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Abstract. The development of algorithms for the retrieval of water cycle components from satellite data, such as total column

water vapor content (TCWV), precipitation (P), latent heat flux, and evaporation (E) has seen much progress in the past three

decades. In the present study, we compare six recent satellite-based retrieval algorithms and ERA5 (the European Centre for

Medium-Range Weather Forecasts’ fifth reanalysis) freshwater flux (E-P) data regarding global and regional, seasonal and

inter-annual variation to assess the degree of correspondence among them. The compared data sets are recent, freely available5

and documented climate data records (CDRs), developed with a focus on stability and homogeneity of the time series, as

opposed to instantaneous accuracy.

One main finding of our study is the agreement of global ocean means of all E-P data sets within the uncertainty ranges of

satellite-based data. Regionally, however, significant differences are found among the satellite data and with ERA5. Regression

analyses of regional monthly means of E, P, and E-P against the statistical median of the satellite data ensemble (SEM)10

show that, despite substantial differences in global E patterns, deviations among E-P data are dominated by differences in P

throughout the globe. E-P differences among data sets are spatially inhomogeneous.

We observe that for ERA5 long-term global E-P is very close to 0 mm/day and that there is good agreement between land

and ocean mean E-P, vertically integrated moisture flux divergence (VIMD), and global TCWV tendency. The fact that E and P

are balanced globally provides an opportunity to investigate the consistency between E and P data sets. Over ocean, P (nearly)15

balances with E if the net transport of water vapor from ocean to land (approximated by over-ocean VIMD, i.e.,∇· (vq)ocean)

is taken into account. On a monthly time scale, linear regression of Eocean−∇ · (vq)ocean with Pocean yields R2 = 0.86 for

ERA5, but smaller R2 are found for satellite data sets.

Climatological global yearly totals of water cycle components (E, P, E-P, and net transport from ocean to land and vice

versa) calculated from the data sets used in this study are in agreement with previous studies, with ERA5 E and P occupying20

the upper part of the range. Over ocean, both the spread among satellite-based E and the difference between two satellite-based

P data sets are greater than E-P and these remain the largest sources of uncertainty within the observed global water budget.

We conclude that for a better understanding of the global water budget, the quality of E and P data sets needs to be improved

and the uncertainties more rigorously quantified.
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1 Introduction25

The water and energy cycles are key components of Earth’s climate system. Energy exchange from water phase changes plays

a direct role in atmospheric heating; therefore, precipitation (P) and evaporation (E) are two critical processes connecting

the land/ocean surface and overlying atmosphere (Trenberth et al., 2009). The difference between E and P rates, E−P , is the

freshwater flux from the surface to the atmosphere, which is positive where E dominates and negative where P dominates. Over

the global oceans, total E−P is positive, as a considerable amount of water evaporates from the oceans and is transported30

to land by advection, mainly in the form of water vapor, where it precipitates. Averaged over a year, changes in atmospheric

storage vanish and net negative E−P over land is balanced by continental runoff of water into the ocean. Although numerous

studies have addressed the question of how variations in the ocean state affect the water cycle and freshwater fluxes with a

particular view on global warming (Wentz et al., 2007; Trenberth et al., 2007; Schlosser and Houser , 2007; Robertson et al.,

2014), a clear and consistent picture has yet to emerge — one of the significant challenges in climate science (Bony et al.,35

2015; Hegerl et al., 2014; Allan et al., 2020).

At long temporal and/or large spatial scales, the increases in E and P with rising global temperature are relatively small

(2− 3% K−1) and are constrained by the energy budget. At smaller scales (less than approximately 4000 km and/or 10 years)

these changes can be much larger (or smaller) due to dynamical contributions (Dagan et al., 2019; Yin and Porporato, 2019;

Allan et al., 2020). The nature and extent of these changes, which affect the livelihoods of many millions of people, are difficult40

to model due to various counteracting influences such as forcing by clouds and aerosols, or land use change (Allan et al.,

2020). Close monitoring of E and P by (satellite) observations thus yields an important contribution to a better understanding

of impacts of climate change at regional and local scales.

The study of the global water cycle is not only compelling from a scientific point of view: it also aids the evaluation of

climate models and reanalyses by verifying the degree of consistency among the various components of the cycle. Such an45

approach is adopted here for the evaluation of satellite observations of E and P , which, particularly over ocean, are difficult

to validate otherwise. The fact that the global water cycle is closed puts a strong constraint on global total E and P fluxes. This

has been exploited in various studies in the past (Trenberth et al., 2007; Schlosser and Houser , 2007; Berrisford et al. , 2011;

Trenberth et al., 2011; Trenberth and Asrar , 2014; Trenberth and Fasullo, 2013; Seager and Henderson , 2013; Robertson et al.,

2014) from which the general conclusion emerged that, although much progress has been made regarding E and P estimates,50

observations and models still require substantial improvements in accuracy to achieve budget closure.

Over the years, methods to determine E and P based (mainly) on satellite data have been developed and repeatedly updated:

HOAPS E and P (Andersson et al., 2017), J-OFURO E (Tomita et al., 2019), IFREMER E (Bentamy et al., 2013), SEAFLUX

E (Roberts et al., 2020), OAFlux E (Yu et al., 2008), and GPCP P (GPCP, 2018) are among the most widely used data

sets. Acronyms are explained in Section 2 and listed in Table 1. We present an intercomparison of these data sets, all freely55

available Climate Data Records (CDRs), characterized by the stability of input data and retrieval algorithms, emphasizing

data homogeneity over local, instantaneous accuracy. European Centre for Medium-range Weather Forecast (ECMWF) ERA5

reanalysis data (Hersbach et al., 2020) are included for comparison in the present study. Our main focus lies with the assessment
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of correspondence among E-P data sets on a global and regional scale by the inter-comparison of six data sets and putting

the results into perspective regarding uncertainty estimates. Moreover, we investigate to what extent water budget closure is60

achieved by satellite-based over-ocean estimates by comparing with ERA5 data and previously published estimates of water

cycle components.

Here, we consider the atmospheric water vapor budget with a focus on the oceans, where satellite observations of E are

available. The net change in atmospheric water vapor content can be written as:

δW

δt
= E−P −∇ · (vq) (1)65

With W the total column water vapor and ∇ · (vq) the moisture flux divergence, i.e., the amount of moisture removed by

dynamical transport from the considered volume. See Table 2 for all symbols and abbreviations. Compared to water vapor, the

contributions of liquid water and ice are very small (e.g., Berrisford et al. , 2011) and can be safely ignored in the context of

this study.

On the global scale∇ · (vq) vanishes (as the Earth is a closed system) and Eq. 1 reduces to:70

∆W = E−P (2)

Where, for brevity, we write the W tendency during large (monthly) time steps as ∆W .

Assuming that ∆W is small compared to E and P , Eq. 2 dictates that global total E must equal global total P . Hence, an

observed imbalance in global totals of E and P indicates either an inconsistency in E and P data sets or a change in the global

water cycle, e.g. an increase in the amount of atmospheric water vapor (possibly caused by global warming), invalidating the75

assumption that ∆W is negligible. Moreover, globally, E and P co-vary, meaning that their inter-annual, seasonal, and even

monthly variability are correlated.

At regional scales and for monthly averages, ∆W is small compared toE−P and∇·(vq), so that Eq. 1 can be approximated

by:

E−P =∇ · (vq) (3)80

This is particularly valid for the large ocean and land regions, and since globally,∇ · (vq) = 0, from Eq. 3 it follows that:

(E−P )ocean =∇ · (vq)ocean =−∇ · (vq)land =−(E−P )land (4)

with subscripts denoting summation over ocean or land. This separation into land and ocean contributions allows us to assess

the consistency of different E and P data sets, as satellite E data are not available over land.

In addition to the spatio-temporal distributions of individual budget terms, e.g., E−P , information on the accuracy and85

precision of that value is of importance. Uncertainty estimates indicate whether observed differences — between data sets (e.g.,

observations and models), over time (trends, variability), or in space — are statistically relevant. Moreover, they play a major

role in data assimilation. Quantification of retrieval uncertainty, however, is a difficult task, particularly for non-linear retrieval

algorithms such as those used to retrieve E and P from satellite observations. Of the E CDRs investigated here, HOAPS-

4.0, OAFlux3, and SEAFLUX3 provide monthly mean uncertainty ranges. In HOAPS, random and systematic uncertainty90
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components are provided separately (Kinzel et al., 2016), allowing error propagation along with the calculation of temporal

and/or spatial averages, as random errors (no covariance) disappear for large numbers of data points, whereas systematic errors

(100% covariance) do not. For lack of information of error covariances, OAFlux3 and SEAFLUX3 monthly mean uncertainty

estimates are similarly treated as having 100% covariance. An estimate of uncertainty is provided with ERA5 data in the form

of results from a ten-member ensemble (Hersbach et al., 2020).95

In the following section, we provide some background on E and P retrievals and introduce the E, P, and other data sets used

for our study. Section 3 details the methods applied to the various data sets to enable a fair comparison. Results of our analyses

are presented and discussed in Sections 4–5, and we close our study with a set of conclusions and recommendations.

2 Data sets

In this inter-comparison study, we assess the degree of agreement between five satellite-based E retrievals, two observation-100

based P retrievals, and a reanalysis data set. In this section, the retrieval algorithms will be briefly introduced: for more details,

please refer to the literature listed in Table 1.

