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Abstract. The development of algorithms for the retrieval of water cycle components from satellite data, such as total column

water vapor content (TCWV), precipitation (P), latent heat flux, and evaporation (E) has seen much progress in the past three

decades. In the present study, we compare six recent satellite-based retrieval algorithms and ERA5 (the European Centre for

Medium-Range Weather Forecasts’ fifth reanalysis) freshwater flux (E-P) data regarding global and regional, seasonal and

inter-annual variation to assess the degree of correspondence among them. The compared data sets are recent, freely available5

and documented climate data records (CDRs), developed with a focus on stability and homogeneity of the time series, as

opposed to instantaneous accuracy.

One main finding of our study is the agreement of global ocean means of all E-P data sets within the uncertainty ranges of

satellite-based data. Regionally, however, significant differences are found among the satellite data and with ERA5. Regression

analyses of regional monthly means of E, P, and E-P against the statistical median of the satellite data ensemble (SEM)10

show that, despite substantial differences in global E patterns, deviations among E-P data are dominated by differences in P

throughout the globe. E-P differences among data sets are spatially inhomogeneous.

We observe that for ERA5 long-term global E-P is very close to 0 mm/day and that there is good agreement between land

and ocean mean E-P, vertically integrated moisture divergence (VIMD), and global TCWV tendency. The fact that E and P

are balanced globally provides an opportunity to investigate the consistency between E and P data sets. Over ocean, P (nearly)15

balances with E if the net transport of water vapor from ocean to land (over-ocean VIMD, i.e.,∇Qocean) is taken into account.

Correlation of Eocean−∇Qocean with Pocean yields R2 = 0.86 for ERA5, but smaller R2 are found for satellite data sets.

Climatological global yearly totals of water cycle components (E, P, E-P, and net transport from ocean to land and vice versa)

calculated from the data sets used in this study are in agreement with previous studies, with ERA5 E and P are occupying the

upper part of the range. Over ocean, both the spread among satellite-based E and the difference between two satellite-based P20

data sets are greater than E-P and these remain the largest sources of uncertainty within the observed global water budget.

We conclude that for a better understanding of the global water budget, the quality of E and P data sets themselves and their

associated uncertainties need to be further investigated.
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1 Introduction

The water and energy cycles are key components of Earth’s climate system. Energy exchange from water phase changes plays25

a direct role in atmospheric heating; therefore, precipitation (P) and evaporation (E) are two critical processes connecting

the land/ocean surface and overlying atmosphere (Trenberth et al., 2009). The difference between E and P rates, E−P , is the

freshwater flux from the surface to the atmosphere, which is positive where E dominates and negative where P dominates. Over

the global oceans, total E−P is positive, as a considerable amount of water evaporates from the oceans and is transported

to land by advection, mainly in the form of water vapor, where it precipitates. Averaged over a year, changes in atmospheric30

storage vanish and net negative E−P over land is balanced by continental runoff of water into the ocean. Although numerous

studies have addressed the question of how variations in the ocean state affect the water cycle and freshwater fluxes with a

particular view on global warming (Wentz et al. , 2007; Trenberth et al., 2007; Schlosser and Houser , 2007; Robertson et al.

, 2014), a clear and consistent picture has yet to emerge — one of the significant challenges in climate science (Bony et al.,

2015; Hegerl et al., 2014).35

The study of the global water cycle is not only compelling from a scientific point of view: it also aids the evaluation of

climate models and model reanalyses by verifying the degree of consistency among the various components of the cycle. Such

an approach is adopted here for the evaluation of satellite observations of E and P , which, particularly over ocean, are difficult

to validate otherwise. The fact that the global water cycle is closed puts a strong constraint on global total E and P fluxes. This

has been exploited in various studies in the past (Trenberth et al., 2007; Schlosser and Houser , 2007; Berrisford et al. , 2011;40

Trenberth et al., 2011; Trenberth and Asrar , 2014; Trenberth and Fasullo , 2013; Seager and Henderson , 2013; Robertson et al.

, 2014) from which the general conclusion emerged that, although much progress has been made regarding E and P estimates,

observations and models still require substantial improvements in accuracy to achieve budget closure.

Over the years, methods to determine E and P based (mainly) on satellite data have been developed and repeatedly updated:

HOAPS E and P (Andersson et al., 2017), J-OFURO E (Tomita et al., 2019), IFREMER E (Bentamy et al., 2013), SEAFLUX45

E (Clayson and Brown , 2016), OAFlux E (Yu et al., 2008), and GPCP P (GPCP, 2018) are the most widely used data sets.

Acronyms are explained in Section 2 and listed in Table 1. We present an intercomparison of these data sets, all freely avail-

able Climate Data Records (CDRs), characterized by the stability of input data and retrieval algorithms, emphasizing data

homogeneity over local, instantaneous accuracy. European Centre for Medium-range Weather Forecast (ECMWF) ERA5 re-

analysis data (Hersbach et al., 2020) are included for comparison in the present study. Our main focus lies with the assessment50

of correspondence among E-P data sets on a global and regional scale by the inter-comparison of six data sets and putting

the results into perspective regarding uncertainty estimates. Moreover, we investigate to what extent water budget closure is

achieved by satellite-based over-ocean estimates by comparing with ERA5 data, and previously published estimates of water

cycle components.

Here, we consider the atmospheric water vapor budget with a focus on the oceans, where satellite observations of E are55

available. The net change in atmospheric water vapor content can be written as:

δW

δt
= E−P −∇Q (1)
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With W the total column water vapor and ∇Q the moisture divergence, i.e., the amount of moisture removed by advection

from the considered volume. See Table 2 for all symbols and abbreviations. Compared to water vapor, the contributions of

liquid water and ice are very small (e.g., Berrisford et al. , 2011) and can be safely ignored in the context of this study.60

On the global scale∇Q vanishes (as the Earth is a closed system) and Eq. 1 reduces to:

∆W = E−P (2)

Where, for brevity, we write the W tendency during large (monthly) time steps as ∆W .

Assuming that ∆W is small compared to E and P , Eq. 2 dictates that global total E must equal global total P . Hence, an

observed imbalance in global totals of E and P indicates either an inconsistency in E and P data sets or a change in the global65

water cycle, e.g. an increase in the amount of atmospheric water vapor (possibly caused by global warming), invalidating the

assumption that ∆W is negligible. Moreover, globally, E and P co-vary, meaning that their inter-annual, seasonal, and even

monthly variability are correlated.

At regional scales and for monthly averages, ∆W is small compared to E−P and ∇Q, so that Eq. 1 can be approximated

by:70

E−P =∇Q (3)

This is also valid for the large ocean and land regions, and since globally,∇Q= 0, from Eq. 3 it follows that:

(E−P )ocean =∇Qocean =−∇Qland =−(E−P )land (4)

with subscripts denoting summation over ocean or land. This separation into land and ocean contributions allows us to assess

the consistency of different E and P data sets, as satellite E data are not available over land.75

In addition to the spatio-temporal distributions of individual budget terms, e.g., E−P , information on the accuracy and

precision of that value is of importance. Uncertainty estimates indicate whether observed differences — between data sets

(e.g., observations and models), over time (trends, variability), or in space — are statistically relevant. Moreover, they play a

major role in data assimilation. Quantification of retrieval uncertainty, however, is a difficult task, particularly for non-linear

retrieval algorithms such as those used to retrieve E and P from satellite observations. Of the E CDRs investigated here,80

only HOAPS-4.0 and OAFlux3 provide monthly mean uncertainty ranges. In HOAPS, random and systematic uncertainty

components are provided separately (Kinzel et al., 2016), allowing error propagation along with the calculation of temporal

and/or spatial averages, as random errors (no covariance) disappear for large numbers of data points, whereas systematic errors

(100% covariance) do not. For lack of information of error covariances, OAFlux3 monthly mean uncertainty is similarly treated

as having 100% covariance. An estimate of uncertainty is provided with ERA5 data in the form of results from ten separate85

model runs (Hersbach et al., 2020).

In the following section, we provide some background on E and P retrievals and introduce the E, P, and other data sets used

for our study. Section 3 details the methods applied to the various data sets to enable a fair comparison. Results of our analyses

are presented and discussed in Sections 4–5, and we close our study with a set of conclusions and recommendations.
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2 Data sets90

In this inter-comparison study, we assess the degree of agreement between five satellite-based E retrievals, two observation-

based P retrievals, and a reanalysis data set. In this section, the retrieval algorithms will be briefly introduced: for more details,

please refer to the literature listed in Table 1.

