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Dear editor,  

We appreciate very much the comment from the referees and from our collegues posting a SC. These have 

been extremely useful for improving the manuscript.  Below, you find all comments comments with our 

responses in italic. Section numbers and line numbers refer to the marked-up version of the revised 

manuscript. 

Anonymous Referee #1: 

This is an interesting contribution involving a lot of work. I have a few general issues that the authors 

should address in their revisions, followed by some specific comments. Firstly - there needs to be a better 

discussion about the possible problems in using the pseudo-reality setting for assessment of precipitation 

extremes. Most models have a tendency to increase the probability of occurrence of rainfall, thereby 

increasing the size of the sample that could potentially constitute extremes. The authors have avoided this 

issue to some extent by performing a pseudo-reality assessment. I believe some discussion should be 

included as this could create difficulties in taking the findings from here to real applications. 

We have added/modified the intro (lines 172-180) about different validation approaches and their 

pros and con’s. We recognize that models do have a tendency to increased probability of rainfall. As 

for the last part of the comment, we determine our POT threshold by having three events/year 

instead of having a fixed threshold. Therefore, we always have the same pool of extremes, 

regardless of model and present-day/end-21st-century.  

 

Secondly, the paper is coming across as a bit of a report (and I sympathise with the authors as they do have 

a lot of information to present). Perhaps a more creative discussion for differences in mountaineous areas 

versus not, coastal areas versus not, and daily durations versus hourly would be useful. I note the spatial 

resolution is 11km. Daily extremes should be simulated better at this resolution. 

Thanks for the advice. We have worked through the text and realize that maybe you think of Section 

4.1. Therefore, we have extended the description of Figures 2 and 3. Furthermore, these figures 

have been modified, caused by a suggestion from another referee. 

 

Also, no mention is made of the causative GCMs that are interpolated using the RCMs. There are different 

extent of biases in these. Some discussion should be included on this as well.  

 We have introduced some text on this in section 2, mentioning good performance of GCMs and the 

argument for using ‘ensemble of opportunity’ in favour of selection procedures. 

 

Thirdly, the authors have missed with publications on this topic by Jingwan Li. Relevant papers are: Li, J., et 

al. (2017). "A comparison of methods for estimating climate change impact on design rainfall using a high-

resolution RCM." Journal of Hydrology 547: 413-427. Li, J., et al. (2017). "A comparison of methods to 



2 
 

estimate future subdaily design rainfall." Advances in Water Resources 110: 215-227. Li, J., et al. (2018). 

"Addressing the mischaracterization of extreme rainfall in regional climate model simulations – A synoptic 

pattern based bias correction approach." Journal of Hydrology 556: 901-912. Li, J., et al. (2018). "Can 

Regional Climate Modeling Capture the Observed Changes in Spatial Organization of Extreme Storms at 

Higher Temperatures?" Geophysical Research Letters 45(9): 4475-4484. 

I am a co-author on these papers hence have a conflict here. But I think these are very relevant to what the 

authors are attempting to do here, as she used an even finer resolution RCM with a high density of 

observed gauges at the same time resolution (hourly). The bias correction approach she adopted 

acknowledged the bias in simulating convection within the RCMs as well as the quantile bias convective and 

non-convective rainfall were exhibiting. 

We were not aware of these papers. We are now referring to the two papers “A comparison …” in 

the introduction (line 158). Our manuscript evaluates basic adjustment methods only. We know that 

there is a myriad of special-designed adjust methods, including the one described in the paper 

“Addressing the mischaracterization … “. We have added a section (5.5, lines 688-714)  discussing 

which methods were/were not included in our study. The paper "Can Regional Climate Modeling 

Capture …” about the spatial extent of extreme precipitation events is in our opinion not within the 

scope of our manuscript.  

 

Now to the specific comments: 

 

line 142 - missing section marker 

Thanks, has been fixed. 

 

line 225 - there is another way to create the partial series sample. It is to acknowledge that there may be a 

bias in the proportion of events that are say convective. If this proportion is biased, one is forming a biased 

sample effectively by selecting the series the way adopted here. This issue is the focus of Li, J., et al. (2018). 

"Addressing the mischaracterization of extreme rainfall in regional climate model simulations – A synoptic 

pattern based bias correction approach." Journal of Hydrology 556: 901-912. 

In the manuscript we evaluate the basic methods (see line 690). The work described in the 

suggested paper is not within our scope (see also above). 

 

line497 - If the proportion of convective extreme events increases in the future (as it is expected to) then 

ignoring any bias in the representation of convection as discussed above, will create a non-stationary bias. 

This can be addressed though using the above mentioned approach. 
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The aim of our work is to evaluate the simple bias adjustment methods for extremes, as also 

explained above. More sophisticated methods are not included in this study, but the suggested 

paper can go into the discussion on future work. 

 

Referee #2:  
 

General comments 

 

In their contribution, Schmith et al. (2020) discuss the robustness of 

different bias-adjusting methods for (sub)daily rainfall extremes. This yields interesting 

results and strong links with the context of convection-permitting models and emergent 

constraints. Yet, there are some aspects about whom I’d like a deeper discussion. 

 

We appreciate this positive overall judgement of our manuscript and are positive towards adding 

more discussion to it. 

 

The first aspect is the practical use of this study. This is foremost linked with the choice 

of bias-adjusting methods. Although the use of return periods is perfectly justified from 

a hydrological point of view, I’ve seen few studies that actually use bias adjustment 

directly on the return periods. As such, I’d like to see a larger discussion on the choice 

of bias-adjusting methods.  

 

Our aim has been to evaluate basic adjustment methods. We have added a new subsection in the 
discussion (lines 588-714) summarizing the more elaborate quantile mapping methods. 

 

 

Given a well-justified choice, I understand the use of these 

simple methods, yet I’d like to see more discussion on how this relates with more 

complicated, but related bias-adjustment methods, such as e.g. CDF-t (Michelangeli 

et al., 2009), standard QM, QDM (Cannon et al., 2015), : : : Would it be possible to 
discuss possible consequences for the use of these methods for the adjustment of 

subdaily precipitation extremes? This could fit in the second paragraph of Section 5.1, 

which seems rather limited and abrupt at this point. 

 

In a new sub-section (lines 588-714) we discuss the use of more elaborate methods. We emphasize 
that these methods build on alternative, but not necessarily more correct, assumptions. It would be 
interesting to test these methods in our framework, but we reserve this to future publications. We 
also note that our investigation do not generally find that the more elaborate methods (quantile 
mapping) outperform the simpler climate factor approach. 

 

 

A last point related to the practical use is that I missed a more thorough explanation of why the observations 

perform well, why this version of quantile mapping performs poorly. Although this is discussed slightly in 

Section 4.3, I wonder if more details or, if possible, practical guidelines could 

be given in the discussion. 

 

A thorough reveal of causes for some models performing well would require quite some extra 
analysis which cannot be accommodated within this manuscript. We may speculate that the cause 
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of observations performing so well as projection is related to the poor signal-to-noise ratio, as seen 
in Fig. 4. The relatively poor performance of the quantile-matching methods could be caused by the 
many extreme value distributions to be estimated, each of which are very uncertain. We have added 
a block of text on this in the Conclusions section. 

 

 

A second aspect is that some concepts in the Introduction seem to be accepted as-is, 

whereas they could deserve a deeper discussion. A first example of this is the discussion 

of stationarity in the introduction. The references are limited in time, whereas more 

recent papers expanded this subject, such as Kerkhoff et al. (2014) and Van Schaeybroeck 

and Vannitsem (2016) on the type of bias relationship and Chen et al. (2015), 

Velázquez et al. (2015), Wang et al. (2018) and Hui et al. (2019), who discussed the 

uncertainty introduced by bias nonstationarity. As the stationarity of the bias is an important 

part of the discussion, I think the paper could benefit from these perspectives. 

 

In the original submitted manuscript, stationarity was mentioned and briefly discussed in the 
introduction. We have written a new discussion and updated the references (lines 136-147). 
 

 

A second, smaller example is the use of a delta change based method. While the 

method isn’t completely discredited, there has been some discussion whether it’s use 

for climate change is not too dependent on the assumption that the temporal structure 

of the time series will not change from present to future (e.g. Johnson and Sharma 

(2011), Kerkhoff et al. (2014)). It would thus be interesting to read a deeper discussion 

on the limitations of the methods 

 

We are aware of the assumption about unchanged temporal structure of time series in the delta 
change approach, though this is only 100% true in the simplest version of a shift of the mean, in the 
quantile mapping version temporal structure may change. Furthermore, our MOS of extreme levels 
do not yield any time series as output. Therefore, we think that a discussion as suggested is not 
relevant for our manuscript. 
 

 

 

Specific comments 

 

L. 37: ‘quantile-mapping’ is used here, whereas in the remainder of the abstract (and 

the paper) ‘quantile-matching’ is used. I’d suggest to edit this for coherence, but to also 

use ‘quantile mapping’ throughout the paper, as it has been the most used term for this 

type of bias adjustment during the last few years. 

 

Certainly, the nomenclature should be consistent throughout. We have followed your advice and 
replaced ‘quantile matching’ to  ‘quantile mapping’ throughout. 

 

 

L. 75-82: this paragraph is very scarce on references. Although some of the necessary 

references are given in the discussion, I think it would be good to also have the 

reference to the papers about CPMs in this paragraph. 

