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Dear editor,  

We appreciate the very positive second report from referee #2 expressing content with our reactions to the 

issues in his first report. 

Then the referee raises further issues. Our responses to these are in italic and section numbers and line 

numbers refer to the marked-up version of the revised manuscript. 

 

Referee #1: 

I went through the authors response to my earlier comments and generally agree with the modifications 

they have made. The paper is more complete and better suited for publication. 

 

My only other query is whether the authors noted any systematic changes in the relative errors for the 

two durations for the 12.5km runs compared to the 50km runs? This is an issue that comes up with RCM 

simulations often as the computational expense in the higher resolution runs is considerable. Any 

comments could be useful to others. 

We analyse solely 12.5 km runs (EUR-11, line 203-204). Therefore, we are not able to give any 

qualified take on this query.  

 

 

Other than this, I noted down some specific issues in the order I read the paper. these are: 

 

l65 - Authors should note the following two papers which are relevant here 

Kim, Y., et al. (2020). "Impact of bias correction of regional climate model boundary conditions on the 

simulation of precipitation extremes." Climate Dynamics 55(11): 3507-3526. 

Kim, S., et al. (2020). "Quantification of Uncertainty in Projections of Extreme Daily Precipitation." Earth 

and Space Science 7(8). 

The first paper assesses the impact on extreme precipitation simulations once lateral and lower boundary 

biases are corrected. This is directly relevant to the present study. The second presents estimates of 

uncertainty in extreme precipitation simulations after bias correction for a range of models. I suggest the 

second one as it may give some guidance to authors to contrast their uncertainty estimates against those 

presented in the paper to gauge the extent of improvements made. 

The first paper is a work where the forcing boundary conditions are bias-corrected. This is a 

different approach from ours.  

The second paper is it is about partition of variance between scenario, model and internal 

variability in GCMs. The paper by (Aalbers et al., 2018) is a more comprehensive study of the 

issue. We have added a sentence in the revised manuscript. (line 461)  

 

l72 and 73 - the referenced studies are not directly relevant to the present work because of the 

psuedoCC run. A bias corrected run would be a more appropriate comparison as noted in the above two 

papers. 

We are not able to identify the references of concern, since no references are given in these line 

numbers, neither in the raw nor in the annotated manuscript. Therefore, we are unable to react to this 

comment. 
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l97 - I have long felt that in hydrological modelling settings, the issue of persistence is more important 

than simply correcting means.The Nesting Bias Correction papers and its variants in multivariate settings 

are my recommended alternatives where a water nalance simulation is needed. I urge the authors to 

exapnd their discussion about bias correction to mention this line of thought. The paper below given 

details of the software and how it should be used. 

Mehrotra, R., et al. (2018). "A software toolkit for correcting systematic biases in climate model 

simulations." Environmental Modelling and Software 104: 130-152. 

 

 We have added a short line and the reference (line 680) 

 

l205 - In my experience the fitting of the GPD creates instability in the shape and scale parameters, 

especially given the short record that are typically used. It would be good for the authors to discuss 

whether unstable parameter values resulted and whether the RE estimates are sensitive to such 

instability in a systematic manner. 

We are a bit in doubt about referee #2 really means l. 205. It is not specified whether it is 

referring to the marked-up version or not. In any case, extreme value analysis has not been 

mentioned at that point. We have added a sentence about uncertainties of parameters in EVA 

(lines 300-303) 

 

 

l328 - The 24h results show 3 cases where there is a decrease into the future. No such decrease is present 

in the hourly simulations. Is this a pattern that was common across the other regions the study focussed 

on? Would there be any reason for this? Perhaps linked to the instability in the GPD parameters? 

Line 328  is before any mentioning of results. Could the referee mean l. 428? A similar behaviour is 

seen in other regions. We have added a sentence about this (line 460-461) 

 

Editor: 

In addition, a minor suggestion from my side - consider changing the label in the y-axis in Figure 4 to 

"Precipitation intensity [mm]" 

We think the term ‘precipitation intensity’ means a rate (mm /h). We will change the label to 

‘precipitation sum’, which we use in this work (see line. Xx) 

 

Other changes: 

Text have been adjusted for better readability. 

Reference list format has been changed to conform to journal standard 
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Abstract 17 

Severe precipitation events occur rarely and are often localized in space and of short duration; but they are 18 

important for societal managing of infrastructure. Therefore, there is a demand for estimating future 19 

changes in the statistics of occurrence of these rare events. These are often projected using data from 20 

Regional Climate Model (RCM) simulations combined with extreme value analysis to obtain selected return 21 

levels of precipitation intensity. However, due to imperfections in the formulation of the physical 22 

parameterizations in the RCMs, the simulated present-day climate usually has biases relative to 23 

observations; these biases can be in the mean and/or in the higher moments. Therefore, the RCM results  24 

are adjusted to account for these deficiencies. However, this does not guarantee that adjusted projected 25 

results will match future reality better, since the bias may not be stationary in a changing climate. In the 26 

present work we evaluate different adjustment techniques in a changing climate. This is done in an inter-27 

model cross-validation setup, in which each model simulation in turn plays the role of pseudo-observations, 28 

against which the remaining model simulations are adjusted and validated. The study uses hourly data from 29 

historical and RCP8.5 scenario runs from 19 model simulations from the EURO-CORDEX ensemble at 0.11° 30 

resolution, . Fields of return levels for selected return periods are calculated from which fields of selected 31 

return levels are calculated for hourly and daily time scales based on 25 years long time slices representing 32 

present-day (1981-2005) and end-21st-century (2075-2099). The adjustment techniques applied to the 33 

return levels are based on extreme value analysis and include climate factor and quantile -mapping 34 

approaches. Generally, we find that future return levels can be improved by adjustment, compared to 35 

obtaining them from raw scenario model data. The performance of the different methods depends on the 36 

time scale considered. On hourly time scale, the climate factor approach performs better than the quantile 37 

-mapping approaches. On daily time scale, the superior approach is to simply deduce future return levels 38 

from pseudo-observations and the second best choice is using the quantile -mapping approaches. These 39 

results are found in all European sub-regions considered. Applying the inter-model cross-validation against 40 

model ensemble medians instead of individual models does not change overall conclusions much. 41 

 42 
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1 Introduction 43 

Severe precipitation events occur typically either as stratiform precipitation of moderate intensity or as 44 

intense localized cloudbursts lasting up to a few hours only. Such extreme events may cause flooding with 45 

the risk of loss of life and damage to infrastructure. It is expected that future changes in the radiative 46 

forcing from greenhouse gases and other forcing agents will influence the large scale atmospheric 47 

conditions, such as air mass humidity, vertical stability, the formation of convective systems, and typical 48 

low pressure tracks. Therefore also the statistics of the occurrence of severe precipitation events will most 49 

likely change. 50 

 51 

Global climate models (GCMs) are the main tool for estimating future climate conditions. A GCM is a global 52 

representation of the atmosphere, the ocean and the land surface, and the interaction between these 53 

components. The GCM is then forced with observed greenhouse gas concentrations, atmospheric 54 

compositions, land use, etc.  to represent the past and present climate, and with stipulated scenarios of 55 

future concentrations of radiative forcing agents to represent the future climate. 56 