The retrieval of E from satellite observations is challenging. It is determined from the bulk flux parameters near-surface

wind speed and humidity gradient near the surface. Wind speed can be retrieved from satellite passive microwave brightness95

temperature (BT) measurements and BTs have also some sensitivity to near-surface specific humidity. Specific humidity at

the ocean surface is derived from sea surface temperature (SST). All satellite-based E algorithms use reanalysis data to some

extent and, vice versa, ERA5 also assimilates satellite data. Hence, these products cannot be considered completely independent

and the distinction between ”satellite data” and ”reanalysis” is somewhat artificial and not always appropriate. However, for

historical reasons — and for lack of a suitable alternative — we will retain these terms throughout this paper.100

The main characteristics of the evaporation retrieval from passive microwave data are common to all satellite algorithms,

but there is quite some variation regarding the input of Level-1 (calibrated observations) and Level-2 (retrieval results) data, as

will be discussed below. First, we will give a brief description of the retrieval basics, followed by details of the various satellite

algorithms.

2.1 Evaporation Data Records105

The liquid-water equivalent evaporation rate, E, is calculated from the latent heat flux Ql as follows :

E =
Ql

LE
(5)

Where LE is specific heat of evaporation of water. The latent heat flux, in turn, is parameterized according to the bulk flux

algorithm (based on the Monin-Obhukhov similarity theory representation of fluxes in terms of mean quantities):

Ql = ρLECEu(qs− qa) (6)110

with ρ the density of air, CE the coefficient of turbulent exchange, u the wind speed at 10 m height relative to the ocean surface

current speed, and qs and qa the specific humidity at the sea surface and at 10 m height, respectively. Whereas qa and u are

derived from satellite observations of BT, ρ, qs and LE are derived from their dependences on SST and/or air temperature. The

turbulent exchange coefficient CE is obtained from the Coupled Ocean-Atmosphere Response Experiment (COARE) version

3.0 algorithm (Fairall et al., 1996, 2003). The algorithm iteratively estimates stability-dependent scaling parameters and wind115

gustiness to account for sub-scale variability.

Most of the data sets used here do not explicitly contain E, therefore, we calculated those from monthly means of Ql and

SST using Eq. 5 and LE (in J/kg) given by (Henderson-Sellers, 1984):

LE = 1.91846 · 106 · ( Ts

Ts− 33.91
)2 (7)
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where Ts is SST in K. The slight difference with the definition of LE used in the COARE-3.0 algorithm causes negligible120

differences of 0.03–0.04% for Ts between 278–298 K.

The BT observations common to satellite-based retrievals of ocean turbulent fluxes come from the Special Microwave

Imager (SSM/I, Hollinger et al., 1990) and Special Microwave Imager/Sounder (SSMIS, Kunkee et al., 2008) instruments

on the Defense Meteorological Satellite Program (DMSP) platforms F08–F18. These data were corrected and inter-calibrated

using various approaches to create FCDRs, stable fundamental climate data records (see, e.g., Wentz et al., 2013; Sapiano et125

al., 2013; Berg et al., 2018; Fennig et al., 2020), which then serve as input to various satellite retrievals. Slight differences

in calibration approaches lead to differences in FCDRs that propagate into the retrieved data. Issues with sensor stability,

especially with SSM/I and SSMIS sensors, usually express themselves as slow drifts or sudden jumps of the global mean.

2.1.1 HOAPS-4.0

HOAPS (Andersson et al., 2010) relies almost completely on satellite data, as it only uses an ERA-interim profile climatology130

as a priori starting point for the 1D-Var retrieval of u and the humidity profile (Graw et al., 2017). The only other auxiliary

data set is the daily Optimum Interpolated Sea Surface Temperature (OISST, Reynolds et al. (2007)), version 2, derived from

AVHRR satellite data. OISST provides a bulk SST at 0.5 m which is transformed to a skin SST using the approach by Donlon

et al. (2002), which is then used for the determination of qs. The parameterization described in Bentamy et al. (2003) is used

to determine qa. For calculation of the flux parameters Ql and E, HOAPS-4.0 uses COARE version 2.6a (Bradley et al.,135

2000), which is nearly identical to COARE-3.0 (Fairall et al., 2003). HOAPS-4.0 is a CDR derived from CM SAF (Climate

Monitoring Satellite Application Facility) BT FCDR (Fennig et al., 2017, 2020) and is available at 0.5◦ and 6-hourly (except

E-P) and monthly resolution from July 1987 — December 2014 (Andersson et al., 2017). HOAPS data can be obtained from

https://wui.cmsaf.eu.

2.1.2 J-OFURO3140

The latest update to J-OFURO involved improvements in the methods of flux retrieval and expansion of the data set in terms of

time range and parameters (Tomita et al., 2019). The algorithm is similar to that described above. In addition to BT from SSM/I

and SSMIS (from Remote Sensing Systems (RSS), Wentz et al., 2013), J-OFURO3 uses BT data from AMSR-E and AMSR2

(JAXA Version 3 and 2.1, respectively), and TMI (1B11 Version 7 from NASA-GESDISC) for the retrieval of flux parameters.

To determine qa a parameterization based on BTs, total column water vapor, and water vapor scale height was developed145

using match-ups of in situ buoy- and ship-based qa and DMSP-F13 BTs from eight channels (Tomita et al., 2018). From the

instantaneous qa values, gridded daily averages are determined and inter-calibrated to DMSP-F13 qa to remove systematic

differences caused by the use of different FCDRs. The Ts required for the calculation of qs and other flux parameters is the

median value of an ensemble of twelve in situ, satellite-based, and reanalysis data sets. Other auxiliary data sets include water

vapor surface mixing ratios from ERA-interim (Dee et al., 2011), OSTIA sea ice concentration (Donlon et al., 2012), and air150

temperature from NCEP/DOE reanalysis (Kanamitsu et al., 2002). Near-surface wind speed is determined as the simple mean
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of values derived from microwave radiometers and scatterometers (Tomita et al., 2019). J-OFURO3 is available at 0.25◦ and

daily resolution from 1988–2013. It was acquired from https://j-ofuro.scc.u-tokai.ac.jp/.

2.1.3 OAFlux3

Satellite data used for the production of OAFlux3 data include wind speed from active (scatterometer) and passive (radiometer)155

microwave instruments, SST from OISST (Reynolds et al., 2007), and qa from Goddard Satellite-Based Surface Turbulent

Fluxes Dataset — Version 2 (GSSTF2.0, Shie et al. (2009)). These are merged with NCEP and ERA40 reanalysis data using

weighting factors that put more emphasis on satellite data (for u), on reanalyses (qa), or weights both equally (Ts), whenever

satellite data are available (Yu et al., 2008). OAFlux3 data are available from 1958–2018 (monthly) or 1985–2017 (daily) at 1◦

resolution from https://www.esrl.noaa.gov/psd/data/gridded/data.oaflux_v3.html .160

2.1.4 IFREMER4.1

Similar to J-OFURO and OAFlux, IFREMER’s ocean flux retrieval algorithm is based on a synergy of remote sensing and

reanalysis data (Bentamy et al., 2013). The current version 4.1 contains, among others, latent heat flux (LHF) and SST at daily

and monthly, 0.25◦ resolution from 1992–2018. The BTs used for retrievals are inter-calibrated by Colorado State University

(CSU, Sapiano et al., 2013), except for data beyond June 2017, where CSU data ends and a switch to BTs from RSS (Wentz165

et al., 2013) is made. Inter-calibrated scatterometer wind data (Bentamy et al., 2017a) are supplemented by wind speeds

determined by RSS from the SSM/I, SSMIS, and WindSat instruments. SST are from OISST (Reynolds et al., 2007). The

model relating BTs to qa using satellite – in situ data match-ups was updated from Bentamy et al. (2003) and now includes two

additional terms: Ts and Ta−Ts (with Ta the air temperature at 10 m height from interpolated ERA-interim data (Bentamy et

al., 2013)). IFREMER4.1 data were obtained via https://wwz.ifremer.fr/oceanheatflux/Data .170

2.1.5 SEAFLUX2

The SEAFLUX2 data set consists of LHF, SST, and several other parameters at 3-hourly, 0.25◦ resolution. It makes use of

a neural network (NN) algorithm to transform CSU BTs (Sapiano et al., 2013) into ocean-atmosphere fluxes (Clayson and

Brown , 2016). The NN that determines qa and u at 10 m height is trained with values from the SeaFlux in situ dataset

(Curry et al., 2004). After gridding and merging of swath-level data, Ql is calculated from qa, u, and Ts using a NN ver-175

sion of the COARE-3.0 parameterization (Fairall et al., 2003). A separate NN corrects OISST SST (Reynolds et al., 2007)

for diurnal variations and influences of wind and precipitation. SEAFLUX2 is available for the time range 1988–2019 at

https://www.ncdc.noaa.gov/cdr/atmospheric/ocean-heat-fluxes. Please note that a new SEAFLUX version is currently under

development.
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2.1.6 ERA5180

ERA5 is the current operational reanalysis running at ECMWF, the European Centre for Medium-range Weather Forecasts.

