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Abstract 16 

Severe precipitation events occur rarely and are often localized in space and of short duration; but they are 17 

important for societal managing of infrastructure. Therefore, there is a demand for estimating future 18 

changes in the statistics of occurrence of these rare events. These are often projected using data from 19 

Regional Climate Model (RCM) simulations combined with extreme value analysis to obtain selected return 20 

levels of precipitation intensity. However, due to imperfections in the formulation of the physical 21 

parameterizations in the RCMs, the simulated present-day climate usually has biases relative to 22 

observations; these biases can be in the mean and/or in the higher moments. Therefore, the RCM results  23 

are adjusted to account for these deficiencies. However, this does not guarantee that adjusted projected 24 

results will match future reality better, since the bias may not be stationary in a changing climate. In the 25 

present work we evaluate different adjustment techniques in a changing climate. This is done in an inter-26 

model cross-validation setup, in which each model simulation in turn plays the role of pseudo-observations, 27 

against which the remaining model simulations are adjusted and validated. The study uses hourly data from 28 

historical and RCP8.5 scenario runs from 19 model simulations from the EURO-CORDEX ensemble at 0.11° 29 

resolution. Fields of return levels for selected return periods are calculated  for hourly and daily time scales 30 

based on 25 years long time slices representing present-day (1981-2005) and end-21st-century (2075-2099). 31 

The adjustment techniques applied to the return levels are based on extreme value analysis and include 32 

climate factor and quantile mapping approaches. Generally, we find that future return levels can be 33 

improved by adjustment, compared to obtaining them from raw scenario model data. The performance of 34 

the different methods depends on the time scale considered. On hourly time scale, the climate factor 35 

approach performs better than the quantile mapping approaches. On daily time scale, the superior 36 

approach is to simply deduce future return levels from pseudo-observations and the second best choice is 37 

using the quantile mapping approaches. These results are found in all European sub-regions considered. 38 

Applying the inter-model cross-validation against model ensemble medians instead of individual models 39 

does not change overall conclusions much. 40 

 41 
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1 Introduction 42 

Severe precipitation events occur typically either as stratiform precipitation of moderate intensity or as 43 

intense localized cloudbursts lasting up to a few hours only. Such extreme events may cause flooding with 44 

the risk of loss of life and damage to infrastructure. It is expected that future changes in the radiative 45 

forcing from greenhouse gases and other forcing agents will influence the large scale atmospheric 46 

conditions, such as air mass humidity, vertical stability, the formation of convective systems, and typical 47 

low pressure tracks. Therefore also the statistics of the occurrence of severe precipitation events will most 48 

likely change. 49 

 50 

Global climate models (GCMs) are the main tool for estimating future climate conditions. A GCM is a global 51 

representation of the atmosphere, the ocean and the land surface, and the interaction between these 52 

components. The GCM is then forced with observed greenhouse gas concentrations, atmospheric 53 

compositions, land use, etc.  to represent the past and present climate, and with stipulated scenarios of 54 

future concentrations of radiative forcing agents to represent the future climate. 55 

 56 

Present state-of-the art GCMs from the Coupled Model Intercomparison Project Phase 5 (CMIP5, Taylor et 57 

al., 2012) and the recent Coupled Model Intercomparison Project Phase 6 (CMIP6, Eyring et al., 2016) 58 

typically have a grid spacing of around 100 km or even more. This resolution is too coarse to describe the 59 

effect of regional and local features, such as mountains, coast lines and lakes and to adequately describe 60 

convective precipitation systems (Eggert et al., 2015). To model the processes on smaller spatial scales, 61 

dynamical downscaling is applied. Here, the atmospheric and surface fields from a GCM simulation are used 62 

as boundary conditions for a regional climate model (RCM) over a smaller region with a much finer grid 63 

spacing, at present typically around 10 km or even less. 64 

 65 

An alternative to dynamical downscaling is statistical downscaling. Here large-scale circulation patterns 66 

(e.g. the North Atlantic Oscillation) are related to small-scale variables, such as precipitation mean at a 67 

station.  One assumes that the large-scale circulation pattern is modelled well by the GCM and therefore 68 

the approach is called perfect prognosis. Using the relationship with the small-scale variables, calibrated on 69 

observations, one can obtain modelled local-scale variables (present-day and future) from the modelled 70 

large-scale patterns. A recent overview of these methods and validation of them can be found in Gutiérrez 71 

et al. (2019). 72 

 73 

The ability of present-day RCMs to reproduce observed extreme precipitation statistics on daily and sub-74 

daily time scales is essential and has been of concern. Earlier studies analysing this topic have mostly 75 

focused on a particular country, probably due to the lack of sub-daily observational data covering larger 76 

regions, such as e.g. Europe. Thus, Hanel and Buishand (2010), Kendon et al. (2014), Olsson et al. (2015)  77 

and Sunyer et al. (2017) studied daily and hourly extreme precipitation in different European countries and 78 

reached similar conclusions: first that the bias of extreme statistics decreases with smaller grid spacing of 79 

the model, and second that extreme statistics for 24 h duration are satisfactorily simulated with a grid 80 

spacing of 10 km, while 1 h extreme statistics exhibits substantial biases even at this resolution. Recently, 81 

Berg et al. (2019) evaluated high resolution RCMs from the EURO-CORDEX ensemble (Jacob et al., 2014) 82 

also used here and reached similar conclusions for several countries across Europe: RCMs underestimate 83 

hourly extremes and give an erroneous spatial distribution.  84 
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 85 