 57 

Present state-of-the art GCMs from the Coupled Model Intercomparison Project Phase 5 (CMIP5, Taylor et 58 

al., 2012) and the recent Coupled Model Intercomparison Project Phase 6 (CMIP6, Eyring et al., 2016) 59 

typically have a grid spacing of around 100 km or even more. This resolution is too coarse to describe the 60 

effect of regional and local features, such as mountains, coast lines and lakes and to adequately describe 61 

convective precipitation systems (Eggert et al., 2015). To model the processes on smaller spatial scales, 62 

dynamical downscaling is applied. Here, the atmospheric and surface fields from a GCM simulation are used 63 

as boundary conditions for a regional climate model (RCM) over a smaller region with a much finer grid 64 

spacing, at present typically around 10 km or even less. 65 

 66 

An alternative to dynamical downscaling is statistical downscaling. Here large-scale circulation patterns 67 

(e.g. the North Atlantic Oscillation) are related to small-scale variables, such as precipitation mean at a 68 

station.  One assumes that the large-scale circulation pattern is modelled well by the GCM and therefore 69 

the approach is called perfect prognosis. Using the relationship with the small-scale variables,  calibrated on 70 

observations, one can obtain modelled local-scale variables (present-day and future) from the modelled 71 

large-scale patterns. A recent overview of these methods and validation of them can be found in Gutiérrez 72 

et al. (2019). 73 

 74 

The ability of present-day RCMs to reproduce observed extreme precipitation statistics on daily and sub-75 

daily time scales is essential and has been of concern. Earlier studies analysing this topic have mostly 76 

focused on a particular country, probably due to the lack of sub-daily observational data covering larger 77 

regions, such as e.g. Europe. Thus, Hanel and Buishand (2010), Kendon et al. (2014), Olsson et al. (2015)  78 

and Sunyer et al. (2017) studied daily and hourly extreme precipitation in different European countries and 79 

reached similar conclusions: first that the bias of extreme statistics decreases with smaller grid spacing of 80 

the model, and second that extreme statistics for 24 h duration are satisfactorily simulated with a grid 81 

spacing of 10 km, while 1 h extreme statistics exhibits substantial biases even at this resolution. Recently, 82 

Berg et al. (2019) evaluated high resolution RCMs from the EURO-CORDEX ensemble (Jacob et al., 2014) 83 

also used here and reached similar conclusions for several countries across Europe: RCMs underestimate 84 

hourly extremes and give an erroneous spatial distribution.  85 



 

3 
 

 86 

Extreme convective precipitation of short duration is thus one of the more challenging phenomena to 87 

represent physically accurate in RCMs. The reason is that convective events take place on a spatial scale 88 

comparable to the RCM grid spacing of presently around 10 km. Therefore, the convective plumes cannot 89 

be directly modelled. Instead, the effects of convection are parametrised, i.e. modelled as processes on 90 

larger spatial scales (Arakawa, 2004). Thus, the inability to reproduce these short duration extremes can be 91 

explained by the imperfect parametrization of sub-grid scale convection (Prein et al., 2015), which generally 92 

leads to too early onset of convective rainfall in the diurnal cycle and subsequent dampening of the build-93 

up of convective available potential energy  (Trenberth et al., 2003). 94 

 95 

Thus, even RCMs with their small grid spacing may exhibit systematic biases for variables related to 96 

convective precipitation. If there is a substantial bias, we should consider adjusting for this in a statistical 97 

sense before any further data analysis. Such adjustment techniques are thoroughly discussed, including 98 

requirements and limitations, in Maraun (2016) and Maraun et al. (2017). There are basically two main 99 

adjustment approaches. In the delta-change approach, a transformation is established from the present to 100 

the future climate in the model run. This transformation is then applied to the observations to get the 101 

projected future climate. In the bias correction approach, a transformation is established from present 102 

model climate data to the observed climate and this transformation is then applied to the future model 103 

climate to obtain the projected future climate. 104 

 105 

Both adjustment approaches come in several flavours. In the simplest one, the transformation consists of 106 

an adjustment of the mean, in the case of precipitation by multiplying the mean by a factor. In the more 107 

elaborate flavour, the transformation is defined by quantile -mapping, preserving also the higher moments. 108 

Quantile -mapping can use either empirical quantiles or analytical distribution functions. The ability of 109 

quantile -mapping to reduce bias has been demonstrated for daily precipitation in present-day climate 110 

using observations, which are split into calibration and validation samples (Piani et al., 2010; Themeßl et al., 111 

2011). 112 

 113 

Bias adjustment techniques originate in the field of weather and ocean forecast modelling, where they are 114 

known as model output statistics (MOS). Here output from a forecast model is adjusted for model 115 

deficiencies and local features not explicitly resolved by the model. Applying similar adjustment techniques 116 

to climate model simulations, however, has a complication not present in forecast applications: Climate 117 

models are set up and tuned to present-day conditions and verified against observations, but then applied 118 

to future changed conditions without any possibility to directly verify the model’s performance under these 119 

conditions. Therefore, showing that bias adjustment works for present-day climate is a necessary but not 120 

sufficient condition for the adjustment to work in the changed climate. 121 

 122 

A central concept of adjustment methods is the assumption of stationarity of the bias. For bias correction 123 

this means that the transformation from model to observations is unchanged from the present-day climate 124 

to the future climate, while for delta-change the transformation from present-day climate to future climate 125 

is unchanged from model to observations. In the ideal case of stationarity being fulfilled, the adjustment 126 

methods will work perfectly and produce perfect future projections. If stationarity is not fulfilled, 127 

adjustment may improve projections, or in the worst cases they may degrade projections, compared to 128 
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using raw model output.  We also note that the adjustment methods themselves may influence the climate 129 

change signal of the model, depending on the bias and the method used (Berg et al., 2012; Haerter et al., 130 

2011; Themeßl et al., 2012)(Haerter et al. 2011; Berg et al. 2012; Themeßl et al. 2012). 131 

 132 

Stationarity has been debated in recent years in the literature (e.g. Boberg and Christensen, 2012; Buser et 133 

al., 2010). Kerkhoff et al. (2014) review and discuss two hypotheses: 1) constant bias: unchanged between 134 

present-day and future (i.e. stationarity) and 2) constant relation: bias varies linearly with the signal. Van 135 

Schaeybroeck and Vannitsem (2016) used a pseudo-reality setting with a simplified model and found large 136 

changes in the bias between present-day and future for many variables and violation of both constant bias 137 

and constant relation hypothesis. Chen et al. (2015) concluded that precipitation bias is clearly non-138 

stationary over North America in that variations in bias is comparable to the climate change signal. 139 

