier than the SNOTEL snow disappearance date. The range of snow 

disappearance dates when accounting for some level of measurement and conversion model 

uncertainty is from 10 to 1 day(s) early. The NoAssim snow disappearance date is 7 days later than 

SNOTEL.  The WY2017 snow disappearance dates are even better.  

 

The claims that we make in the results and discussion section are specific to the entire water year 

and we are careful to not make any claims about improving the snow disappearance dates or the 

timing of the melt period. However, after doing additional uncertainty analysis as suggested by the 

reviewer, we are more confident that our overall snow disappearance dates are acceptable. The 

authors also note that the magnitude of peak SWE is greatly improved in our best model runs when 

compared to the NoAssim case, and this may be more important for readers concerned with the 

water resources implications of our work. While we acknowledge that there are alternate ways to 

subset the data temporally, the authors stand by our decision to use water year averaged metrics to 

characterize the Best ranked simulation.   

 

Lastly, since the reviewer requested, we plan to add the following sentences to the new paragraph 

accompanying the new SWE figure in section 6.1 in order to report the Best CSO simulation snow 

disappearance dates: 

 

“Since the timing of snow disappearance is important for ecological systems in alpine 

environments and water resources managers, we calculated the range in snow disappearance dates 

from the best simulations from both water years. In WY2017 and WY2018, the snow 

disappearance date for the NoAssim case is 10 and 7 days later than the UTS station, respectively. 

In WY2017, the snow disappearance date in the Best CSO simulation, accounting for measurement 

uncertainty, ranges from 3 days early to 8 days later than the UTS station. In WY2018, the range 

is from 10 days to 1 day earlier than the UTS station. These ranges in snow disappearance date are 

acceptable and show improvements in model performance for some, but not all, of the Best CSO 

simulations after accounting for measurement uncertainty.” 

 

 



 

 

 
 

 

 

 
 

 

 



 

 

 
 

 

 

 
 



 

 

 
 

 

 