 

Ok, we have introduced the appropriate references 
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L. 84-91: The terminology in this paragraph could be reconsidered. Although it is debatable 

whether or not to consider delta change as a bias adjustment approach (the 

latest textbook, Maraun and Widmann (2018), is on the edge), it feels very strange to 

read ‘bias correction’ as a subset of ‘bias adjustment’ approaches. The use of ‘bias 

adjustment’ as a replacement of ‘bias correction’ has been rising during the last few 

years, as it is clearer that the methods are statistical and cannot correct all climate 

model biases. Thus, I would withhold from the use of ‘bias correction’. Better terminology 

seems MOS, with delta change and bias adjustment as possible subcategories, or 

bias adjustment with delta change and bias adjustment s.s., although the exact choice 

is personal. 

 

It is indeed difficult to find a coherent terminology - with Maraun&Widman, there is a ‘Babylonian 
confusion’. We have decided to use the generic term ‘adjustment’ (sometimes bias adjustment’ to 
prevent confusion) with sub-categories ‘bias correction’ and ‘delta change’ throughout the revised 
manuscript. In the main headline, though, we keep ‘bias correction’ as the generic term for better 
readability.  

 

 

L. 253- 286: Although the method described here is indeed based on the same principles 

as XCDF-t as used by Kallache et al. (2011) and Laflamme et al. (2016), it’s not 

entirely clear how the new method is created by adapting the former. I think the link 

between both methods should be more detailed, so users can retrace it more easily 

and infer the strengths and limitations. Especially as it is specifically mentioned that 

the method ‘will be adapted to our needs below’, the adaptation seems rather limited. 

 

Our method was originally inspired by XCDF-t, but we make the more direct approach and define 
transformations, which are the used to correct the return levels. To avoid any confusion, we have 
chosen to remove the first lines of section 3.3.2 

 

 

L. 448-453: the explanation of the use of the index by Maurer et al. (2013) should 

be expanded. Firstly, it’s unclear to me where the terminology ‘measure of relative 

spread’ is derived from, as it is not named as such in the original paper. Secondly, 

the interpretation of the R-values is not discussed, although this is quite important: 

values < 1 indicate that the difference in biases is smaller than the mean bias of both 

periods, whereas values >1 indicate that the difference in biases is larger, which could 

have a potentially large impact. As both values are quite far < 1, the bias seems quite 

stationary, but in your discussion you state that the 24h duration is ‘less stationary’. 

Without giving this numerical explanation, this statement is hard to interpret correctly. 

 

We have expanded the explanation of R, and its interpretation, as suggested. Certainly, both R-
values are below 1. However, it is the limit of R=0 which is a sign of a stationary bias factor and this 
is the basis of our interpretation and discussion. 

 

 

L. 504-505: This last sentence does not seem to fit with the rest of the paragraph. I 

think that, with some rewriting, this could become clearer. 

 

This reference doesn’t really belong here, so we have deleted this sentence. 

 

 

Technical comments 
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we will adhere to the technical comments given below 
 

L. 48: ‘Global climate models (GCMs) is : : :’ -> are      done 

 

L. 110-111: ‘Only a few examples has : : :’ -> have       done 

 

L. 112-113: ‘: : : applying bias adjustment improve projections’ -> improves   done 

 

L. 142: the section marker should be corrected      ok 

 

L. 194: I can’t find the source of this problem, should not be referenced with co-authors. 

The official webpage by Springer (https://link.springer.com/book/10.1007%2F978-1- 

4471-3675-0#about) only mentions one author (Stuart Coles) and there is no mention 

of other authors elsewhere in the book. So unless I’m missing something, I think the 

more correct reference is Coles (2001).  Yes, correct, has been changed. 

 

L. 232-243: ‘Hosking and Wallis (1987) : : : warns : : : . Instead, he recommends : : :’. 
Shouldn’t these sentences be plural, or are you referring to ‘the paper’ in these sentences 

instead of ‘the authors’?  Probably one should refer to the authors, we have corrected 

 

L. 254: ‘Kallache et al. (2011) and Laflamme et al. (2016) applies’ -> apply, as this 

verb is referring to multiple papers and authors. done 

 

L. 265: ‘ths’ -> ’the’ done 

 

Figure 6 and Figure 8: Would it be possible to remove the underscores from the plot 

titles?  Done 
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Referee #3 

Overall comment 

 

Overall, I recommend a better embedding of the manuscript in the current literature, 

both in introduction (e.g. much work has been done on comparing different bias correction 

methods, which could be included) and the section 5.1 could easily be expanded. 

I also would like to see expansion on why different methods give different results. There 

seems to be no analysis or discussion of what features of different methods contribute 

to greater or lesser skill. In my view the manuscript would be improved if this were 

addressed. 

 

We will meet this advice of a more thourough embedding in the relevant. This will be followed by 
adhering to suggestions given by in particular referee #2. To disentangle why different methods give 
different results requires more analysis requires extensive analysis and has to be left to future work. 
We have given an appetizer of this kind of work in section 4.3. 

 

 

Minor comments 

 

105-106: It is true that future model performance cannot be tested directly. However, 

split-sample testing is probably the best tool we have for this, particularly when a suspected 

climate change signal is present in recent historical data. 

 

as we see it, split-sample testing is an alternative to our approach; not neccesarily the best one. We 
have included a paragraph in the introduction discussing different validation approaches and their 
pros and con’s (in lines 172-180), in accordance with suggestion from referee #1.  
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Figure 2,3: I find the colour scale used in these figure inappropriate. Yes, extreme precipitation 

events are projected to increase, but the scale make the increases look quite 

alarming. A percentage scale, and/or scale starting at zero would be more appropriate. 

 

We have reacted to this piece of advice by showing instead maps of present-day and maps of the relative 
change 
 

372-373, this sentence describing relative errors is a little unclear, I would suggest 

writing “Relative errors from the OBS method are in the range of 20%-40%” or similar. 

 

  Done 

 

395 and elsewhere: I’d use “percentiles” rather than “fractiles”, e.g. 95th percentile 

rather than 0.95 fractile 

 

We agree that percentile is more widely used according to Google; therefore we have followed this advice. 
We have also changed all relative measures to percent throughout. 
 

 

The writing is generally of a high quality, but with a few corrections needed, such as: 

48: “GCMs are”   yes, thank you 

182: “statistics are”   yes, thank you 

I recommend a thorough proofread to catch any other corrections 

 

Short comment #1  
 

 

Comment on ‘Identifying robust bias adjustment methods for extreme precipitation in a 

pseudo-reality setting’ T. Kelder, R. L. Wilby, T. Marjoribanks, L. Slater 

 

Torben Schmith and co-authors address a complex, but important topic. Climate model 

corrections typically assume stationary biases between simulated and observed extreme 

precipitation but, in practice, such biases may well be nonstationary (i.e. distributions 

may shift significantly in the future). Robust evaluation of bias correction 

methods is hampered by the inability to analyse future model biases, since there are 

obviously no observations of the future. To address this issue, the authors use model 

simulations as a pseudo-reality of the present and future climate to evaluate the ro- 

bustness of various bias correction methods within these ‘virtual’ worlds. 

The authors processed a large amount of data from the EURO-CORDEX ensemble 

and we commend them for this interesting research and their purposeful discussion of 

findings. The paper concludes by recommending a preferred bias correction method 

for climate projection. We offer a few suggestions and raise some issues for further 

elaboration by the authors. 

 

1. Given that the analysis is based on an ensemble of climate model experiments, the 

logic should be explained for treating model-to-model biases in extreme precipitation 

as equivalent to model-to-observation biases. The paper acknowledges the limited 

ability of _10km resolution model simulations at representing convective processes. 

Hence, more explanation is needed for an unfamiliar reader on why model experiments 
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can be used to draw conclusions about the best bias correction methods on 

hourly timescales, if one cannot trust the model simulations to realistically represent 

convective processes. 

 

Acknowledging that the models represent convection imperfect, we are actually better off 
evaluating the bias correction methods between models than between model and observation. We 
are here addressing the statistical nature of the corrections, not the physical processes which bias 
correction methods are not suitable for anyway. We do not promote, naively applying these 
methods to hourly data from these models. However, the presented methods can in the future be 
applied to convection permitting model simulations that better represent the convective process, 
and results from our current manuscript would apply equally to that case. We have added a 
sentence about this in lines 636-640 of the revised manuscript. 
 

 

2. Related to #1, a few cautionary remarks could be made about some of the GCMs 

used to drive the CORDEX experiments (see: Liepert and Lo, 2013). The realism of 

the downscaled extreme precipitation depends on the realism of the boundary forcing. 

Use of an ‘ensemble of opportunity’ is not unusual, but some studies narrow the choice 

of candidate models (and hence uncertainty) based on physical realism tests (e.g. 

McSweeney et al., 2015; Rowell, 2019). 

 

We only partly agree with this. The large-scale atmospheric state is certainly determined by the 
boundary forcing; though, the RCM is able to modulate it. Distribution of precipitation intensities 
are to a large extent determined by the RCM (see e.g. (Christensen and Kjellström 2020)). This is 
particularly true for the high-extreme end of the spectrum. 
 

We are aware of the use of selection procedures put forward in the cited papers. There is, however, 
no simple quality index that can be generally applied. Any discrimination of GCMs depends depend 
on area, season, and the meteorological field and property being investigated (Gleckler et al. 2008); 
e.g. their Fig. 9). Furthermore, these tests and selection procedures are based on subjective 
criteria and come with major caveats that impact the uncertainty range largely (Madsen et al. 
2017). We therefore choose, in accordance with most other similar studies, to use ‘ensemble of 
opportunity’ for the present study. We now discuss that in lines 235-243. 