Velázquez et al. (2015) used a pseudo-reality setting involving two models and concluded that constancy of 140 

bias was violated for both precipitation and temperature on monthly time scale. Hui et al. (2019) used a 141 

pseudo-reality setting with GCMs and found significant non-stationarity of bias for annual and seasonal 142 

temperatures. Besides, they point to a large effect on non-stationarity from internal variability. 143 

 144 

We also note that the adjustment methods themselves may influence the climate change signal of the 145 

model, depending on the bias and the method used (Haerter et al. 2011; Berg et al. 2012; Themeßl et al. 146 

2012).  147 

 148 

To thoroughly validate adjustment methods, both a calibration dataset and an independent dataset for 149 

validation are needed. There are two different approaches to obtain this. In split-sample testing, the 150 

observations are divided into calibration and validation parts, often in the form of a cross-validation (e.g. 151 

Gudmundsson et al., 2012; Li et al., 2017a, 2017b; Refsgaard et al., 2014; Themeßl et al., 2011). A variant is 152 

differential split-sample testing (Klemeš, 1986), where the split in calibration/and validation parts is based 153 

on climatological factors, such as wet and dry years, encompassing climate changes and variations into the 154 

validation. 155 

 156 

An alternative approach, which we use here, is inter-model cross-validation, as pursued by Maraun (2012), 157 

Räisänen and Räty (2013) and Räty et al. (2014) and others. The rationale is here that the members in a 158 

multi-model ensemble of simulations represent different descriptions of physics of the climate system, with 159 

each of them being not too far from the real climate system. Thus, one member of the ensemble 160 

alternatively plays the role of pseudo-observations, against which the remaining adjusted models are 161 

validated. Thus, the trick is that we know both present and future pseudo-observations. 162 

 163 

The advantage of inter-model cross-validation, is that the adjustment methods are calibrated under 164 

present-day conditions and validated under future climatic conditions. Therefore, it embraces modelled 165 

physical changes between present and future climate, as for instance a shift in the ratio between stratiform 166 

and convective precipitation. In this respect it is a more realistic setting than validation based on split-167 

sample test. Also, model and pseudo-observations have the same spatial scale, thus avoiding comparing 168 

pointwise observations with area-averaged model data, as is done in the split-sample testing. On the other 169 

hand, the method assumes that the modelled present-day is not too different from observations.  If this is 170 
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violated, the method will give too optimistic error estimates compared to what can be expected in the real 171 

World. Please cf. also further discussion in Section 5.2. 172 

 173 

Inter-model cross-validation has been applied on daily precipitation to evaluate different adjustment 174 

methods (Räty et al., 2014). Here we apply a similar methodology European-wide to extreme precipitation 175 

on hourly and daily time scales. This has been made possible with the advent of the EURO-CORDEX, a large 176 

ensemble of high-resolution RCM simulations with precipitation at hourly time-resolution. Being more 177 

specific, we apply the standard extreme value analysis to the ensemble of model data for present-day and 178 

end-21st-century conditions to estimate return levels for daily and hourly duration. Then we will apply inter-179 

model cross validation on these return levels in order to address the following questions: 180 

1. Do adjusted return levels perform better, according to the inter-model cross-validation, than using  181 

raw model data from scenario simulations? 182 

2. Is there any difference in performance between different adjustment methods? 183 

3. Are there systematic differences in point 1 and 2, depending on the daily and hourly duration? 184 

4. Are there regional differences across Europe in the performance of the different adjustment 185 

methods? 186 

Giving qualified answers to these questions can serve as important guidelines for analysis procedures for 187 

obtaining future extreme precipitation characteristics. 188 

 189 

The rest of the paper contains a description of the EURO-CORDEX data (Section 2) and a description of 190 

methods used (Section 3). Then follow the results (Section 4), a discussion of these (Section 5) and finally 191 

conclusions (Section 6). 192 

 193 

2 The EURO-CORDEX data 194 

The model simulations used here have been performed within the framework of EURO-CORDEX (Jacob et 195 

al. (2014) ; http://euro-cordex.net ), which is an international effort aimed at providing RCM climate 196 

simulations for a specific European region (see Figure 1) in two standard resolutions with a grid spacing of 197 

0.44° (EUR-44, ~50 km) and 0.11° (EUR-11, ~12.5 km), respectively. All GCM simulations driving the RCMs 198 

follow the CMIP5 protocol  (Taylor et al., 2012) and are forced with historical forcing for the period years 199 

19511850-2005 followed by the RCP8.5 scenario for the period years 2006-2100 (until 2099 only for 200 

HadGEM-ES). 201 

 202 

We analyse precipitation data in hourly time-resolution from 19 different GCM-RCM combinations from the 203 

EUR-11 simulations shown in Table 1 and we analyse two 25 year long time slices from each of these 204 

simulations: a present-day time slice (years 1981-2005) and an end-21st-century time slice (years 2075-205 

2099). 206 

 207 

All GCM-RCM combinations we use are represented by one realization only, and therefore the data 208 

material used represents 19 different possible realisations of climate model physics, though acknowledging 209 

that some GCMs/RCMs might originate from the same or similar model code and therefore may not be fully 210 

independent. The EURO-CORDEX ensemble includes a few simulations, which do not use the standard EUR-211 

http://euro-cordex.net/
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11 grid. These were not included in the analysis, since they should have been re-gridded to the EUR-11 grid 212 

which would dampen extreme events, thus introducing an unnecessary error source. 213 

 214 

Table 1. Overview of the 19 EURO-CORDEX GCM-RCM combinations used. The rows show the GCMs while the columns 215 
show the RCMs. The full names of the RCMs are SMHI-RCA4, CLMcom-CCLM4-8-17, KNMI-RACMO22E, DMI-HIRHAM5, 216 
MPI-CSC-REMO2009 and CLMcom-ETH-COSMO-crCLIM-v1-1. Each GCM-RCM combination used is represented by a 217 
number (1, 3 or 12) indicating which realization of the GCM is used for the particular simulation. 218 
 219 

GCM                                   RCM RCA CCLM RACMO HIRHAM REMO COSMO 

ICHEC-EC-EARTH r12  
 

r1 r3 
 

 

MOHC-HadGEM2-ES r1  
 

r1 r1 
 

 

CNRM-CERFACS-CNRM-CM5 r1 
  

r1 
 

 

MPI-M-MPI-ESM-LR r1  r2 
 

r1 r1 r1 

IPSL-IPSL-CM5A-MR r1  
    

 

