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Abstract 8 

  Bivariate wavelet coherency is a measure of correlation between two variables in the 9 

location-scale (spatial data) or time-frequency (time series) domain. It is particularly suited 10 

to geoscience where relationships between multiple variables differ with locations (times) 11 

and/or scales (frequencies) because of various processes involved. However, it is well-12 

known that bivariate relationships can be misleading when both variables are dependent on 13 

other variables. Partial wavelet coherency (PWC) has been proposed to detect scale-specific 14 

and localized bivariate relationships by excluding the effects of other variables, but is 15 

limited to one excluding variable and provides no phase information. We aim to develop a 16 

new PWC method that can deal with multiple excluding variables and provide phase 17 

information. Both stationary and non-stationary artificial datasets with the response 18 

variable being the sum of five cosine waves at 256 locations are used to test the method. 19 



2 
 

The new method was also applied to a free water evaporation dataset. Our results verified 20 

the advantages of the new method in capturing phase information and dealing with multiple 21 

excluding variables. Where there is one excluding variable, the new PWC implementation 22 

produces higher and more accurate PWC values than the previously published PWC 23 

implementation that mistakenly considered bivariate real coherence rather than bivariate 24 

complex coherence. We suggest the PWC method is used to untangle scale-specific and 25 

localized bivariate relationships after removing the effects of other variables in geosciences. 26 

The PWC implementations were coded with Matlab and are freely accessible 27 

(https://figshare.com/s/bc97956f43fe5734c784). 28 

 29 

1. Introduction 30 

  Geoscience data, such as the spatial distribution of soil moisture in undulating terrains 31 

and time series of climatic variables, usually consist of a variety of transient processes with 32 

different scales or frequencies that may be localized in space or time (Torrence and Compo, 33 

1998; Si, 2008; Graf et al., 2014). For example, time series of air temperature usually 34 

fluctuates periodically at different scales (e.g., daily and yearly), but abrupt changes in air 35 

temperature (e.g., extremely high or low) may occur at certain time points as a result of 36 

extreme weather and climate events (e.g., heat and rain). Wavelet methods are widely used 37 

to detect localized features of geoscience data.  38 

  Wavelet analyses are based on the wavelet transform using mother wavelet function, 39 
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which expands spatial data (or time series) into location-scale (or time-frequency) space for 40 

identification of localized intermittent scales (or frequencies). For convenience, we will 41 

mainly refer to location and scale irrespective of spatial or time series data unless otherwise 42 

mentioned. Bivariate wavelet coherency (BWC) is widely accepted as a tool for detecting 43 

scale-specific and localized bivariate relationships in a range of areas in geoscience 44 

(Lakshmi et al., 2004; Si and Zeleke, 2005; Das and Mohanty, 2008; Polansky et al., 2010; 45 

Biswas and Si, 2011). The BWC partitions correlation between two variables into different 46 

locations and scales, which are different from the overall relationships at the sampling scale 47 

as shown by the traditional correlation coefficient. For example, BWC analysis indicated 48 

that soil water content of a hummocky landscape in the Canadian Prairies was negatively 49 

correlated to soil organic carbon content at a slope scale (50 m), but they were positively 50 

correlated at a watershed scale (120 m) in summer because of the different processes 51 

involved at different scales (Hu et al., 2017b). Because the positive correlation may cancel 52 

out with the negative one at different scales and/or locations, the traditional correlation 53 

coefficient between soil water content and soil organic carbon content does not differ 54 

significantly from zero, which can be misleading.  55 

  Recently, Hu and Si (2016) have extended BWC to multiple wavelet coherence (MWC) 56 

that can be used to untangle multivariate (≥3 variables) relationships in multiple location-57 

scale domains. This method has been successfully used in hydrology (Hu et al., 2017b; 58 

Nalley et al., 2019; Su et al., 2019; Gu et al., 2020; Mares et al., 2020) and other areas such 59 

as soil science (Centeno et al., 2020), environmental science (Zhao et al., 2018), 60 

meteorology (Song et al., 2020), and economics (Sen et al., 2019). The MWC application 61 