 

 

3. In the inter-model cross-validation setup, every model/pseudo-reality combination is 

used. This setup can be useful for assessing relationships between present and future 

bias correction factors (e.g. Fig. 9), but does not mimic climate projections, where the 

ensemble mean, and range are typically used. In the present setup, a future projection 

is treated as a deterministic prediction, rather than a probabilistic projection. Perhaps 

use of the climate ‘pseudo-observed’ run might be favoured over future predictions 

simply because there is less variability in the present climate? How sensitive are the 

results to taking the mean of all ensemble members minus the ‘pseudo-reality’ member 

(e.g. Fig. 3 in Räty et al. 2014)? This has the added benefit of involving much fewer 

permutations (and hence calculations). 

 

This is a good idea, which we have now implemented in our analysis suite. Results of this are 
included in the revised manuscript.  

 
 

4. The range of the projection matters. For example, Fig. 4 shows that there are 
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future scenarios that exceed the present climate range. Hence, the worst-case 10-year 

precipitation event from the ‘pseudo-obs’ range would not include plausible future 10- 

year events. Therefore, more qualification is needed in the Abstract and Conclusions to 

guard against this possibility and the potentially misleading assertion that “the superior 

approach is to simply deduce future return levels from observations”. Overall, the 

headline findings of the research could be presented in more nuanced ways, especially 

within the Abstract. 

 

We are afraid that we do not understand the central statement of this point (“Hence, the worst-
case …). Therefore, we are not able to comment on it. 

 

 

5. The Abstract and Introduction assert that “Severe precipitation events are usually 

projected using Regional Climate Model (RCM) scenario simulations.” We gently remind 

the authors that statistical downscaling is also widely used for projecting severe 

precipitation events and suggest that more inclusive wording be used. 

 

We agree that this suggestion is appropriate and have added a paragraph in the introduction (lines 
68-74). 
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Other changes 

For improved readability, we now use ‘calibration’ throughout, instead of changing between 
‘training’ and ‘calibration’. Similarly for ‘validation’/’verification’, and for ‘pseudo-reality’/’pseudo-
observations’ (except in a few cases). 
 
We have moved most parts of former subsection 4.2.1 to create a new subsection 3.4 where the 
whole inter-model cross-validation procedure incl. validation metrics is described in detail. 

https://iopscience.iop.org/article/10.1088/1748-9326/8/2/029401/meta
https://doi.org/10.1007/s00382-014-2418-8
https://doi.org/10.1029/2019GL082847


11 
 

In the discussion section, we have swapped the works of LaFlamme and Kallache, to obtain 
chronology in the text. 

 

 

Our added references: 

Christensen, O. B., and E. Kjellström, 2020: Partitioning uncertainty components of mean climate and 

climate change in a large ensemble of European regional climate model projections. Clim. Dyn., 54, 

4293–4308, https://doi.org/10.1007/s00382-020-05229-y. 

Gleckler, P. J., K. E. Taylor, and C. Doutriaux, 2008: Performance metrics for climate models. J. Geophys. 

Res., 113, D06104, https://doi.org/10.1029/2007JD008972. 

Madsen, M. S., P. L. Langen, F. Boberg, and J. H. Christensen, 2017: Inflated Uncertainty in Multimodel‐
Based Regional Climate Projections. Geophys. Res. Lett., 44, 11,606-11,613, 

https://doi.org/10.1002/2017GL075627. 
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Abstract 17 

Severe precipitation events occur rarely and are often localized in space and of short duration; but they are 18 

important for societal managing of infrastructure. Therefore, there is a demand for estimating future 19 

changes in the statistics of occurrence of these rare events. These are usually often projected using 20 

information based ondata from Regional Climate Model (RCM) scenario simulations combined with 21 

extreme value analysis to obtain selected return levels of precipitation intensity. However, due to 22 

imperfections in the formulation of the physical parameterizations in the RCMs, the simulated present-day 23 

climate usually has biases relative to observations; these biases can be in the mean and/or in the higher 24 

moments. Therefore, the RCM results are often bias-adjusted to match observations are adjusted to 25 

account for these deficiencies. However, TthisThis does, however, not guarantee that bias-adjusted 26 

projected results will match future reality better, since the bias may change not be stationary in a 27 

changingedchanged climate. In the present work we evaluate different bias  adjustment techniques in a 28 

changing climate. This is done in an inter-model cross-validation setup, in which each model simulation in 29 

turn plays the role of pseudo-realityobservations, against which the remaining model simulations are  bias 30 

adjusted and validated. The study uses hourly data from present-dayhistorical and RCP8.5 late 21st century  31 

scenario runs from 19 model simulations from the EURO-CORDEX ensemble at 0.11° resolution, from which 32 

fields of selected return levels are calculated for hourly and daily time scalescales. The bias  adjustment 33 

techniques applied to the return levels are based on extreme value analysis and include climate factor and 34 

analytical  quantile-matching mappingtogether with the simpler climate factor approach approaches. 35 

Generally, we find that future return levels can be improved by bias  adjustment, compared to obtaining 36 

them from raw scenarios model data. The performance of the different methods depends of on the time 37 

scale considered. On hourly time scale, the climate factor approach performs better than the quantile-38 

matching mapping approaches. On daily time scale, the superior approach is to simply deduce future return 39 

levels from pseudo-observations and the second best choice is using the quantile-mapping approaches. 40 

These results are found in all European sub-regions considered. Applying the inter-model cross-validation 41 

against model ensemble medians instead of individual models does noth change overall conclusions much. 42 
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 43 

1 Introduction 44 

Severe precipitation events occur typically either as stratiform day-long precipitation of moderate intensity 45 

or as intense localized cloudbursts lasting up to a few hours only. Such extreme events may cause flooding 46 

with the risk of loss of life and damage to infrastructure. It is expected that future changes in the radiative 47 

forcing from greenhouse gases and other forcing agents will influence the large scale atmospheric 48 

conditions, such as air mass humidity, vertical stability, the formation of convective systems, and typical 49 

low pressure tracks. Therefore also the statistics of the occurrence of severe precipitation events will most 50 

likely change. 51 

 52 

Global climate models (GCMs) is are the main tool for estimating future climate conditions. A GCM is a 53 

global representation of the atmosphere, the ocean and the land surface, and the interaction between 54 

these components. The GCM is then forced with observed greenhouse gas concentrations, atmospheric 55 

compositions, land use, etc.  to represent the past and present climate, and with stipulated scenarios of 56 

future concentrations of radiative forcing agents to represent the future climate. 57 

 58 

Present state-of-the art GCMs from the Coupled Model Intercomparison Project Phase 5 (CMIP5, Taylor et 59 

al. 2012) and the recent Coupled Model Intercomparison Project Phase 6 (CMIP6, Eyring et al. 2016) 60 

typically have a grid spacing of around 100 km or even more. This resolution is too coarse to describe the 61 

effect of regional and local features, such as mountains, coast lines and lakes and to adequately describe 62 

convective precipitation systems (Eggert et al. 2015). To model the processes on smaller spatial scales, 63 

dynamical downscaling is applied. Here, the atmospheric and surface fields from a GCM simulation are used 64 

as boundary conditions for a regional climate model (RCM) over a smaller region with a much finer grid 65 

spacing, at present typically around 10 km or even less. 66 

 67 

An alternative to dynamical downscaling is statistical downscaling. Here large-scale circulation patterns 68 

(e.g. the North Atlantic Oscillation; ) are related to small-scale variables, such as precipitation mean at a 69 

station.  One assumes that the large-scale circulation pattern is modelled well by the GCM and therefore 70 

the approach is called perfect prognosis. Using the relationship with the small-scale variables,  calibrated on 71 

observations, one can obtain modelled local-scale variables (present-day and future) from the modelled 72 

large-scale patterns. A recent overview of these methods and validation of them can be found in Gutiérrez 73 

et al. (2019). 74 

 75 

The ability of present-day RCMs to reproduce observed extreme precipitation statistics on daily and sub-76 

daily time scales is essential and has been of concern. Earlier studies analysing this topic have mostly 77 

focused on a particular country, probably due to the lack of sub-daily observational data covering larger 78 

regions, such as e.g. Europe. Thus, Hanel and Buishand (2010), Kendon et al. (2014), Olsson et al. (2015) 79 

and Sunyer et al. (2017) studied daily and hourly extreme precipitation in different European countries and 80 

reached similar conclusions: first that the bias of extreme statistics decreases with smaller grid spacing of 81 

the model, and second that extreme statistics for 24 h duration are satisfactorily simulated with a grid 82 

spacing of 10 km, while 1 h extreme statistics exhibits biases even at this resolution. Recently, Berg et al. 83 
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(2019) have  evaluated high resolution RCMs from the EURO-CORDEX ensemble (Jacob et al. 2014) and 84 

came up withreached  similar conclusions for several countries across Europe: RCMs underestimate hourly 85 

extremes and give an erroneous spatial distribution.  86 

 87 

Extreme convective precipitation of short duration is thus one of the more challenging phenomena to 88 

describe represent physically accurate in RCMs. The reason is that convective events take place on a spatial 89 

scale comparable to the RCM grid spacing of presently around 10 km. Therefore, the convective plumes 90 

cannot be directly modelled. Instead, the effects of convection are parametrised, i.e. modelled as processes 91 

on larger spatial scales. Thus, the inability to reproduce these short duration extremes can be explained by 92 

the imperfect parametrization of sub-grid scale convection,(Arakawa 2004). Thus, the inability to reproduce 93 

these short duration extremes can be explained by the imperfect parametrization of sub-grid scale 94 

convection, (Prein et al. 2015), which generally leads to too early onset of convective rainfall in the diurnal 95 

cycle and subsequent dampening of the build-up of convective available potential energy  (Trenberth et al. 96 