NCC-NorESM1-M r1  
  

r1 
 

r1 

CCCma-CanESM2  r1     

MIROC-MIROC5  r1     

 220 
 221 

 222 

 223 
Figure 1. Map showing the EURO-CORDEX region (outer frame) with elevation in colours. PRUDENCE sub-regions (Christensen and 224 
Christensen, 2007) used in the analysis are also shown: BI = British Isles,  IP = Iberian Peninsula, FR = France, ME = Mid-Europe, SC = 225 
Scandinavia, AL = Alps, MD = Mediterranean, EA = Eastern Europe. Red cross marks point used in Figure 4. 226 
 227 

Generally, GCM results are quite comparable to reality, and many validation studies of GCMs exist, also 228 

with an eye on Europe (e.g. McSweeney et al., 2015). We are aware of  the use in some papers of selection 229 
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procedures for selecting how to choose sub-sets of available GCMs (e.g. McSweeney et al., 2015; Rowell, 230 

2019). There is, however, no simple quality index that can be generally applied. Any discrimination of GCMs 231 

depends on area, season, and the meteorological field and property being investigated (Gleckler et al., 232 

2008; e.g. their Fig. 9). Furthermore, these tests and selection procedures are based on subjective 233 

criteria and come with major caveats that impact the uncertainty range largely (Madsen et al., 2017). We 234 

therefore choose, in accordance with most other similar studies, to use an ‘ensemble of opportunity’ for 235 

the present study. 236 

 237 

3 Methods 238 

3.1 Duration 239 

Extreme precipitation statistics are often described as a function of the time scale involved as intensity-240 

duration-frequency or depth-duration-frequency curves (e.g. Overeem et al., 2008). We consider two time 241 

scales or durations. One is a duration of 1 h, which is simply the time series of hourly precipitation sums 242 

available in each RCM grid point. The other is a duration of 24 h, where a 24 h sum is calculated in a sliding 243 

window with a one hour time step. We will refer to these as hourly and daily duration, respectively. Our 244 

daily duration corresponds to the traditional climatological practice of reporting daily sums but allows 245 

heavy precipitation events to occur over two consecutive days. We also emphasize that the duration, as 246 

defined here, is not the actual length of precipitation events in the model data, but is merely a concept to 247 

define time scales. 248 

3.2 Extreme value analysis 249 

Extreme value analysis (EVA) provides methodologies to estimate high quantiles of a statistical distribution 250 

from observations. The theory relies on fundamental convergence properties of time series of extreme 251 

events; for details we refer to Coles (2001). 252 

 253 

There are two main methodologies in EVA to obtain estimates of the high percentiles and the 254 

corresponding return levels. In the classical, or block maxima, method, a generalised extreme value 255 

distribution is fitted to the series of maxima over a time block, usually a year. Alternatively, in the peak-256 

over-threshold (POT) or partial-duration-series method, which is used here, all peaks with maximum above 257 

a (high) threshold, 𝑥0, are considered. The peaks are assumed to occur independently at an average rate 258 

per year of 𝜆0. To ensure independence between peaks, a minimum time separation between peaks is 259 

specified. Theory tells us, that when the threshold goes to infinity, the distribution of the exceedances 260 

above the threshold, 𝑥 − 𝑥0, converges to a generalised Pareto distribution, whose cumulative distribution 261 

function is 262 

𝒢(𝑥 − 𝑥0) = 1 − (1 + 𝜉
𝑥 − 𝑥0
𝜎

)
−
1
𝜉
, 𝑥 > 𝑥0  

The parameter 𝜎 is the scale and is a measure of the width of the distribution. The parameter 𝜉 is the shape 263 

and describes the character of the upper tail of the GPD-distribution; 𝜉 > 0 implies a heavy tail which 264 

usually is the case for extreme precipitation events, while 𝜉 < 0 implies a thin tail. Note that, quite 265 

confusingly, an alternative sign convention of 𝜉 occurs in the literature (e.g. Hosking and Wallis, 1987). 266 

 267 
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If we now consider an arbitrary level 𝑥 with 𝑥 > 𝑥0, the average number of exceedances per year of 𝑥 will 268 

be 269 

 270 

𝜆𝑥 = 𝜆0 [1 − 𝒢(𝑥 − 𝑥0)]. (1) 271 

 272 

The 𝑇-year return level, 𝑥𝑇, is defined as the precipitation intensity which is exceeded on average once 273 

every 𝑇 years 274 

𝜆𝑥𝑇𝑇 = 1 

 and by combining with (1) we get an expression for the return level 𝑥𝑇 275 

 276 

𝜆0[1 − 𝒢(𝑥𝑇 − 𝑥0)]𝑇 = 1, 277 

from which 278 

𝑥𝑇 = 𝒢
−1 (1 −

1

𝜆0𝑇
) + 𝑥0.  (2) 279 

 280 

 281 

Data points to be included in the POT analysis can be selected in two different ways. Either the threshold 𝑥0 282 

is specified and 𝜆0 is then a parameter to be determined or, alternatively, 𝜆0 is specified and 𝑥0 determined 283 

as a parameter. We choose the latter approach, since it is most convenient when working with data from 284 

many different model simulations. 285 

  286 

Choosing 𝜆0 is a point to consider: a too high value would include too few data points in the estimation and 287 

a too low value implies the risk that the exceedances 𝑥𝑇 − 𝑥0 cannot be considered as GPD-distributed. We 288 

choose   𝜆0 = 3 in accordance with Berg et al. (2019), which gives 75 data points for estimation for the 25 289 

years long periodstime slices. Hosking and Wallis (1987) investigated the estimation of parameters of the 290 

GPD-distribution and based on this warn against using the often applied maximum likelihood estimation for 291 

a sample size below 500. Instead, they recommend probability-weighted moments and we have followed 292 

this advice here. 293 

 294 

We required a minimum of 3 and 24 h separation between peaks for 1 and 24 h duration, respectively. This 295 

is in accordance with Berg et al. (2019) and furthermore, synoptic experience tells us that this will ensure 296 

that neighbouring peaks are from independent weather systems. We found only a weak influence of these 297 

choices on the results of our analysis. 298 

 299 

In practical applications of EVA the parameters are estimated with large uncertainties due to limited length 300 

of the time series. The threshold has the smallest relative uncertainty, the scale has a larger relative 301 

uncertainty, and the shape has the largest relative uncertainty. Therefore, also the relative uncertainty of 302 

the return levels increase with increasing 𝑇, as can be seen from Eq. 2. 303 

 304 

3.3 Bias adjustments and extreme value analysis 305 

The delta-change and bias correction approaches were introduced in general terms in Section 1. Now we 306 

will formulate EVA-based analytical quantile -mapping based versions of the two approaches. In what 307 

follows 𝑂𝑇 is the 𝑇-year return levels estimated from present-day pseudo-observations during the present-308 
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day period, while 𝐶𝑇 (control) and 𝑆𝑇 (scenario) denote the corresponding return levels, estimated from 309 

present-day and end-21st-century model data, respectively. Finally, 𝑃𝑇 (projection) denotes the end-21st-310 

century return level after bias-adjustment has been applied. 311 

 312 

3.3.1 Climate factor on the return levels (FAC) 313 

The simplest adjustment approach is to assume a climate factor on the return level (FAC) 314 