The retrieval of E from satellite observations is challenging. It is determined from the bulk flux parameters near-surface

wind speed and humidity gradient near the surface. Wind speed can be retrieved from satellite passive microwave brightness

temperature (BT) measurements and BTs have also some sensitivity to near-surface specific humidity. Specific humidity at105

the ocean surface is derived from sea surface temperature (SST). All satellite-based E algorithms use reanalysis data to some

extent and, vice versa, ERA5 also assimilates satellite data. Hence, these products cannot be considered completely independent

and the distinction between ”satellite data” and ”reanalysis” is somewhat artificial and not always appropriate. However, for

historical reasons — and for lack of a suitable alternative — we will retain these terms throughout this paper.

The main characteristics of the evaporation retrieval from passive microwave data are common to all satellite algorithms,110

but there is quite some variation regarding the input of Level-1 (calibrated observations) and Level-2 (retrieval results) data, as

will be discussed below. First, we will give a brief description of the retrieval basics, followed by details of the various satellite

algorithms.

2.1 Evaporation Data Records

The liquid-water equivalent evaporation rate, E, is calculated from the latent heat flux Ql as follows :115

E =
Ql

LE
(5)

Where LE is latent heat of evaporation of water. The latent heat flux, in turn, is parameterized according to the bulk flux

algorithm (based on the Monin-Obhukhov similarity theory representation of fluxes in terms of mean quantities):

Ql = ρLECEu(qs− qa) (6)

with ρ the density of air, CE the coefficient of turbulent exchange, u the wind speed at 10 m height relative to the ocean surface120

current speed, and qs and qa the specific humidity at the sea surface and at 10 m height, respectively. Whereas qa and u are
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derived from satellite observations of BT, ρ, qs and LE are derived from their dependences on SST and/or air temperature. The

turbulent exchange coefficient CE is obtained from the Coupled Ocean-Atmosphere Response Experiment (COARE) version

3.0 algorithm (Fairall et al., 1996, 2003). The algorithm iteratively estimates stability-dependent scaling parameters and wind

gustiness to account for sub-scale variability.125

Most of the data sets used here do not explicitly contain E, therefore, we calculated those from monthly means of Ql and

SST using Eq. 5 and LE (in J/kg) given by (Henderson-Sellers, 1984):

LE = 1.91846 · 106 · ( Ts
Ts− 33.91

)2 (7)

where Ts is SST in K. The slight difference with the definition of LE used in the COARE-3.0 algorithm causes negligible

differences of 0.03–0.04% for Ts between 278–298 K.130

The BT observations common to satellite-based retrievals of ocean turbulent fluxes come from the Special Microwave

Imager (SSM/I, Hollinger et al., 1990) and Special Microwave Imager/Sounder (SSMIS, Kunkee et al., 2008) instruments

on the Defense Meteorological Satellite Program (DMSP) platforms F08–F18. These data were corrected and inter-calibrated

using various approaches to create FCDRs, stable fundamental climate data records (see, e.g., Wentz et al., 2013; Sapiano et

al., 2013; Berg et al., 2018; Fennig et al., 2020), which then serve as input to various satellite retrievals. Slight differences135

in calibration approaches lead to differences in FCDRs that propagate into the retrieved data. Issues with sensor stability,

especially with SSM/I and SSMIS sensors, usually express themselves as slow drifts or sudden jumps of the global mean.

2.1.1 HOAPS-4.0

HOAPS (Andersson et al., 2010) relies almost completely on satellite data, as it only uses an ERA-interim profile climatology

as a priori starting point for the 1D-Var retrieval of u and the humidity profile (Graw et al., 2017). The only other auxiliary140

data set is the daily Optimum Interpolated Sea Surface Temperature (OISST, Reynolds et al. (2007)), version 2, derived from

AVHRR satellite data. OISST provides SST at a depth of 0.5 m which is transformed to a skin SST using the approach by

Donlon et al. (2002), which is then used for the determination of qs. The parameterization described in Bentamy et al. (2003)

is used to determine qa. For calculation of the flux parameters Ql and E, HOAPS-4.0 uses COARE version 2.6a (Bradley et

al., 2000), which is nearly identical to COARE-3.0 (Fairall et al., 2003). HOAPS-4.0 is a CDR derived from CM SAF (Climate145

Monitoring Satellite Application Facility) BT FCDR (Fennig et al., 2017, 2020) and is available at 0.5◦ and 6-hourly (except

E-P) and monthly resolution from July 1987 — December 2014 (Andersson et al., 2017). HOAPS data can be obtained from

https://wui.cmsaf.eu.

2.1.2 J-OFURO3

The latest update to J-OFURO involved improvements in the methods of flux retrieval and expansion of the data set in terms of150

time range and parameters (Tomita et al., 2019). The algorithm is similar to that described above. In addition to BT from SSM/I

and SSMIS (from Remote Sensing Systems (RSS), Wentz et al., 2013), J-OFURO3 uses BT data from AMSR-E and AMSR2

(JAXA Version 3 and 2.1, respectively), and TMI (1B11 Version 7 from NASA-GESDISC) for the retrieval of flux parameters.
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To determine qa a parameterization based on BTs, total column water vapor, and water vapor scale height was developed

using match-ups of in situ buoy- and ship-based qa and DMSP-F13 BTs from eight channels (Tomita et al., 2018). From the155

instantaneous qa values, gridded daily averages are determined and inter-calibrated to DMSP-F13 qa to remove systematic

differences caused by the use of different FCDRs. The Ts required for the calculation of qs and other flux parameters is the

median value of an ensemble of twelve in situ, satellite-based, and reanalysis data sets. Other auxiliary data sets include water

vapor surface mixing ratios from ERA-interim (Dee et al., 2011), OSTIA sea ice concentration (Donlon et al., 2012), and air

temperature from NCEP/DOE reanalysis (Kanamitsu et al., 2002). Near-surface wind speed is determined as the simple mean160

of values derived from microwave radiometers and scatterometers (Tomita et al., 2019). J-OFURO3 is available at 0.25◦ and

daily resolution from 1988–2013. It was acquired from https://j-ofuro.scc.u-tokai.ac.jp/.

2.1.3 OAFlux3

Satellite data used for the production of OAFlux3 data include wind speed from active (scatterometer) and passive (radiometer)

microwave instruments, SST from OISST (Reynolds et al., 2007), and qa from Goddard Satellite-Based Surface Turbulent165

Fluxes Dataset — Version 2; 2c (GSSTF2.0, Chou et al. (2003), Shie et al. (2009)). These are merged with NCEP and ERA40

reanalysis data using weighting factors that put more emphasis on satellite data (for u), on reanalyses (qa), or weights both

equally (Ts), whenever satellite data are available (Yu et al., 2008). OAFlux3 data are available from 1958–2018 (monthly) or

1985–2017 (daily) at 1◦ resolution from https://www.esrl.noaa.gov/psd/data/gridded/data.oaflux_v3.html .

2.1.4 IFREMER4.1170

Similar to J-OFURO and OAFlux, IFREMER’s ocean flux retrieval algorithm is based on a synergy of remote sensing and

reanalysis data (Bentamy et al., 2013). The current version 4.1 contains, among others, latent heat flux (LHF) and SST at daily

and monthly, 0.25◦ resolution from 1992–2018. The BTs used for retrievals are inter-calibrated by Colorado State University

(CSU, Sapiano et al., 2013), except for data beyond June 2017, where CSU data ends and a switch to BTs from RSS (Wentz

et al., 2013) is made. Inter-calibrated scatterometer wind data (Bentamy et al., 2017a) are supplemented by wind speeds175

determined by RSS from the SSM/I, SSMIS, and WindSat instruments. SST are from OISST (Reynolds et al., 2007). The

model relating BTs to qa using satellite – in situ data match-ups was updated from Bentamy et al. (2003) and now includes two

additional terms: Ts and Ta−Ts (with Ta the air temperature at 10 m height from interpolated ERA-interim data (Bentamy et

al., 2013)). IFREMER4.1 data were obtained via https://wwz.ifremer.fr/oceanheatflux/Data .

2.1.5 SEAFLUX3180

The SEAFLUX3 data set consists of the near-surface meteorology and surface turbulent fluxes of heat, moisture, and momen-

tum for the period 1988–2018 at an hourly, 25 km resolution (Roberts et al., 2020). An extension of the Roberts et al. (2010)

neural network retrieval has been developed to estimate near-surface wind speed, humidity, and air temperatures from the GPM

Level 1C intercalibrated BTs (Berg et al., 2018). Following the results of Roberts et al. (2019), the retrieval algorithms now
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include additional a priori information on the vertical stratification of water vapor and lower tropospheric stability. A total of185

14 passive microwave imagers including SSMI, SSMIS, TMI, AMSR-E, AMSR-2, and GMI are used for satellite retrievals

and double differences are used to intercalibrate all estimates to the GPM GMI radiometer. The satellite retrievals are made

in clear and cloudy scenes but are screened for precipitating conditions. A Kalman smoother is then applied to the retrieved

estimates to blend the MERRA-2 (Modern-Era Retrospective analysis for Research and Applications, Version 2, (Gelaro et al.,

2017)) background with satellite observations in an hourly gap-free analysis. A diurnally varying sea surface skin temperature190

from the SeaFlux-CDR (Clayson and Brown, 2016) is used together with the near-surface meteorology to estimate fluxes using

the COARE 3.5 algorithm (Edson et al., 2013). Uncertainties are estimated for the individual near-surface meteorology as a

blending of the retrieval and background errors through application of the Kalman smoother. Estimates of the surface flux

uncertainties are computed using standard propagation of error techniques through the bulk flux algorithm.

2.1.6 ERA5195

ERA5 is the current operational reanalysis running at ECMWF, the European Centre for Medium-range Weather Forecasts.