2003). 97 

 98 

Thus, even RCMs with their small grid spacing may exhibit systematic biases for variables related to 99 

convective precipitation. If there is a substantial bias, we should consider adjusting for this in a statistical 100 

sense bias. before any further data analysis.. Bias Such adjustment techniques are thoroughly discussed, 101 

including requirements and limitations, in Maraun (2016) and Maraun et al. (2017). There are basically two 102 

main bias adjustment approaches. In the delta-change approach, a transformation is established from the 103 

present to the future climate in the model run. This transformation is then applied to the observations to 104 

get the projected future climate. In the bias correction approach, a transformation is established from 105 

present model climate data to the observed climate and this transformation is then applied to the future 106 

model climate to obtain the projected future climate. 107 

 108 

Both adjustment approaches come in several flavours. In the simplest one, the transformation consists of 109 

an adjustment of the mean, in the case of precipitation by multiplying the mean by a factor. In the more 110 

elaborate flavour, the transformation is defined by quantile-matchingmapping, preserving also the higher 111 

moments. Quantile-matching mapping adjustment can use either empirical quantiles or analytical 112 

distribution functions. The ability of quantile-matching mapping to reduce bias has been demonstrated for 113 

daily precipitation in present-day climate using observations, which are split into training calibration and 114 

verification validation parts samples (Piani et al. 2010; Themeßl et al. 2011). 115 

 116 

Bias adjustment techniques originate in the field of weather and ocean forecast modelling, where they are 117 

known as model output statistics (MOS). where Here output from a forecast model is adjusted for model 118 

deficiencies and local features not explicitly resolved by the model. Applying similar bias  adjustment 119 

techniques to climate model simulations, however, has a complication not present in weather and ocean 120 

forecast applications: Climate models are set up and tuned to present-day conditions and verified against 121 

observations, but then applied to future changed conditions without any possibility to directly verify the 122 

model’s performance under these conditions. ThereforeConsequently, showing that bias adjustment works 123 

for present-day climate is a necessary but not sufficient condition for the adjustment to work in the 124 

changed climate. 125 

 126 
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In practical applications of bias adjustment methods to climate simulations, it is generally assumed  127 

A central concept of adjustment methods is the assumption of stationarity of the bias. For bias correction 128 

this ismeans that the bias of thetransformation from model to observations is unchanged from the present-129 

day climate to the future climate,  (stationarity)while for delta-change the transformation from present-day 130 

climate to future climate is unchanged from model to observations. In the ideal case of stationarity being 131 

fulfilled, the adjustment methods will work perfectly and produce perfect future projections. If stationarity 132 

is not fulfilled, adjustment may improve projections, or in the worst cases they may degrade projections, 133 

compared to using raw model output.  134 

 135 

Stationarity has been debated in recent years in the literature (e.g. Buser et al. 2010; Boberg and 136 

Christensen 2012). Kerkhoff et al. (2014) review and discuss two hypotheses: 1) constant bias: unchanged 137 

between present-day and future (i.e. stationarity) and 2) constant relation: bias varies linearly with the 138 

signal. Van Schaeybroeck and Vannitsem (2016) used a pseudo-reality setting with a simplified model and 139 

found large changes in the bias between present-day and future for many variables and violation of both 140 

constant bias and constant relation hypothesis. Chen et al. (2015) concluded that precipitation bias is 141 

clearly non-stationary over North America in that variations in bias is comparable to the climate change 142 

signal. Velázquez et al. (2015) used a pseudo-reality setting involving two models and concluded that 143 

constancy of bias was violated for both precipitation and temperature on monthly time scale. Hui et al. 144 

(2019) used a pseudo-reality setting with GCMs and found significant non-stationarity of bias for annual 145 

and seasonal temperatures. Besides, they point to a large effect on non-stationarity from internal 146 

variability. 147 

Only a few examples has pointed out directly how to validate this cornerstone assumption (see however 148 

Buser et al.  and Boberg and Christensen ) and Boberg and Christensen ) and therefore it is not obvious that 149 

applying bias adjustment improve projections of future climate characteristics. 150 

 We also note that the bias  adjustment methods themselves may influence the climate change signal of the 151 

model, depending on the bias and the  method used (Haerter et al. 2011; Berg et al. 2012; Themeßl et al. 152 

2012).  153 

 154 

To thoroughly validate adjustment methods, both a calibration dataset and an independent dataset for 155 

validation are needed. There are two different approaches to obtain this. In split-sample testing, the 156 

observations are divided into calibration and validation parts, often in the form of a cross-validation (e.g 157 

Themeßl et al. 2011; Gudmundsson et al. 2012; Refsgaard et al. 2014; Li et al. 2017a,b). A variant is 158 

differential split-sample testing (Klemeš 1986), where the split in calibration/and validation parts is based 159 

on climatological factors, such as wet and dry years, encompassing climate changes and variations into the 160 

validation. 161 

 162 

An alternative One approach, which we use here,  to partly overcome the above challenge and evaluate the 163 

total performance of bias adjustment methods is inter-model cross-validation, as pursued by Maraun 164 

(2012), Räisänen and Räty (2013) and Räty et al. (2014) and othersand also used here. The rationale is here 165 

that the members in a multi-model ensemble of simulations represent different descriptions of physics of 166 

the climate system, with each of them being not too far from the real climate system. In the cross-167 

validation exerciseThus, one member of the ensemble in turnalternatively plays the role of pseudo-168 
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realityobservations, against which the remaining bias-adjusted models are evaluatedvalidated. Thus, the 169 

trick is that we know both present and future pseudo-realityobservations. 170 

 171 

The advantage of inter-model cross-validation, is that the adjustment methods are calibrated under 172 

present-day conditions and validated under future climatic conditions. Therefore, it embraces modelled 173 

physical changes between present and future climate, as for instance a shift in the ratio between stratiform 174 

and convective precipitation. In this respect it is a more realistic setting than validation based on split-175 

sample test. Also, model and pseudo-observations have the same spatial scale, thus avoiding comparing 176 

pointwise observations with area-averaged model data, as is done in the split-sample testing. On the other 177 

hand, the method assumes that the modelled present-day is not too different from observations.  If this is 178 

violated, the method will give too optimistic error estimates compared to what can be expected in the real 179 

World. Please cf. also further discusion in Section 5.2. 180 

 181 

Inter-model cross-validation has been applied on daily precipitation to evaluate different adjustment 182 

methods (Räty et al. 2014). Here we apply a similar methodology European-wide to extreme precipitation 183 

on hourly and daily time scales. This has been made possible with the advent of the EURO-CORDEX, a large 184 

ensemble of high-resolution RCM simulations with precipitation atin hourly time-resolution. Being more 185 

specific, we will apply the standard extreme value analysis to the ensemble of model data for present-day 186 

and end-21st-century conditions to estimate return levels for daily and hourly duration. Then we will apply 187 

inter-model cross validation on these return levels in order to address the following questions: 188 

1. Do bias-adjusted return levels perform better, according to the inter-model cross-189 

validatingvalidation, than using un-corrected raw model data from scenario simulations? 190 

2. Is there any difference in performance between different adjustment methods? 191 

3. Are there systematic differences in point 1 and 2, depending on the daily and hourly duration? 192 

4. Are there regional differences across Europe in the performance of the different 193 

techniquesadjustment methods? 194 

Giving qualified answers to these questions can serve as important guidelines for analysis procedures for 195 

obtaining future extreme precipitation characteristics. 196 

 197 

The rest of the paper contains a description of the EURO-CORDEX data (Section 2) and a description of 198 

methods used (Section 3). Then follow the results (Section 4), a discussion of these (Section 5) and finally a 199 

summaryconclusions (Section 6). 200 

 201 

2 The EURO-CORDEX data 202 

The model simulations used here have been performed within the framework of EURO-CORDEX (Jacob et 203 

al. (2014) ; http://euro-cordex.net ), which is an international effort aimed at providing RCM climate 204 

simulations for a specific European region (see Figure 1) in two standard resolutions with a grid spacing of 205 

0.44° (EUR-44, ~50 km) and 0.11° (EUR-11, ~12.5 km), respectively. All GCM simulations driving the RCMs 206 

follow the CMIP5 protocol  (Taylor et al. 2012) and are forced with historical forcing for the period 1951-207 

2005 followed by the RCP8.5 scenario for the period 2006-2100 (until 2099 only for HadGEM-ES). 208 

 209 

http://euro-cordex.net/
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We analyse precipitation data in hourly time-resolution from 19 different GCM-RCM combinations from the 210 

EUR-11 simulations shown in Table 1 and we analyse two 25 year long time slices from each of these 211 

simulations: a present-day time slice (years 1981-2005) and an end-21st-century time slice (years 2075-212 