Extreme convective precipitation of short duration is thus one of the more challenging phenomena to 86 

represent physically accurate in RCMs. The reason is that convective events take place on a spatial scale 87 

comparable to the RCM grid spacing of presently around 10 km. Therefore, the convective plumes cannot 88 

be directly modelled. Instead, the effects of convection are parametrised, i.e. modelled as processes on 89 

larger spatial scales (Arakawa, 2004). Thus, the inability to reproduce these short duration extremes can be 90 

explained by the imperfect parametrization of sub-grid scale convection (Prein et al., 2015), which generally 91 

leads to too early onset of convective rainfall in the diurnal cycle and subsequent dampening of the build-92 

up of convective available potential energy  (Trenberth et al., 2003). 93 

 94 

Thus, even RCMs with their small grid spacing may exhibit systematic biases for variables related to 95 

convective precipitation. If there is a substantial bias, we should consider adjusting for this in a statistical 96 

sense before any further data analysis. Such adjustment techniques are thoroughly discussed, including 97 

requirements and limitations, in Maraun (2016) and Maraun et al. (2017). There are basically two main 98 

adjustment approaches. In the delta-change approach, a transformation is established from the present to 99 

the future climate in the model run. This transformation is then applied to the observations to get the 100 

projected future climate. In the bias correction approach, a transformation is established from present 101 

model climate data to the observed climate and this transformation is then applied to the future model 102 

climate to obtain the projected future climate. 103 

 104 

Both adjustment approaches come in several flavours. In the simplest one, the transformation consists of 105 

an adjustment of the mean, in the case of precipitation by multiplying the mean by a factor. In the more 106 

elaborate flavour, the transformation is defined by quantile mapping, preserving also the higher moments. 107 

Quantile mapping can use either empirical quantiles or analytical distribution functions. The ability of 108 

quantile mapping to reduce bias has been demonstrated for daily precipitation in present-day climate using 109 

observations, which are split into calibration and validation samples (Piani et al., 2010; Themeßl et al., 110 

2011). 111 

 112 

Bias adjustment techniques originate in the field of weather and ocean forecast modelling, where they are 113 

known as model output statistics (MOS). Here output from a forecast model is adjusted for model 114 

deficiencies and local features not explicitly resolved by the model. Applying similar adjustment techniques 115 

to climate model simulations, however, has a complication not present in forecast applications: Climate 116 

models are set up and tuned to present-day conditions and verified against observations, but then applied 117 

to future changed conditions without any possibility to directly verify the model’s performance under these 118 

conditions. Therefore, showing that bias adjustment works for present-day climate is a necessary but not 119 

sufficient condition for the adjustment to work in the changed climate. 120 

 121 

A central concept of adjustment methods is the assumption of stationarity of the bias. For bias correction 122 

this means that the transformation from model to observations is unchanged from the present-day climate 123 

to the future climate, while for delta-change the transformation from present-day climate to future climate 124 

is unchanged from model to observations. In the ideal case of stationarity being fulfilled, the adjustment 125 

methods will work perfectly and produce perfect future projections. If stationarity is not fulfilled, 126 

adjustment may improve projections, or in the worst cases they may degrade projections, compared to 127 
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using raw model output.  We also note that the adjustment methods themselves may influence the climate 128 

change signal of the model, depending on the bias and the method used (Berg et al., 2012; Haerter et al., 129 

2011; Themeßl et al., 2012). 130 

 131 

Stationarity has been debated in recent years in the literature (e.g. Boberg and Christensen, 2012; Buser et 132 

al., 2010). Kerkhoff et al. (2014) review and discuss two hypotheses: 1) constant bias: unchanged between 133 

present-day and future (i.e. stationarity) and 2) constant relation: bias varies linearly with the signal. Van 134 

Schaeybroeck and Vannitsem (2016) used a pseudo-reality setting with a simplified model and found large 135 

changes in the bias between present-day and future for many variables and violation of both constant bias 136 

and constant relation hypothesis. Chen et al. (2015) concluded that precipitation bias is clearly non-137 

stationary over North America in that variations in bias is comparable to the climate change signal. 138 

Velázquez et al. (2015) used a pseudo-reality setting involving two models and concluded that constancy of 139 

bias was violated for both precipitation and temperature on monthly time scale. Hui et al. (2019) used a 140 

pseudo-reality setting with GCMs and found significant non-stationarity of bias for annual and seasonal 141 

temperatures. Besides, they point to a large effect on non-stationarity from internal variability. 142 

 143 

To thoroughly validate adjustment methods, both a calibration dataset and an independent dataset for 144 

validation are needed. There are two different approaches to obtain this. In split-sample testing, the 145 

observations are divided into calibration and validation parts, often in the form of a cross-validation (e.g. 146 

Gudmundsson et al., 2012; Li et al., 2017a, 2017b; Refsgaard et al., 2014; Themeßl et al., 2011). A variant is 147 

differential split-sample testing (Klemeš, 1986), where the split in calibration/and validation parts is based 148 

on climatological factors, such as wet and dry years, encompassing climate changes and variations into the 149 

validation. 150 

 151 

An alternative approach, which we use here, is inter-model cross-validation, as pursued by Maraun (2012), 152 

Räisänen and Räty (2013) and Räty et al. (2014) and others. The rationale is here that the members in a 153 

multi-model ensemble of simulations represent different descriptions of physics of the climate system, with 154 

each of them being not too far from the real climate system. Thus, one member of the ensemble 155 

alternatively plays the role of pseudo-observations, against which the remaining adjusted models are 156 

validated. Thus, the trick is that we know both present and future pseudo-observations. 157 

 158 

The advantage of inter-model cross-validation, is that the adjustment methods are calibrated under 159 

present-day conditions and validated under future climatic conditions. Therefore, it embraces modelled 160 

physical changes between present and future climate, as for instance a shift in the ratio between stratiform 161 

and convective precipitation. In this respect it is a more realistic setting than validation based on split-162 

sample test. Also, model and pseudo-observations have the same spatial scale, thus avoiding comparing 163 

pointwise observations with area-averaged model data, as is done in the split-sample testing. On the other 164 

hand, the method assumes that the modelled present-day is not too different from observations.  If this is 165 

violated, the method will give too optimistic error estimates compared to what can be expected in the real 166 

World. Please cf. also further discussion in Section 5.2. 167 

 168 

Inter-model cross-validation has been applied on daily precipitation to evaluate different adjustment 169 

methods (Räty et al., 2014). Here we apply a similar methodology European-wide to extreme precipitation 170 
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on hourly and daily time scales. This has been made possible with the advent of the EURO-CORDEX, a large 171 

ensemble of high-resolution RCM simulations with precipitation at hourly time-resolution. Being more 172 

specific, we apply the standard extreme value analysis to the ensemble of model data for present-day and 173 

end-21st-century conditions to estimate return levels for daily and hourly duration. Then we will apply inter-174 

model cross validation on these return levels in order to address the following questions: 175 