4 
 

has shown that an increased number of predictor variables does not necessarily explain 62 

more variations in the response variable, partly because predictor variables are usually 63 

cross-correlated (Hu and Si, 2016). For the same reason, bivariate relationships can be 64 

misleading if the predictor variable is correlated with other variables that control the 65 

response variable. Partial correlation analysis is one such method to avoid the misleading 66 

relationships resulting from the interdependence between predictor and other variables 67 

(Kenney and Keeping, 1939). For example, soil water content of the root zone was found 68 

to be positively related to grass yield throughout the year in a small watershed on the 69 

Chinese Loess Plateau (Hu et al., 2017a). This was because higher grass yield usually 70 

coincided with finer soils that usually have higher water holding capacity. After removing 71 

the effects of other factors including sand content, partial correlation analysis indicated that 72 

soil water content was negatively affected by grass yield during growing seasons and not 73 

affected by grass yield during non-growing seasons as expected. The study of Hu et al. 74 

(2017a) clearly demonstrated that partial correlation analysis can be an effective method to 75 

avoid misleading relationships between response (e.g., soil water content) and predictor 76 

variables (e.g., grass yield) when the latter was interdependent with other variables (e.g., 77 

sand content). However, the extension of partial correlation to the multiple location-scale 78 

domain is limited. In order to better understand the bivariate relationships at various scales 79 

and locations, BWC needs to be extended to partial wavelet coherency (PWC) by 80 

eliminating the effects of other variables. 81 

  BWC was extended to PWC by Mihanović et al. (2009). Their method has been widely 82 

used in the areas of marine science (Ng and Chan, 2012a, b), meteorology (Tan et al., 2016; 83 
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Rathinasamy et al., 2017), and economics (Aloui et al., 2018; Altarturi et al., 2018a; Wu et 84 

al., 2020), as well as in the study of greenhouse gas emissions (Jia et al., 2018; Li et al., 85 

2018; Mutascu and Sokic, 2020), among others. For example, PWC analysis indicated that 86 

the Southern Oscillation Index and Pacific Decadal Oscillation did not affect precipitation 87 

across India, while this was misinterpreted by the BWC analysis because of their 88 

interdependence on Niño 3.4, which affects precipitation (Rathinasamy et al., 2017). 89 

Unfortunately, the PWC implementation in many previous studies (Ng and Chan, 2012b; 90 

Rathinasamy et al., 2017; Aloui et al., 2018; Altarturi et al., 2018b; Jia et al., 2018; Li et al., 91 

2018; Mutascu and Sokic, 2020; Wu et al., 2020) was based on an incorrect Matlab code 92 

developed by Ng and Chan (2012a) who might have misinterpreted the equation of 93 

Mihanović et al. (2009) and mistakenly used bivariate real coherence rather than bivariate 94 

complex coherence for calculating PWC. Moreover, Mihanović et al. (2009) considered 95 

only one excluding variable (i.e., the variable that influences the response variable is 96 

excluded) and did not include the phase angle difference between response and predictor 97 

variables. The PWC values between response and predictor variables can still be misleading 98 

if more than one variable is interdependent with the predictor variable. This is especially 99 

true if these variables are correlated with the predictor variable at different locations and/or 100 

scales. Without phase information, it is hard to tell if the correlation at a location and scale 101 

is positive or negative.  102 

  As an extension of previous studies (Mihanović et al., 2009; Hu and Si, 2016), this paper 103 

aims to develop a PWC method that considers more than one excluding variable and 104 

provides phase information. This new method reveals the magnitude and type of bivariate 105 
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relationships after removing the effects from all potentially interdependent variables. We 106 

expect that the new method produces more accurate PWC values than the implementation 107 

of Ng and Chan (2012a) where there is one excluding variable. The new method is an 108 

extension of the multivariate partial coherency in the frequency (scale) domain (Koopmans, 109 

1995). The proposed method is first tested with artificial datasets following Yan and Gao 110 

(2007) and Hu and Si (2016) to demonstrate its capability of capturing the known 111 

relationships of the artificial data. Then it is applied to a real dataset, i.e., time series of free 112 

water evaporation at the Changwu site in China (Hu and Si, 2016). Finally, the advantages 113 

and weaknesses of the new method are discussed by comparing it with the previous PWC 114 

method (Mihanović et al., 2009) and implementation (Ng and Chan, 2012a). 115 

2. Theory 116 

  Wavelet analysis is based on the wavelet transform, which includes continuous wavelet 117 

transform and discrete wavelet transform. While the discrete wavelet transform is mainly 118 

used for data compression and noise reduction, the continuous wavelet transform is widely 119 

used for extracting scale-specific and localized features, as in the case of this study 120 