2099). 213 

 214 

All GCM-RCM combinations we use are represented by one realization only, and therefore the data 215 

material used represents 19 different possible realisations of climate model physics, though acknowledging 216 

that some GCMs/RCMs might originate from the same or similar ancestor model code and therefore may 217 

not be fully independent. The EURO-CORDEX ensemble includes a few simulations, which do not use the 218 

standard EUR-11 grid. These were not included in the analysis, since they should have been re-gridded to 219 

the EUR-11 grid which would dampen extreme events, thus introducing an unnecessary error source. 220 

 221 

Table 1. Overview of the 19 EURO-CORDEX GCM-RCM combinations used. The rows show the GCMs while the columns 222 
show the RCMs. The full names of the RCMs are SMHI-RCA4, CLMcom-CCLM4-8-17, KNMI-RACMO22E, DMI-HIRHAM5, 223 
MPI-CSC-REMO2009 and CLMcom-ETH-COSMO-crCLIM-v1-1. Each GCM-RCM combination used is represented by a 224 
number (1, 3 or 12) indicating which realization of the GCM is used for the particular simulation. 225 
 226 

GCM                                   RCM RCA CCLM RACMO HIRHAM REMO COSMO 

ICHEC-EC-EARTH r12  
 

r1 r3 
 

 

MOHC-HadGEM2-ES r1  
 

r1 r1 
 

 

CNRM-CERFACS-CNRM-CM5 r1 
  

r1 
 

 

MPI-M-MPI-ESM-LR r1  r2 
 

r1 r1 r1 

IPSL-IPSL-CM5A-MR r1  
    

 

NCC-NorESM1-M r1  
  

r1 
 

r1 

CCCma-CanESM2  r1     

MIROC-MIROC5  r1     

 227 
 228 

 229 
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 230 
Figure 1. Map showing the EURO-CORDEX region (outer frame) with elevation in colours. PRUDENCE sub-regions (Christensen and 231 
Christensen 2007) used in the analysis are also shown: BI = British Isles,  IP = Iberian Peninsula, FR = France, ME = Mid-Europe, SC = 232 
Scandinavia, AL = Alps, MD = Mediterranean, EA = Eastern Europe. Red cross marks point used in Figure 4. 233 
 234 

Generally, GCM results are quite comparable to reality, and many validation studies of GCMs exist, also 235 

with an eye on Europe (e.g. McSweeney et al. 2015). We are aware of  the use in some papers of selection 236 

procedures for selecting how to choose sub-sets of available GCMs (e.g. McSweeney et al. 2015; Rowell 237 

2019). There is, however, no simple quality index that can be generally applied. Any discrimination of GCMs 238 

depends on area, season, and the meteorological field and property being investigated (Gleckler et al. 239 

2008; e.g. their Fig. 9). Furthermore, these tests and selection procedures are based on subjective 240 

criteria and come with major caveats that impact the uncertainty range largely (Madsen et al. 2017). We 241 

therefore choose, in accordance with most other similar studies, to use an ‘ensemble of opportunity’ for 242 

the present study. 243 

 244 

3 Methods 245 

3.1 Duration 246 

Extreme precipitation statistics is are often described as a function of the time scale involved as intensity-247 

duration-frequency or depth-duration-frequency curves (e.g. Overeem et al. 2008). We consider two time 248 

scales or durations. One is a duration of 1 h, which is simply the time series of hourly precipitation sums 249 

available in each RCM grid point. The other is a duration of 24 h, where a 24 h sum is applied calculated in a 250 

sliding window with a one hour time stepping. We will sometimes refer to these as hourly and daily 251 

duration, respectively. Our daily duration corresponds to the traditional climatological practice of reporting 252 
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daily sums but allows heavy precipitation events to occur over two consecutive days. We also emphasize 253 

that the duration, as defined here, is not the actual length of precipitation events in the model data, but is 254 

merely a concept to define time scales. 255 

3.2 Extreme value analysis 256 

Extreme value analysis (EVA) is aboutprovides methodologies to estimate estimating high quantiles of a 257 

statistical distribution from observations. The theory relies on fundamental convergence properties of time 258 

series of extreme events; for details we refer to Coles et al (2001). 259 

 260 

There are two main methodologies in EVA to obtain estimates of the high percentiles and the 261 

corresponding return levels. In the classical, or block maxima, method, a generalised extreme value 262 

distribution is fitted to the series of maxima over a time block, usually a year. Alternatively, in the peak-263 

over-threshold (POT) or partial-duration-series method, which is used here, all peaks with maximum above 264 

a (high) threshold, 𝑥0, are considered. The peaks are assumed to occur independently at an average rate 265 

per year of 𝜆0. To ensure independence between peaks, a minimum time separation between peaks is 266 

specified. Theory tells us, that when the threshold goes to infinity, the distribution of the exceedances 267 

above the threshold, 𝑥 − 𝑥0, converges to a generalised Pareto distribution, whose cumulative distribution 268 

function is 269 

𝒢(𝑥 − 𝑥0) = 1 − (1 + 𝜉
𝑥 − 𝑥0
𝜎

)
−
1
𝜉
, 𝑥 > 𝑥0  

The parameter 𝜎 is the scale and is a measure of the width of the distribution. The parameter 𝜉 is the shape 270 

and describes the character of the upper tail of the GPD-distribution; 𝜉 > 0 implies a heavy tail which 271 

usually is the case for extreme precipitation events, while 𝜉 < 0 implies a thin tail. Note that, quite 272 

confusingly, an alternative sign convention of 𝜉 occurs in the literature (e.g. Hosking and Wallis 1987). 273 

 274 

If we now consider an arbitrary level 𝑥 with 𝑥 > 𝑥0, the average number of exceedances per year of 𝑥 will 275 

be 276 

 277 

𝜆𝑥 = 𝜆0 [1 − 𝒢(𝑥 − 𝑥0)]. (1) 278 

 279 

The 𝑇-year return level, 𝑥𝑇, is defined as the precipitation intensity which is exceeded on average once 280 

every 𝑇 years 281 

𝜆𝑥𝑇𝑇 = 1 

 and by combining with (1) we get an expression for the return level 𝑥𝑇 282 

 283 

𝜆0[1 − 𝒢(𝑥𝑇 − 𝑥0)]𝑇 = 1, 284 

from which 285 

𝑥𝑇 = 𝒢
−1 (1 −

1

𝜆0𝑇
) + 𝑥0.  (2) 286 

 287 

 288 

Data points to be included in the POT analysis can be selected in two different ways. Either the threshold 𝑥0 289 

is specified and 𝜆0 is then a parameter to be determined or, alternatively, 𝜆0 is specified and 𝑥0 determined 290 
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as a parameter. We choose the latter approach, since it is most convenient when working with data from 291 

many different model simulations. 292 

  293 

Choosing 𝜆0 is a point to consider: a too high value would include too few data points in the estimation and 294 

a too low value implies the risk that the exceedances 𝑥𝑇 − 𝑥0 cannot be considered as GPD-distributed. We 295 

choose   𝜆0 = 3 in accordance with Berg et al. (2019), which gives 75 data points for estimation for the 25 296 

years periods. Hosking and Wallis (1987) investigated the estimation of parameters of the GPD-distribution 297 

and based on this warns against using the often applied maximum likelihood estimation for a sample size 298 

below 500. Instead, he they recommends  probability-weighted moments and we have followed this advice 299 

here. 300 

 301 

We required a minimum of 3 and 24 h separation between peaks for 1 and 24 h duration, respectively. This 302 

is in accordance with Berg et al. (2019) and furthermore, synoptic experience tells us that this will ensure 303 

that neighbouring peaks are from independent weather systems. We found only a weak influence of these 304 

choices on the results of our analysis. 305 

 306 

3.3 Bias adjustments and extreme value analysis 307 

The delta-change and bias correction approaches were introduced in general terms in Section 1. Now we 308 

will formulate EVA-based analytical quantile-mapping based versions of the two approaches. In what 309 

follows 𝑂𝑇 is the 𝑇-year return levels estimated from (pseudo-)observations during the present-day period, 310 

while 𝐶𝑇 (control) and 𝑆𝑇 (scenario) denote the corresponding return levels, estimated from present-day 311 

and end-21st-century model data, respectively. Finally, 𝑃𝑇 (projection) denotes the end-21st-century return 312 

level after bias-adjustment has been applied. 313 

 314 

3.3.1 Climate factor on the return levels (FAC) 315 

The simplest adjustment approach is to assume a climate factor on the return level (FAC) 316 

𝑃𝑇 = 𝑆𝑇 𝐶𝑇⁄⏟  
𝐷𝑒𝑙𝑡𝑎−𝑐ℎ𝑎𝑛𝑔𝑒
𝑐𝑙𝑖𝑚𝑎𝑡𝑒 𝑓𝑎𝑐𝑡𝑜𝑟

∙ 𝑂𝑇 = 𝑂𝑇 𝐶𝑇⁄⏟  
𝐵𝑖𝑎𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛
𝑐𝑙𝑖𝑚𝑎𝑡𝑒 𝑓𝑎𝑐𝑡𝑜𝑟

∙ 𝑆𝑇 

 317 

We note that the delta-change and bias correction approach are identical for the FAC method. 318 

3.3.2 Analytical quantile matching-mapping based on EVA 319 

Kallache et al. (2011) and Laflamme et al. (2016) applies a transformation methodology for extreme values, 320 

based on analytical quantile-matching and applicable for both the block- and the POT-methods, which will 321 

be adapted to our needs below. 322 

 323 

In the EVA-based quantile-matchingmapping, two POT-based extreme value distributions with different 324 

parameters are matched. Being more specific, we want to construct a transformation 𝑥 → 𝑦 defined by 325 

requiring that exceedance rates above 𝑥 and 𝑦, respectively,  are equal for any 𝑥: 326 

