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Short comment #1 on “Identifying robust bias adjustment methods for extreme precipi-
tation in a pseudo-reality setting” by Torben Schmith et al.

We will start by thanking our collegues in science for this short comment. We will
comment (marked with »> . . . «<) on each of their items below.

Comment on ‘Identifying robust bias adjustment methods for extreme precipitation in a
pseudo-reality setting’ T. Kelder, R. L. Wilby, T. Marjoribanks, L. Slater

Torben Schmith and co-authors address a complex, but important topic. Climate model
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corrections typically assume stationary biases between simulated and observed ex-
treme precipitation but, in practice, such biases may well be nonstationary (i.e. dis-
tributions may shift significantly in the future). Robust evaluation of bias correction
methods is hampered by the inability to analyse future model biases, since there are
obviously no observations of the future. To address this issue, the authors use model
simulations as a pseudo-reality of the present and future climate to evaluate the ro-
bustness of various bias correction methods within these ‘virtual’ worlds. The authors
processed a large amount of data from the EURO-CORDEX ensemble and we com-
mend them for this interesting research and their purposeful discussion of findings.
The paper concludes by recommending a preferred bias correction method for climate
projection. We offer a few suggestions and raise some issues for further elaboration by
the authors.

1. Given that the analysis is based on an ensemble of climate model experiments,
the logic should be explained for treating model-to-model biases in extreme precip-
itation as equivalent to model-to-observation biases. The paper acknowledges the
limited ability of _10km resolution model simulations at representing convective pro-
cesses. Hence, more explanation is needed for an unfamiliar reader on why model
experiments can be used to draw conclusions about the best bias correction methods
on hourly timescales, if one cannot trust the model simulations to realistically represent
convective processes.

»>Our approach of treating model-to-model biases as equivalent to model-to-
observations is named ‘indistinguishable interpretation’, as opposed to the ‘truth plus
error interpretation’ (Sanderson and Knutti 2012). Our motivation of adopting the for-
mer is indirect. For variables, such as the large-scale surface temperature, which are
used as measure in the tuning process of models, the truth plus error is the canonical
choice. Precipitation is not directly linked to the tuning process and has smaller scale,
and as such the indistinguishable interpretation can be argued for (Christiansen 2020).

Acknowledging that the models represent convection imperfect, we are actually better
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off evaluating the bias correction methods between models than between model and
observation. We are here addressing the statistical nature of the corrections, not the
physical processes which bias correction methods are not suitable for anyway. We
do not promote, naively applying these methods to hourly data from these models.
However, the presented methods can in the future be applied to convection permitting
model simulations that better represent the convective process, and results from our
current manuscript would apply equally to that case. We do not presently have a large
ensemble available of such models to perform our study on. We will explain this view
in a revised manuscript.«<

2. Related to #1, a few cautionary remarks could be made about some of the GCMs
used to drive the CORDEX experiments (see: Liepert and Lo, 2013). The realism of
the downscaled extreme precipitation depends on the realism of the boundary forcing.
Use of an ‘ensemble of opportunity’ is not unusual, but some studies narrow the choice
of candidate models (and hence uncertainty) based on physical realism tests (e.g.
McSweeney et al., 2015; Rowell, 2019).

»>We only partly agree with this. The large-scale atmospheric state is certainly deter-
mined by the boundary forcing; though, the RCM is able to modulate it. Distribution of
precipitation intensities are to a large extent determined by the RCM (see e.g. (Chris-
tensen and Kjellström 2020)). This is particularly true for the high-extreme end of the
spectrum.

We are aware of the use of selection procedures put forward in the cited papers. There
is, however, no simple quality index that can be generally applied. Any discrimination
of GCMs depends depend on area, season, and the meteorological field and property
being investigated (Gleckler et al. 2008); e.g. their Fig. 9). Furthermore, these tests
and selection procedures are based on subjective criteria and come with major caveats
that impact the uncertainty range largely (Madsen et al. 2017). We therefore choose,
in accordance with most other similar studies, to use ‘ensemble of opportunity’ for the
present study.«<
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3. In the inter-model cross-validation setup, every model/pseudo-reality combination is
used. This setup can be useful for assessing relationships between present and future
bias correction factors (e.g. Fig. 9), but does not mimic climate projections, where the
ensemble mean, and range are typically used. In the present setup, a future projection
is treated as a deterministic prediction, rather than a probabilistic projection. Perhaps
use of the climate ‘pseudo-observed’ run might be favoured over future predictions
simply because there is less variability in the present climate? How sensitive are the
results to taking the mean of all ensemble members minus the ‘pseudo-reality’ member
(e.g. Fig. 3 in Räty et al. 2014)? This has the added benefit of involving much fewer
permutations (and hence calculations).

»>Actually a good idea, which we have implemented in our analysis suite (see attached
plots). We think we can find the space for two extra plots and some associated text in
the revised version. «<

4. The range of the projection matters. For example, Fig. 4 shows that there are
future scenarios that exceed the present climate range. Hence, the worst-case 10-year
precipitation event from the ‘pseudo-obs’ range would not include plausible future 10-
year events. Therefore, more qualification is needed in the Abstract and Conclusions to
guard against this possibility and the potentially misleading assertion that “the superior
approach is to simply deduce future return levels from observations”. Overall, the
headline findings of the research could be presented in more nuanced ways, especially
within the Abstract.

»>We are afraid that we do not understand the central statement of this point (“Hence,
the worst-case . . .). Therefore, we are not able to comment on it.«<

5. The Abstract and Introduction assert that “Severe precipitation events are usually
projected using Regional Climate Model (RCM) scenario simulations.” We gently re-
mind the authors that statistical downscaling is also widely used for projecting severe
precipitation events and suggest that more inclusive wording be used.
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»>We agree that this suggestion is appropriate. It could easily be met by referring to
work by Wilby, Mauraun, and others.«<
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