Compared to its predecessor, ERA-interim, ERA5 includes improved model physics and data assimilation techniques, higher

spatial (31 km) and temporal (1 hour) resolution. These lead to a gain in forecasting skill of up to one day compared to ERA-

interim (Hersbach et al., 2020). Among many other observations, ERA5 assimilates CM SAF BT FCDR (Fennig et al., 2017);

conditions for SST are prescribed using HadISST2.1. (Kennedy et al., 2016) and OSTIA (Donlon et al., 2012) from 09/2007185

onwards (Hersbach et al., 2020). ERA5 encompasses data from ten model runs, which allows estimation of the uncertainty

range from ensemble statistics. The analysis presented here is performed with the ECMWF ensemble mean, uncertainty is

determined from the 10-member ensemble.

The monthly averaged data set on single levels, available from the Copernicus Climate Data Store (https://cds.climate.copernicus.eu/),

contains, among many others, total column water vapor (TCWV), vertically integrated moisture divergence (VIMD), total pre-190

cipitation and evaporation rates (ECMWF, 2019). Monthly averages are calculated from daily means starting at 00 UTC and

ending at 00 UTC the following day (ECMWF, 2020). Evaporation rates are derived from the gradients of specific humidity

between the surface and the lowest model level (10 m for ERA5) as described above (ECMWF, 2016). The main differences

between the satellite-based retrievals described here and ERA5 determination of E are the consistency of atmospheric vari-

ables involved (u, qa, qs) and the high temporal sampling rate. Moreover, satellite-based data sets only provide fluxes over195

ocean, whereas ERA5 contains data over land and ocean. VIMD, i.e., the total amount of water vapor removed from the at-

mospheric column by dynamical transport is provided in ERA5 as a gridded monthly mean field. We calculated the TCWV

tendency from monthly mean ERA5 TCWV data by determining the gradient between two sequential time steps, then dividing

by 30 days/month to obtain the mean TCWV tendency in km3/day. This was converted to units of mm d−1 by multiplication

with the Earth’s surface area for comparison with freshwater fluxes.200

2.2 Precipitation Data Records

Microwave-based retrievals of precipitation are based on the interaction of liquid or solid hydrometeors with the upwelling ra-

diation field. In HOAPS-4.0, P is determined by an NN retrieval trained on profiles from an ERA-interim climatology (Ander-

sson et al., 2010). The training data set consists of one month (August 2004) of assimilated SSM/I BTs and the corresponding

ERA-interim P (Bauer et al., 2006).205

There is a multitude of global precipitation products in existence (see, e.g., Kidd and Huffman, 2011; Tapiador et al. , 2017),

but for this study we selected GPCP as the P data set with which to calculate E-P (except for the HOAPS product, which makes

us of its own P data) because it is generally regarded as the data set that performs best globally. Moreover, J-OFURO also

makes use of GPCP P to determine E-P (Tomita et al., 2019).

The Global Precipitation Climatology Project - 1 Degree Daily (GPCP-1DD; denoted GPCP hereafter), contains P esti-210

mated from a combination of data from ground-based rain gauges and satellites — the latter including near-infrared, passive

and active microwave observations (Huffman et al., 2001). Daily global precipitation rates are provided by GPCP-1DD at
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1◦ resolution for the time range 1996–2017. We calculate monthly mean P from version 1.3 GPCP-1DD (GPCP, 2018),

because the spatial resolution of the monthly product is not sufficient for our purposes. These data were obtained from

https://rda.ucar.edu/datasets/ds728.5/.215

2.3 Errors, biases, uncertainty

Only three out of seven data sets analyzed here contain explicit information on uncertainty. HOAPS contains estimates of

random and systematic bias errors (Kinzel et al., 2016; Liman et al., 2018). The errors in E were obtained by separating biases

of HOAPS Level-2 E with respect to collocated in situ ship-based data into equally populated E, u, Ts, and W bins. The mean

and standard deviation of the biases are assumed to represent the systematic and random components of the 2σ uncertainty220

range, respectively, which is probably a conservative estimate. By taking the approach of determining uncertainty ranges as a

function of turbulent flux parameters these can also be assigned to times and regions not covered by the ship-based reference

data set (Liman et al., 2018). For the current study, we calculated the mean uncertainty by averaging the systematic uncertainty

component. The random component is negligible when averaging long time series. The HOAPS P data set does not contain

uncertainty information; instead, a constant relative 1σ uncertainty range of 13% was assumed, based on a comparison with225

ship-based in situ data (Burdanowitz, 2017). The total E−P uncertainty was determined by error propagation.

Bias errors given in the OAFlux data set were computed based on the uncertainty ranges of individual input data sets,

assuming no correlation between uncertainties from different data sets (Yu et al., 2008). Like for HOAPS uncertainty ranges,

the OAFlux bias error was simply averaged for our investigations.

In contrast to the monthly GPCP product, GPCP-1DD Version 1.3 does not provide explicit uncertainty estimates, hence230

here we assume a constant relative 1σ uncertainty range of 8%. This is the estimated bias error for GPCP data over the tropical

oceans (Adler et al., 2012), which is where most of the P signal originates. Over the global oceans, the bias error was estimated

at 10%, but Adler et al. (2012) considered this an upper bound.

In contrast to uncertainty ranges estimated by comparing with other (e.g., in situ) data sets, the uncertainty of ERA5 data

is described by the standard deviation and the range of the ensemble, consisting of 10 seperate model runs (Hersbach et al.,235

2020). We determined these statistics after averaging of the data: first, the mean (e.g., global monthly mean) of each individual

ensemble member was calculated, then standard deviation and range were determined. Note that ERA5 ensemble statistics

should be interpreted in a relative sense (i.e., ensemble spread is larger where uncertainty is higher), as the numerical values

are over-confident (ECMWF, 2020).

3 Methods240

HOAPS is the only satellite data set containing E, P, and E-P data from a single source (i.e., microwave BTs). Within the

HOAPS algorithm, E−P is obtained by subtracting monthly mean P from E (Andersson et al., 2010). For this study, the data

were remapped from 0.5◦ to 1◦. For the J-OFURO3 freshwater flux product, monthly mean GPCP-1DD P are subtracted from

the corresponding J-OFURO E (Tomita et al., 2019). We determined E−P of the other satellite-based data sets by subtracting
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monthly mean GPCP P from the respective monthly mean E. These data sets will be denoted as IFREMER-G, SEAFLUX-245

G, and OAFlux-G to indicate that GPCP data were subtracted. IFREMER and SEAFLUX do not provide E, therefore we

calculated those from their respective Ql and Ts data using Eqs. 5 and 7. The calculation of E from Ql was performed at

0.5◦ and monthly resolution. Subsequently, all E data were conservatively remapped to 1◦ to match GPCP resolution prior to

subtraction of P. Similarly, ERA5 E-P was determined by subtracting monthly mean P from E at 1◦ resolution.

All comparisons presented here are performed with collocated data, i.e., only grid boxes (at x, y, and t) present in all data sets250

were used to create climatological or global averages. A more accurate collocation procedure would be performed at shorter,

e.g., daily, time scale, because differences in filtering of high-precipitation scenes (where E retrieval is impaired) and selection

of included satellite instruments lead to differences in sub-monthly sampling. This was, however, not feasible in this study, as

HOAPS and J-OFURO E-P data are only provided on monthly resolution.

The satellite reference data set used in regional comparisons is determined by the statistical median of the satellite-based255

data ensemble and therefore does not include ERA5. The median is chosen over the mean to exclude outliers. In the following,

this reference data set is abbreviated SEM (satellite ensemble median).

Global averages were determined by converting the relative unit of mm d−1 (equivalent to kg m−2 d−1) to absolute units of

(km3 d−1), computing the global (or ocean or land) mean and multiplying with the corresponding total surface area (510 ·106,

350·106, and 160·106 km2, respectively). Seasonally varying amounts of sea-ice are not taken into account. Most comparisons260

in this study are shown in relative units, but for the comparison of global totals over land and ocean presented in Sect. 4.6, data

were converted to absolute units (km3 yr−1) so that the totals balance.