𝜆𝑥 = 𝜆𝑦. 327 

This implies, according to (1), that 328 

 329 
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𝜆0𝑥[1 − 𝒢𝑥(𝑥 − 𝑥0)] = 𝜆0𝑦[1 − 𝒢𝑦(𝑦 − 𝑦0)], 330 

where 𝒢𝑥 is thes GPD distribution of the exceedances 𝑥 − 𝑥0 and 𝜆0𝑥 the associated exceedance rate, and 331 

𝒢𝑦 and 𝜆0𝑦 are the similar entities for 𝑦. 332 

 333 

To simplify, we let  𝜆0𝑥 = λ0𝑦( see Section 3.2) and therefore get 334 

𝒢𝑥(𝑥 − 𝑥0) = 𝒢𝑦(𝑦 − 𝑦0), 335 

from which we obtain the transformation 336 

𝑦 = 𝑦0+𝒢𝑦
−1(𝒢𝑥(𝑥 − 𝑥0)). (3) 337 

 338 

For the delta-change approach (DC), the modelled GPD distribution functions for present-day and end-21st-339 

century conditions are quantile-matched mapped and the transformation obtained this way is then applied 340 

to return levels determined from present-day (pseudo-)observations 𝑂𝑇. Thus the corresponding projected 341 

𝑇-year return level is according to Eq. (3) 342 

𝑃𝑇 = 𝑆0 +  𝒢𝑆
−1(𝒢𝐶(𝑂𝑇 − 𝐶0)), 

where 𝒢 𝐶  and 𝒢𝑆 are the GPD cumulative distribution functions for the modelled present-day (control) and 343 

end-21st-century (scenario) data, respectively, and 𝐶0 and 𝑆0 are the corresponding threshold values. 344 

 345 

For the bias correction approach (BC), the present-day (control) and (pseudo-)observed GPD cumulative 346 

distribution functions are quantile-matched mappedd to obtain the model bias, which then is then applied, 347 

according tousing eq. (3), to modelled end-21st-century (scenario) return levels. 348 

 349 

𝑃𝑇 = 𝑂0 + 𝒢𝑂
−1(𝒢 𝐶(𝑆𝑇 − 𝐶0)), 350 

where 𝒢 𝑂 is the GPD cumulative distribution function for the observations and 𝑂0 the corresponding 351 

threshold. 352 

3.3.3 Reference adjustment methods  353 

The performance of the bias adjustment methods described above will be compared with the performance 354 

of two reference adjustment methods, which are defined below. This is a similar to what is practice when 355 

verifying predictions, where the performance of the prediction should be superior to the performance of 356 

reference predictions, such as persistence or climatology. 357 

 358 

We choose two reference methods. One reference is to simply use, for a given model, the return level 359 

calculated from (pseudo-)observations as the projected return level (OBS), 360 

𝑃𝑇 = 𝑂𝑇 

 361 

Another reference is to use the raw scenario model output data without any bias  adjustment (SCE): 362 

𝑃𝑇 = 𝑆𝑇. 363 

 364 

For an overview of methods, see Table 2 365 

 366 
Table 2. Overview of methods used in the inter-comparison  367 
OBS (Pseudo-)observations (Reference) 

SCE Unadjusted Raw RCM scenario (Reference) 
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FAC Climate factors on return levels 

DC Quantile-matched mapped delta-change based on EVA 

BC Quantile-matched mapped bias correction based on EVA 

  368 

 369 

 370 

3.4 The inter-model cross-validation procedure in detail 371 

The inter-model cross-validation goes in detail as follows: Each of the 𝑁 models are successively regarded 372 

as being pseudo-observations. The individual adjustment methods are calibrated on the present-day parts 373 

of the pseudo-observations and model return levels (present-day and end-21st-century), as appropriate 374 

depending on whether it is a bias correction or delta-change method. The calibration is done as described 375 

above. The adjustment methods are then applied to present-day observation and model data, again as 376 

appropriate, to obtain end-21st-century adjusted return levels. These are  then validated against the end-377 

21st-century return level from pseudo-observations. 378 

 379 

The basic validation metric will be the relative error of end-21st-century return levels for a given duration 380 

and return period 𝑇:  381 

 382 

𝑅𝐸 = |𝑃𝑇 − 𝑉𝑇|/𝑉𝑇  383 

 384 

i.e. the absolute difference between the projected return level 𝑃𝑇 obtained from using adjustment and the 385 

validation return level 𝑉𝑇 estimated from end-21st-century pseudo-observations, divided by the validation 386 

return level. This metric is calculated for every grid point and for every combination of model/pseudo-387 

observations. Since we have 𝑁 = 19 model simulations in the ensemble, we have 𝑁 × (𝑁 − 1) = 342 388 

different combinations for validating each adjustment method and make statistics of the relative error. This 389 

quantifies the average performance of the different methods. 390 

 391 

User-end scenarios are often constructed as the median or mean from ensembles. We also tested this in 392 

the inter-model cross-validation setup. The calibration is performed as before on each of the remaining 393 

models and adjusted return levels for the end-21st-century calculated. But then the median of these 394 

adjusted future return levels is calculated and this is validated against the future pseudo-observations. 395 

Note that this gives only  𝑁 = 19 different combinations and therefore a less robust statistics compared to 396 

above. 397 

 398 

4 Results 399 

 400 

4.1 Modelled return levels for present-day and end-21st-century conditions  401 
 402 
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 403 
Figure 2.  Geographical distribution of the 10 year-return level of precipitation intensity for 1 hour duration for present-day (left) 404 
and relative change from present-day to end-21

st
-century (right). In each grid point, values are  the median return level over all 19 405 

model simulations.  406 
 407 

Figure 2 displays the geographical distribution of the 10-year return level for precipitation intensity of 1 h 408 

duration, calculated as the median return level over all 19 model simulations. There is a general increase 409 

from present-day to end-21st-century climatic conditions. The smallest return levels are mainly found in the 410 

arid North African region and to some extent in the Norwegian Sea, while the largest return levels are 411 

found in southern Europe and in the Atlantic northwest of the Iberian Peninsula. Mountainous regions, 412 

such as the Alps and western Norway stand out as have higher return levels than their surroundings. This 413 

supports that the models are not totally unrealistic in modelling extreme precipitation.  414 

 415 

 There is a general increase in the range of 20-40% from present-day to end-21st-century climatic 416 

conditions. The relative changes are geographically quite uniform across the area. For instance, no evident 417 

difference between land and sea appears. Likewise do the mountaineous regions not stand out from the 418 

surroundings. 419 

 420 

 421 



 

13 
 

 422 
Figure 3. As Figure 2 but for 24 h duration 423 
 424 

We also show in Figure 3 the median 10-year return level for 24 h duration. Again, the largest return levels 425 

are found in southern Europe and northwest of the Iberian Peninsula. Also, the montaneousmountainous 426 

regions stand out with higher return levels even more pronounced than for 1 h duration. , and this shows 427 

similar qualitative characteristics:  For both durations tThe return levels generally increase from present-428 

day to end-21st-century conditions, although the effect is more pronounced with around the same 429 

percentage as for 1 h duration and also geographically homogeneous. 430 

. 431 

 432 

 433 
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 434 
Figure 4. Modelled return levels at 50N/10E (northern Germany, marked with ‘X’ in Figure 1) for present and future for 10 y return 435 
period and 1 h and 24 h durations. Different colours represent the 19 different GCM-RCM simulations listed in Table 1.  436 
 437 

To get a more detailed impression of the data, Figure 4 shows return levels and their changes from present-438 

day to end-21st-century for a grid point in Northern Germany for all 19 model simulations. For 1 h duration 439 

(left panel) return values increase from present-day to end-21st-century in all cases. For 24 h duration (right 440 

panel) typically the return levels increase from present-day to end-21st-century but with some exceptions. 441 

For both durations, we also note the large spread in return levels within the ensemble. The spread is much 442 

higher than the change between present and future for most models; in other words: a poor signal to noise 443 

ratio.  444 

4.2 Inter-model cross-validation 445 

4.2.1 Validation metrics 446 

Results of the inter-model cross-validation are presented in this section. The basic verification metric will be 447 

the relative error of future return levels for a given duration and return period 𝑇, defined as  448 

 449 

𝑅𝐸 = |𝑃𝑇 − 𝑉𝑇|/𝑉𝑇  450 

 451 

i.e. the absolute difference between the projected return level 𝑃𝑇 obtained from applying bias adjustment 452 

and the verification return level 𝑉𝑇 estimated from end-21st-century pseudo-reality, divided by the 453 

verification return level. This metric is calculated for every grid point and for every model/pseudo-reality 454 

combination. Since we have 𝑁 = 19 model simulations in the ensemble, we can make 𝑁 × (𝑁 − 1) = 342 455 

evaluations of each bias adjustment method and make statistics of the relative error. This quantifies the 456 

average performance of the different bias adjustment methods. 457 

 458 

In the following, we will present results using two different types of display. First, we will use spatial maps 459 

of the median relative error, calculated from all combinations of model/pseudo-reality 460 

observationscombinations. Second, we will, for each adjustment method and for each combination of 461 

model/pseudo-reality observationscombination,  calculate the median relative error over each of the eight 462 