1. Do adjusted return levels perform better, according to the inter-model cross-validation, than using  176 

raw model data from scenario simulations? 177 

2. Is there any difference in performance between different adjustment methods? 178 

3. Are there systematic differences in point 1 and 2, depending on the daily and hourly duration? 179 

4. Are there regional differences across Europe in the performance of the different adjustment 180 

methods? 181 

Giving qualified answers to these questions can serve as important guidelines for analysis procedures for 182 

obtaining future extreme precipitation characteristics. 183 

 184 

The rest of the paper contains a description of the EURO-CORDEX data (Section 2) and a description of 185 

methods used (Section 3). Then follow the results (Section 4), a discussion of these (Section 5) and finally 186 

conclusions (Section 6). 187 

 188 

2 The EURO-CORDEX data 189 

The model simulations used here have been performed within the framework of EURO-CORDEX (Jacob et 190 

al. (2014) ; http://euro-cordex.net ), which is an international effort aimed at providing RCM climate 191 

simulations for a specific European region (see Figure 1) in two standard resolutions with a grid spacing of 192 

0.44° (EUR-44, ~50 km) and 0.11° (EUR-11, ~12.5 km), respectively. All GCM simulations driving the RCMs 193 

follow the CMIP5 protocol  (Taylor et al., 2012) and are forced with historical forcing for the years 1850-194 

2005 followed by the RCP8.5 scenario for the years 2006-2100 (until 2099 only for HadGEM-ES). 195 

 196 

We analyse precipitation data in hourly time-resolution from 19 different GCM-RCM combinations from the 197 

EUR-11 simulations shown in Table 1 and we analyse two 25 year long time slices from each of these 198 

simulations: a present-day time slice (years 1981-2005) and an end-21st-century time slice (years 2075-199 

2099). 200 

 201 

All GCM-RCM combinations we use are represented by one realization only, and therefore the data 202 

material used represents 19 different possible realisations of climate model physics, though acknowledging 203 

that some GCMs/RCMs might originate from the same or similar model code and therefore may not be fully 204 

independent. The EURO-CORDEX ensemble includes a few simulations, which do not use the standard EUR-205 

11 grid. These were not included in the analysis, since they should have been re-gridded to the EUR-11 grid 206 

which would dampen extreme events, thus introducing an unnecessary error source. 207 

 208 

Table 1. Overview of the 19 EURO-CORDEX GCM-RCM combinations used. The rows show the GCMs while the columns 209 
show the RCMs. The full names of the RCMs are SMHI-RCA4, CLMcom-CCLM4-8-17, KNMI-RACMO22E, DMI-HIRHAM5, 210 

http://euro-cordex.net/
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MPI-CSC-REMO2009 and CLMcom-ETH-COSMO-crCLIM-v1-1. Each GCM-RCM combination used is represented by a 211 
number (1, 3 or 12) indicating which realization of the GCM is used for the particular simulation. 212 
 213 

GCM                                   RCM RCA CCLM RACMO HIRHAM REMO COSMO 

ICHEC-EC-EARTH r12  
 

r1 r3 
 

 

MOHC-HadGEM2-ES r1  
 

r1 r1 
 

 

CNRM-CERFACS-CNRM-CM5 r1 
  

r1 
 

 

MPI-M-MPI-ESM-LR r1  r2 
 

r1 r1 r1 

IPSL-IPSL-CM5A-MR r1  
    

 

NCC-NorESM1-M r1  
  

r1 
 

r1 

CCCma-CanESM2  r1     

MIROC-MIROC5  r1     

 214 
 215 

 216 

 217 
Figure 1. Map showing the EURO-CORDEX region (outer frame) with elevation in colours. PRUDENCE sub-regions (Christensen and 218 
Christensen, 2007) used in the analysis are also shown: BI = British Isles,  IP = Iberian Peninsula, FR = France, ME = Mid-Europe, SC = 219 
Scandinavia, AL = Alps, MD = Mediterranean, EA = Eastern Europe. Red cross marks point used in Figure 4. 220 
 221 

Generally, GCM results are quite comparable to reality, and many validation studies of GCMs exist, also 222 

with an eye on Europe (e.g. McSweeney et al., 2015). We are aware of  the use in some papers of selection 223 

procedures for selecting how to choose sub-sets of available GCMs (e.g. McSweeney et al., 2015; Rowell, 224 

2019). There is, however, no simple quality index that can be generally applied. Any discrimination of GCMs 225 

depends on area, season, and the meteorological field and property being investigated (Gleckler et al., 226 

2008; e.g. their Fig. 9). Furthermore, these tests and selection procedures are based on subjective 227 
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criteria and come with major caveats that impact the uncertainty range largely (Madsen et al., 2017). We 228 

therefore choose, in accordance with most other similar studies, to use an ‘ensemble of opportunity’ for 229 

the present study. 230 

 231 

3 Methods 232 

3.1 Duration 233 

Extreme precipitation statistics are often described as a function of the time scale involved as intensity-234 

duration-frequency or depth-duration-frequency curves (e.g. Overeem et al., 2008). We consider two time 235 

scales or durations. One is a duration of 1 h, which is simply the time series of hourly precipitation sums 236 

available in each RCM grid point. The other is a duration of 24 h, where a 24 h sum is calculated in a sliding 237 

window with a one hour time step. We will refer to these as hourly and daily duration, respectively. Our 238 

daily duration corresponds to the traditional climatological practice of reporting daily sums but allows 239 

heavy precipitation events to occur over two consecutive days. We also emphasize that the duration, as 240 

defined here, is not the actual length of precipitation events in the model data, but is merely a concept to 241 

define time scales. 242 

3.2 Extreme value analysis 243 

Extreme value analysis (EVA) provides methodologies to estimate high quantiles of a statistical distribution 244 

from observations. The theory relies on fundamental convergence properties of time series of extreme 245 

events; for details we refer to Coles (2001). 246 

 247 

There are two main methodologies in EVA to obtain estimates of the high percentiles and the 248 

corresponding return levels. In the classical, or block maxima, method, a generalised extreme value 249 

distribution is fitted to the series of maxima over a time block, usually a year. Alternatively, in the peak-250 

over-threshold (POT) or partial-duration-series method, which is used here, all peaks with maximum above 251 

a (high) threshold, 𝑥0, are considered. The peaks are assumed to occur independently at an average rate 252 

per year of 𝜆0. To ensure independence between peaks, a minimum time separation between peaks is 253 

specified. Theory tells us, that when the threshold goes to infinity, the distribution of the exceedances 254 

above the threshold, 𝑥 − 𝑥0, converges to a generalised Pareto distribution, whose cumulative distribution 255 

function is 256 

𝒢(𝑥 − 𝑥0) = 1 − (1 + 𝜉
𝑥 − 𝑥0
𝜎

)
−
1
𝜉
, 𝑥 > 𝑥0  

The parameter 𝜎 is the scale and is a measure of the width of the distribution. The parameter 𝜉 is the shape 257 

and describes the character of the upper tail of the GPD-distribution; 𝜉 > 0 implies a heavy tail which 258 

usually is the case for extreme precipitation events, while 𝜉 < 0 implies a thin tail. Note that, quite 259 

confusingly, an alternative sign convention of 𝜉 occurs in the literature (e.g. Hosking and Wallis, 1987). 260 