4 Results

4.1 Freshwater flux climatology

Freshwater flux climatologies obtained from 17 years of data (1997–2013) were determined from satellite ensemble median265

(SEM) and ERA5 data. They are shown in Fig. 1, panels A and B, to illustrate the overall spatial distribution of mean E−P .

The chosen time range is the largest common time range of the data sets used in this study. Note that ERA5 data were matched

to satellite data coverage.

Regions where mean P > E are dominated by atmospheric freshwater outflux (into the ocean), shown in blue, and are

concentrated at the inter-tropical convergence zone (ITCZ) and the Pacific warm pool. In the subtropics,E generally outweighs270

P . At higher latitudes P and E are approximately equal, but with a tendency to E−P < 0. Comparison of panels C-F with

A and B shows that the E-P pattern is mainly determined by P, as there is less spatial variation in E. The agreement between

SEM and ERA5 E-P climatologies is good, yet, some systematic differences can be observed. Due to higher P at the ITCZ,

ERA5 shows more negative E−P there. Conversely, the overall higher E level in ERA5 causes E−P values larger than those

found for SEM over most of the global oceans. Excessive E was also found to produce high E-P in ERA-interim (Brown and275

Kummerow, 2014).
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The deviations are more apparent when climatological differences are analyzed. For this comparison we select ERA5 as a

reference due to its spatio-temporal completeness and because it is the only ”other” data set (i.e., not satellite data), keeping in

mind that ERA5 data very likely also have inaccuracies and/or biases. Figure 2 shows climatological difference plots of HOAPS

(upper panel) and OAFlux-G (lower panel) with collocated ERA5 data. As seen above, the differences are not homogeneously280

distributed over the globe. The HOAPS difference plot is characterized by an alternating pattern of positive and negative

deviations. Stronger HOAPS E in the subtropical central north and eastern South Pacific produce elevated E−P compared

to ERA5. In contrast, elevated ERA5 E over the east China Sea combines with smaller ERA5 P in the region, resulting in

higher ERA5 E−P . The positive bands on either side of the equator are due to higher HOAPS E, whereas the negative E−P
differences at the equator are due to smaller HOAPS P . The negative deviations to the east and west of Australia are similarly285

due to differences in P , whereas the deviations at latitudes < 40◦ S are due in equal parts to E and P . The differences between

OAFlux-G and ERA5 are mainly due to P , apart from the regions in the subtropical Pacific and Atlantic Oceans, where OAFlux

E is smaller than ERA5E. The difference plots of J-OFURO, IFREMER-G, and SEAFLUX-G with ERA5 are not shown here,

but are very similar to the lower left panel because the differences in P between GPCP and ERA5 are larger than differences

in E in most regions. All plots, including difference climatologies of E and P , can be found in the Appendix, Fig. A1.290

To investigate where the differences are significant, the right column of Fig. 2 presents the 1σ uncertainty range from

HOAPS (upper panel) and OAFlux-G (lower panel). Moreover, regions where the difference between satellite E-P and ERA5

E-P are greater than the 2σ uncertainty range are enclosed by white contour lines in the left panels. The ERA5 E-P uncertainty

shows a pattern similar to that of OAFlux-G, but is a factor of 10 smaller than the uncertainties estimated for satellite data

and therefore adds a negligible component to the total uncertainty estimate. The HOAPS uncertainty range is larger than295

HOAPS-ERA5 E−P differences over most of the globe. This is mainly due to P , for which we assumed 13% uncertainty.

The deviations > 1 mm d−1 in the oceans’ desert regions (off the west coasts of Peru and Southern Africa) and in the higher

latitudes are clearly outside the 2σ uncertainty ranges. In contrast, OAFlux-GE−P deviations are larger than the estimated 2σ

uncertainties in the ITCZ, the west coasts of the Pacific and Atlantic Ocean, the Arabian Sea, and the Southern high latitudes.

Again, the uncertainty range is mainly given by P , for which we assumed a relative uncertainty of 8%.300

4.2 Inter-comparison of freshwater flux over ocean: global means

Monthly mean E, P , and E−P of six (or three) data sets were collocated (see Section 3) and averaged over the global oceans

(80◦S – 80◦N). Climatological seasonal cycles were determined for the overlapping time range (1997–2013) and are shown

in Fig. 3, panels A–C. HOAPS, ERA5, OAFlux, and GPCP 1σ uncertainty ranges are indicated by light blue, purple, red, and

brown shading, respectively. Subtracting the seasonal cycle from the respective monthly mean time series yields global ocean305

anomalies of E−P , E, and P , which are presented as three-month running means in panels D–F. Seasonal and inter-annual

variability are of the same order of magnitude, which can be seen by comparing the left panels with those on the right (the

y-axis spans 1 mm d−1 in all panels). There are substantial biases between E, P , and E−P data. A bias of about 0.4 mm d−1

is found between SEAFLUX and J-OFURO E. An additional 0.2 mm d−1 deviation exists between J-OFURO and ERA5.

E data from HOAPS, IFREMER, and OAFlux are much closer to each other: satellite-based E all fall within the OAFlux310
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uncertainty range (light red shading), whereas ERA5 falls within the larger HOAPS uncertainty range for only 4 months of

the year. The HOAPS uncertainty range is much larger than the seasonal variation, which indicates that HOAPS uncertainty is

likely overestimated, which may be due to the assumption of 100% covariance for systematic uncertainty.

Panel B shows that the seasonal cycle of global ocean mean P is shallow and the two satellite-based data sets agree within

the GPCP uncertainty for ten months in the year. The trough in March and April in the HOAPS climatology is caused by the315

strong sensitivity to the ENSO (El Niño - Southern Oscillation) phase and is a known characteristic of HOAPS data (see, e.g.,

Andersson et al., 2011; Masunaga et al., 2019). It is most apparent in panel E, where the Niño 3.4 SST index (Trenberth and

Stepaniak, 2001) is plotted in gray bars along with P anomalies: HOAPS P correlates with Niño 3.4 if a lag of 4 months

is taken into account. Like for E, we find substantial biases among the three P data sets: compared to GPCP, HOAPS has

a bias of about −0.1 mm d−1, ERA5 is biased by about +0.25 mm d−1, which was also found by (Hersbach et al., 2020).320

These differences can, in part, be explained by differences in P frequency distributions and, in particular, by the fraction of rain

occurrences, which is much lower in HOAPS than in GPCP or ERA5. This will be discussed in Sect. 5. Since in this paper

the focus is on the inter-comparison of E-P (not specific E or P algorithm issues), we only describe the observed differences

between P (and E) data sets to obtain a better understanding of differences between E-P data.

Apart from HOAPS E−P in March–April, all satellite data sets agree on phase and amplitude of the E−P seasonal cycle.325

ERA5 shows hardly any dependence on season, as the magnitude of the summer maximum is smaller in ERA5 due to the

relatively larger summer P maximum. The monthly and inter-annual variability of ERA5 E−P is, like the seasonal cycle, of

smaller amplitude than that of satellite data which is caused by the high degree of coherence between E and P , and will be

discussed in more detail in Sect. 4.5. Because compared to satellite data, ERA5 E and P are biased high by about the same

amount, E−P is close to the satellite data (except SEAFLUX-G). SEAFLUX-G shows the smallest E−P throughout the330

year and the global means come close to 0 mm d−1 in March/April. In contrast, HOAPS yields the highest E−P due to its

low mean P . All E-P data are contained within the HOAPS and OAFlux uncertainty ranges.

The E anomalies in panel D display a high degree of correlation on the monthly time scale. On the multi-annual scale all

data sets show some degree of variability, which is most likely linked to sensor and inter-calibration issues (e.g., Robertson

et al., 2019), and the variability is not consensual. For example, the slow, decadal-scale oscillation observed in HOAPS and335

IFREMER appears to be in anti-phase compared to OAFlux. SEAFLUX shows a behavior different from all other data sets and

E is biased low from late 2000 to the beginning of 2006. The three P data sets yield inter-annual variations with amplitudes

that are similar in amplitude to those found for E, and show a high degree of correspondence in their monthly and inter-annual

variability — apart from the stronger ENSO dependence of HOAPS. Apparent agreement is found among all E−P anomalies

— again apart from the ENSO-related deviations found in HOAPS P. The agreement among E−P anomalies is best in the340

”quiet” ENSO years (2001–2005), but this is probably a coincidence as the spread in E−P in other years is mainly due to

differences in E and not in P . Note that differences between J-OFURO-G, IFREMER-G, SEAFLUX-G, and OAFlux-G are

due to differences in E, as in all cases GPCP P was used for the calculation of E−P .
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4.3 Inter-comparison of freshwater flux over ocean: time series on regional scales

In this section, we investigate the temporal correlation of water cycle components on regional scales. This approach will help345

to understand differences between the various data sets by uncovering in which regions the differences are particularly large

(or small). As a reference for the E and E-P comparisons, we use SEM, a data set determined by the statistical median of

all satellite data sets. Since we use only two satellite P data sets, GPCP is selected as a reference for the P comparison. We

determine correlation coefficient, slope and intercept of the linear regression (y = ax+b) between 1◦ x 1◦ monthly means (not

anomalies) of each data set, y, and the reference, x, to examine where estimates are most consistent.350

The results are shown for all six E data sets in Fig. 4, where the left column displays the correlation coefficient. On the

top row, HOAPS yields R2 > 0.75 over most of the globe, with some notable exceptions at the ITCZ and the Peruvian coast.