PRUDENCE sub-regions defined in Christensen and Christensen (2007) and shown on Figure 1. For each 463 

region we will illustrate the distribution of the relative error across all combinations of  model/pseudo-464 

reality observationscombinations by showing the median and the 0.05/0.95-percentiles of this distribution.   465 
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 466 

4.2.24.2.1 Results for 1 h duration 467 

 468 

Figure 5 shows the median, across all model/pseudo-reality observations combinations, of RE for the 469 

relative error for all five methods for 1 h duration and 10 y return period. 470 

 471 

 472 
 473 
Figure 5. Geographical distribution of the relative error of end-21

st
-century 10 year return level for 1 h duration precipitation 474 

intensity from the inter-model cross-validation. Colours show the median of the relative error calculated over all model/pseudo-475 
reality observations combinations. Panels are for the different bias correctionadjustment methods. 476 
 477 

First we look at the reference methods. The Relative errors from the OBS method has relative errors in the 478 

approximate intervalare in the range of 0.20-0.40%.  Lowest values are found in the Mediterranean, 479 

western France and the Atlantic west of the Mediterranean;   highest values in the Atlantic west of Ireland 480 

and in Scandinavia. The SCE method has errors in the interval 0.25-0.45%, lowest values in the Atlantic west 481 

of Ireland; largest values over parts of the Atlantic and northern Africa. The two reference methods give on 482 

the whole rather similar results, but Of the two reference methods, the OBS method slightly outperforms 483 

SCE in the south, while the opposite is true in the north. 484 
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 485 

The relative error of FAC is below 0.20% in most places. It is everywhere smaller than the relative error of 486 

the reference methods OBS and SCE. The DC method has a relative error comparable to (e.g. Western 487 

France, Western Iberia and Eastern Atlantic) or larger than (in particular in Northern Africa) that of FAC. 488 

That said, the concept of relative error should be used with care in an arid region, such as Northern Africa. 489 

But from this result, it is not justified to use the more complicated DC, in favour of the simpler FAC. Finally, 490 

the relative error of BC is everywhere above both DC and FAC, indicating the poorest performance of all 491 

methods considered. 492 

 493 
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 494 
Figure 6. Statistical distribution (median and .05

th
/.95

th
 - fractilespercentile) of the relative error of the inter-model cross-validation 495 

for 1 hour duration for 1 y, 10 y and 100 y return periods.  Panels represent PRUDENCE sub-regions shown in Figure 1.  Each colour 496 
represents an adjustment method (see Table 2). 497 
 498 

The statistical distribution of the relative error is shown in Figure 6 for the eight PRUDENCE sub-regions 499 

(see Figure 1). We first note that the distribution of relative error is shifted towards higher values for larger 500 

return periods, as expected. Next, we note that the two reference methods, OBS and SCE, behave 501 
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differently. SCE generally has a little larger median relative error, but the .95th fractile percentile is much 502 

larger for SCE than for OBS, in particular for large return periods. Thus, OBS overall performs better than 503 

SCE,  meaning that using present-day pseudo-observations to estimate projected end-21st-century return 504 

levels yields better relative error than using raw modelled scenario data. 505 

 506 

The FAC method generally has the best overall performance, both in terms of median and .95th -507 

fractilepercentile of the relative error. Of the two quantile-matching mapping methods, tThethe DC method 508 

has a slightly poorer performance than FAC, both in terms of the median and the .95th -fractilepercentile of 509 

the relative error. Finally, BC has poorer performance than DC, when comparing the median of the relative 510 

error and in particular for the .95th -fractilepercentile. 511 

 512 

In summary, for 1 h duration, the method with the best performance is using a climate factor on the return 513 

levels (FAC). This method outperforms both reference methods and the more sophisticated methods based 514 

on quantile-matchingmapping, DC and BC, the latter having the poorest overall performance of them all. 515 

Note that DC is comparing GPDs from the same model, whereas BC is comparing GPDs from different 516 

models. If the difference, in terms of GPD parameters, between two models in the present-day climate is 517 

typically larger than the difference between the same model in present-day and end-21st-century climate, 518 

it can explain the different results. 519 

 520 

 521 

4.2.34.2.2 Results for 24 h duration 522 

 523 
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 524 
Figure 7. As Figure 5 but for 24 h duration. 525 
 526 

 527 

For 24 h duration (see Figure 7 ), OBS has the lowest median relative error (lower less than 0.30%) in most 528 

regions of all the adjustment methods, while SCE has higher relative error in the interval 0.30-0.60% 529 

approximately, with the highest values in North Africa. FAC has relative errors in-between those of OBS and 530 

SCE. Of the quantile-matching mapping methods, DC has relative errors in the interval 0.20-0.80% 531 

approximately, larger than FAC in most places, and finally BC has, as for 1 h duration, the largest median 532 

relative errors of all the methods. 533 

 534 
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 535 
Figure 8. As Figure 6 but for 24 h duration 536 
 537 

As for the 1 h duration, we also compare the entire statistical distribution of the relative error of the 538 

different adjustment methods for all three return periods (Figure 8), and again, both median and .95th 539 

percentile-fraction of the relative error increases for larger return periods, as expected. Further, OBS 540 

seems, surprisingly, to have a small median relative error and the smallest .95th -fractilepercentile of all 541 

methods considered for all sub-regions. SCE has a median not too different from that of OBS, but the .95th -542 
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fractilepercentile is much larger. Similar characteristics hold for FAC. The quantile-matching mapping 543 

methods DC and BC have slightly larger median values, but the .95th -fractilepercentile is smaller than for 544 

FAC. All these characteristics hold for all sub-regions. 545 

 546 

4.2.3 Ensemble median 547 

Also inter-model cross-validation of pseudo-observations against model ensemble median, as described in 548 

Section 3.4, was carried out. For duration 1 h, distribution of the relative error is shown in Figure 9. By 549 

comparing with Figure 6, the distribution of the relative error does not change much overall.  However, for 550 

many of the sub-regions considered and for the longer return periods, the FAC and BC have a smaller 95th 551 

percentile for cross-validation against model ensemble means, than against individual models.  552 

 553 
Figure 9. As Figure 6 but for inter-model cross-validation against ensemble medians. 554 
 555 

Also for 24 h duration the distribution of the relative errors does not change much when shifting to 556 

validation against ensemble median (not shown).  557 

4.3 Further analysis on conditions for skill 558 

 559 



 

22 
 

To get further insight into the difference in performance between hourly and daily precipitation, we 560 

consider for a given return period the relationship between the bias factor for present-day 𝐵𝑃𝐵𝑃,𝑇 = 
𝐶𝑇𝐶

𝑂𝑇𝑂
 561 

and end-21st-century 𝐵𝐹𝐵𝐹,𝑇 = 
𝑆𝑇𝑆

𝑉𝑇𝑉
 for all model/pseudo-reality observations combinations (see Figure 562 

10). 563 

 564 

 565 
Figure 10. Relationship between present-day and end-21

st
-century bias factors of 10-year return levels for Mid-Europe sub-region 566 

for all pseudo-observation/model combinations. Left panel: 1 h duration and right panel: 24 h duration. Numbers in upper left 567 
corners are the 𝑹 measure of relative spreadindices. See text for details. 568 
 569 

In this figure, the relationship between present-day and end-21st-century bias factors appears more 570 

pronounced for 1 h duration than for 24 h duration. That said, it must be borne in mind that if the point 571 

(𝑥, 𝑦) is in the plot, so is the point (1/𝑦, 1/𝑥), and this implies an inherent tendency to a fan-like spread of 572 

points from (0,0), as seen on both plots. 573 

 574 

Therefore, tTo quantify the strength of the above relationship, we use the measure of the relative 575 

spreaddefine an index introduced by Maurer et al. (2013): 576 

𝑅 = 〈
|𝐵𝐹−𝐵𝑃|

(𝐵𝐹+𝐵𝑃)/2
〉, 577 

where 〈∙〉 means averaging over combinations of model/pseudo-reality observationscombinations. This 578 

index is an extension of the index introduced by Maurer et al. (2013). It is the ensemble average of the 579 

relative absolute difference between the present-day and future bias. A value of 𝑅 = 0 means these biases 580 

are equal, i.e. perfect stationarity; and the smaller the value of 𝑅, the closer to stationarity (in an ensemble 581 

sense). 582 

 583 

 These Values of 𝑅 are given in the upper lefter corner of each panel of Figure 10 and they,  also support 584 

the partial relationships described above, and a stronger one for hourly duration. 585 

 586 

These relations are important since they could explain the generally good performance of the FAC 587 

adjustment methods seen in the previous section. Suppose that 𝐵𝑃𝐵𝑃,𝑇 = 𝐵𝐹𝐵𝐹,𝑇 , then 588 

𝑃𝑇 =
𝑆𝑇

𝐶𝑇
𝑂𝑇 = 𝑆𝑇

𝑂𝑇

𝐶𝑇
= 𝑆𝑇𝐵𝑃 = 𝑆𝑇𝐵𝐹 = 𝑆𝑇

𝑉𝑇

𝑆𝑇
= 𝑉𝑇  589 

 590 
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and the FAC method will therefore adjust perfectly. 591 

 592 

We also note that daily data, due to the summation, would have less erratic behaviour than hourly and 593 

therefore we would expect any relationship to be less masked by noise for daily data than for hourly data 594 

from purely statistical grounds. Therefore, any explanation to why it is opposite should probably be found 595 

in physics or details of modelling. We will discuss this further in Section 5.3. 596 