 261 

If we now consider an arbitrary level 𝑥 with 𝑥 > 𝑥0, the average number of exceedances per year of 𝑥 will 262 

be 263 

 264 

𝜆𝑥 = 𝜆0 [1 − 𝒢(𝑥 − 𝑥0)]. (1) 265 
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 266 

The 𝑇-year return level, 𝑥𝑇, is defined as the precipitation intensity which is exceeded on average once 267 

every 𝑇 years 268 

𝜆𝑥𝑇𝑇 = 1 

 and by combining with (1) we get an expression for the return level 𝑥𝑇 269 

 270 

𝜆0[1 − 𝒢(𝑥𝑇 − 𝑥0)]𝑇 = 1, 271 

from which 272 

𝑥𝑇 = 𝒢
−1 (1 −

1

𝜆0𝑇
) + 𝑥0.  (2) 273 

 274 

 275 

Data points to be included in the POT analysis can be selected in two different ways. Either the threshold 𝑥0 276 

is specified and 𝜆0 is then a parameter to be determined or, alternatively, 𝜆0 is specified and 𝑥0 determined 277 

as a parameter. We choose the latter approach, since it is most convenient when working with data from 278 

many different model simulations. 279 

  280 

Choosing 𝜆0 is a point to consider: a too high value would include too few data points in the estimation and 281 

a too low value implies the risk that the exceedances 𝑥𝑇 − 𝑥0 cannot be considered as GPD-distributed. We 282 

choose   𝜆0 = 3 in accordance with Berg et al. (2019), which gives 75 data points for estimation for the 25 283 

years long time slices. Hosking and Wallis (1987) investigated the estimation of parameters of the GPD-284 

distribution and based on this warn against using the often applied maximum likelihood estimation for a 285 

sample size below 500. Instead, they recommend probability-weighted moments and we have followed this 286 

advice here. 287 

 288 

We required a minimum of 3 and 24 h separation between peaks for 1 and 24 h duration, respectively. This 289 

is in accordance with Berg et al. (2019) and furthermore, synoptic experience tells us that this will ensure 290 

that neighbouring peaks are from independent weather systems. We found only a weak influence of these 291 

choices on the results of our analysis. 292 

 293 

In practical applications of EVA the parameters are estimated with large uncertainties due to limited length 294 

of the time series. The threshold has the smallest relative uncertainty, the scale has a larger relative 295 

uncertainty, and the shape has the largest relative uncertainty. Therefore, also the relative uncertainty of 296 

the return levels increase with increasing 𝑇, as can be seen from Eq. 2. 297 

 298 

3.3 Bias adjustments and extreme value analysis 299 

The delta-change and bias correction approaches were introduced in general terms in Section 1. Now we 300 

will formulate EVA-based analytical quantile mapping based versions of the two approaches. In what 301 

follows 𝑂𝑇 is the 𝑇-year return levels estimated from present-day pseudo-observations, while 𝐶𝑇 (control) 302 

and 𝑆𝑇 (scenario) denote the corresponding return levels, estimated from present-day and end-21st-century 303 

model data, respectively. Finally, 𝑃𝑇 (projection) denotes the end-21st-century return level after bias-304 

adjustment has been applied. 305 

 306 
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3.3.1 Climate factor on the return levels (FAC) 307 

The simplest adjustment approach is to assume a climate factor on the return level (FAC) 308 

𝑃𝑇 = 𝑆𝑇 𝐶𝑇⁄⏟  
𝐷𝑒𝑙𝑡𝑎−𝑐ℎ𝑎𝑛𝑔𝑒
𝑐𝑙𝑖𝑚𝑎𝑡𝑒 𝑓𝑎𝑐𝑡𝑜𝑟

∙ 𝑂𝑇 = 𝑂𝑇 𝐶𝑇⁄⏟  
𝐵𝑖𝑎𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛
𝑐𝑙𝑖𝑚𝑎𝑡𝑒 𝑓𝑎𝑐𝑡𝑜𝑟

∙ 𝑆𝑇 

 309 

We note that the delta-change and bias correction approach are identical for the FAC method. 310 

3.3.2 Analytical quantile mapping based on EVA 311 

 312 

In the EVA-based quantile mapping, two POT-based extreme value distributions with different parameters 313 

are matched. Being more specific, we want to construct a transformation 𝑥 → 𝑦 defined by requiring that 314 

exceedance rates above 𝑥 and 𝑦, respectively,  are equal for any 𝑥: 315 

𝜆𝑥 = 𝜆𝑦. 316 

This implies, according to (1), that 317 

 318 

𝜆0𝑥[1 − 𝒢𝑥(𝑥 − 𝑥0)] = 𝜆0𝑦[1 − 𝒢𝑦(𝑦 − 𝑦0)], 319 

where 𝒢𝑥 is the GPD distribution of the exceedances 𝑥 − 𝑥0 and 𝜆0𝑥 the associated exceedance rate, and 320 