Compared to its predecessor, ERA-interim, ERA5 includes improved model physics and data assimilation techniques, higher

spatial (31 km) and temporal (1 hour) resolution. These lead to a gain in forecasting skill of up to one day compared to

ERA-interim (Hersbach et al., 2020). Among many other observations, ERA5 assimilates CM SAF BT FCDR (Fennig et al.,

2017); conditions for SST are prescribed using HadISST2.1. (Kennedy et al., 2016) and OSTIA (Donlon et al., 2012) from200

09/2007 onwards (Hersbach et al., 2020). ERA5 encompasses data from ten reanalysis runs at a reduced spatial resolution of

62 km, allowing estimation of the uncertainty range from ensemble statistics. The analysis presented here is performed with

the ECMWF ensemble mean, whereas uncertainty is determined from the ensemble. Both data sets were interpolated to 1◦

resolution at ECMWF.

The monthly averaged data set, available from the Copernicus Climate Data Store (https://cds.climate.copernicus.eu/), con-205

tains, among many others, total column water vapor (TCWV), vertically integrated moisture flux divergence (VIMD), total

precipitation and evaporation rates (ECMWF, 2019). Monthly averages are calculated from daily means starting at 00 UTC

and ending at 00 UTC the following day (ECMWF, 2020). Evaporation rates are derived from the gradients of specific humid-

ity between the surface and the lowest model level (10 m for ERA5) as described above (ECMWF, 2016). The main differences

between the satellite-based retrievals described here and ERA5 determination of E are the consistency of atmospheric vari-210

ables involved (u, qa, qs) and the high temporal sampling rate: monthly means are determined from (daily means of) hourly

data from forecasts initialized daily at 6:00 and 18:00 UTC. Moreover, satellite-based data sets only provide fluxes over ocean,

whereas ERA5 contains data over land and ocean. VIMD, i.e., the total amount of water vapor removed from the atmospheric

column by dynamical transport, is provided in ERA5 as a gridded monthly mean field. We calculated the TCWV tendency in

month x from monthly mean ERA5 data by subtracting TCWV of month x+ 1 from TCWV of month x− 1, then dividing by215

30 days/month to obtain the mean TCWV tendency in km3/day. This was converted to units of mm d−1 by multiplication with

the Earth’s surface area for comparison with freshwater fluxes.
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2.2 Precipitation Data Records

Microwave-based retrievals of precipitation are based on the interaction of liquid or solid hydrometeors with the upwelling ra-

diation field. In HOAPS-4.0, P is determined by an NN retrieval trained on profiles from an ERA-interim climatology (Ander-220

sson et al., 2010). The training data set consists of one month (August 2004) of assimilated SSM/I BTs and the corresponding

ERA-interim P (Bauer et al., 2006).

There is a multitude of global precipitation products in existence (see, e.g., Kidd and Huffman, 2011; Tapiador et al., 2017),

but for this study we selected GPCP as the P data set with which to calculate E-P (except for the HOAPS product, which makes

use of its own P data) because it is generally regarded as the data set that performs best globally. Moreover, J-OFURO also225

makes use of GPCP P to determine E-P (Tomita et al., 2019).

The Global Precipitation Climatology Project - 1 Degree Daily (GPCP-1DD; denoted GPCP hereafter), contains P esti-

mated from a combination of data from ground-based rain gauges and satellites — the latter including near-infrared, passive

and active microwave observations (Huffman et al., 2001). Daily global precipitation rates are provided by GPCP-1DD at

1◦ resolution for the time range 1996–2017. We calculate monthly mean P from version 1.3 GPCP-1DD (GPCP, 2018),230

because the spatial resolution of the monthly product is not sufficient for our purposes. These data were obtained from

https://rda.ucar.edu/datasets/ds728.5/.

2.3 Errors, biases, uncertainty

Four out of seven data sets analyzed here contain explicit information on uncertainty. HOAPS contains estimates of random

and systematic bias errors (Kinzel et al., 2016; Liman et al., 2018). The errors in E were obtained by separating biases of235

HOAPS Level-2 E with respect to collocated in situ ship-based data into equally populated E, u, Ts, and W bins. The mean

and standard deviation of the biases are assumed to represent the systematic and random components of the 2σ uncertainty

range, respectively, which is probably a conservative estimate. By taking the approach of determining uncertainty ranges as a

function of turbulent flux parameters these can also be assigned to times and regions not covered by the ship-based reference

data set (Liman et al., 2018). For the current study, we calculated the mean uncertainty by averaging the systematic uncertainty240

component. The random component is negligible when averaging long time series. The HOAPS P data set does not contain

uncertainty information; instead, a constant relative 1σ uncertainty range of 13% was assumed, based on a comparison with

ship-based in situ data (Burdanowitz, 2017). The total E−P uncertainty was determined by error propagation.

Bias errors given in the OAFlux data set were computed based on the uncertainty ranges of individual input data sets,

assuming no correlation between uncertainties from different data sets (Yu et al., 2008). Like for HOAPS uncertainty ranges,245

the OAFlux bias error was simply averaged for our investigations.

Uncertainties in SEAFLUX arise both from comparisons of the individual retrieval (e.g. wind speed, humidity, air temper-

ature) errors evaluated against quality controlled buoy archives and that arising as a result of gap-filling through application

of a Kalman smoother. Individual retrievals were generally found to be unbiased globally but some conditional biases likely

remain. The total uncertainty is a measure of the reduction in retrieval uncertainties through combination of multiple sensors at250
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each location and time and increases in uncertainty related to sampling inhomogeneities. As the length of time grows between

any given time and the previous or next observation, the sampling uncertainty increases. Thus the SEAFLUX uncertainties

generally capture random retrieval uncertainties and sampling uncertainty but do not contain conditional systematic errors as

developed for HOAPS. However, we note that the retrieval error itself does likely contain some components of conditional

systematic biases even though the unconditional biases remain small.255

In contrast to the monthly GPCP product, GPCP-1DD Version 1.3 does not provide explicit uncertainty estimates, hence

here we assume a constant relative 1σ uncertainty range of 8%. This is the estimated bias error for GPCP data over the tropical

oceans (Adler et al., 2012), which is where most of the P signal originates. Over the global oceans, the bias error was estimated

at 10%, but Adler et al. (2012) considered this an upper bound.

In contrast to uncertainty ranges estimated by comparing with other (e.g., in situ) data sets, the uncertainty of ERA5 data is260

described by the standard deviation and the range of the ensemble, consisting of 10 seperate reanalysis runs (Hersbach et al.,

2020). We determined these statistics after averaging of the data: first, the mean (e.g., global monthly mean) of each individual

ensemble member was calculated, then standard deviation and range were determined. Note that ERA5 ensemble statistics

should be interpreted in a relative sense (i.e., ensemble spread is larger where uncertainty is higher), as the numerical values

are over-confident (ECMWF, 2020).265

3 Methods

HOAPS is the only satellite data set containing E, P, and E-P data from a single source (i.e., microwave BTs). Within the

HOAPS algorithm, E−P is obtained by subtracting monthly mean P from E (Andersson et al., 2010). For this study, the data

were remapped from 0.5◦ to 1◦. For the J-OFURO3 freshwater flux product, monthly mean GPCP-1DD P are subtracted from

the corresponding J-OFURO E (Tomita et al., 2019). We determined E−P of the other satellite-based data sets by subtracting270

monthly mean GPCP P from the respective monthly mean E. These data sets will be denoted as IFREMER-G, SEAFLUX-G,

and OAFlux-G to indicate that GPCP data were subtracted. J-OFURO, IFREMER and SEAFLUX do not provide E, therefore

we calculated those from their respective LHF and SST data using Eqs. 5 and 7. The calculation of E from Ql was performed

at 0.5◦ and monthly resolution. Applying the same method of calculating E from HOAPS monthly mean LHF and SST data

causes negligible differences with monthly mean E determined from instantaneous LHF and SST data (root mean square275

differences of ≤ 0.01 mm d−1 for individual grid boxes during 1997–2013). All E data were conservatively remapped to 1◦ to

match GPCP resolution prior to subtraction of P. Similarly, ERA5 E-P was determined by subtracting monthly mean P from

E at 1◦ resolution.

All comparisons presented here are performed with collocated data, i.e., only grid boxes (at x, y, and t) present in all data sets

were used to create climatological or global averages. A more accurate collocation procedure would be performed at shorter,280

e.g., daily, time scale, because differences in filtering of high-precipitation scenes (where E retrieval is impaired) and selection

of included satellite instruments lead to differences in sub-monthly sampling. This was, however, not feasible in this study, as

HOAPS and J-OFURO E-P data are only provided on monthly resolution.
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The satellite reference data set used in regional comparisons is determined by the statistical median of the satellite-based

data ensemble and therefore does not include ERA5. The median is chosen over the mean to exclude outliers. In the following,285

this reference data set is abbreviated SEM (satellite ensemble median).

Global averages were determined by converting the area-specific unit of mm d−1 (equivalent to kg m−2 d−1) to units of

(km3 d−1), computing the global (or ocean or land) mean and multiplying with the corresponding total surface area (510 ·106,

350·106, and 160·106 km2, respectively). Seasonally varying numbers of observations screened out due to sea ice are neglected.

Most comparisons in this study are shown in area-specific units, but for the comparison of global totals over land and ocean290

presented in Sect. 4.6, data were converted to area-integrated units (km3 yr−1) so that the totals balance.

Global total runoff from ERA5 and other data sets was determined by calculating the area integral of all points.