5 Discussion 597 

 598 

5.1 Relation with other studies  599 

 600 

The study by Räty et al. (2014) touches upon related issues to ours. However, our study includes smaller 601 

temporal scales (hourly and daily) than does their study and higher return periods (up to 100 years vs. the 602 

.99.9th -fractilepercentile of daily precipitation corresponding to a return period of around 3 years). 603 

Nevertheless, the two studies agree in their main conclusion; namely that applying a bias adjustment 604 

seems to offer an additional level of realism to the processed data series, including in the climate 605 

projections, as compared to using unadjusted model results. The two studies also both support, in 606 

agreement with our study,  the somewhat surprising conclusion that, using present-day (pseudo-607 

)observations as the scenario gives a skill comparable to that of the bias adjustment methods. 608 

 609 

Kallache et al. (2011) proposed a correction method for extremes, CDF-t, and obtained good validation 610 

result with calibration/validation split of historical data from Southern France. Another relevant study to 611 

discuss here is The CDF-t method was applied by Laflamme et al. (2016) who apply the BC method similar 612 

to ours to on daily New England data from different model runs and concludes that “downscaled results are 613 

highly dependent on RCM and GCM model choice”. Finally, Kallache et al. (2011) obtained good result with 614 

the BC in a training/verification split of historical data. 615 

 616 

5.2 Convection in RCMs 617 

The grid spacing of present state-of-the-art RCMs available in large ensembles, such as CORDEX, is around 618 

10 km, and at this resolution it is necessary to describe convection through parameterizations. This is 619 

obviously an important deficit for our purpose, since this could represent a systematic bias in all our 620 

simulations and therefore violate our underlying assumptions that the individual model simulations and the 621 

real-world observations behave approximately similarly in a physical sense. Thus, we do not promote 622 

naively applying the presented adjustment methods to hourly data from these models. Instead, the present 623 

work should be seen as a statistical exercise and the methods can in the future be applied to convection 624 

permitting model simulations that better represent the convective process. The results from the present 625 

work would apply equally to that case. 626 

 627 

With the advent of convective-permitting models, a more realistic modelling of convective precipitation 628 

events is within reach and a change in the characteristics of such events is seen (Kendon et al. 2017; 629 

Lenderink et al. 2019; Prein et al. 2015)(Kendon et al. 2017; Lenderink et al. 2019; Prein et al. 2015). This 630 
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next generation of convection-permitting RCMs with a grid spacing of a few km allows a much better 631 

representation of the diurnal cycle and convective systems as a whole (Prein et al. 2015). With that in mind, 632 

we foresee redoing the analysis when a suitable ensemble of convective-permitting RCM simulations 633 

becomes available. 634 

 635 

5.3 Stationarity of bias 636 

The success of applying bias adjustment to climate model simulations is linked to the biases being 637 

stationary, i.e. present and future biases being more or less identical. In Section 4.3 we showed (in Figure 638 

10) that this was the case for 1 h duration and less so for 24 h duration in our pseudo-reality setting. Such a 639 

relationship is an example of an emergent constraint (Collins et al. 2012). This is a model-based concept, 640 

originally introduced to explain that models which have a too warm (cold) present-day climate tend to have 641 

a relatively warmer (colder) future climate. The reason for this is that it is the same underlying physics 642 

which generates the present-day and future temperatures (Christensen and Boberg 2012). It has also been 643 

shown that on monthly time scales, the precipitation bias in Scandinavia depends on the total amount of 644 

simulated precipitation (Christensen et al. 2008). 645 

 646 

We suggest that our observed emergent constraints could be explained in a similar manner; namely as a 647 

result of the Clausius-Clapeyron relation linking atmospheric temperature changes to changes in its 648 

humidity content and thereby precipitation changes. The change prescribed by the Clausius-Clapeyron 649 

equation is usually termed the thermodynamic contribution. In addition to this, there is a dynamic 650 

contribution and this may explain the differences between the hourly and daily relation seen in Figure 10. 651 

The rationale is that hourly extremes are entirely due to convective precipitation events with almost no 652 

dynamic contribution (Lenderink et al. 2019), while daily extremes are a mixture of convective events and 653 

large-scale strong precipitation, of which the latter has a more significant dynamic contribution (Pfahl et al. 654 

2017), causing the less marked emergent constraint for the daily time scale. This interpretation is also 655 

supported in Figure 4, in which daily precipitation sees some ‘crossovers’ (future return level smaller than 656 

present), whereas hourly precipitation does not have any crossovers. 657 

 658 

5.4 The spatial scale 659 

In the definition of model bias it is tacitly assumed that the observational dataset has the same spatial 660 

resolution as the model data. In practice, however, it is rarely possible to separate the bias from a spatial 661 

scale mismatch. For instance, if we compare modelled precipitation, which represents averages over a grid 662 

box, with rain gauge data, which represent a point, there can be a quite substantial mismatch for extreme 663 

events (Eggert et al. 2015; Haylock et al. 2008). Therefore, if the bias is adjusted towards such point values, 664 

it may lead to further complications (Maraun 2013).  665 

 666 

Sometimes though, it is desirable to include the scale mismatch in the bias adjustment. Many impact 667 

models, e.g. hydrological models, are tuned to perform well with local observational data as input. This 668 

presents an additional challenge if this impact model is to be driven by climate model data for climate 669 

change studies, since the climate model will have biases in its climate characteristics (mean, variability, etc.) 670 

compared to those of the observed data. Applying the bias adjustment step, the hydrological model can 671 

rely on its calibration to to observed conditions (Refsgaard et al. 2014; Haerter et al. 2015). 672 
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 673 

5.5 Adjustment methods not included in the study 674 

 675 

Only the basic adjustment methods have been included in our study. The simple climate factor approach 676 
has been applied in numerous hydrological applications (Sunyer et al. 2015; DeGaetano and Castellano 677 
2017) and others. We also wanted to test quantile-mapping approaches, which in extreme value theory 678 
takes the form of a parametric transfer function. This we have applied in two flavours in the spirit of (Räty 679 
et al. (2014). Finally, we wanted to benchmark against the ‘canonical’ benchmark methods: observations 680 
and raw model output. 681 
 682 

There is a myriad of more specialised methods, each tailored to account for a particular deficit of the 683 

simpler methods. First, there is the issue whether it for precipitation is more reasonable to map relative 684 

quantile changes rather than absolute ones (Cannon et al. 2015). It has also been argued that a bias 685 

correction method should preserve long-term trends, i.e. the ‘climate signal’ and only adjust the shorter 686 

time scales, as extensively discussed in (Cannon et al. 2015). Then multivariate methods have been argued 687 

for and applied in order to preserve relationships between variables (Cannon 2018). Also methods to 688 

correct for systematic displacement of variable features in complex terrain have been suggested and 689 

applied (Maraun and Widmann 2015). Finally, Li et al. (2018)  adjusts stratiform and convective 690 

precipitation separately instead of adjusting the total precipitation. In this way, any future change in the 691 

ratio between the two types of precipitation is accounted for. 692 

 693 

It could be interesting to examine the above methods in future studies, though we acknowledge it would 694 

be a quite extensive work. We can at present only guess about the outcome of such work but the more 695 

refined methods may not perform too well in the inter-model cross-validation setting. The reason for this 696 

suspicion is that these methods, while being more elaborate, in most cases also have more parameters to 697 

be estimated, implying a higher risk of overfitting. An argument in favour of this is that the present study 698 

shows that the more elaborate quantile mapping methods DC og BC do not outperform the simpler FAC 699 

method.  700 

  701 

6 Conclusions 702 

 703 

Based on hourly precipitation data from a 19-member ensemble of climate simulations we have 704 

investigated the benefit of bias adjusting extreme precipitation return levels on hourly and daily time scales 705 

and evaluated the different methods. This is done in a pseudo-reality setting, where one model simulation 706 

in turn from the ensemble plays the role of observations extending into the future. The return levels 707 

obtained from each of the remaining model simulations are then bias  adjusted in the present-day period, 708 

using different adjustment methods. Then the same adjustment methods are applied to end-21st-century 709 

model data to obtain projected return levels, which are then compared with the corresponding pseudo-710 

realistic future return levels. 711 

 712 
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The main result of this inter-comparison is that applying bias adjustment methods improves projected 713 

extreme precipitation return levels, compared to using the un-adjusted model runs. Can an overall superior 714 

adjustment methodology be appointed? For hourly duration, the method to recommend (having the 715 

smallest relative error) is the simple climate factor approach FAC, which is better in terms of the relative 716 

error than the more complicated analytical quantile mapping methods based on EVA, DC and, in particular, 717 

BC. For daily duration, the OBS method performs surprisingly well, having the smallest .95th -718 

fractilepercentile of the relative error. Furthermore, the quantile methods perform better than FAC, with 719 

DC having the smallest relative error. These conclusions hold regardless of the sub-region considered. We 720 

also cross-validated against model ensemble means; this gave in general similar results without significant 721 

changes in the distribution of the relative error. 722 

 723 

Finally, we registered emergent constraints between present-day and end-21st-century biases. This was 724 

more pronounced for hourly than for daily time scales. This could be caused by hourly precipitation being 725 

more directly linked to the Clausius-Clapeyron response, but this requires more clarification in future work. 726 

 727 
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