𝑃𝑇 = 𝑆𝑇 𝐶𝑇⁄⏟  
𝐷𝑒𝑙𝑡𝑎−𝑐ℎ𝑎𝑛𝑔𝑒
𝑐𝑙𝑖𝑚𝑎𝑡𝑒 𝑓𝑎𝑐𝑡𝑜𝑟

∙ 𝑂𝑇 = 𝑂𝑇 𝐶𝑇⁄⏟  
𝐵𝑖𝑎𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛
𝑐𝑙𝑖𝑚𝑎𝑡𝑒 𝑓𝑎𝑐𝑡𝑜𝑟

∙ 𝑆𝑇 

 315 

We note that the delta-change and bias correction approach are identical for the FAC method. 316 

3.3.2 Analytical quantile -mapping based on EVA 317 

 318 

In the EVA-based quantile -mapping, two POT-based extreme value distributions with different parameters 319 

are matched. Being more specific, we want to construct a transformation 𝑥 → 𝑦 defined by requiring that 320 

exceedance rates above 𝑥 and 𝑦, respectively,  are equal for any 𝑥: 321 

𝜆𝑥 = 𝜆𝑦. 322 

This implies, according to (1), that 323 

 324 

𝜆0𝑥[1 − 𝒢𝑥(𝑥 − 𝑥0)] = 𝜆0𝑦[1 − 𝒢𝑦(𝑦 − 𝑦0)], 325 

where 𝒢𝑥 is the GPD distribution of the exceedances 𝑥 − 𝑥0 and 𝜆0𝑥 the associated exceedance rate, and 326 

𝒢𝑦 and 𝜆0𝑦 are the similar entities for 𝑦. 327 

 328 

To simplify, we let  𝜆0𝑥 = λ0𝑦( see Section 3.2) and therefore get 329 

𝒢𝑥(𝑥 − 𝑥0) = 𝒢𝑦(𝑦 − 𝑦0), 330 

from which we obtain the transformation 331 

𝑦 = 𝑦0+𝒢𝑦
−1(𝒢𝑥(𝑥 − 𝑥0)). (3) 332 

 333 

For the delta-change approach (DC), the modelled GPD distribution functions for present-day and end-21st-334 

century conditions are quantile -mapped and the transformation obtained this way is then applied to 335 

return levels determined from present-day pseudo-observations 𝑂𝑇. Thus the corresponding projected 𝑇-336 

year return level is according to Eq. (3) 337 

𝑃𝑇 = 𝑆0 +  𝒢𝑆
−1(𝒢𝐶(𝑂𝑇 − 𝐶0)), 

where 𝒢 𝐶  and 𝒢𝑆 are the GPD cumulative distribution functions for the modelled present-day (control) and 338 

end-21st-century (scenario) data, respectively, and 𝐶0 and 𝑆0 are the corresponding threshold values. 339 

 340 

For the bias correction approach (BC), the present-day (control) and pseudo-observed GPD cumulative 341 

distribution functions are quantile -mapped to obtain the model bias, which is then applied, using eq. (3), to 342 

modelled end-21st-century (scenario) return levels. 343 

 344 

𝑃𝑇 = 𝑂0 + 𝒢𝑂
−1(𝒢 𝐶(𝑆𝑇 − 𝐶0)), 345 
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where 𝒢 𝑂 is the GPD cumulative distribution function for the observations and 𝑂0 the corresponding 346 

threshold. 347 

3.3.3 Reference adjustment methods  348 

The performance of the bias adjustment methods described above will be compared with the performance 349 

of two reference adjustment methods, which are defined below. This is a similar to what is practice when 350 

verifying predictions, where the performance of the prediction should be superior to the performance of 351 

reference predictions, such as persistence or climatology. 352 

 353 

We choose two reference methods. One reference is to simply use, for a given model, the return level 354 

calculated from (pseudo-)observations as the projected return level (OBS), 355 

𝑃𝑇 = 𝑂𝑇 

 356 

Another reference is to use the raw scenario model output data without any adjustment (SCE): 357 

𝑃𝑇 = 𝑆𝑇. 358 

 359 

For an overview of methods, see Table 2 360 

 361 
Table 2. Overview of methods used in the inter-comparison  362 
OBS (Pseudo-)observations (Reference method) 

SCE Raw RCM scenario (Reference method) 

FAC Climate factors factor  on return levels 

DC Quantile -mapped delta-change based on EVA 

BC Quantile -mapped bias correction based on EVA 

  363 

 364 

 365 

3.4 The inter-model cross-validation procedure in detail 366 

The inter-model cross-validation goes in detail as follows: Each of the 𝑁 models are successively regarded 367 

as being pseudo-observations. The individual adjustment methods are calibrated on the present-day parts 368 

of the pseudo-observations and model return levels (present-day and end-21st-century), as appropriate 369 

depending on whether it is a bias correction or delta-change method. The calibration is done as described 370 

above. The adjustment methods are then applied to present-day observation and model data, again as 371 

appropriate, to obtain end-21st-century adjusted return levels. These are  then validated against the end-372 

21st-century return level from pseudo-observations. 373 

 374 

The basic validation metric will be the relative error of end-21st-century return levels for a given duration 375 

and return period 𝑇:  376 

 377 

𝑅𝐸 = |𝑃𝑇 − 𝑉𝑇|/𝑉𝑇  378 

 379 

i.e. the absolute difference between the projected return level 𝑃𝑇 obtained from using adjustment and the 380 

validation return level 𝑉𝑇 estimated from end-21st-century pseudo-observations, divided by the validation 381 

return level. This metric is calculated for every grid point and for every combination of model/pseudo-382 
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observations. Since we have 𝑁 = 19 model simulations in the ensemble, we have 𝑁 × (𝑁 − 1) = 342 383 

different combinations for validating each adjustment method and make statistics of the relative error. This 384 

quantifies the average performance of the different methods. 385 

 386 

User-end scenarios are often constructed as the median or mean from ensembles. We also tested this in 387 

the inter-model cross-validation setup. The calibration is performed as before on each of the remaining 388 

models and adjusted return levels for the end-21st-century calculated. But then the median of these 389 

adjusted future return levels is calculated and this is validated against the future pseudo-observations. 390 

Note that this gives only  𝑁 = 19 different combinations and therefore a less robust statistics compared to 391 

above. 392 

 393 

4 Results 394 

 395 

4.1 Modelled return levels for present-day and end-21st-century conditions  396 

 397 

 398 
Figure 2.  Geographical distribution of the 10 year-return level of precipitation intensity for 1 hour duration for present-day (left) 399 
and relative change from present-day to end-21

st
-century (right). In each grid point, values are the median return level over all 19 400 

model simulations.  401 
 402 
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Figure 2 displays the geographical distribution of the 10-year return level for precipitation intensity of 1 h 425 

duration, calculated as the median return level over all 19 model simulations. The smallest return levels are 426 

mainly found in the arid North African region and to some extent in the Norwegian Sea, while the largest 427 

return levels are found in southern Europe and in the Atlantic northwest of the Iberian Peninsula. 428 