4 Results

4.1 Freshwater flux climatology

Freshwater flux climatologies obtained from 17 years of data (1997–2013) were determined from satellite ensemble median295

(SEM) and ERA5 data. They are shown in Fig. 1, panels a and b, to illustrate the overall spatial distribution of mean E−P .

The chosen time range is the largest common time range of the data sets used in this study. Note that ERA5 data were matched

to satellite data coverage.

Regions where mean P > E are dominated by atmospheric freshwater outflux (into the ocean), shown in blue, and are

concentrated at the inter-tropical convergence zone (ITCZ) and the Pacific warm pool. In the subtropics,E generally outweighs300

P . At higher latitudes P and E are approximately equal, but with a tendency to E−P < 0. Comparison of panels c-f with a

and b shows that the E-P pattern is mainly determined by P in the tropical and high-latitude regions, but determined by E in

the subtropical regions. The agreement between SEM and ERA5 E-P climatologies is good, yet, some systematic differences

can be observed. Due to higher P in the ITCZ, ERA5 shows more negative E−P there. Conversely, the overall higher E level

in ERA5 causes E−P values larger than those found for SEM over most of the global oceans. Excessive E was also found to305

produce high E-P in ERA-interim (Brown and Kummerow, 2014).

The deviations are more apparent when climatological differences are analyzed. For this comparison we select ERA5 as a

reference due to its spatio-temporal completeness and because it is the only ”other” data set (i.e., not satellite data), keeping

in mind that ERA5 data very likely also have inaccuracies and/or biases. Figure 2 shows climatological difference plots of

HOAPS (upper panel), OAFlux-G (middle panel), and SEAFLUX-G (lower panel) with collocated ERA5 data. Although310

HOAPS differences with ERA5 appear larger to the eye, root mean squared (RMS) differences are 0.6 mm d−1 for each of the

three comparisons: 0.60 mm d−1 for HOAPS, 0.58 mm d−1 for SEAFLUX-G, and 0.57 mm d−1 for OAFlux-G. As already

seen in Fig.1, differences are not homogeneously distributed over the globe. The HOAPS difference plot is characterized by an

alternating pattern of positive and negative deviations. Stronger HOAPS E in the subtropical central north and eastern South

Pacific produce elevated E−P compared to ERA5. In contrast, elevated ERA5 E over the east China Sea combines with315

smaller ERA5 P in the region, resulting in higher ERA5 E−P . The positive bands on either side of the equator are due to
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higher HOAPSE, whereas the negativeE−P differences at the equator are due to smaller HOAPS P . The negative deviations

to the east and west of Australia are also due to differences in P , whereas the deviations at latitudes > 40◦ S are due in equal

parts to E and P . The differences between OAFlux-G and ERA5 are mainly due to P , apart from the regions in the subtropical

Pacific and Atlantic Oceans, where OAFlux E is smaller than ERA5 E. SEAFLUX-G shows slightly larger differences with320

ERA5. In the band within 30◦ of the equator, SEAFLUX yields higher E than ERA5 (and OAFlux) in most of the Pacific

and Atlantic Ocean, except in the upwelling regions on the west coasts of Africa and the Americas. The difference plots of

J-OFURO and IFREMER-G with ERA5 are not shown here, but are very similar to the lower left panel because the differences

in P between GPCP and ERA5 are larger than differences in E in most regions. All plots, including difference climatologies

of E and P , can be found in the Appendix, Fig. A1.325

To investigate where the differences are significant, the right column of Fig. 2 presents the 1σ uncertainty range from HOAPS

(upper panel), OAFlux-G (middle panel), and SEAFLUX-G (lower panel). Moreover, regions where the difference between

satelliteE−P and ERA5E−P are greater than the 2σ uncertainty range are enclosed by white contour lines in the left panels.

The ERA5 E-P uncertainty shows a pattern similar to that of OAFlux-G, but is a factor of 10 smaller than the uncertainties

estimated for satellite data and therefore adds a negligible component to the total uncertainty estimate. The HOAPS uncertainty330

range is larger than HOAPS-ERA5 E−P differences over most of the globe. This is mainly due to P , for which we assumed

13% uncertainty. The deviations > 1 mm d−1 in the oceans’ desert regions (off the west coasts of Peru and Southern Africa)

and in the higher latitudes are clearly outside the 2σ uncertainty ranges. In contrast, OAFlux-G E−P deviations are larger

than the estimated 2σ uncertainties in the ITCZ, the west coasts of the Pacific and Atlantic Ocean, the Arabian Sea, and the

Southern high latitudes. Again, the uncertainty range is mainly given by P , for which we assumed a relative uncertainty of335

8%. Due to the small uncertainty estimates in SEAFLUX, all of the larger differences with ERA5 in the Atlantic and Pacific

Oceans are significant.

4.2 Inter-comparison of freshwater flux over ocean: global means

Monthly mean E, P , and E−P of six (or three) data sets were collocated (see Section 3) and averaged over the global oceans

(80◦S – 80◦N). Climatological seasonal cycles were determined for the overlapping time range (1997–2013) and are shown340

in Fig. 3, panels a–c. HOAPS, ERA5, OAFlux, SEAFLUX, and GPCP uncertainty ranges are presented in the boxes attached

to the right of panels a–c. Dots show the climatological mean value and error bars indicate the associated 1σ uncertainty

Subtracting the seasonal cycle from the respective monthly mean time series yields global ocean anomalies of E−P , E, and

P , which are presented as three-month running means in panels d–f. Seasonal and inter-annual variability are of the same order

of magnitude, which can be seen by comparing the left panels with those on the right (the y-axis spans 1 mm d−1 in all panels).345

There are substantial deviations betweenE, P , andE−P data. Panel a shows that a difference of about 0.2 mm d−1 is found

between OAFlux and J-OFUROE. An additional discrepancy of 0.2 mm d−1 exists between J-OFURO and ERA5. E data from

HOAPS, IFREMER, and OAFlux are much closer to each other: satellite-based E all fall within the OAFlux uncertainty range

(red error bars), whereas the ERA5 climatological mean E does not fall within the larger HOAPS uncertainty range. The
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HOAPS uncertainty range is much larger than the seasonal variation, which indicates that it is likely overestimated, which may350

be due to the assumption of 100% covariance for systematic uncertainty.

Panel b shows that the seasonal cycle of global ocean mean P is shallow and the two satellite-based data sets agree within

the GPCP uncertainty for ten months of the year. Like for E, we find substantial differences among the three P data sets: there

is a deviation of about −0.1 mm d−1 between HOAPS and GPCP, and ERA5 shows values that are about 0.25 mm d−1 higher

than GPCP, which was also found by Hersbach et al. (2020). These differences can, in part, be explained by differences in P355

frequency distributions and, in particular, by the fraction of rain occurrences, which is much lower in HOAPS than in GPCP

or ERA5. This will be discussed in Sect. 5. Since in this paper the focus is on the inter-comparison of E-P (not specific E or

P algorithm issues), we only describe the observed differences between P (and E) data sets to obtain a better understanding of

differences between E-P data.

Apart from HOAPS E−P in March–April, all satellite data sets agree on phase and amplitude of the E−P seasonal cycle360

(panel c). ERA5 shows hardly any dependence on season, as the magnitude of the summer maximum is smaller in ERA5 due

to the relatively larger summer P maximum. The monthly and inter-annual variability of ERA5 E−P is, like the seasonal

cycle, of smaller amplitude than that of satellite data which is caused by the high degree of coherence between E and P , and

will be discussed in more detail in Sect. 4.5. Because compared to satellite data, ERA5 E and P are biased high by about the

same amount, E−P is close to the satellite data. HOAPS yields the highest E−P due to its low mean P . All E-P data are365

contained within the HOAPS and OAFlux uncertainty ranges.

The E anomalies in panel d display a high degree of correlation on the monthly time scale. On the multi-annual scale all

data sets show some degree of variability, which is most likely linked to sensor and inter-calibration issues (e.g., Robertson

et al., 2020), and the variability is not consistent. For example, the slow, decadal-scale oscillation observed in HOAPS and

IFREMER appears to be in anti-phase compared to OAFlux. The three P data sets yield inter-annual variations with amplitudes370

that are similar in amplitude to those found for E, and show a high degree of correspondence in their monthly and inter-annual

variability — apart from the stronger dependence of HOAPS on ENSO (El Niño - Southern Oscillation) phase. This is a known

characteristic of HOAPS data (see, e.g., Andersson et al., 2011; Masunaga et al., 2019), and is most apparent in panel e, where

the Niño 3.4 SST index (Trenberth and Stepaniak, 2001) is plotted in gray bars along with P anomalies: HOAPS P correlates

with Niño 3.4 if a lag of 3 months is taken into account (R2 = 0.73). Apparent agreement is found among all E−P anomalies375

(panel f) — again apart from the ENSO-related deviations found in HOAPS P. The agreement among E−P anomalies is best

in the ”quiet” ENSO years (2001–2005), but this is probably a coincidence as the spread in E−P in other years is mainly due

to differences in E and not in P . Note that differences between J-OFURO-G, IFREMER-G, SEAFLUX-G, and OAFlux-G are

due to differences in E, as in all cases GPCP P was used for the calculation of E−P .

4.3 Inter-comparison of freshwater flux over ocean: time series on regional scales380

In this section, we investigate the temporal correlation of water cycle components on regional scales. This approach will help

to understand differences between the various data sets by uncovering in which regions the differences are particularly large

(or small). As a reference for the E and E-P comparisons, we use SEM, a data set determined by the statistical median of
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all satellite data sets. Since we use only two satellite P data sets, GPCP is selected as a reference for the P comparison. We

determine correlation coefficient, slope and intercept of the linear regression (y = ax+b) between 1◦ x 1◦ monthly means (not385

anomalies) of each data set, y, and the reference, x, to examine where estimates are most consistent.