(Grinsted et al., 2004). The wavelet transform decomposes the spatial data (or time series) 121 

into a set of location- and scale-specific wavelet coefficients, which are scaled (contracted 122 

or expanded) and shifted versions of mother wavelets. Different mother wavelets are 123 

available for wavelet transform. Among which, the Morlet wavelet, composed of a complex 124 

exponential multiplied by a Gaussian window, provides a good balance between location 125 

and scale localization. Therefore, continuous wavelet transform with the Morlet wavelet is 126 
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suitable to transform spatial data (or time series) into a location-scale (or time-frequency) 127 

domain, which allows us to identify both location-specific amplitude and phase information 128 

of wavelet coefficients at different scales (Torrence and Compo, 1998). Wavelet coefficients 129 

and their complex conjugates are used to calculate auto-wavelet power spectra and cross-130 

wavelet power spectra. BWC is calculated as the ratio of smoothed cross-wavelet power 131 

spectra of two variables to the product of their auto-wavelet power spectra (Grinsted et al., 132 

2004). Hu and Si (2016) extended wavelet coherence from two to multiple (≥3) variables 133 

and developed MWC. Detailed information on the calculations of wavelet coefficients, 134 

auto- and cross-wavelet power spectra, BWC, and MWC based on the continuous wavelet 135 

transform can be found in previous studies (e.g., Torrence and Compo, 1998; Grinsted et 136 

al., 2004; Si and Farrell, 2004; Si, 2008; Hu and Si, 2016; Hu et al., 2017b). Here, we will 137 

only introduce the theory and calculation that are most relevant to PWC.   138 

  Similar to BWC and MWC, PWC is calculated from auto- and cross-wavelet power 139 

spectra, for the response variable 𝑦, predictor variable 𝑥, and excluding variables 𝑍 (𝑍 =140 

൛𝑍ଵ, 𝑍ଶ, ⋯ , 𝑍௤ൟ ). Koopmans (1995) developed the multivariate complex PWC in the 141 

frequency (scale) domain. Here, we extend the Koopmans (1995) method from the 142 

frequency (scale) domain to the time-frequency (location-scale) domain. Therefore, the 143 

complex PWC between 𝑦  and 𝑥 after excluding variables 𝑍 at scale 𝑠 and location 𝜏, 144 

𝛾௬,௫∙୞(𝑠, 𝜏), can be written as                  145 

𝛾௬,௫∙୞(𝑠, 𝜏) =
ቀ1 − 𝑅௬,௫,௓

ଶ (𝑠, 𝜏)ቁ 𝛾௬,௫(𝑠, 𝜏)

ටቀ1 − 𝑅௬,௓
ଶ (𝑠, 𝜏)ቁ ቀ1 − 𝑅௫,௓

ଶ (𝑠, 𝜏)ቁ

            (1)               146 
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where symbol ∙  is the notation for excluding variables; 𝑅௬௫,௓
ଶ (𝑠, 𝜏) , 𝑅௬,௓

ଶ (𝑠, 𝜏) , and 147 

𝑅௫,௓
ଶ (𝑠, 𝜏) can be calculated by following Hu and Si (2016) as 148 

𝑅௬,௫,௓
ଶ (𝑠, 𝜏) = ௐ

↔௬,௓ (𝑠, 𝜏)
ௐ
↔௓,௓ (𝑠, 𝜏)ିଵ

ௐ
↔௫,௓ (𝑠, 𝜏)തതതതതതതതതതതതത

ௐ
↔௬,௫ (𝑠, 𝜏)

                 (2) 149 

𝑅௬,௓
ଶ (𝑠, 𝜏) = ௐ

↔௬,௓ (𝑠, 𝜏)
ௐ
↔௓,௓ (𝑠, 𝜏)ିଵ

ௐ
↔௬,௓ (𝑠, 𝜏)തതതതതതതതതതതതത

ௐ
↔௬,௬ (𝑠, 𝜏)