𝒢𝑦 and 𝜆0𝑦 are the similar entities for 𝑦. 321 

 322 

To simplify, we let  𝜆0𝑥 = λ0𝑦( see Section 3.2) and therefore get 323 

𝒢𝑥(𝑥 − 𝑥0) = 𝒢𝑦(𝑦 − 𝑦0), 324 

from which we obtain the transformation 325 

𝑦 = 𝑦0+𝒢𝑦
−1(𝒢𝑥(𝑥 − 𝑥0)). (3) 326 

 327 

For the delta-change approach (DC), the modelled GPD distribution functions for present-day and end-21st-328 

century conditions are quantile mapped and the transformation obtained this way is then applied to return 329 

levels determined from present-day pseudo-observations 𝑂𝑇. Thus the corresponding projected 𝑇-year 330 

return level is according to Eq. (3) 331 

𝑃𝑇 = 𝑆0 +  𝒢𝑆
−1(𝒢𝐶(𝑂𝑇 − 𝐶0)), 

where 𝒢 𝐶  and 𝒢𝑆 are the GPD cumulative distribution functions for the modelled present-day (control) and 332 

end-21st-century (scenario) data, respectively, and 𝐶0 and 𝑆0 are the corresponding threshold values. 333 

 334 

For the bias correction approach (BC), the present-day (control) and pseudo-observed GPD cumulative 335 

distribution functions are quantile mapped to obtain the model bias, which is then applied, using eq. (3), to 336 

modelled end-21st-century (scenario) return levels. 337 

 338 

𝑃𝑇 = 𝑂0 + 𝒢𝑂
−1(𝒢 𝐶(𝑆𝑇 − 𝐶0)), 339 

where 𝒢 𝑂 is the GPD cumulative distribution function for the observations and 𝑂0 the corresponding 340 

threshold. 341 

3.3.3 Reference adjustment methods  342 

The performance of the bias adjustment methods described above will be compared with the performance 343 

of two reference adjustment methods, which are defined below. This is a similar to what is practice when 344 
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verifying predictions, where the performance of the prediction should be superior to the performance of 345 

reference predictions, such as persistence or climatology. 346 

 347 

We choose two reference methods. One reference is to simply use, for a given model, the return level 348 

calculated from (pseudo-)observations as the projected return level (OBS), 349 

𝑃𝑇 = 𝑂𝑇 

 350 

Another reference is to use the raw scenario model output data without any adjustment (SCE): 351 

𝑃𝑇 = 𝑆𝑇. 352 

 353 

For an overview of methods, see Table 2 354 

 355 
Table 2. Overview of methods used in the inter-comparison  356 
OBS (Pseudo-)observations (Reference method) 

SCE Raw RCM scenario (Reference method) 

FAC Climate factor  on return levels 

DC Quantile mapped delta-change based on EVA 

BC Quantile mapped bias correction based on EVA 

  357 

 358 

 359 

3.4 The inter-model cross-validation procedure in detail 360 

The inter-model cross-validation goes in detail as follows: Each of the 𝑁 models are successively regarded 361 

as being pseudo-observations. The individual adjustment methods are calibrated on the present-day parts 362 

of the pseudo-observations and model return levels (present-day and end-21st-century), as appropriate 363 

depending on whether it is a bias correction or delta-change method. The calibration is done as described 364 

above. The adjustment methods are then applied to present-day observation and model data, again as 365 

appropriate, to obtain end-21st-century adjusted return levels. These are  then validated against the end-366 

21st-century return level from pseudo-observations. 367 

 368 

The basic validation metric will be the relative error of end-21st-century return levels for a given duration 369 

and return period 𝑇:  370 

 371 

𝑅𝐸 = |𝑃𝑇 − 𝑉𝑇|/𝑉𝑇  372 

 373 

i.e. the absolute difference between the projected return level 𝑃𝑇 obtained from using adjustment and the 374 

validation return level 𝑉𝑇 estimated from end-21st-century pseudo-observations, divided by the validation 375 

return level. This metric is calculated for every grid point and for every combination of model/pseudo-376 

observations. Since we have 𝑁 = 19 model simulations in the ensemble, we have 𝑁 × (𝑁 − 1) = 342 377 

different combinations for validating each adjustment method and make statistics of the relative error. This 378 

quantifies the average performance of the different methods. 379 

 380 
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User-end scenarios are often constructed as the median or mean from ensembles. We also tested this in 381 

the inter-model cross-validation setup. The calibration is performed as before on each of the remaining 382 

models and adjusted return levels for the end-21st-century calculated. But then the median of these 383 

adjusted future return levels is calculated and this is validated against the future pseudo-observations. 384 

Note that this gives only  𝑁 = 19 different combinations and therefore a less robust statistics compared to 385 

above. 386 

 387 

4 Results 388 

 389 

4.1 Modelled return levels for present-day and end-21st-century conditions  390 
 391 

 392 
Figure 2.  Geographical distribution of the 10 year-return level of precipitation intensity for 1 hour duration for present-day (left) 393 
and relative change from present-day to end-21

st
-century (right). In each grid point, values are the median return level over all 19 394 

model simulations.  395 
 396 

Figure 2 displays the geographical distribution of the 10-year return level for precipitation intensity of 1 h 397 

duration, calculated as the median return level over all 19 model simulations. The smallest return levels are 398 

mainly found in the arid North African region and to some extent in the Norwegian Sea, while the largest 399 

return levels are found in southern Europe and in the Atlantic northwest of the Iberian Peninsula. 400 
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Mountainous regions, such as the Alps and western Norway stand out as have higher return levels than 401 

their surroundings. This supports that the models are not totally unrealistic in modelling extreme 402 

precipitation.  403 

 404 

 There is a general increase in the range of 20-40 % from present-day to end-21st-century climatic 405 

conditions. The relative changes are geographically quite uniform across the area. For instance, no evident 406 

difference between land and sea appears. Likewise do the mountainous regions not stand out from the 407 

surroundings. 408 

 409 

 410 

 411 
Figure 3. As Figure 2 but for 24 h duration 412 
 413 

We also show in Figure 3 the median 10-year return level for 24 h duration. Again, the largest return levels 414 

are found in southern Europe and northwest of the Iberian Peninsula. Also, the mountainous regions stand 415 

out with higher return levels even more pronounced than for 1 h duration. The return levels generally 416 

increase from present-day to end-21st-century conditions with around the same percentage as for 1 h 417 

duration and also geographically homogeneous. 418 

. 419 

 420 

 421 
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 422 
Figure 4. Modelled return levels at 50N/10E (northern Germany, marked with ‘X’ in Figure 1) for present and future for 10 y return 423 
period and 1 h and 24 h durations. Different colours represent the 19 different GCM-RCM simulations listed in Table 1.  424 
 425 