The other satellite data yield higher correlation coefficients in general, except for SEAFLUX at latitudes > 40◦, where R2

decreases to 0.5 in the North and below 0.25 in the Southern Ocean. The correlation pattern of ERA5 with SEM is similar to

that found for HOAPS, although the tropical areas withR2 < 0.75 are not at the same locations. The highest overall correlation355

with SEM is found for J-OFURO, with R2 exceeding 0.75 essentially everywhere.

The middle panels of Fig. 4 display the slope of the linear regression. A slope greater (smaller) than 1 implies an over-

(under-) estimation, particularly of large values, compared to SEM. HOAPS overestimates E in the tropics, except in an area

in the eastern Pacific at 0◦ – 5◦ N, where a < 1. J-OFURO and SEAFLUX show opposing patterns, as the former consistently

overestimates large E over the global oceans, particularly near the equator and in a band at 60◦S, whereas the latter underes-360

timates large E everywhere. Slopes determined from IFREMER and OAFlux show only small deviations from 1, except for a

region in the tropical eastern Pacific, where OAFlux underestimates large E compared to SEM. An inhomogeneous pattern is

found for ERA5, but the slope is generally close to 1. A small region in the tropical Atlantic stands out due to its large slope,

and since this is not seen in any of the satellite data sets, it must be a feature in ERA5 data.

The patterns in the middle panels are nearly all mirrored in the right panels, i.e., wherever large values are overestimated365

(a > 1), small values are underestimated (b < 0), and vice versa. All data sets thus appear to agree on intermediate values.

Overall, the correspondence between E data sets is best in the subtropics, as the largest deviations appear in the tropics and, in

some cases, in the (southern) high latitudes.

Figure 5 shows the same analysis for P from HOAPS (upper panels) and ERA5 (lower panels). The correlation coefficient

between HOAPS and GPCP P is > 0.75 at the ITCZ and about 0.5 for most of the global oceans. In the oceans’ deserts370

R2 < 0.25 are found, which is mostly due to the small dynamic range of mean P . Compared to GPCP, HOAPS underestimates

P in this region, as a < 1. At latitudes poleward of 50◦ similarly small R2 are found that are in part due to the small dynamic

range, and in part to difficulties pertaining to the detection of snow. HOAPS underestimates high P here and overestimates

small P (b > 0 mm d−1) compared to GPCP. Very similar patterns are seen for ERA5, although in general, the correlation

coefficient is higher than for HOAPS. ERA5 is biased high almost everywhere compared to GPCP. Both HOAPS and ERA5375

show a smaller range of P in the Southern Oceans, as the slope is less than 0.5, but the large intercept indicates an overestimation
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of small P compared to GPCP. The narrow band of R2 < 0.75 and b > 1 mm d−1 at the equator is also found in both HOAPS

and ERA5.

For E-P, the results of the regression analysis are shown in Fig. 6. The highest correlation coefficients (and slopes and

intercepts closest to 1 and 0 mm d−1) are found among the data sets calculated with GPCP P. This shows that most of the380

variability in E-P is due to differences in P. Since GPCP P is used in four out of five data sets included in the SEM, those data

sets show high correlations, whereas HOAPS and ERA5 yield patterns very similar to those found for the P comparison in

Fig. 5. Nevertheless, both for ERA5 and HOAPS the correlation in most of the tropics is higher for E-P than for P. In summary,

the correlation patterns for HOAPS and ERA5 indicate agreement on the seasonal cycle in the tropics, a result found previously

by Brown and Kummerow (2014), although we find that its amplitude is reduced in the GPCP-based E-P data (Fig. 3). Less385

agreement is found in the Southern Oceans, where GPCP-basedE−P are underestimated relative to SEM. In the mid-latitudes,

the regression with SEM yields slopes near 1 and intercepts close to 0 mm d−1 for ERA5 and HOAPS, but the correlation is

less than in the tropics, probably due to the smaller dynamic range of E-P.

In the present study, we compare satellite-based E-P with ERA5 E-P because we are also examine the separate contributions

from E and P. It can, however, be argued that VIMD from reanalysis is a more reliable quantity than reanalysis E-P, since390

VIMD is calculated from the state variables wind and water vapor, whereas E and P are model-physics derived (e.g., Trenberth

et al., 2011)). We verified that in ERA5, the agreement between E−P and ∇Q is generally good, as shown in Appendix B.

Changes to the plots in Fig. 6 are minor if we use ERA5 ∇Q instead of ERA5 E−P to calculate the regression with SEM

E−P , as shown in Fig. A2 in the Appendix.

4.4 Examination of the water budget in ERA5395

One way of investigating the consistency of different water cycle components is determining if the global water budget (Eq. 1)

is closed. However, satellite E-P data sets are available over ocean only, so we revert to a comparison with gap-free reanalysis

data. There is no internal constraint for budget closure in ERA reanalyses (Berrisford et al. , 2011; Hersbach et al., 2020), and

as the budget was not closed in ERA-interim, it is worthwhile to investigate ERA5’s behavior in this regard. Monthly mean

total ERA5 E−P over the globe, the ocean, and land are shown in Fig. 7 in black, blue, and green, respectively. The mean400

values over the globe and land were scaled by their surface area relative to the ocean surface area (i.e., they were multiplied by

510/350 and 160/350, respectively) to obtain consistency with the over-ocean means shown in Fig. 3. The error bars on ERA5

data depict the standard deviation of the 10-member ensemble. Nearly all of the uncertainty in global mean E-P is due to the

uncertainty over ocean; the error bars on the over-land E-P are smaller than the graph’s line width. This is due in equal parts

to E and P, which have similar ensemble standard deviations (not shown). For the time range shown in Fig. 7 global E−P is405

seen to oscillate around 0 mm d−1, meaning that the ERA5 water budget is closed on a yearly time scale (in agreement with

the findings by Hersbach et al., 2020). The seasonal cycle is mainly driven by increased evapo-transpiration of vegetation on

land and peaks in northern hemispheric summer due to the larger fraction of land in the Northern Hemisphere. Precipitation

shows a similar seasonal cycle over land, but does not completely cancel out in E-P due to a slight phase shift with respect to

the E seasonal cycle (not shown).410
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Figure 7 shows that monthly means of globalE−P and ∆W (light blue line) display a high degree of coherence, as expected

from Eq. 2. This is an indication that the (atmospheric) water cycle is well represented in ERA5.

Globally, VIMD is zero, as no water vapor is transported out of (or into) the Earth system. However, we find ERA5 global

total VIMD to be about −0.04 mm d−1, which is probably due to inaccuracies in the transformation from the spectral to grid

point space (P. Berrisford, personal communication 2020). Interestingly, VIMD over land (pink) agrees well with over-land415

E-P, whereas VIMD over ocean (purple line) is smaller than over-ocean E-P also by −0.04 mm d−1. Based on the results of

the regression analysis shown in the upper panels of Fig. A2 we speculate that discrepancies between E−P and∇Q over the

ocean’s desert regions also play a role in causing∇Q to be smaller over ocean than over land.

4.5 Examination of the water budget in satellite data sets

Globally, E−P is equal to ∆W (Eq. 2 and Fig. 7), and because ∆W is two orders of magnitude smaller than E and P ,420

global mean E should necessarily be almost equal to global mean P . This seemingly trivial finding provides us with a tool

to investigate the consistency of E and P data sets: by determining how well they correlate. For ERA5, global mean E and P

yield correlation coefficients R2 = 0.82 and R2 = 0.84 for monthly and yearly means, respectively. This procedure cannot be

applied to the satellite E-P data considered here, as they contain values over ocean only. Since there is a substantial seasonality

in water vapor transport (Fig. 7), the correlation between ocean-only E and P is expected to be much lower. A regression of425

ERA5 Eocean and Pocean monthly means (where the subscript ocean indicates averaging over ocean only) indeed yields only

R2 = 0.42, increasing to R2 = 0.57 for yearly means. To account for the net transport of water from ocean to land, we include

∇Qocean into the analysis, and, applying Eq. 4, correlate Eocean−∇Qocean with Pocean. For ERA5, the resulting R2 are 0.86

for yearly and monthly means: very similar to the coefficients found for the correlation of global E with P .