                    (3) 150 

𝑅௫,௓
ଶ (𝑠, 𝜏) = ௐ

↔௫,௓ (𝑠, 𝜏)
ௐ
↔௓,௓ (𝑠, 𝜏)ିଵ

ௐ
↔௫,௓ (𝑠, 𝜏)തതതതതതതതതതതതത

ௐ
↔௫,௫ (𝑠, 𝜏)

                   (4) 151 

Eq. (1) can be also derived analogously from the complex partial spectrum for the frequency 152 

domain according to the definition of complex coherence between two variables in the time-153 

frequency domain (see the Supplement (Sect. S1) for the derivation process). Note that 154 

𝑅௬,௫,௓
ଶ (𝑠, 𝜏) is a matrix with complex values, while 𝑅௬,௓

ଶ (𝑠, 𝜏) and 𝑅௫,௓
ଶ (𝑠, 𝜏) are matrices 155 

with real numbers. 𝛾௬,௫(𝑠, 𝜏) is the complex wavelet coherence between 𝑦  and 𝑥, which 156 

can be written as 157 

𝛾௬,௫(𝑠, 𝜏)  = ೈ
↔೤,ೣ(௦,ఛ)

൬
ೈ
↔೤,೤(௦,ఛ)

ೈ
↔ೣ,ೣ(௦,ఛ)൰

భ/మ                     (5) 158 

where 
( )
ርሮ  is the smoothing operator, ( )തതതതത  is the complex conjugate operator,  ( )ିଵ 159 

indicates the inverse of the matrix, and 160 

ௐ
↔௬,௓ (𝑠, 𝜏) = ቂ

ௐ
↔௬,௓భ (𝑠, 𝜏)

ௐ
↔௬,௓మ (𝑠, 𝜏) ⋯

ௐ
↔௬,௓೜ (𝑠, 𝜏)ቃ         (6) 161 

ௐ
↔௫,௓ (𝑠, 𝜏) = ቂ

ௐ
↔௫,௓భ (𝑠, 𝜏)

ௐ
↔௫,௓మ (𝑠, 𝜏) ⋯

ௐ
↔௫,௓೜ (𝑠, 𝜏)ቃ          (7) 162 
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ௐ
↔௓,௓ (𝑠, 𝜏) = ൦

ௐ
↔௓భ,௓భ (𝑠, 𝜏) ⋯ 

ௐ
↔௓భ,௓೜ (𝑠, 𝜏)

⋮ ⋱ ⋮

ௐ
↔௓೜,௓భ (𝑠, 𝜏) ⋯

ௐ
↔௓೜,௓೜ (𝑠, 𝜏)

൪             (8) 163 

where  
ௐ
↔஺,஻ (𝑠, 𝜏)  is the smoothed auto-wavelet power spectra (when A=B) or cross-164 

wavelet power spectra (when A≠B) at scale s and location 𝜏, respectively.  165 

The squared PWC (hereinafter referred to as PWC) at scale s and location 𝜏, 𝜌௬,௫∙௓
ଶ , can 166 

be written as 167 

𝜌௬,௫∙௓
ଶ =

หଵିோ೤,ೣ,ೋ
మ (௦,ఛ)ห

మ
ோ೤,ೣ

మ (௦,ఛ)

൬ଵିோ೤,ೋ
మ (௦,ఛ)൰ቀଵିோೣ,ೋ

మ (௦,ఛ)ቁ
                      (9) 168 

where 𝑅௬,௫
ଶ (𝑠, 𝜏) is squared BWC between 𝑦  and 𝑥, which can be expressed as 169 

𝑅௬,௫
ଶ (𝑠, 𝜏) = ೈ

↔೤,ೣ(௦,ఛ)
ೈ
↔೤,ೣ(௦,ఛ)തതതതതതതതതതതതത

ೈ
↔೤,೤(௦,ఛ)

ೈ
↔ೣ,ೣ(௦,ఛ)