The results are shown for all six E data sets in Fig. 4, where the left column displays the correlation coefficient. On the top

row, HOAPS yields R2 > 0.75 over most of the globe, with some notable exceptions in the ITCZ and the Peruvian coast. The

other satellite data yield higher correlation coefficients. The correlation pattern of ERA5 with SEM is similar to that found for

HOAPS, although the tropical areas with R2 < 0.75 are not at the same locations. The highest overall correlation with SEM is390

found for J-OFURO and SEAFLUX, with R2 exceeding 0.75 essentially everywhere.

The middle panels of Fig. 4 display the slope of the linear regression. A slope greater (smaller) than 1 implies an over-

(under-) estimation, particularly of large values, compared to SEM. HOAPS overestimates E in the tropics, except in an area

in the eastern Pacific at 0◦ – 5◦ N, where a < 1. J-OFURO, IFREMER, and OAFlux each yield slopes < 1 within 30◦ of the

equator and slopes close to 1 everywhere else (apart from the band with a < 1 seen in IFREMER at high southern latitudes).395

Of those three E data sets, OAFlux displays the largest deviations from a= 1. In contrast, SEAFLUX yields slopes close to

unity over the whole globe. An inhomogeneous pattern is found for ERA5, but the slope is generally close to 1. A small region

in the tropical Atlantic stands out due to its large slope, and since this is not seen in any of the satellite data sets, it must be a

feature in ERA5 data.

The patterns in the middle panels are nearly all mirrored in the right panels, i.e., wherever large values are overestimated400

(a > 1), small values are underestimated (b < 0), and vice versa. All data sets thus appear to agree on intermediate values.

Overall, the correspondence between E data sets is best in the subtropics, while the largest deviations appear mainly in the

tropics. This is due to the frequent occurrence of weather conditions in which the moisture stratification departs substantially

from typical conditions to which the retrieval algorithms of near-surface moisture are tuned. Accounting for this dependence

on moisture stratification, as in the SEAFLUX and J-OFURO algorithms, improves retrieval results appreciably compared to405

in situ measurements (Roberts et al., 2019).

Figure 5 shows the same analysis for P from HOAPS (upper panels) and ERA5 (lower panels). The correlation coefficient

between HOAPS and GPCP P is > 0.75 in the ITCZ and about 0.5 for most of the global oceans. In the oceans’ deserts

R2 < 0.25 are found, which is mostly due to the small dynamic range of mean P . Compared to GPCP, HOAPS underestimates

P in this region, as a < 1. At latitudes poleward of 50◦ similarly small R2 are found that are in part due to the small dynamic410

range, and in part to difficulties pertaining to the detection of snow by passive microwave instruments (Tapiador et al., 2017;

Kidd and Huffman, 2011). HOAPS underestimates high P here and overestimates small P (b > 0 mm d−1) compared to GPCP.

Very similar patterns are seen for ERA5, although in general, the correlation coefficient is higher than for HOAPS. ERA5 is

biased high almost everywhere compared to GPCP. Both HOAPS and ERA5 show a smaller range of P in the Southern Oceans,

as the slope is less than 0.5, but the large intercept indicates an overestimation of small P compared to GPCP. The narrow band415

of R2 < 0.75 and b > 1 mm d−1 at the equator is also found in both HOAPS and ERA5.

For E-P, the results of the regression analysis are shown in Fig. 6. The highest correlation coefficients (and slopes and

intercepts closest to 1 and 0 mm d−1) are found among the data sets calculated with GPCP P. This shows that most of the
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variability in E-P is due to differences in P. Since GPCP P is used in four out of five data sets included in the SEM, those data

sets show high correlations, whereas HOAPS and ERA5 yield patterns very similar to those found for the P comparison in420

Fig. 5. Nevertheless, both for ERA5 and HOAPS the correlation in most of the tropics is higher for E-P than for P. In summary,

the correlation patterns for HOAPS and ERA5 indicate agreement on the seasonal cycle in the tropics, a result found previously

by Brown and Kummerow (2014), although we find that its amplitude is reduced in the GPCP-based E-P data (Fig. 3). Less

agreement is found in the Southern Oceans, where GPCP-basedE−P are underestimated relative to SEM. In the mid-latitudes,

the regression with SEM yields slopes near 1 and intercepts close to 0 mm d−1 for ERA5 and HOAPS, but the correlation is425

less than in the tropics, probably due to the smaller dynamic range of E-P.

In the present study, we compare satellite-based E-P with ERA5 E-P because we are also examine the separate contributions

from E and P. It can, however, be argued that VIMD from reanalysis is a more reliable quantity than reanalysis E-P, since

VIMD is calculated from the state variables wind and water vapor, whereas E and P are model-physics derived (e.g., Trenberth

et al., 2011)). We verified that in ERA5, the agreement between E−P and∇·(vq) is generally good, as shown in Appendix B.430

Hence, changes to the plots in Fig. 6 are minor when ERA5 ∇ · (vq) is used to calculate the regression with SEM E−P in

stead of ERA5 E−P , as shown in Fig. A2 in the Appendix.

4.4 Examination of the water budget in ERA5

One way of investigating the consistency of different water cycle components is determining if the global water budget (Eq. 1)

is closed. However, satellite E-P data sets are available over ocean only, so we revert to a comparison with gap-free reanalysis435

data. There is no internal constraint for budget closure in ERA reanalyses (Berrisford et al. , 2011; Hersbach et al., 2020), and

as the budget was not closed in ERA-interim, it is worthwhile to investigate ERA5’s behavior in this regard. Monthly mean

total ERA5 E−P over the globe, the ocean, and land are shown in Fig. 7 in black, blue, and green, respectively. The mean

values over the globe and land were scaled by their surface area relative to the ocean surface area (i.e., they were multiplied by

510/350 and 160/350, respectively) to obtain consistency with the over-ocean means shown in Fig. 3. The error bars on ERA5440

data depict the standard deviation of the 10-member ensemble. Nearly all of the uncertainty in global mean E-P is due to the

uncertainty over ocean; the error bars on the over-land E-P are smaller than the graph’s line width. This is due in equal parts

to E and P, which have similar ensemble standard deviations (not shown). For the time range shown in Fig. 7 global E−P is

seen to oscillate around 0 mm d−1, meaning that the ERA5 water budget is closed on a yearly time scale (in agreement with

the findings by Hersbach et al., 2020). The seasonal cycle is mainly driven by increased evapo-transpiration of vegetation on445

land and peaks in northern hemispheric summer due to the larger fraction of land in the Northern Hemisphere. Precipitation

shows a similar seasonal cycle over land, but does not completely cancel out in E-P due to a slight phase shift with respect to

the E seasonal cycle (not shown).

Figure 7 shows that monthly means of globalE−P and ∆W (light blue line) display a high degree of coherence, as expected

from Eq. 2. This is an indication that the (atmospheric) water cycle is well represented in ERA5.450

Globally, VIMD is zero, as no water vapor is transported out of (or into) the Earth system. However, we find ERA5 global

total VIMD to be −0.04 mm d−1: a small value within the standard deviation of the ensemble of single grid boxes, but
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significant and on the order of the amplitude of the seasonal cycle of net E-P on the global scale. The deviation from zero is

due to the fact that VIMD is calculated in grid point space (and not in the model’s spectral space), where the mathematical

constraint of net zero divergence is not enforced (P. Berrisford, personal communication, Oct. 2020). Interestingly, VIMD455

over land (pink) agrees well with over-land E-P, whereas VIMD over ocean (purple line) is smaller than over-ocean E-P also

by −0.04 mm d−1. Based on the results of the regression analysis shown in the upper panels of Fig. A2 we speculate that

discrepancies between E−P and∇·(vq) over the ocean’s desert regions also play a role in causing∇·(vq) to be smaller over

ocean than over land.

4.5 Examination of the water budget in satellite data sets460

Globally, E−P is equal to ∆W (Eq. 2 and Fig. 7), and because ∆W is two orders of magnitude smaller than E and P ,

global mean E should necessarily be almost equal to global mean P . This seemingly trivial finding provides us with a tool

to investigate the consistency of E and P data sets: by determining how well they correlate. For ERA5, global mean E and P

yield correlation coefficients R2 = 0.82 and R2 = 0.84 for monthly and yearly means, respectively. This procedure cannot be

applied to the satellite E-P data considered here, as they contain values over ocean only. Since there is a substantial seasonality465

in water vapor transport (Fig. 7), the correlation between ocean-only E and P is expected to be much lower. A regression

of ERA5 Eocean and Pocean monthly means (where the subscript ocean indicates averaging over ocean only) indeed yields

only R2 = 0.42, or R2 = 0.57 for yearly means. To account for the net transport of water from ocean to land, we include

∇· (vq)ocean into the analysis, and, applying Eq. 4, correlate Eocean−∇· (vq)ocean with Pocean. For ERA5, the resulting R2

are 0.86 for yearly and monthly means: very similar to the coefficients found for the correlation of global E with P .470

We calculated correlation coefficients of the various E and P data sets used in this study, combined with ERA5∇·(vq)ocean,

and listed them in Table 3. The analyses were performed separately on (i) monthly means, primarily indicating agreement on

the seasonal cycle; (ii) yearly means, a measure of consistency of inter-annual variability, including trends; and (iii) monthly

anomalies, focused on short-scale variability.