Mountainous regions, such as the Alps and western Norway stand out as have higher return levels than 429 

their surroundings. This supports that the models are not totally unrealistic in modelling extreme 430 

precipitation.  431 

 432 

 There is a general increase in the range of 20-40% from present-day to end-21st-century climatic 433 

conditions. The relative changes are geographically quite uniform across the area. For instance, no evident 434 

difference between land and sea appears. Likewise do the mountainous regions not stand out from the 435 

surroundings. 436 

 437 

 438 

 439 
Figure 3. As Figure 2 but for 24 h duration 440 
 441 

We also show in Figure 3 the median 10-year return level for 24 h duration. Again, the largest return levels 442 

are found in southern Europe and northwest of the Iberian Peninsula. Also, the mountainous regions stand 443 

out with higher return levels even more pronounced than for 1 h duration. The return levels generally 444 

increase from present-day to end-21st-century conditions with around the same percentage as for 1 h 445 

duration and also geographically homogeneous. 446 

Formateret: Skrifttype: 11 pkt
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. 447 

 448 

 449 

 450 
Figure 4. Modelled return levels at 50N/10E (northern Germany, marked with ‘X’ in Figure 1) for present and future for 10 y return 451 
period and 1 h and 24 h durations. Different colours represent the 19 different GCM-RCM simulations listed in Table 1.  452 
 453 

To get a more detailed impression of the data, Figure 4 shows return levels and their changes from present-454 

day to end-21st-century for a grid point in Northern Germany for all 19 model simulations. For 1 h duration 455 

(left panel) return values increase from present-day to end-21st-century in all cases. For 24 h duration (right 456 

panel) typically the return levels increase from present-day to end-21st-century but with some exceptions. 457 

This behaviour is common to all regions. For both durations, we also note the large spread in return levels 458 

within the ensemble. The spread is much higher than the change between present and future for most 459 

models; in other words: a poor signal to noise ratio. This is probably a combined effect of different climate 460 

signals in different models and natural variability (Aalbers et al., 2018). 461 

4.2 Inter-model cross-validation 462 

 463 

In the following, we will present results using two different types of display. First, we will use spatial maps 464 

of the median relative error, calculated from all combinations of model/pseudo-observations. Second, we 465 

will, for each adjustment method and for each combination of model/pseudo-observations, calculate the 466 

median relative error over each of the eight PRUDENCE sub-regions defined in Christensen and Christensen 467 

(2007) and shown on Figure 1. For each region we will illustrate the distribution of the relative error across 468 

all combinations of model/pseudo-observations by showing the median and the 5/95-percentiles of this 469 

distribution.   470 

 471 

4.2.1 Results for 1 h duration 472 

 473 
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Figure 5 shows the median, across all model/pseudo-observations combinations, the relative error for all 474 

five methods for 1 h duration and 10 y return period. 475 

 476 

 477 
 478 
Figure 5. Geographical distribution of the relative error of end-21

st
-century 10 year return level for 1 h duration precipitation 479 

intensity from the inter-model cross-validation. Colours show the median of the relative error calculated over all model/pseudo-480 
observations combinations. Panels are for the different adjustment methods. 481 
 482 

First we look at the reference methods. Relative errors from the OBS method are in the range of 20-40%.  483 

Lowest values are found in the Mediterranean, western France and the Atlantic west of the Mediterranean; 484 

highest values in the Atlantic west of Ireland and in Scandinavia. The SCE method has errors in the interval 485 

25-45%, lowest values in the Atlantic west of Ireland; largest values over parts of the Atlantic and northern 486 

Africa. The two reference methods give on the whole rather similar results, but the OBS method slightly 487 

outperforms SCE in the south, while the opposite is true in the north. 488 

 489 

The relative error of FAC is below 20% in most places. It is everywhere smaller than the relative error of the 490 

reference methods OBS and SCE. The DC method has a relative error comparable to (e.g. Western France, 491 

Western Iberia and Eastern Atlantic) or larger than (in particular in Northern Africa) that of FAC. That said, 492 
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the concept of relative error should be used with care in an arid region, such as Northern Africa. But from 493 

this result, it is not justified to use the more complicated DC, in favour of the simpler FAC. Finally, the 494 

relative error of BC is everywhere above both DC and FAC, indicating the poorest performance of all 495 

methods considered. 496 

 497 

 498 
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Figure 6. Statistical distribution (median and 5
th

/95
th

  percentile) of the relative error of the inter-model cross-validation for 1 hour 499 
duration for 1 y, 10 y and 100 y return periods.  Panels represent PRUDENCE sub-regions shown in Figure 1.  Each colour represents 500 
a adjustment method (see Table 2). 501 
 502 

The statistical distribution of the relative error is shown in Figure 6 for the eight PRUDENCE sub-regions 503 

(see Figure 1). We first note that the distribution of relative error is shifted towards higher values for larger 504 

return periods, as expected. Next, we note that the two reference methods, OBS and SCE, behave 505 

differently. SCE generally has a little larger median relative error, but the 95th percentile is much larger for 506 

SCE than for OBS, in particular for large return periods. Thus, OBS overall performs better than SCE, 507 

meaning that using present-day pseudo-observations to estimate projected end-21st-century return levels 508 

yields better relative error than using raw modelled scenario data. 509 

 510 

The FAC method generally has the best overall performance, both in terms of median and 95th percentile of 511 

the relative error. The DC method has a slightly poorer performance than FAC, both in terms of the median 512 

and the 95th percentile of the relative error. Finally, BC has poorer performance than DC, when comparing 513 

the median of the relative error and in particular for the 95th percentile. 514 

 515 

In summary, for 1 h duration, the method with the best performance is using a climate factor on the return 516 

levels (FAC). This method outperforms both reference methods and the more sophisticated methods based 517 

on quantile -mapping, DC and BC, the latter having the poorest overall performance of them all. Note that 518 

DC is comparing GPDs from the same model, whereas BC is comparing GPDs from different models. If the 519 

difference, in terms of GPD parameters, between two models in the present-day climate is typically larger 520 

than the difference between the same model in present-day and end-21st-century climate, it can explain 521 

the different results. 522 

 523 

 524 

4.2.2 Results for 24 h duration 525 

 526 
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 527 
Figure 7. As Figure 5Figure 5 but for 24 h duration. 528 
 529 