To get a more detailed impression of the data, Figure 4 shows return levels and their changes from present-426 

day to end-21st-century for a grid point in Northern Germany for all 19 model simulations. For 1 h duration 427 

(left panel) return values increase from present-day to end-21st-century in all cases. For 24 h duration (right 428 

panel) typically the return levels increase from present-day to end-21st-century but with some exceptions. 429 

This behaviour is common to all regions. For both durations, we also note the large spread in return levels 430 

within the ensemble. The spread is much higher than the change between present and future for most 431 

models; in other words: a poor signal to noise ratio. This is probably a combined effect of different climate 432 

signals in different models and natural variability (Aalbers et al., 2018). 433 

4.2 Inter-model cross-validation 434 

 435 

In the following, we will present results using two different types of display. First, we will use spatial maps 436 

of the median relative error, calculated from all combinations of model/pseudo-observations. Second, we 437 

will, for each adjustment method and for each combination of model/pseudo-observations, calculate the 438 

median relative error over each of the eight PRUDENCE sub-regions defined in Christensen and Christensen 439 

(2007) and shown on Figure 1. For each region we will illustrate the distribution of the relative error across 440 

all combinations of model/pseudo-observations by showing the median and the 5/95-percentiles of this 441 

distribution.   442 

 443 

4.2.1 Results for 1 h duration 444 

 445 

Figure 5 shows the median, across all model/pseudo-observations combinations, the relative error for all 446 

five methods for 1 h duration and 10 y return period. 447 

 448 
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 449 
 450 
Figure 5. Geographical distribution of the relative error of end-21

st
-century 10 year return level for 1 h duration precipitation 451 

intensity from the inter-model cross-validation. Colours show the median of the relative error calculated over all model/pseudo-452 
observations combinations. Panels are for the different adjustment methods. 453 
 454 

First we look at the reference methods. Relative errors from the OBS method are in the range of 20-40 %.  455 

Lowest values are found in the Mediterranean, western France and the Atlantic west of the Mediterranean; 456 

highest values in the Atlantic west of Ireland and in Scandinavia. The SCE method has errors in the interval 457 

25-45 %, lowest values in the Atlantic west of Ireland; largest values over parts of the Atlantic and northern 458 

Africa. The two reference methods give rather similar results, but the OBS method slightly outperforms SCE 459 

in the south, while the opposite is true in the north. 460 

 461 

The relative error of FAC is below 20 % in most places. It is everywhere smaller than the relative error of 462 

the reference methods OBS and SCE. The DC method has a relative error comparable to (e.g. Western 463 

France, Western Iberia and Eastern Atlantic) or larger than (in particular in Northern Africa) that of FAC. 464 

That said, the concept of relative error should be used with care in an arid region, such as Northern Africa. 465 

But from this result, it is not justified to use the more complicated DC, in favour of the simpler FAC. Finally, 466 
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the relative error of BC is everywhere above both DC and FAC, indicating the poorest performance of all 467 

methods considered. 468 

 469 

 470 
Figure 6. Statistical distribution (median and 5

th
/95

th
  percentile) of the relative error of the inter-model cross-validation for 1 hour 471 

duration for 1 y, 10 y and 100 y return periods.  Panels represent PRUDENCE sub-regions shown in Figure 1.  Each colour represents 472 
a adjustment method (see Table 2). 473 
 474 
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The statistical distribution of the relative error is shown in Figure 6 for the eight PRUDENCE sub-regions 475 

(see Figure 1). We first note that the distribution of relative error is shifted towards higher values for larger 476 

return periods, as expected. Next, we note that the two reference methods, OBS and SCE, behave 477 

differently. SCE generally has a little larger median relative error, but the 95th percentile is much larger for 478 

SCE than for OBS, in particular for large return periods. Thus, OBS overall performs better than SCE, 479 

meaning that using present-day pseudo-observations to estimate projected end-21st-century return levels 480 

yields better relative error than using raw modelled scenario data. 481 

 482 

The FAC method generally has the best overall performance, both in terms of median and 95th percentile of 483 

the relative error. The DC method has a slightly poorer performance than FAC, both in terms of the median 484 

and the 95th percentile of the relative error. Finally, BC has poorer performance than DC, when comparing 485 

the median of the relative error and in particular for the 95th percentile. 486 

 487 

In summary, for 1 h duration, the method with the best performance is using a climate factor on the return 488 

levels (FAC). This method outperforms both reference methods and the more sophisticated methods based 489 

on quantile mapping, DC and BC, the latter having the poorest overall performance of them all. Note that 490 

DC is comparing GPDs from the same model, whereas BC is comparing GPDs from different models. If the 491 

difference, in terms of GPD parameters, between two models in the present-day climate is typically larger 492 

than the difference between the same model in present-day and end-21st-century climate, it can explain 493 

the different results. 494 

 495 

 496 

4.2.2 Results for 24 h duration 497 

 498 
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 499 
Figure 7. As Figure 5 but for 24 h duration. 500 
 501 

For 24 h duration (see Figure 7 ), OBS has the lowest median relative error (less than 30 %) in most regions 502 

of all the adjustment methods, while SCE has higher relative error in the interval 30-60 % approximately, 503 

with the highest values in North Africa. FAC has relative errors in-between those of OBS and SCE. Of the 504 

quantile mapping methods, DC has relative errors in the interval 20-80 % approximately, larger than FAC in 505 

most places, and finally BC has, as for 1 h duration, the largest median relative errors of all the methods. 506 

 507 
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 508 
Figure 8. As Figure 6 but for 24 h duration 509 
 510 

As for the 1 h duration, we also compare the entire statistical distribution of the relative error of the 511 

different adjustment methods for all three return periods (Figure 8), and again, both median and 95th 512 

percentile of the relative error increases for larger return periods, as expected. Further, OBS seems, 513 

surprisingly, to have a small median relative error and the smallest 95th percentile of all methods 514 

considered for all sub-regions. SCE has a median not too different from that of OBS, but the 95th percentile 515 
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is much larger. Similar characteristics hold for FAC. The quantile mapping methods DC and BC have slightly 516 

larger median values, but the 95th percentile is smaller than for FAC. All these characteristics hold for all 517 

sub-regions. 518 

 519 

4.2.3 Ensemble median 520 

Also inter-model cross-validation of pseudo-observations against model ensemble median, as described in 521 