We calculated correlation coefficients of the various E and P data sets used in this study, combined with ERA5 ∇Qocean,430

and listed them in Table 3. The analyses were performed separately on (i) monthly means, primarily indicating agreement on

the seasonal cycle; (ii) yearly means, a measure of consistency of inter-annual variability, including trends; and (iii) monthly

anomalies, focused on short-scale variability.

The small correlation coefficients found for monthly mean satellite data in part reflect the differences in the seasonal cycles

of E and P (see panels A and B of Fig. 3). But the results from the analysis of monthly anomalies (where the mean seasonal435

cycle was subtracted) are very similar to those found for monthly means, indicating that, compared to monthly and inter-annual

variability, the seasonal cycle is of lesser importance on the global scale. For satellite data, the influence of ∇Qocean on the

correlation is minor, as similarR2 are found if the analysis is performed withEocean against Pocean (not shown). This is not the

case for ERA5, where including ∇Qocean improves the correlation coefficient appreciably, as mentioned above. On a yearly

time scale, we do not expect a high degree of correlation, as inter-annual variability is small and no clear trends are observed440

in panels D and E of Fig. 3. For ERA5, R2 = 0.86, but this is primarily caused by small E and P in 1997 and 1999, which

is also the case for IFREMER. The correlation found for J-OFURO, R2 = 0.31, is the highest found among satellite data.

The remaining satellite data sets are not significantly correlated on a yearly time scale (p-value > 0.05), and for SEAFLUX-G
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Eocean−∇Qocean is smaller than GPCP Pocean. Clearly, time series longer than the 17 years investigated here would benefit

the analysis of yearly mean data.445

Overall, this analysis shows that satellite-based estimates of E are less consistent with satellite-based P data than ERA5 E

and P. To a certain degree, this is expected, as the three variables used in the analysis come from different sources (e.g., E from

IFREMER, P from GPCP, and∇Qocean from ERA5), each with its own sampling and uncertainty characteristics. Nevertheless,

from the global water cycle perspective, some degree of correspondence between Eocean and Pocean is expected.

4.6 Estimates of global total water cycle components450

From the data shown in the previous sections we calculated climatological (1997–2013) global ocean totalE and P , totalE−P
(separated into land and ocean contributions), runoff and net transport. The latter is equal to the total over-ocean (or over-land)

∇Q. Our results are given in the three upper rows of Table 4. For brevity, we again denote total E, P , and E−P over ocean

as Eocean, Pocean, and (E−P )ocean respectively, and similarly, over-land E−P as (E−P )land. For better comparison with

earlier estimates, values are given in units of 103 km3 yr−1.455

The rows labeled ”obs.” display the mean, standard deviation (std) and range of Pocean (from GPCP and HOAPS) and

Eocean (from HOAPS, J-OFURO, IFREMER, SEAFLUX, and OAFlux). Various estimates of global totals of water cycle

components can be found in the literature, for example in (Oki and Kanae , 2006; Trenberth and Asrar , 2014; Rodell et al. ,

2015), and are shown in the lower half of Table 4.

The largest spread among water cycle components is found for E and P over ocean, both in an absolute and a relative sense,460

each with a range spanning about 100 · 103 km3 yr−1, or 20–25%. The relative spread in R is similar, but is a factor of ten

smaller in absolute values. In their study, Rodell et al. (2015) estimated Eocean from observations at 410 · 103 km3 yr−1

(corresponding to 3.21 mm d−1), in agreement with Trenberth and Asrar (2014), but found a value of 450 · 103 km3 yr−1 by

applying an algorithm that optimized all water cycle components to achieve water and energy budget closure. The algorithm

caused a concurrent increase in Pocean from the observed 385 · 103 km3 yr−1 to 403 · 103 km3 yr−1. In our study, we find a465

large range ofEocean: HOAPS yields 397±96·103 km3 yr−1, OAFlux 414±37·103 km3 yr−1, IFREMER 418·103 km3 yr−1,

and J-OFURO 453 ·103 km3 yr−1. We calculate a value of 360 ·103 km3 yr−1 from SEAFLUX, which is somewhat surprising

as Rodell et al. (2015) report 410 · 103 km3 yr−1 for the preceding SEAFLUX version 1. Note that HOAPS 1σ uncertainty

is as large as the range among satellite-based Eocean and more than three times the corresponding std, again implying an

overestimation of the HOAPS uncertainty range (see Sect. 4.2). The OAFlux 1σ uncertainty is of the same magnitude as the470

std among satellite-based Eocean. The small Eocean found by HOAPS is partly due to data coverage, as data are only available

over the ice-free ocean within 80◦ of the equator. A test with ERA5 data showed thatEocean decreases by 5% when the data are

adapted to HOAPS coverage. Conversely assuming a 5% increase for HOAPS yields 417 ·103 km3 yr−1. The same reasoning

applies to the other satellite data sets with similar effects on Eocean.

The spread in Pocean is of the same magnitude as that found for Eocean: HOAPS yields 335± 44 · 103 km3 yr−1, GPCP475

384± 31 · 103 km3 yr−1, assuming uncertainty ranges of 13% and 8% for HOAPS and GPCP, respectively. ERA5 yields

426± 2 · 103 km3 yr−1, which is significantly larger than either HOAPS or GPCP. From the GPCP-1DD data used in this
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study, we determine Pland = 116 · 103 km3 yr−1, which is close to the estimates presented previously (which range from

111 · 103 km3 yr−1 (Oki and Kanae , 2006) to 117 · 103 km3 yr−1 (Rodell et al. , 2015)). This is due to the fact that GPCP is

used for all observation-based estimates. ERA5 Pland is somewhat higher than the observations (122 · 103 km3 yr−1).480

From the estimates of Eocean and Pocean it follows that for HOAPS (E−P )ocean = 62± 106 · 103 km3 yr−1, for OAFlux

(E−P )ocean = 30± 48 · 103 km3 yr−1. IFREMER yields (E−P )ocean = 34 · 103 km3 yr−1, J-OFURO (E−P )ocean =

69 · 103 km3 yr−1, and SEAFLUX the unphysical (E−P )ocean =−24 · 103 km3 yr−1.

The spread inR (40–50·103 km3 yr−1) is quite large. The total continental runoff from ERA5 is 41.2·103 km3 yr−1, which

is slightly higher than the 39 ·103 km3 yr−1 found in ERA-interim (Berrisford et al. , 2011). Data from the Global Runoff Data485

Centre (GRDC, Wilkinson et al., 2014) yield an average of 41 · 103 km3 yr−1 with a standard deviation of 1.8 · 103 km3 yr−1

for 1987–2010. They are at the lower bound of the estimates by Clark et al. (2015), who find 44.2± 2.7 · 103 km3 yr−1

for 1950–2008. The same study cites estimates by various authors that range from 25–50 · 103 km3 yr−1, with those based

on freshwater fluxes representing the lower boundary (25–39 · 103 km3 yr−1). The long-term average runoff estimated from

the GRUN (Global RUNoff, Ghiggi et al., 2019) data set is 38 · 103 km3 yr−1, consistent with the above-mentioned range,490

albeit somewhat smaller than the best estimate by Clark et al. (2015). Note that GRUN runoff estimates are not independent of

reanalysis data, as the machine-learning algorithm uses surface temperature and P data from 20CR reanalysis (Compo et al.,

2011; Ghiggi et al., 2019). Improvements in the quality of E-P estimates will aid the quantification of river runoff by providing

an independent estimate of the total freshwater flux.

Where runoff is the net transport of (liquid) water from land to ocean, over-ocean VIMD (∇Qocean) is the net amount495

of water vapor advected from ocean to land. Hence, R=∇Qocean =−∇Qland. Whereas ERA5 estimates of ∇Qland are at

the high end of the range of R mentioned above, at 31− 33 · 103 km3 yr−1, ∇Qocean is too small. As observed above, the

transformation of reanalysis data in spectral space to grid-point space introduces errors that cause global total ∇Q to be about

10 · 103 km3 yr−1, and not zero (P. Berrisford, pers. comm., 2020). The estimates by (Oki and Kanae , 2006; Trenberth and

Asrar , 2014; Rodell et al. , 2015) of net transport are in agreement with ERA5R and∇Qland. The consistency between runoff500

and net transport seen in the last four rows of Table 4 is mainly by construction, as both are usually required (or defined) to be

equal.