For 24 h duration (see Figure 7 ), OBS has the lowest median relative error (less than 30%) in most regions 530 

of all the adjustment methods, while SCE has higher relative error in the interval 30-60% approximately, 531 

with the highest values in North Africa. FAC has relative errors in-between those of OBS and SCE. Of the 532 

quantile -mapping methods, DC has relative errors in the interval 20-80% approximately, larger than FAC in 533 

most places, and finally BC has, as for 1 h duration, the largest median relative errors of all the methods. 534 

 535 
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 536 
Figure 8. As Figure 6 but for 24 h duration 537 
 538 

As for the 1 h duration, we also compare the entire statistical distribution of the relative error of the 539 

different adjustment methods for all three return periods (Figure 8), and again, both median and 95th 540 

percentile of the relative error increases for larger return periods, as expected. Further, OBS seems, 541 

surprisingly, to have a small median relative error and the smallest 95th percentile of all methods 542 

considered for all sub-regions. SCE has a median not too different from that of OBS, but the 95th percentile 543 
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is much larger. Similar characteristics hold for FAC. The quantile -mapping methods DC and BC have slightly 544 

larger median values, but the 95th percentile is smaller than for FAC. All these characteristics hold for all 545 

sub-regions. 546 

 547 

4.2.3 Ensemble median 548 

Also inter-model cross-validation of pseudo-observations against model ensemble median, as described in 549 

Section 3.4, was carried out. For duration 1 h, distribution of the relative error is shown in Figure 9. By 550 

comparing with Figure 6, the distribution of the relative error does not change much overall.  However, for 551 

many of the sub-regions considered and for the longer return periods, the FAC and BC have a smaller 95th 552 

percentile for cross-validation against model ensemble means, than against individual models.  553 

 554 
Figure 9. As Figure 6Figure 6 but for inter-model cross-validation against ensemble medians. 555 
 556 

Also for 24 h duration the distribution of the relative errors does not change much when shifting to 557 

validation against ensemble median (not shown).  558 

4.3 Further analysis on conditions for skill 559 

 560 
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To get further insight into the difference in performance between hourly and daily precipitation, we 561 

consider for a given return period the relationship between the bias factor for present-day 𝐵𝑃,𝑇 = 
𝐶𝑇

𝑂𝑇
 and 562 

end-21st-century 𝐵𝐹,𝑇 = 
𝑆𝑇

𝑉𝑇
 for all model/pseudo-observations combinations (see Figure 10). 563 

 564 

 565 
Figure 10. Relationship between present-day and end-21

st
-century bias factors of 10-year return levels for Mid-Europe sub-region 566 

for all pseudo-observation/model combinations. Left panel: 1 h duration and right panel: 24 h duration. Numbers in upper left 567 
corners are the 𝑹 indices. See text for details. 568 
 569 

In this figure, the relationship between present-day and end-21st-century bias factors appears more 570 

pronounced for 1 h duration than for 24 h duration. That said, it must be borne in mind that if the point 571 

(𝑥, 𝑦) is in the plot, so is the point (1/𝑦, 1/𝑥), and this implies an inherent tendency to a fan-like spread of 572 

points from (0,0), as seen on both plots. 573 

 574 

To quantify the strength of the above relationship, we define an index: 575 

𝑅 = 〈
|𝐵𝐹−𝐵𝑃|

(𝐵𝐹+𝐵𝑃)/2
〉, 576 

where 〈∙〉 means averaging over combinations of model/pseudo-observations. This index is an extension of 577 

the index introduced by Maurer et al. (2013). It is the ensemble average of the relative absolute difference 578 

between the present-day and future bias. A value of 𝑅 = 0 means these biases are equal, i.e. perfect 579 

stationarity; and the smaller the value of 𝑅, the closer to stationarity (in an ensemble sense). 580 

 581 

Values of 𝑅 are given in the upper left corner of each panel of Figure 10 and they also support the partial 582 

relationships described above, and a stronger one for hourly duration. These relations are important since 583 

they could explain the generally good performance of the FAC method seen in the previous section. 584 

Suppose that 𝐵𝑃,𝑇 = 𝐵𝐹,𝑇 , then 585 

𝑃𝑇 =
𝑆𝑇

𝐶𝑇
𝑂𝑇 = 𝑆𝑇

𝑂𝑇

𝐶𝑇
= 𝑆𝑇𝐵𝑃 = 𝑆𝑇𝐵𝐹 = 𝑆𝑇

𝑉𝑇

𝑆𝑇
= 𝑉𝑇  586 
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 587 

and the FAC method will therefore adjust perfectly. 588 

 589 

We also note that daily data, due to the summation, would have less erratic behaviour than hourly and 590 

therefore we would expect any relationship to be less masked by noise for daily data than for hourly data 591 

from purely statistical grounds. Therefore, any explanation to why it is opposite should probably be found 592 

in physics or details of modelling. We will discuss this further in Section 5.3. 593 

5 Discussion 594 

 595 

5.1 Relation with other studies  596 

 597 

The study by Räty et al. (2014) touches upon related issues to ours. However, our study includes smaller 598 

temporal scales (hourly and daily) than does their study  and higher return periods (up to 100 years vs. the 599 

99.9th percentile of daily precipitation corresponding to a return period of around 3 years). Nevertheless, 600 

the two studies agree in their main conclusion; namely that applying a bias adjustment seems to offer an 601 

additional level of realism to the processed data series, including in the climate projections, as compared to 602 

using unadjusted model results. The two studies both support, in agreement with our study, the somewhat 603 

surprising conclusion that using present-day (pseudo-)observations as the scenario gives a skill comparable 604 

to that of the bias adjustment methods. 605 

 606 

Kallache et al. (2011) proposed a correction method for extremes, CDF-t, and obtained good validation 607 

result with calibration/validation split of historical data from Southern France. The CDF-t method was 608 

applied by Laflamme et al. (2016) on daily New England data and concludes that “downscaled results are 609 

highly dependent on RCM and GCM model choice”.  610 

 611 

5.2 Convection in RCMs 612 

The grid spacing of present state-of-the-art RCMs available in large ensembles, such as CORDEX, is around 613 

10 km, and at this resolution it is necessary to describe convection through parameterizations. This is 614 

obviously an important deficit for our purpose, since this could represent a systematic bias in all our 615 

simulations and therefore violate our underlying assumptions that the individual model simulations and the 616 

real-world observations behave similarly in a physical sense. Thus, we do not promote naively applying the 617 

presented adjustment methods to hourly data from these models. Instead, the present work should be 618 

seen as a statistical exercise and the methods can in the future be applied to convection permitting model 619 

simulations that better represent the convective process. The results from the present work would apply 620 

equally to that case. 621 

 622 

With the advent of convective-permitting models, a more realistic modelling of convective precipitation 623 

events is within reach and a change in the characteristics of such events is seen (Kendon et al., 2017; 624 