The small correlation coefficients found for monthly mean satellite data in part reflect the differences in the seasonal cycles475

of E and P (see panels a and b of Fig. 3). But the results from the analysis of monthly anomalies (where the mean seasonal

cycle was subtracted) are very similar to those found for monthly means, indicating that, compared to monthly and inter-annual

variability, the seasonal cycle is of lesser importance on the global scale. Including the contribution of ∇ · (vq)ocean improves

the correlation appreciably for ERA5, as mentioned above. For satellite data the correlation also improves, particularly for

yearly means and monthly anomalies of IFREMER-G and J-OFURO-G (not shown). On a yearly time scale, we do not expect480

a high degree of correlation, as inter-annual variability is small and no clear trends are observed in panels d and e of Fig. 3. For

ERA5, R2 = 0.86, but this is primarily caused by small E and P in 1997 and 1999, which is also the case for IFREMER. The

correlation found for J-OFURO, R2 = 0.31, is the highest found among satellite data. The remaining satellite data sets are not

significantly correlated on a yearly time scale (p-value > 0.05). Clearly, time series longer than the 17 years investigated here

would benefit the analysis of yearly mean data.485
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Overall, this analysis shows that satellite-based estimates of E are less consistent with satellite-based P data than ERA5 E

and P. To a certain degree, this is expected, as the three variables used in the analysis come from different sources (e.g., E

from IFREMER, P from GPCP, and ∇ · (vq)ocean from ERA5), each with its own sampling and uncertainty characteristics.

Nevertheless, from the global water cycle perspective, some degree of correspondence between Eocean and Pocean is expected.

4.6 Estimates of global total water cycle components490

From the data shown in the previous sections we calculated climatological (1997–2013) global ocean total E and P , total

E−P (separated into land and ocean contributions), runoff and net transport. The latter is equal to the total over-ocean (or

over-land) ∇ · (vq). Our results are given in the three upper rows of Table 4. For brevity, we again denote total E, P , and

E−P over ocean as Eocean, Pocean, and (E−P )ocean respectively, and similarly, over-land E−P as (E−P )land. For better

comparison with earlier estimates, values are given in units of 103 km3 yr−1.495

The rows labeled ”obs.” display the mean, standard deviation (std) and range of Pocean (from GPCP and HOAPS) and

Eocean (from HOAPS, J-OFURO, IFREMER, SEAFLUX, and OAFlux). Various estimates of global totals of water cycle

components can be found in the literature, for example in (Oki and Kanae , 2006; Trenberth and Asrar , 2014; Rodell et al.,

2015; Allan et al., 2020), and are shown in the lower half of Table 4.

The largest spread among water cycle components is found for E and P over ocean, both in an absolute and a relative sense,500

each with a range spanning about 100 · 103 km3 yr−1, or 20–25%. The relative spread in R is similar, but is a factor of ten

smaller in absolute values. In their study, Rodell et al. (2015) estimated Eocean from observations at 410 · 103 km3 yr−1

(corresponding to 3.21 mm d−1), in agreement with Trenberth and Asrar (2014), but found a value of 450 · 103 km3 yr−1 by

applying an algorithm that optimized all water cycle components to achieve water and energy budget closure. The algorithm

caused a concurrent increase in Pocean from the observed 385 · 103 km3 yr−1 to 403 · 103 km3 yr−1. The global total fluxes505

estimated by Allan et al. (2020) derive from Rodell et al. (2015), but following the recommendation by Stephens et al. (2012),

Eocean and Pocean were both increased by 30 · 103 km3 yr−1 to improve the agreement with energy constraints, yet keeping

land-ocean fluxes constant. These increases are larger than the±22 ·103 km3 yr−1 uncertainty on Eocean and Pocean estimated

by Rodell et al. (2015) based on the optimized method and so a more modest increase of about 20 ·103 km3 yr−1 may be more

appropriate. These would produce fluxes of Eocean = 470 ·103 km3 yr−1 and Pocean = 424 ·103 km3 yr−1 that are quite close510

to ERA5 estimates (R. Allan, personal communication, Oct. 2020).

In our study, we find a large range of Eocean: HOAPS yields 397± 96 · 103 km3 yr−1, OAFlux 414± 37 · 103 km3 yr−1,

IFREMER 418 ·103 km3 yr−1, SEAFLUX 444±5 ·103 km3 yr−1, and J-OFURO 453 ·103 km3 yr−1. Note that HOAPS 1σ

uncertainty is as large as the range among satellite-based Eocean and more than three times the corresponding std, again imply-

ing an overestimation of the HOAPS uncertainty range (see Sect. 4.2). The OAFlux 1σ uncertainty is of the same magnitude as515

the std among satellite-based Eocean, whereas the SEAFLUX uncertainty estimate is small in comparison. The small Eocean

found by HOAPS is partly due to data coverage, as data are only available over the ice-free ocean within 80◦ of the equator. A

test with ERA5 data showed thatEocean decreases by 5% when the data are adapted to HOAPS coverage. Conversely assuming
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a 5% increase for HOAPS yields 417 · 103 km3 yr−1. The same reasoning applies to the other satellite data sets with similar

effects on Eocean.520

The spread in Pocean is of the same magnitude as that found for Eocean: HOAPS yields 335± 44 · 103 km3 yr−1, GPCP

384± 31 · 103 km3 yr−1, assuming uncertainty ranges of 13% and 8% for HOAPS and GPCP, respectively. ERA5 yields

426± 2 · 103 km3 yr−1, which is significantly larger than either HOAPS or GPCP. From the GPCP-1DD data used in this

study, we determine Pland = 116 · 103 km3 yr−1, which is close to the estimates presented previously (which range from

111 · 103 km3 yr−1 (Oki and Kanae , 2006) to 117 · 103 km3 yr−1 (Rodell et al., 2015)). This is due to the fact that GPCP is525

used for all observation-based estimates. ERA5 Pland is somewhat higher than the observations (122 · 103 km3 yr−1), but the

difference is not significant.

From the estimates of Eocean and Pocean it follows that for HOAPS (E−P )ocean = 65± 106 · 103 km3 yr−1, for OAFlux

(E−P )ocean = 35± 48 · 103 km3 yr−1. IFREMER yields (E−P )ocean = 38 · 103 km3 yr−1, J-OFURO (E−P )ocean =

59 · 103 km3 yr−1, and SEAFLUX (E−P )ocean = 61± 31 · 103 km3 yr−1.530

The spread inR (40–51·103 km3 yr−1) is quite large. The total continental runoff from ERA5 is 41.2·103 km3 yr−1, which

is slightly higher than the 39 ·103 km3 yr−1 found in ERA-interim (Berrisford et al. , 2011). Data from the Global Runoff Data

Centre (GRDC, Wilkinson et al., 2014) yield an average of 41 · 103 km3 yr−1 with a standard deviation of 1.8 · 103 km3 yr−1

for 1987–2010. They are at the lower bound of the estimates by Clark et al. (2015), who find 44.2± 2.7 · 103 km3 yr−1

for 1950–2008. The same study cites estimates by various authors that range from 25–50 · 103 km3 yr−1, with those based535

on freshwater fluxes representing the lower boundary (25–39 · 103 km3 yr−1). The long-term average runoff estimated from

the GRUN (Global RUNoff, Ghiggi et al., 2019) data set is 38 · 103 km3 yr−1, consistent with the above-mentioned range,

albeit somewhat smaller than the best estimate by Clark et al. (2015). Note that GRUN runoff estimates are not independent of

reanalysis data, as the machine-learning algorithm uses surface temperature and P data from 20CR reanalysis (Compo et al.,

2011; Ghiggi et al., 2019). Improvements in the quality of E-P estimates will aid the quantification of river runoff by providing540

an independent estimate of the total freshwater flux.

Where runoff is the net transport of (liquid) water from land to ocean, over-ocean VIMD (∇ · (vq)ocean) is, to a good

approximation, the net amount of water vapor advected from ocean to land. Hence,R=∇·(vq)ocean =−∇·(vq)land. Whereas

ERA5 estimates of∇·(vq)land are at the high end of the range of R mentioned above, at 31−33 ·103 km3 yr−1,∇·(vq)ocean
is too small. As observed above, the fact that ERA5 VIMD is calculated in grid point space causes global total ∇ · (vq) to be545

about 10 ·103 km3 yr−1, and not zero. In addition, due to the tighter observational control over land, analysis increments may

be larger over ocean than over land and may cause net ∇ · (vq) to be close to net E−P over land, but less so over ocean (P.

Berrisford, personal communication, Oct. 2020). There is another field in the ERA5 archive, the vertical integral of divergence

of moisture flux (VIWVD, parameter ID p84.162), which is very similar to VIMD but is computed from hourly instantaneous

reanalysis fields (and contains no contributions from liquid or solid water — but these can be neglected for our purposes).550

Globally VIWVD adds up to 0.9 · 103 km3 yr−1 (0.003 mm d−1]), a factor of 10 smaller than total VIMD. In addition, the

agreement between over-ocean VIWVD and (E−P )ocean is much better than that found for VIMD and (E−P )ocean, and at

41.6 ·103 km3 yr−1 and −40.7 ·103 km3 yr−1, respectively, over-ocean VIWVD and over-land VIWVD are also in agreement
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with other values in the five right-most columns of Table 4. The estimates of net transport by Oki and Kanae (2006); Trenberth

and Asrar (2014); Rodell et al. (2015) are in agreement with ERA5 R and ∇ · (vq)land. The consistency between runoff and555

net transport seen in the last four rows of Table 4 is mainly by construction, as both are usually required (or defined) to be

equal.