The five left-most columns of Table 4 should, theoretically, all contain identical values (except for the sign). In practice,

however, (E−P )land ranges from −46 to −40 ·103 km3 yr−1, (E−P )ocean from 25 to 49 ·103 km3 yr−1,∇Q ranges from

40 to 47 · 103 km3 yr−1 (disregarding the erroneous ERA5 ∇Qocean value), and R from 40–46 · 103 km3 yr−1. Assuming505

the degree of consistency found among these values represents the reliability of the estimate, it is clear that E-P uncertainty

is largest over ocean, and from the first two columns of Table 4 it follows that E and P contribute almost equally to that

uncertainty.
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5 Discussion

We present an inter-comparison of five recent satellite-based E-P data sets. All five E data sets are the latest official versions of510

CDRs generated from (different) BT FCDRs and are combined with GPCP (or HOAPS) P CDR to form E-P data.

Of the E data sets used in this study, HOAPS depends on the least amount of model data, using these on a climatological (as

opposed to collocated, instantaneous) basis. ERA5, being a model reanalysis, represents the other extreme, and the remaining

retrieval algorithms are somewhere in between. All algorithms, including ERA5 physics, rely on the same parameterization

of bulk fluxes (Eq. 6) and on the COARE algorithm for the determination of the turbulent exchange coefficient (see Sect. 2).515

The origin of E differences between various data sets must therefore lie with the bulk flux parameters u, qa, and qs, and

with differences in sampling characteristics. A recent study by Roberts et al. (2019) showed that HOAPS, SEAFLUX, and

J-OFURO retrieve global mean qa that are systematically too small compared to in situ ship-based NOCSv2 data (Berry and

Kent, 2011); IFREMER slightly overestimates qa. This difference could be largely improved by applying a correction based

on the subtraction of a regime-dependent bias (in which regimes are defined by their water vapor vertical stratification, cloud520

liquid water content, and SST; and the bias determined with respect to NOCSv2). The HOAPS algorithm determines Ql (and

E) systematic error estimates in a similar fashion: biases with respect to ship-based data were binned by Ql, u, Ts, and W ,

then collected into a 4-dimensional look-up-table (Kinzel et al., 2016; Liman et al., 2018). Subtracting the systematic error

from HOAPS Ql (or E) would raise the global mean and improve the agreement with ship-borne data sets such as NOCSv2.

Initial tests show that this is, indeed, the case for Ql. This is the topic of a forthcoming study. We stress, however, that reducing525

biases with respect to reference (e.g., in situ) data by improving the retrieval algorithm through better understanding of physical

processes should be the preferred way forward.

Forcing improved agreement of satellite-based estimates ofE with respect to in situ data (and ERA5) via bias adjustment has

a downside: the bias removed fromE reappears inE−P , different estimates of (E−P )land,∇Q, and estimates of continental

runoff rates. Satellite E−P is also in agreement with ERA5 E−P due to the cancellation of biases, which was already noted530

in Sect. 4, when discussing the large positive biases of ERA5 E and P with respect to satellite observations (Fig. 3, B and C).

Andersson et al. (2011) found a high bias of HOAPS-3.2 E-P for the time period 1992–2005, which was much reduced

(although still high compared to GRDC estimates of runoff) in the successive version 3.3 (Liman et al., 2018). In fact, the

mean over-ocean HOAPS-3.3 E-P, determined between 70◦ S–70◦ N and 1988–2012, is 0.45 mm d−1, similar to the value we

compute for the same time and latitude range using HOAPS-4.0, of 0.51 mm d−1. For the time and spatial range in the current535

study, 1997–2013 and within 80◦ of latitude, HOAPS-4.0 mean E−P = 0.49 mm d−1 (62 · 103 km3 yr−1), about 50% larger

than the GRDC estimate of 41 ·103 km3 yr−1. Nevertheless, the over-ocean freshwater fluxes of all studied data sets agree with

each other and with runoff data within the HOAPS and OAFlux uncertainty ranges.

The differences in over-ocean mean P between ERA5, GPCP, and HOAPS can be traced back to differences in their prob-

ability density functions. HOAPS has a smaller probability for yielding intermediate rain rates, whereas GPCP yields less540

occurrences of large rain rates (Masunaga et al., 2019). In addition, HOAPS shows a much higher fraction of monthly, 1◦x1◦

non-raining grid boxes (3-4%) than either GPCP (0.5-1%) or ERA5 (0.2%), which has a large impact on the mean value of P .
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The inter-comparison of global P data sets is the topic of a range of papers, but since the validation of P is difficult due to its

inherent variability and the lack of sufficient in situ data — particularly over ocean — judging which algorithm performs best

under which circumstances is a complicated task (Kidd and Huffman, 2011; Gehne et al. , 2016; Tapiador et al. , 2017).545

Since the studied data sets contain values over ocean only, it is not possible to check if totalE and P balance globally. For this

reason we include ERA5 reanalysis data into the comparison. Model physics parameterizations and dynamics presumably act

to ensure that the large positive biases found in both ERA5 E and P (compared to satellite data) cancel out almost completely

and ERA5 E−P is in good agreement with most satellite data at latitudes≤ 45◦. We show that ERA5’s water budget is closed

for the studied time range (1997–2013) and that the various components — E, P, VIMD, TCWV tendency — are consistent on550

a monthly, global scale (Fig. 7). Cautiously interpreting this consistency as an indication of good quality, we use ERA5 data to

devise methods to examine the consistency of ocean-only satellite E and P data sets. The high correlation coefficient found for

the regression of ERA5 Eocean−∇Qocean with ERA5 Pocean implies a high degree of coherence, yet correlations of satellite

E data with GPCP or HOAPS P are small (Table 3). This is certainly partly due to the number of different sources of data,

which for ERA5 is 1, but for (e.g.) J-OFURO is 3: J-OFURO E, ERA5 VIMD, and GPCP P, each having its own sampling555

characteristics and uncertainties. But the lack of correlation is probably also caused in part by an actual lack of coherence

between satellite E data and GPCP (or HOAPS) P. This, in turn, implies that inaccuracies in satellite E and/or P data remain

that may prevent closure of the over-ocean part of the water cycle. The comparison of estimates of total Eocean and Pocean

with estimates of transport, continental runoff, and (E−P )land (Table 4) paints a similar picture: over-ocean E and P show a

large spread in values, coupled with high uncertainties.560

6 Final Comments

Our inter-comparison of six CDRs shows agreement among global means of E−P within HOAPS-4.0 and OAFlux3 uncer-

tainty ranges. Despite considerable positive biases in ERA5 E and P, over-ocean ERA5 E-P is in agreement with satellite data,

showing some temporal coherence in variations on monthly–decadal time scales, but with notable departures depending on

time and on the E data set used. Within uncertainty, over-ocean total E−P from satellites is in agreement with estimates565

of continental runoff and net ocean-to-land transport. However, uncertainties of and the spread among satellite data sets are

both still very large in comparison with the magnitude of over-ocean E−P . Improving estimates of E and P , particularly

over ocean, thus remains an important task. Moreover, emphasis should be put on the development of uncertainty ranges. We

recommend that to monitor the quality of results, in addition to performing independent validation studies, the whole global

water cycle and the constraints it imposes should be taken into consideration.570

There is a pressing need to understand the nature of changes to the Earth’s water cycle induced by global warming. The

consensus in recent scientific literature is that there will be a larger amount of water vapor in the atmosphere as the atmosphere

warms and, consequently, its water-holding capacity increases at a rate consistent with the Clausius-Clapeyron relationship

(e.g, Allen and Ingram , 2002; Held and Soden , 2006; Trenberth et al., 2007). Model simulations agree on E and P flux

responses to SST change of about 1%–2% K−1, but observational confirmation through satellite estimates is only now emerging575
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from the background of noise from natural climate variability. We here show that ERA5, a state-of-the-art model reanalysis,

underestimates seasonal and inter-annual variability of E-P compared to satellite-based observations, which is also the case for

climate models (Wentz et al. , 2007). This could tentatively be interpreted as indicating that the water cycle is more sensitive

to changes in the state of the atmosphere and ocean than models predict. However, the stability of observations is affected by

changes in satellite observing system. These changes, combined with assumptions contained in algorithms for near-surface580

humidity and wind speed (needed for bulk aerodynamic retrievals) complicate the detection and quantification of long-term

trends (Wentz et al. , 2007; Trenberth et al., 2007; Schlosser and Houser , 2007; Robertson et al. , 2014). Moreover, and despite

the fact that the satellite record of water cycle components now encompasses more than three decades’ worth of data, changes

in E-P expected from (anthropogenic) global warming within this time period are weak compared to natural changes (Allen

and Ingram , 2002).585

In general, our understanding of the water cycle as it is now needs to improve substantially before any attempt at assessing

effects of climate change can be undertaken.