                  (10) 170 

The phase angle (i.e., angle between two complex numbers) between 𝑦  and 𝑥 after 171 

excluding effect of 𝑍 is 172 

𝜗௬,௫∙௓(𝑠, 𝜏) = 𝜑௬,௫∙௓(𝑠, 𝜏) + 𝜗௬,௫(𝑠, 𝜏)             (11) 173 

where 174 

𝜑௬,௫∙௓(𝑠, 𝜏) = arg ቀ1 − 𝑅௬,௫,௓
ଶ (𝑠, 𝜏)ቁ           (12)    175 

and 𝜗௬,௫(𝑠, 𝜏) is the wavelet phase between 𝑦  and 𝑥, which can be expressed as 176 

𝜗௬,௫(𝑠, 𝜏)  = tanିଵ ቀIm൫𝑊௬,௫(𝑠, 𝜏)൯/Re൫𝑊௬,௫(𝑠, 𝜏)൯ቁ    (13) 177 

where arg denotes the argument of the complex number, 𝑊௬,௫(𝑠, 𝜏) is the cross-wavelet 178 
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power spectrum between 𝑦  and 𝑥 at scale 𝑠 and location 𝜏; Im and Re denote the 179 

imaginary and real part of 𝑊௬,௫(𝑠, 𝜏), respectively.  180 

  When only one variable (e.g.,  𝑍ଵ ) is excluded, Eq.(9) can be written as (see the 181 

Supplement (Sect. S2) for the derivation process) 182 

𝜌௬,௫∙௓భ

ଶ =
หఊ೤,ೣ(௦,ఛ)ିఊ೤,ೋభ

(௦,ఛ)ఊೣ,ೋభ
(௦,ఛ)തതതതതതതതതതതതതതห

మ

൬ଵିோ೤,ೋభ
మ (௦,ఛ)൰൬ଵିோೣ,ೋభ

మ (௦,ఛ)൰
                            (14) 183 

  The widely used Monte Carlo method (Torrence and Compo, 1998; Grinsted et al., 2004; 184 

Si and Farrell, 2004) is used to calculate PWC at the 95% confidence level. In brief, the 185 

PWC calculation is repeated for a sufficient number (i.e., minimum number required) of 186 

times using data generated by Monte Carlo simulations based on the first-order 187 

autocorrelation coefficient (r1). The first-order autoregressive model (AR(1)) is chosen 188 

because most geoscience data can be effectively simulated by it (Wendroth et al., 1992; 189 

Grinsted et al., 2004; Si and Farrell, 2004), although we recognize that time series with 190 

long-range dependence is also common in many areas such as hydrology (Szolgayová et 191 

al., 2014). Different combinations of r1 values (i.e., 0.0, 0.5, and 0.9) were used to generate 192 

10 to 10 000 AR(1) series with three, four and five variables. Our results indicate that the 193 

noise combination has little impact on the PWC values at the 95% confidence level as also 194 

found by Grinsted et al. (2004) for the BWC case (data not shown). The relative difference 195 

of PWC at the 95% confidence level compared with that calculated from the 10 000 AR(1) 196 

series decreases with the increase in number of AR(1) series (Fig. S1 of Sect. S3 in the 197 

Supplement). When the number of AR(1) is above 300, a very low maximum relative 198 
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difference (e.g., <2%) is observed. Therefore, a repeating number of 300 seems to be 199 

sufficient for a significance test. However, if calculation time is not a barrier, a higher 200 

repeating number, such as ≥1000, is recommended. The 95th percentile of PWCs of all 201 

simulations at each scale represents PWC at the 95% confidence level. The average PWC, 202 

percent area of significant coherence (PASC) relative to the whole wavelet location–scale 203 

domain (Hu and Si, 2016), and average value of significant PWC (PWCsig) are also 204 

calculated for different location–scale domains.  205 

  In the case of one excluding variable (𝑍 = {𝑍ଵ}), Mihanović et al. (2009) suggested that 206 