Section 3.4, was carried out. For duration 1 h, distribution of the relative error is shown in Figure 9. By 522 

comparing with Figure 6, the distribution of the relative error does not change much overall.  However, for 523 

many of the sub-regions considered and for the longer return periods, the FAC and BC have a smaller 95th 524 

percentile for cross-validation against model ensemble means, than against individual models.  525 

 526 
Figure 9. As Figure 6 but for inter-model cross-validation against ensemble medians. 527 
 528 

Also for 24 h duration the distribution of the relative errors does not change much when shifting to 529 

validation against ensemble median (not shown).  530 

4.3 Further analysis on conditions for skill 531 

 532 
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To get further insight into the difference in performance between hourly and daily precipitation, we 533 

consider for a given return period the relationship between the bias factor for present-day 𝐵𝑃,𝑇 = 
𝐶𝑇

𝑂𝑇
 and 534 

end-21st-century 𝐵𝐹,𝑇 = 
𝑆𝑇

𝑉𝑇
 for all model/pseudo-observations combinations (see Figure 10). 535 

 536 

 537 
Figure 10. Relationship between present-day and end-21

st
-century bias factors of 10-year return levels for Mid-Europe sub-region 538 

for all pseudo-observation/model combinations. Left panel: 1 h duration and right panel: 24 h duration. Numbers in upper left 539 
corners are the 𝑹 indices. See text for details. 540 
 541 

In this figure, the relationship between present-day and end-21st-century bias factors appears more 542 

pronounced for 1 h duration than for 24 h duration. That said, it must be borne in mind that if the point 543 

(𝑥, 𝑦) is in the plot, so is the point (1/𝑦, 1/𝑥), and this implies an inherent tendency to a fan-like spread of 544 

points from (0,0), as seen on both plots. 545 

 546 

To quantify the strength of the above relationship, we define an index: 547 

𝑅 = 〈
|𝐵𝐹−𝐵𝑃|

(𝐵𝐹+𝐵𝑃)/2
〉, 548 

where 〈∙〉 means averaging over combinations of model/pseudo-observations. This index is an extension of 549 

the index introduced by Maurer et al. (2013). It is the ensemble average of the relative absolute difference 550 

between the present-day and future bias. A value of 𝑅 = 0 means these biases are equal, i.e. perfect 551 

stationarity; and the smaller the value of 𝑅, the closer to stationarity (in an ensemble sense). 552 

 553 

Values of 𝑅 are given in the upper left corner of each panel of Figure 10 and they also support the partial 554 

relationships described above, and a stronger one for hourly duration. These relations are important since 555 

they could explain the generally good performance of the FAC method seen in the previous section. 556 

Suppose that 𝐵𝑃,𝑇 = 𝐵𝐹,𝑇 , then 557 

𝑃𝑇 =
𝑆𝑇

𝐶𝑇
𝑂𝑇 = 𝑆𝑇

𝑂𝑇

𝐶𝑇
= 𝑆𝑇𝐵𝑃 = 𝑆𝑇𝐵𝐹 = 𝑆𝑇

𝑉𝑇

𝑆𝑇
= 𝑉𝑇  558 
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 559 

and the FAC method will therefore adjust perfectly. 560 

 561 

We also note that daily data, due to the summation, would have less erratic behaviour than hourly and 562 

therefore we would expect any relationship to be less masked by noise for daily data than for hourly data 563 

from purely statistical grounds. Therefore, any explanation to why it is opposite should probably be found 564 

in physics or details of modelling. We will discuss this further in Section 5.3. 565 

5 Discussion 566 

 567 

5.1 Relation with other studies  568 

 569 

The study by Räty et al. (2014) touches upon related issues to ours. However, our study includes smaller 570 

temporal scales (hourly and daily) and higher return periods (up to 100 years vs. the 99.9th percentile of 571 

daily precipitation corresponding to a return period of around 3 years). Nevertheless, the two studies agree 572 

in their main conclusion; namely that applying a bias adjustment seems to offer an additional level of 573 

realism to the processed data series, including in the climate projections, as compared to using unadjusted 574 

model results. The two studies both support, in agreement with our study, the somewhat surprising 575 

conclusion that using present-day (pseudo-)observations as the scenario gives a skill comparable to that of 576 

the bias adjustment methods. 577 

 578 

Kallache et al. (2011) proposed a correction method for extremes, CDF-t, and obtained good validation 579 

result with calibration/validation split of historical data from Southern France. The CDF-t method was 580 

applied by Laflamme et al. (2016) on daily New England data and concludes that “downscaled results are 581 

highly dependent on RCM and GCM model choice”.  582 

 583 

5.2 Convection in RCMs 584 

The grid spacing of present state-of-the-art RCMs available in large ensembles, such as CORDEX, is around 585 

10 km, and at this resolution it is necessary to describe convection through parameterizations. This is 586 

obviously an important deficit for our purpose, since this could represent a systematic bias in all our 587 

simulations and therefore violate our underlying assumptions that the individual model simulations and the 588 

real-world observations behave similarly in a physical sense. Thus, we do not promote naively applying the 589 

presented adjustment methods to hourly data from these models. Instead, the present work should be 590 

seen as a statistical exercise and the methods can in the future be applied to convection permitting model 591 

simulations that better represent the convective process. The results from the present work would apply 592 

equally to that case. 593 

 594 

With the advent of convective-permitting models, a more realistic modelling of convective precipitation 595 

events is within reach and a change in the characteristics of such events is seen (Kendon et al., 2017; 596 

Lenderink et al., 2019; Prein et al., 2015). This next generation of convection-permitting RCMs with a grid 597 

spacing of a few km allows a much better representation of the diurnal cycle and convective systems as a 598 
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whole (Prein et al., 2015). With that in mind, we foresee redoing the analysis when a suitable ensemble of 599 

convective-permitting RCM simulations becomes available. 600 

 601 

5.3 Stationarity of bias 602 

The success of applying bias adjustment to climate model simulations is linked to the biases being 603 

stationary, i.e. present and future biases being more or less identical. In Section 4.3 we showed (in Figure 604 