Lenderink et al., 2019; Prein et al., 2015). This next generation of convection-permitting RCMs with a grid 625 

spacing of a few km allows a much better representation of the diurnal cycle and convective systems as a 626 
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whole (Prein et al., 2015). With that in mind, we foresee redoing the analysis when a suitable ensemble of 627 

convective-permitting RCM simulations becomes available. 628 

 629 

5.3 Stationarity of bias 630 

The success of applying bias adjustment to climate model simulations is linked to the biases being 631 

stationary, i.e. present and future biases being more or less identical. In Section 4.3 we showed (in Figure 632 

10) that this was the case for 1 h duration and less so for 24 h duration in our pseudo-reality setting. Such a 633 

relationship is an example of an emergent constraint (Collins et al., 2012). This is a model-based concept, 634 

originally introduced to explain that models which have a too warm (cold) present-day climate tend to have 635 

a relatively warmer (colder) future climate. The reason for this is that it is the same underlying physics 636 

which generates the present-day and future temperatures (Christensen and Boberg, 2012). 637 

 638 

We suggest that our observed emergent constraints could be explained in a similar manner; namely as a 639 

result of the Clausius-Clapeyron relation linking atmospheric temperature changes to changes in its 640 

humidity content and thereby precipitation changes. The change prescribed by the Clausius-Clapeyron 641 

equation is usually termed the thermodynamic contribution. In addition to this, there is a dynamic 642 

contribution and this may explain the differences between the hourly and daily relation seen in Figure 10. 643 

The rationale is that hourly extremes are entirely due to convective precipitation events with almost no 644 

dynamic contribution (Lenderink et al., 2019), while daily extremes are a mixture of convective events and 645 

large-scale strong precipitation, of which the latter has a more significant dynamic contribution (Pfahl et al., 646 

2017), causing the less marked emergent constraint for the daily time scale. This interpretation is also 647 

supported in Figure 4Figure 4, in which daily precipitation sees some ‘crossovers’ (future return level 648 

smaller than present), whereas hourly precipitation does not have any crossovers. 649 

 650 

5.4 The spatial scale 651 

In the definition of model bias it is tacitly assumed that the observational dataset has the same spatial 652 

resolution as the model data. In practice, however, it is rarely possible to separate the bias from a spatial 653 

scale mismatch. For instance, if we compare modelled precipitation, which represents averages over a grid 654 

box, with rain gauge data, which represent a point, there can be a quite substantial mismatch for extreme 655 

events (Eggert et al., 2015; Haylock et al., 2008). Therefore, if the bias is adjusted towards such point 656 

values, it may lead to further complications (Maraun, 2013).  657 

 658 

Sometimes though, it is desirable to include the scale mismatch in the bias adjustment. Many impact 659 

models, e.g. hydrological models, are tuned to perform well with local observational data as input. This 660 

presents an additional challenge if this impact model is to be driven by climate model data for climate 661 

change studies, since the climate model will have biases in its climate characteristics (mean, variability, etc.) 662 

compared to those of the observed data. Applying the adjustment step, the hydrological model can rely on 663 

its calibration to observed conditions (Haerter et al., 2015; Refsgaard et al., 2014). 664 

 665 

5.5 Adjustment methods not included in the study 666 

Only the basic adjustment methods have been included in our study. The simple climate factor approach 667 
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has been applied in numerous hydrological applications (DeGaetano and Castellano, 2017; Sunyer et al., 668 
2015) and others. We also wanted to test quantile -mapping approaches, which in extreme value theory 669 
takes the form of a parametric transfer function. This we have applied in two flavours in the spirit of (Räty 670 
et al. (2014). Finally, we wanted to benchmark against the ‘canonical’ benchmark methods: observations 671 
and raw model output. 672 
 673 

There is a myriad of more specialised methods, each tailored to account for a particular deficit of the 674 

simpler methods. First, there is the issue whether it for precipitation is more reasonable to map relative 675 

quantile changes rather than absolute ones (Cannon et al., 2015). It has also been argued that a bias 676 

correction method should preserve long-term trends, i.e. the ‘climate signal’ and only adjust the shorter 677 

time scales, as extensively discussed in (Cannon et al., 2015). Then multivariate methods have been argued 678 

for and applied in order to preserve relationships between variables (Cannon, 2018), and nested methods 679 

to account for different biases for different time scales (Mehrotra et al., 2018). Also methods to correct for 680 

systematic displacement of variable features in complex terrain have been suggested and applied (Maraun 681 

and Widmann, 2015). Finally, Li et al. (2018)  adjusts stratiform and convective precipitation separately 682 

instead of adjusting the total precipitation. In this way, any future change in the ratio between the two 683 

types of precipitation is accounted for. 684 

 685 

It could be interesting to examine the above methods in future studies, though we acknowledge it would 686 

be a quite extensive work. We can at present only guess about the outcome of such work but the more 687 

refined methods may not perform too well in the inter-model cross-validation setting. The reason for this 688 

suspicion is that these methods, while being more elaborate, in most cases also have more parameters to 689 

be estimated, implying a higher risk of overfitting. An argument in favour of this is that the present study 690 

shows that the more elaborate quantile  mapping methods DC og BC do not outperform the simpler FAC 691 

method.  692 

6  Conclusions 693 

 694 

Based on hourly precipitation data from a 19-member ensemble of climate simulations we have 695 

investigated the benefit of bias adjusting extreme precipitation return levels on hourly and daily time scales 696 

and evaluated the different methods. This is done in a pseudo-reality setting, where one model simulation 697 

in turn from the ensemble plays the role of observations extending into the future. The return levels 698 

obtained from each of the remaining model simulations are then adjusted in the present-day period, using 699 

different adjustment methods. Then the same adjustment methods are applied to end-21st-century model 700 

data to obtain projected return levels, which are then compared with the corresponding pseudo-realistic 701 

future return levels. 702 

 703 

The main result of this inter-comparison is that applying bias adjustment methods improves projected 704 

extreme precipitation return levels, compared to using the un-adjusted model runs. Can an overall superior 705 

adjustment methodology be appointed? For hourly duration, the method to recommend (having the 706 

smallest relative error) is the simple climate factor approach FAC, which is better in terms of the relative 707 

error than the more complicated analytical quantile  mapping methods based on EVA, DC and, in particular, 708 

BC. For daily duration, the OBS method performs surprisingly well, having the smallest 95th percentile of 709 
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the relative error. Furthermore, the quantile mapping methods perform better than FAC, with DC having 710 

the smallest relative error. These conclusions hold regardless of the sub-region considered. We also cross-711 

validated against model ensemble means; this gave in general similar results without significant changes in 712 

the distribution of the relative error. 713 

 714 

Finally, we registered emergent constraints between present-day and end-21st-century biases. This was 715 

more pronounced for hourly than for daily time scales. This could be caused by hourly precipitation being 716 

more directly linked to the Clausius-Clapeyron response, but this requires more clarification in future work. 717 

 718 
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