The five right-most columns of Table 4 should, theoretically, all contain identical values (except for the sign). In practice,

however, (E−P )land ranges from −46 to −40 · 103 km3 yr−1, (E−P )ocean from 24 to 52 · 103 km3 yr−1,∇ · (vq) ranges

from 40 to 51 · 103 km3 yr−1 (disregarding the erroneous ERA5 ∇ · (vq)ocean value), and R from 40–51 · 103 km3 yr−1.560

Assuming the degree of consistency found among these values represents the reliability of the estimate, it is clear that E-P

uncertainty is largest over ocean, and from the first two columns of Table 4 it follows that E and P contribute almost equally to

that uncertainty.

5 Discussion

We present an inter-comparison of five recent satellite-based E-P data sets. All five E data sets are the latest official versions of565

CDRs generated from (different) BT FCDRs and are combined with GPCP (or HOAPS) P CDR to form E-P data.

Although it is tempting to make a ranking from the results of our inter-comparison, there are good reasons to resist. First,

there are not enough truly independent data with which to assess the quality of each data set. And second, each data set has its

particular strengths and weaknesses: for example, HOAPS comes closer to water budget closure than OAFLUX or IFREMER

(panel c of Fig. 3).570

Of the E data sets used in this study, HOAPS depends on the least amount of model data, using these on a climatological

(as opposed to collocated, instantaneous) basis. ERA5, being a reanalysis, represents the other extreme, and the remaining

retrieval algorithms are somewhere in between. All algorithms, including ERA5 physics, rely on the same parameterization

of bulk fluxes (Eq. 6) and on the COARE algorithm for the determination of the turbulent exchange coefficient (see Sect. 2).

The origin of E differences between various data sets must therefore lie with the bulk flux parameters u, qa, and qs, and575

with differences in sampling characteristics. A recent study by Roberts et al. (2019) showed that HOAPS, SEAFLUX, and

J-OFURO retrieve global mean qa that are systematically too small compared to in situ ship-based NOCSv2 data (Berry and

Kent, 2011); IFREMER slightly overestimates qa. This difference could be largely improved by applying a correction based

on the subtraction of a regime-dependent bias (in which regimes are defined by their water vapor vertical stratification, cloud

liquid water content, and SST; and the bias determined with respect to NOCSv2). The HOAPS algorithm determines Ql (and580

E) systematic error estimates in a similar fashion: biases with respect to ship-based data were binned by Ql, u, Ts, and W ,

then collected into a 4-dimensional look-up-table (Kinzel et al., 2016; Liman et al., 2018). Subtracting the systematic error

from HOAPS Ql (or E) would raise the global mean and improve the agreement with ship-borne data sets such as NOCSv2.

Initial tests show that this is, indeed, the case for Ql, and is the topic of a forthcoming study. We stress, however, that reducing

biases with respect to reference (e.g., in situ) data by improving the retrieval algorithm through better understanding of physical585

processes should be the preferred way forward.
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Forcing improved agreement of satellite-based estimates ofE with respect to in situ data (and ERA5) via bias adjustment has

a downside: the bias removed from E reappears in E−P , which is now in agreement with different estimates of (E−P )land,

∇·(vq), and estimates of continental runoff rates. SatelliteE−P is also in agreement with ERA5E−P due to the cancellation

of differences, which was already noted in Sect. 4, when discussing the large positive biases of ERA5 E and P with respect to590

satellite observations (Fig. 3, b and c). It is interesting to note that satellite-based E are very likely biased high by the removal

of scenes with strong precipitation (where the retrieval of wind speed, LHF, and E is not possible). In this light, the difference

in E between ERA5 and the satellite-based retrievals should actually be larger than observed in Fig. 3, as monthly mean

E is determined from all sky conditions in reanalysis. As OAFlux and SEAFLUX blend satellite estimates with continuous

background fields (Sect. 3), these algorithms should be less impacted by such sampling biases.595

Andersson et al. (2011) found a high bias of HOAPS-3.2 E-P for the time period 1992–2005, which was much reduced

(although still high compared to GRDC estimates of runoff) in the successive version 3.3 (Liman et al., 2018). In fact, the

mean over-ocean HOAPS-3.3 E-P, determined between 70◦ S–70◦ N and 1988–2012, is 0.45 mm d−1, similar to the value we

compute for the same time and latitude range using HOAPS-4.0, of 0.51 mm d−1. For the time and spatial range in the current

study, 1997–2013 and within 80◦ of latitude, HOAPS-4.0 mean E−P = 0.49 mm d−1 (62 · 103 km3 yr−1), about 50% larger600

than the GRDC estimate of 41 ·103 km3 yr−1. Nevertheless, the over-ocean freshwater fluxes of all studied data sets agree with

each other and with runoff data within the HOAPS, SEAFLUX, and OAFlux uncertainty ranges.

The differences in over-ocean mean P between ERA5, GPCP, and HOAPS can be traced back to differences in their prob-

ability density functions. HOAPS has a smaller probability for yielding intermediate rain rates, whereas GPCP yields less

occurrences of large rain rates (Masunaga et al., 2019). In addition, HOAPS shows a much higher fraction of monthly, 1◦x1◦605

non-raining grid boxes (3-4%) than either GPCP (0.5-1%) or ERA5 (0.2%), which has a large impact on the mean value of P .

The inter-comparison of global P data sets is the topic of a range of papers, but since the validation of P is difficult due to its

inherent variability and the lack of sufficient in situ data — particularly over ocean — judging which algorithm performs best

under which circumstances is a complicated task (Kidd and Huffman, 2011; Gehne et al., 2016; Tapiador et al., 2017).

Since the studied data sets contain values over ocean only, it is not possible to check if totalE and P balance globally. For this610

reason we include ERA5 reanalysis data into the comparison. Model physics parameterizations and dynamics presumably act

to ensure that the large positive biases found in both ERA5 E and P (compared to satellite data) cancel out almost completely

and ERA5 E−P is in good agreement with most satellite data at latitudes ≤ 45◦. We show that ERA5’s water budget is

closed for the studied time range (1997–2013) and that the various components — E, P, TCWV tendency — are consistent on

a monthly, global scale (Fig. 7). Global total VIMD, however, does not equal zero, which is due to the numerical method used615

to compute VIMD. For studies of the global water cycle using ERA5 data, we recommend the use of VIWVD instead, as its

global total is closer to zero and its totals over land and ocean are in better agreement with each other and with results from

our and previous studies (Table 4). Cautiously interpreting this consistency as an indication of good quality, we use ERA5 data

to devise methods to examine the consistency of ocean-only satellite E and P data sets. The high correlation coefficient found

for the regression of ERA5 Eocean−∇ · (vq)ocean with ERA5 Pocean implies a high degree of coherence, yet correlations of620

satellite E data with GPCP or HOAPS P are small (Table 3). This is certainly partly due to the number of different sources
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of data, which for ERA5 is 1, but for (e.g.) J-OFURO is 3: J-OFURO E, ERA5 VIMD, and GPCP P, each having its own

sampling characteristics and uncertainties. But the lack of correlation is probably also caused in part by an actual lack of

coherence between satellite E data and GPCP (or HOAPS) P. This, in turn, implies that inaccuracies in satellite E and/or P data

remain that may prevent closure of the over-ocean part of the water cycle. The comparison of estimates of total Eocean and625

Pocean with estimates of transport, continental runoff, and (E−P )land (Table 4) paints a similar picture: over-ocean E and P

show a large spread in values, coupled with high uncertainties.

6 Final Comments

Our inter-comparison of six CDRs shows agreement among global means of E−P within HOAPS-4.0, OAFlux3, and

SEAFLUX3 uncertainty ranges. Despite considerable positive biases in ERA5 E and P , over-ocean ERA5 E−P is in agree-630

ment with satellite data, showing some temporal coherence in variations on monthly–decadal time scales, but with notable

departures depending on time and on the E data set used. Within uncertainty, over-ocean total E−P from satellites is in agree-

ment with estimates of continental runoff and net ocean-to-land transport. However, uncertainties of and the spread among

satellite data sets are both still very large in comparison with the magnitude of over-ocean E−P . Improving estimates of

E and P , particularly over ocean, thus remains an important task. Moreover, emphasis should be put on the development of635

uncertainty ranges. We recommend that to monitor the quality of results, in addition to performing independent validation

studies, the whole global water cycle and the constraints it imposes should be taken into consideration.

The presented framework is based on co-variation of water cycle components and global water budget constraints. We

applied it to the inter-comparison of satellite observations, but it can also be used for climate model assessments such as CMIP

(see, e.g. Held and Soden, 2006; Liepert and Previdi, 2012; Knutti and Sedláček, 2013; Allan et al., 2020).640

There is a pressing need to understand the nature of changes to the Earth’s water cycle induced by global warming. The

consensus in recent scientific literature is that there will be a larger amount of water vapor in the atmosphere as the atmosphere

warms and, consequently, its water-holding capacity increases at a rate consistent with the Clausius-Clapeyron relationship

(e.g, Allen and Ingram, 2002; Held and Soden, 2006; Shie et al., 2006; Trenberth et al., 2007; Allan et al., 2020). Model

simulations agree on E and P flux responses to SST change of about 2%–3% K−1 (Allan et al., 2020), but observational645

confirmation through satellite estimates is only now emerging from the background of noise from natural climate variability.