10) that this was the case for 1 h duration and less so for 24 h duration in our pseudo-reality setting. Such a 605 

relationship is an example of an emergent constraint (Collins et al., 2012). This is a model-based concept, 606 

originally introduced to explain that models which have a too warm (cold) present-day climate tend to have 607 

a relatively warmer (colder) future climate. The reason for this is that it is the same underlying physics 608 

which generates the present-day and future temperatures (Christensen and Boberg, 2012). 609 

 610 

We suggest that our observed emergent constraints could be explained in a similar manner; namely as a 611 

result of the Clausius-Clapeyron relation linking atmospheric temperature changes to changes in its 612 

humidity content and thereby precipitation changes. The change prescribed by the Clausius-Clapeyron 613 

equation is usually termed the thermodynamic contribution. In addition to this, there is a dynamic 614 

contribution and this may explain the differences between the hourly and daily relation seen in Figure 10. 615 

The rationale is that hourly extremes are entirely due to convective precipitation events with almost no 616 

dynamic contribution (Lenderink et al., 2019), while daily extremes are a mixture of convective events and 617 

large-scale strong precipitation, of which the latter has a more significant dynamic contribution (Pfahl et al., 618 

2017), causing the less marked emergent constraint for the daily time scale. This interpretation is also 619 

supported in Figure 4, in which daily precipitation sees some ‘crossovers’ (future return level smaller than 620 

present), whereas hourly precipitation does not have any crossovers. 621 

 622 

5.4 The spatial scale 623 

In the definition of model bias it is tacitly assumed that the observational dataset has the same spatial 624 

resolution as the model data. In practice, however, it is rarely possible to separate the bias from a spatial 625 

scale mismatch. For instance, if we compare modelled precipitation, which represents averages over a grid 626 

box, with rain gauge data, which represent a point, there can be a quite substantial mismatch for extreme 627 

events (Eggert et al., 2015; Haylock et al., 2008). Therefore, if the bias is adjusted towards such point 628 

values, it may lead to further complications (Maraun, 2013).  629 

 630 

Sometimes though, it is desirable to include the scale mismatch in the bias adjustment. Many impact 631 

models, e.g. hydrological models, are tuned to perform well with local observational data as input. This 632 

presents an additional challenge if this impact model is to be driven by climate model data for climate 633 

change studies, since the climate model will have biases in its climate characteristics (mean, variability, etc.) 634 

compared to those of the observed data. Applying the adjustment step, the hydrological model can rely on 635 

its calibration to observed conditions (Haerter et al., 2015; Refsgaard et al., 2014). 636 

 637 

5.5 Adjustment methods not included in the study 638 

Only the basic adjustment methods have been included in our study. The simple climate factor approach 639 
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has been applied in numerous hydrological applications (DeGaetano and Castellano, 2017; Sunyer et al., 640 
2015) and others. We also wanted to test quantile mapping approaches, which in extreme value theory 641 
takes the form of a parametric transfer function. This we have applied in two flavours in the spirit of (Räty 642 
et al. (2014). Finally, we wanted to benchmark against the ‘canonical’ benchmark methods: observations 643 
and raw model output. 644 
 645 

There is a myriad of more specialised methods, each tailored to account for a particular deficit of the 646 

simpler methods. First, there is the issue whether it for precipitation is more reasonable to map relative 647 

quantile changes rather than absolute ones (Cannon et al., 2015). It has also been argued that a bias 648 

correction method should preserve long-term trends, i.e. the ‘climate signal’ and only adjust the shorter 649 

time scales, as extensively discussed in (Cannon et al., 2015). Then multivariate methods have been argued 650 

for and applied in order to preserve relationships between variables (Cannon, 2018), and nested methods 651 

to account for different biases for different time scales (Mehrotra et al., 2018). Also methods to correct for 652 

systematic displacement of variable features in complex terrain have been suggested and applied (Maraun 653 

and Widmann, 2015). Finally, Li et al. (2018)  adjusts stratiform and convective precipitation separately 654 

instead of adjusting the total precipitation. In this way, any future change in the ratio between the two 655 

types of precipitation is accounted for. 656 

 657 

It could be interesting to examine the above methods in future studies, though we acknowledge it would 658 

be a quite extensive work. We can at present only guess about the outcome of such work but the more 659 

refined methods may not perform too well in the inter-model cross-validation setting. The reason for this 660 

suspicion is that these methods, while being more elaborate, in most cases also have more parameters to 661 

be estimated, implying a higher risk of overfitting. An argument in favour of this is that the present study 662 

shows that the more elaborate quantile mapping methods DC og BC do not outperform the simpler FAC 663 

method.  664 

6  Conclusions 665 

 666 

Based on hourly precipitation data from a 19-member ensemble of climate simulations we have 667 

investigated the benefit of bias adjusting extreme precipitation return levels on hourly and daily time scales 668 

and evaluated the different methods. This is done in a pseudo-reality setting, where one model simulation 669 

in turn from the ensemble plays the role of observations extending into the future. The return levels 670 

obtained from each of the remaining model simulations are then adjusted in the present-day period, using 671 

different adjustment methods. Then the same adjustment methods are applied to end-21st-century model 672 

data to obtain projected return levels, which are then compared with the corresponding pseudo-realistic 673 

future return levels. 674 

 675 

The main result of this inter-comparison is that applying bias adjustment methods improves projected 676 

extreme precipitation return levels, compared to using the un-adjusted model runs. Can an overall superior 677 

adjustment methodology be appointed? For hourly duration, the method to recommend (having the 678 

smallest relative error) is the simple climate factor approach FAC, which is better in terms of the relative 679 

error than the more complicated analytical quantile mapping methods based on EVA, DC and, in particular, 680 

BC. For daily duration, the OBS method performs surprisingly well, having the smallest 95th percentile of 681 
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the relative error. Furthermore, the quantile mapping methods perform better than FAC, with DC having 682 

the smallest relative error. These conclusions hold regardless of the sub-region considered. We also cross-683 

validated against model ensemble means; this gave in general similar results without significant changes in 684 

the distribution of the relative error. 685 

 686 

Finally, we registered emergent constraints between present-day and end-21st-century biases. This was 687 

more pronounced for hourly than for daily time scales. This could be caused by hourly precipitation being 688 

more directly linked to the Clausius-Clapeyron response, but this requires more clarification in future work. 689 

 690 
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