PWC can be calculated by an equation analogous to the traditional partial correlation 207 

squared (Kenney and Keeping, 1939) without giving detailed derivation process. Their 208 

equation is the same as Eq. (14). Unfortunately, Ng and Chan (2012a) might have 209 

misinterpreted the equation of Mihanović et al. (2009) and developed Matlab code for 210 

calculating PWC using the equation expressed as  211 

𝜌௬,௫∙௓భ

ଶ =
หோ೤,ೣ(௦,ఛ)ିோ೤,ೋభ

(௦,ఛ) ோೣ,ೋభ
(௦,ఛ)ห

మ

൬ଵିோ೤,ೋభ
మ (௦,ఛ)൰൬ଵିோೣ,ೋభ

మ (௦,ఛ)൰
                                 (15) 212 

where 𝑅௬,௫(𝑠, 𝜏), 𝑅௬,௓భ
(𝑠, 𝜏), and 𝑅௫,௓భ

(𝑠, 𝜏) are the square root of 𝑅௬,௫
ଶ (𝑠, 𝜏), 𝑅௬,௓భ

ଶ (𝑠, 𝜏), 213 

𝑅௫,௓భ

ଶ (𝑠, 𝜏), respectively. 𝑅௬,௓భ

ଶ (𝑠, 𝜏) and 𝑅௫,௓భ

ଶ (𝑠, 𝜏) can be calculated from Eq. (10) by 214 

replacing 𝑦  and 𝑥 with their corresponding variables. Eq. (15) has been widely used to 215 

calculate PWC in the case of one excluding variable (Ng and Chan, 2012b; Rathinasamy et 216 

al., 2017; Aloui et al., 2018; Altarturi et al., 2018b; Jia et al., 2018; Li et al., 2018; Mutascu 217 

and Sokic, 2020; Wu et al., 2020). Note that complex coherence and real coherence are 218 
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involved in the numerators of Eqs. (14) and (15), respectively, while the denominators are 219 

exactly the same. Further comparison indicates that Eq. (15) underestimates PWC value 220 

relative to Eq. (14) unless 𝛾௬,௫(𝑠, 𝜏) and  𝛾௬,௓భ
(𝑠, 𝜏) 𝛾௫,௓భ

(𝑠, 𝜏)തതതതതതതതതതതത in Eq. (14) are collinear 221 

(i.e., their arguments are identical) under which the two equations produce the same PWC 222 

values. Differences between Eqs. (14) and (15) will be discussed further using both artificial 223 

data and a real dataset. For comparison purposes, we refer to Eqs. (14) and (15) as the new 224 

implementation and the classical implementation, respectively.  225 

3. Method test using artificial data  226 

3.1 Artificial data and analysis  227 

  PWC is first tested using the cosine-like artificial dataset produced following Yan and 228 

Gao (2007). The cosine-like artificial datasets are suitable for testing the new method 229 

because they mimic many spatial or time series data in geoscience such as climatic variables, 230 

hydrologic fluxes, seismic signals, El Niño-Southern Oscillation, land surface topography, 231 

ocean waves, and soil moisture. The procedures to test PWC are largely based on Hu and 232 

Si (2016), where the same dataset has been used to test the MWC method (refer to Hu and 233 

Si (2016) for a detailed description of the artificial dataset). The response variable (y and z 234 

for the stationary and non-stationary case, respectively) is the sum of five cosine waves (y1 235 

to y5 and z1 to z5 for the stationary and non-stationary case, respectively) at 256 locations 236 

(Hu and Si, 2016). For y1 to y5, they have consistent dimensionless scales of 4, 8, 16, 32, 237 

and 64, respectively, across the series. From z1 to z5, the dimensionless scales gradually 238 

change with location, with the maximum dimensionless scales of 4, 8, 16, 32, and 64, 239 



13 
 

respectively. The variance of the response variable y and z is 2.5. All other variables are 240 

orthogonal to each other with equal variance of 0.5. The predictor and excluding variables 241 

(Fig. S1 of Sect. S4 in the Supplement) are selected from two of the five cosine waves (i.e., 242 

y2 and y4 or z2 and z4) and/or their derivatives. The exact variables and procedures to test 243 

the new PWC method are explained below.  244 

  First, PWC between response variable y (or z) and predictor variable, i.e., y2 (or z2), is 245 

calculated after excluding the effect of one variable. Four types of excluding variable are 246 

involved (Fig. S2 of Sect. S4 in the Supplement): (a) original series of y4 (or z4); (b) second 247 

half of the original series of y2 (or z2) are replaced by 0 to simulate abrupt changes (i.e., 248 

transient and localized feature) of the spatial data. They are referred to as y2,h0 (or z2,h0); (c) 249 

white noises with zero-mean and standard deviations of 0.3 (weak noise), 1 (moderate 250 

noise), and 4 (high noise) are added to y2 (or z2) as suggested by Hu and Si (2016) to 251 

simulate non-perfect cyclic patterns of the excluding variables. They are referred to as y2,w 252 