We here show that ERA5, a state-of-the-art reanalysis, underestimates seasonal and inter-annual variability of E-P compared to

satellite-based observations, which is also the case for climate models (Wentz et al., 2007). This could tentatively be interpreted

as indicating that the water cycle is more sensitive to short-term changes in the state of the atmosphere and ocean than models

predict. However, the stability of observations is affected by changes in satellite observing system. These changes, combined650

with assumptions contained in algorithms for near-surface humidity and wind speed (needed for bulk aerodynamic retrievals)

complicate the detection and quantification of long-term trends (Wentz et al., 2007; Trenberth et al., 2007; Schlosser and

Houser , 2007; Robertson et al., 2014). Moreover, and despite the fact that the satellite record of water cycle components now
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encompasses more than three decades’ worth of data, changes in E-P expected from (anthropogenic) global warming within

this time period are weak compared to natural changes (Allen and Ingram, 2002; Allan et al., 2020).655

In general, the quality of observations of the water cycle needs to improve before attempts at assessing effects of climate

change from those data can be undertaken. The importance of accompanying high-quality uncertainty information cannot be

overstated.

Data availability. All presented data sets are freely available from the cited websites.

Appendix A: Difference climatologies660

All difference maps of satellite-based E-P, E, and P climatologies with collocated ERA5 data are shown in Fig. A1. The maps

in the left column are very similar (apart from HOAPS) because the E-P deviations are dominated by P and the same GPCP

data were used to generate all E-P data sets (except HOAPS).

Appendix B: Regression of ERA5 E-P against∇ · (vq)

Locally and over long time scales (e.g.one month) E-P and VIMD are equal (Eq. 3), as the change in TCWV is negligible665

on those scales. To see if this is the case for ERA5, the upper panels of Fig. A2 show the correlation coefficient, slope, and

intercept of the linear regression of monthly mean E-P with VIMD. A linear fit given by∇·(vq) = a(E−P )+b yields a slope a

very near to 1.0 and an intercept b close to 0 mm d−1 everywhere, with a tendency to a > 1 over high P regions (e.g. the ITCZ)

and a < 1 elsewhere, as shown in the middle and right panels of Fig. A2. Due to errors introduced during data processing (e.g.,

by moving between spectral and grid-point space) a perfect match between the ERA5 variables is not expected. But there are a670

few regions where the decreased R2 can only be partly ascribed to averaging errors. These are the oceans’ desert regions, e.g.,

at the Peruvian coast and southern Africa’s west coast, where climatological mean P is less than 1 mm d−1, and the dynamic

range of E−P is small (≤ 2 mm d−1). In the ocean deserts, the slope is < 1 and the intercept > 0 mm d−1 (e.g., 0.75 and

1.5 mm d−1 for the tropical East Pacific region with small R2). Since mean P is near 0 mm d−1 in these regions, ∇ · (vq) is

approximately equal toE. Hence the deviations betweenE−P and∇·(vq) in these regions indicate an inconsistency between675

ERA5 E and∇· (vq). From the similarity of ERA5 E−P and∇· (vq) it follows that the results of the regression analysis of

ERA5 E-P with SEM E-P, presented in Sect. 4.3, are very similar to those obtained for ERA5 ∇ · (vq) with SEM E−P , as

shown in the lower panels of Fig. A2. The correlation coefficient is somewhat smaller than for ERA5 E−P , but the patterns

of all three statistical parameters are very similar to those in the last row of Fig. 6.

Author contributions. M.S. initiated the study on E-P intercomparisons and M.G. on water cycle closure; M.G. designed and performed the680

analyses; M.G., M.S., K.F., T.T., S.B., J.B.R., and F.R.R. discussed results; M.G. wrote the paper with contributions from all.
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Figure 1. Satellite ensemble median (SEM) and ERA5 climatologies (1997-2013) of freshwater flux (a and b) and evaporation (c and d), and

GPCP and ERA5 precipitation (panels e and f). ERA5 data coverage was reduced to match satellite data, and data over land were discarded

from panels e and f. See the text for details.
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Figure 2. Left panels: Difference maps of HOAPS (upper), OAFlux-G (center), and SEAFLUX-G (lower) climatological mean E-P minus

the corresponding collocated ERA5 climatology (1997-2013). Right panels: HOAPS (upper), OAFlux-G (center), and SEAFLUX-G (lower)

climatological mean 1σ uncertainty. White lines in the left panels enclose regions where the difference with ERA5 E-P exceeds the 2σ

uncertainty range.
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Figure 3. Climatological (1997–2013) seasonal cycle of global ocean mean evaporation rate (a), precipitation rate (b), and freshwater flux

(c). HOAPS, ERA5, OAFlux, SEAFLUX, and GPCP mean values and associated 1σ uncertainty ranges are shown in the boxes to the right

of the panels. Monthly mean anomaly (w.r.t. the climatological seasonal cycle depicted at left) over the global oceans (80◦ S–80◦ N) of

evaporation rate (d), precipitation rate (e), and freshwater flux (f). The anomaly data are smoothed using a three-month running mean. Panel

e additionally displays the Niño3.4 index shifted by +3 months (right y-axis). The legend shows the correlation coefficient of the Niño3.4

index with P anomalies and the time lag of highest correlation (∆t in months). Ticks on the time axis mark January of the indicated year.
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Figure 4. Correlation, slope and intercept of the linear regression of monthly mean E from (top to bottom): HOAPS, J-OFURO, IFREMER,

OAFlux, SEAFLUX, or ERA5 with satellite ensemble median (SEM) monthly mean E (1997–2013).

Figure 5. Correlation, slope and intercept of the linear regression of monthly mean P from HOAPS (upper panels) or ERA5 (lower panels)

with GPCP monthly mean P (1997–2013).
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Figure 6. Correlation, slope and intercept of the linear regression of monthly mean E−P from (top to bottom): HOAPS, J-OFURO-G,

IFREMER-G, OAFlux-G, SEAFLUX-G, or ERA5 with satellite ensemble median (SEM) monthly mean E−P (1997–2013).
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Figure 7. ERA5 monthly mean E−P over the whole globe (black), land only (green), and ocean (blue); global mean ∆W (light blue),

mean ∇· (vq) over land (pink) and ocean (purple). The mean values over the globe and land were scaled by their surface area relative to

the ocean surface area (i.e., they were multiplied by 510/350 and 160/350, respectively) to obtain consistency with the over-ocean means

shown in Fig. 3. Error bars represent the standard deviation within the 10-member ensemble, which is smaller than the graph’s line width for

E−P over land, ∆W , and∇· (vq).
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Figure A1. Difference maps of satellite-based E-P (left), E (center), and P (right) climatologies and the respective ERA5 climatology (1997-

2013).

Figure A2. Correlation, slope and intercept of the linear regression of monthly mean ERA5 ∇· (vq) with ERA5 E−P (upper panels) or

with the satellite ensemble median (SEM) E−P (lower panels).
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Table 2. Abbreviations and symbols of variables used throughout the manuscript.

Variable Abbreviation Symbol

Air density - ρ

Evaporation rate E E

Latent heat flux LHF Ql

Near-surface (10 m) humidity - qa

Near-surface (10 m) wind speed - u

Precipitation rate P P

Runoff R R

Sea surface humidity - qs

Sea surface temperature SST Ts

Latent heat of evaporation of water - LE

Total column water vapor TCWV W

TCWV tendency ∆TCWV ∆W

Turbulent exchange coefficient - CE

Vertically integrated moisture flux divergence VIMD ∇· (vq)

Table 3. Pearson’s correlation coefficient squared (R2) for monthly (mean or anomaly) or yearly global ocean mean Eocean−∇ · (vq) vs.

Pocean, with ∇· (vq) data from ERA5. R2 was calculated from data sets that were collocated prior to the calculation of global means.

Non-significant correlation coefficients (p-value > 0.05) are marked with an asterisk.

Data set monthly mean yearly mean monthly anomaly

HOAPS-4.0 0.03 0.00* 0.06

J-OFURO3 - GPCP-1DD 0.16 0.31 0.22

IFREMER4.1 - GPCP-1DD 0.13 0.23 0.20

OAFlux3 - GPCP-1DD 0.14 0.01* 0.11

SEAFLUX3 - GPCP-1DD 0.17 0.02* 0.12

ERA5 0.86 0.86 0.83
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Table 4. Estimates of ocean total E and P , land and ocean total E−P , net transport of water vapor, and continental runoff given in 103

km3 yr−1. The upper three rows contain results from this study, the lower five those from earlier investigations. ERA5 estimates are calculated

from ensemble mean data, the standard deviation (std) is derived from ensemble statistics. The satellite-based data sets used in our study

were averaged to obtain the mean and std of observed (Obs.) Eocean and Pocean, and the range is given in the third row. Net water vapor flux

divergence over land (∇· (vq)land) and ocean (∇· (vq)ocean) and continental runoff R are given in the last three columns. The estimates

from the study by Rodell et al. (2015) are separated into observations (obs.) and model-optimized observations (opt.), see the text for details.

Eocean Pocean (E−P )ocean (E−P )land ∇· (vq)land ∇· (vq)ocean R

ERA5 467± 1 426± 2 43± 2 −44± 0.4 −43± 0.2 31± 0.2 42.1

Obs. mean ± std 425± 20 360± 25 52± 13 − − − −

Obs. range 397–453 335–384 35–65 − − − −

Oki and Kanae (2006) 436.5 391 45.5 −45.5 −45.5 45.5 45.5

Trenberth and Asrar (2014) 413 373 40 −40 −40 40 40

Rodell et al. (2015) obs. 410± 36 385± 39 24± 53 −45± 10 −43± 8 47± 19 50± 7

Rodell et al. (2015) opt. 450± 22 403± 22 46± 31 −46± 7 −46± 4 46± 2 46± 4

Allan et al. (2020) 480± 48 434± 43 46± 65 −46± 14 −46± 5 46± 5 51± 3
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