...

Data availability. All presented data sets are freely available from the cited websites.

Appendix A: Difference climatologies590

All difference maps of satellite-based E-P, E, and P climatologies with collocated ERA5 data are shown in Fig. A1. The maps

in the left column are very similar (apart from HOAPS) because the E-P deviations are dominated by P and the same GPCP

data were used to generate all E-P data sets (except HOAPS).

Appendix B: Regression of ERA5 E-P against ∇Q

Locally and over long time scales (e.g.one month) E-P and VIMD are equal (Eq. 3), as the change in TCWV is negligible595

on those scales. To see if this is the case for ERA5, the upper panels of Fig. A2 show the correlation coefficient, slope, and

intercept of the linear regression of monthly mean E-P with VIMD. A linear fit given by ∇Q= a(E−P ) + b yields a slope a

very near to 1.0 and an intercept b close to 0 mm d−1 everywhere, with a tendency to a > 1 over high P regions (e.g. the ITCZ)

and a < 1 elsewhere, as shown in the middle and right panels of Fig. A2. Due to errors introduced during data processing (e.g.,

by moving between spectral and grid-point space) a perfect match between the ERA5 variables is not expected. But there are a600

few regions where the decreased R2 can only be partly ascribed to averaging errors. These are the oceans’ desert regions, e.g.,

at the Peruvian coast and southern Africa’s west coast, where climatological mean P is less than 1 mm d−1, and the dynamic

range of E−P is small (≤ 2 mm d−1). In the ocean deserts, the slope is < 1 and the intercept > 0 mm d−1 (e.g., 0.75 and

1.5 mm d−1 for the tropical East Pacific region with small R2). Since mean P is near 0 mm d−1 in these regions, ∇Q is
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approximately equal to E. Hence the deviations between E−P and ∇Q in these regions indicate an inconsistency between605

ERA5 E and ∇Q. From the similarity of ERA5 E−P and ∇Q it follows that the results of the regression analysis of ERA5

E-P with SEM E-P, presented in Sect. 4.3, are very similar to those obtained for ERA5∇Q with SEM E−P , as shown in the

lower panels of Fig. A2. The correlation coefficient is somewhat smaller than for ERA5 E−P , but the patterns of all three

statistical parameters are very similar to those in the last row of Fig. 6.
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Figure 1. Satellite ensemble median (SEM) and ERA5 climatologies (1997-2013) of freshwater flux (A and B) and evaporation (C and D),

and GPCP and ERA5 precipitation (panels E and F). ERA5 data coverage was reduced to match satellite data (see text for details).
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Figure 2. Left panels: Difference maps of HOAPS (upper) or OAFlux-G (lower) climatological mean E-P minus the corresponding collocated

ERA5 climatology (1997-2013). Right panels: HOAPS (upper) and OAFlux-G (lower) climatological mean 1σ uncertainty. White lines in

the left panels enclose regions where the difference with ERA5 E-P exceeds the 2σ uncertainty range.
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Figure 3. Climatological (1997–2013) seasonal cycle of global ocean mean evaporation rate (A), precipitation rate (B), and freshwater flux

(C). HOAPS, ERA5, OAFlux, and GPCP 1 σ uncertainty ranges are shown by light blue, purple, red, and brown shading, respectively

(matching their line colors). Monthly mean anomaly (w.r.t. the climatological seasonal cycle depicted at left) over the global oceans (80◦ S–

80◦ N) of evaporation rate (D), precipitation rate (E), and freshwater flux (F). The anomaly data are smoothed using a three-month running

mean. Panel E additionally displays the Niño3.4 index (right y-axis). Ticks on the time axis mark January of the indicated year.
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Figure 4. Correlation, slope and intercept of the linear regression of monthly mean E from (top to bottom): HOAPS, J-OFURO, IFREMER,

OAFlux, SEAFLUX, or ERA5 with satellite ensemble median (SEM) monthly mean E (1997–2013).

Figure 5. Correlation, slope and intercept of the linear regression of monthly mean P from HOAPS (upper panels) or ERA5 (lower panels)

with GPCP monthly mean P (1997–2013).
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Figure 6. Correlation, slope and intercept of the linear regression of monthly mean E−P from (top to bottom): HOAPS, J-OFURO-G,

IFREMER-G, OAFlux-G, SEAFLUX-G, or ERA5 with satellite ensemble median (SEM) monthly mean E−P (1997–2013).
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Figure 7. ERA5 monthly meanE−P over the whole globe (black), land only (green), and ocean (blue); global mean ∆W (light blue), mean

∇Q over land (pink) and ocean (purple). The mean values over the globe and land were scaled by their surface area relative to the ocean

surface area (i.e., they were multiplied by 510/350 and 160/350, respectively) to obtain consistency with the over-ocean means shown in

Fig. 3. Error bars represent the standard deviation within the 10-member ensemble, which is smaller than the graph’s line width for E−P
over land, ∆W , and∇Q.
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Figure A1. Difference maps of satellite-based E-P (left), E (center), and P (right) climatologies and the respective ERA5 climatology (1997-

2013).

Figure A2. Correlation, slope and intercept of the linear regression of monthly mean ERA5 ∇Q with ERA5 E−P (upper panels) or with

the satellite ensemble median (SEM) E−P (lower panels).
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Table 2. Abbreviations and symbols of variables used throughout the manuscript.

Variable Abbreviation Symbol

Air density - ρ

Evaporation rate E E

Latent heat flux LHF Ql

Near-surface (10 m) humidity - qa

Near-surface (10 m) wind speed - u

Precipitation rate P P

Runoff R R

Sea surface humidity - qs

Sea surface temperature SST Ts

Specific heat of water vaporization - LE

Total column water vapor TCWV W

TCWV tendency ∆TCWV ∆W

Turbulent exchange coefficient - CE

Vertically integrated moisture flux divergence VIMD ∇Q

Table 3. Pearson’s correlation coefficient squared (R2) for monthly (mean or anomaly) or yearly global ocean meanEocean−∇Q vs. Pocean,

with ∇Q data from ERA5. R2 was calculated from data sets that were collocated prior to the calculation of global means. Non-significant

correlation coefficients (p-value > 0.05) are marked with an asterisk.

Data set monthly mean yearly mean monthly anomaly

HOAPS-4.0 0.03 0.00* 0.06

J-OFURO3 - GPCP-1DD 0.16 0.31 0.22

IFREMER4.1 - GPCP-1DD 0.13 0.23 0.20

OAFlux3 - GPCP-1DD 0.14 0.01* 0.11

SEAFLUX2 - GPCP-1DD 0.09 0.17* 0.14

ERA5 0.86 0.86 0.83
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Table 4. Estimates of ocean total E and P , land and ocean total E−P , net transport of water vapor, and continental runoff given in

103 km3 yr−1. The upper three rows contain results from this study, the lower four those from earlier investigations. ERA5 estimates are

calculated from ensemble mean data, the standard deviation (std) is derived from ensemble statistics. The satellite-based data sets used in

our study were averaged to obtain the mean and std of observed (Obs.) Eocean and Pocean, and the range is given in the third row. Net water

vapor divergence over land (∇Qland) and ocean (∇Qocean) and continental runoffR are given in the last three columns. The estimates from

the study by Rodell et al. (2015) are separated into observations (obs.) and model-optimized observations (opt.), see the text for details.

Eocean Pocean (E−P )land (E−P )ocean ∇Qland ∇Qocean R

ERA5 467± 1 426± 2 −44± 0.4 43± 2 −43± 0.2 31± 0.2 42.1

Obs. mean ± std 408± 30 360± 25 − 49± 17* − − −
Obs. range 360–453 335–384 − 30–69* − − −
Oki and Kanae (2006) 436.5 391 −45.5 45.5 −45.5 45.5 45.5

Trenberth and Asrar (2014) 413 373 −40 40 −40 40 40

Rodell et al. (2015) obs. 410± 36 385± 39 −45± 9 25± 53 −43± 8 47± 19 50± 7

Rodell et al. (2015) opt. 450± 22 403± 22 −46± 7 47± 31 −46± 4 46± 2 46± 4

*Not including the unphysical (E−P )ocean =−24 · 103 km3 yr−1 found for SEAFLUX-G.
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