(or z2,w), y2,m (or z2,m), and y2,s (or z2,s), respectively; and (d) a combination of type b and 253 

type c. They are referred to as y2,w,h0 (or z2,w,h0), y2,m,h0 (or z2,m,h0), and y2,s,h0 (or z2,s,h0), 254 

respectively.   255 

  Second, PWC between response variable y (or z) and predictor variable, i.e., y24 (sum of 256 

y2 and y4) for the stationary case or z24 (sum of z2 and z4) for the non-stationary case, is 257 

calculated with two excluding variables, which is a combination of y4 (or z4) and y2 (or z2) 258 

or its noised series (y2,w or z2,w, y2,m or z2,m, and y2,s or z2,s).  259 

  The merit of the artificial data is that we know the exact scale-specific and localized 260 
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bivariate relationships after the effect of excluding variables is removed. Theoretically, we 261 

expect (a) PWC is 1 at scales corresponding to relative complement of excluding variable 262 

scales in predictor variable scales, and 0 at other scales. For example, PWC between y and 263 

y24 after excluding the effect of y4 is expected to be 1 at the scale of 8, which is the relative 264 

complement of scale of excluding variable y4
 (32) in scales of predictor variable y24 (8 and 265 

32), and 0 at other scales; (b) PWC remains 1 at the second half of series where spatial 266 

series is replaced by 0, and 0 at the first half of the original series. For example, PWC 267 

between y and y2 after excluding the effect of y2,h0 is expected to be 0 and 1 at the first and 268 

second half of series, respectively, at the scale of 8; and (c) PWC increases as more noises 269 

are included in the excluding variables. For example, PWC between y and y2 after excluding 270 

the effect of noised series of y2 is expected to increase with increasing noises in an order of 271 

y2,s>y2,m>y2,w at the scale of 8. 272 

3.2 PWC with artificial data 273 

3.2.1 PWC with one excluding variable using the new method 274 

  Fig. 1 shows PWC between response variable y (or z) and predictor variable y2 (or z2) by 275 

excluding one variable. For the stationary case, there is one horizontal band (red color) 276 

representing an in-phase high PWC value at scales around 8 for all locations after 277 

eliminating the effect of y4 (Fig. 1a). Note that the PWC values between y and y2 after 278 

excluding the effect of y4 are not exactly 1 as would be expected at all location-scale 279 

domains, because of the effect of smoothing along locations and scales. However, the PWC 280 

values at the center of the significance band, which corresponds to the predictor variable y2 281 
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at exactly the scale of 8, are very close to 1 (0.996), and the mean PWCsig values are very 282 

high (i.e., 0.96). The result is similar to the BWC between y and y2 (data not shown). This 283 

is understandable because y4 is orthogonal to y2, and excluding the effect of y4 does not 284 

affect the relationship between y and y2 at all. 285 

 286 

 Figure 1.   287 

Partial wavelet coherency (PWC) between response variable y (or z) and predictor variable 288 

y2 (or z2) after excluding the effect of variables y4 (or z4), y2,s (or z2,s), y2,m (or z2,m), y2,w (or 289 

z2,w), y2,h0 (or z2,h0), y2,w,h0 (or z2,w,h0), y2,m,h0 (or z2,m,h0), and y2,s,h0 (or z2,s,h0) for the stationary 290 
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(or non-stationary) case using the new method. Arrows represent the phase angles of the 291 

cross-wavelet power spectra between two variables after eliminating the effect of excluding 292 

variables. Arrows pointing to the right (left) indicate positive (negative) correlations. Thin 293 

and thick solid lines show the cones of influence and the 95% confidence levels, 294 

respectively. All variables were generated by following Yan and Gao (2007) and Hu and Si 295 

(2016) and are explained in Section 3.1 and shown in Fig. S2 of Sect. S3 in the Supplement. 296 

  Compared with the case of excluding variable of y4 (Fig. 1a), excluding the effect of y2,s 297 

(Fig. 1b) results in slightly narrower band of significant PWC and slightly reduced mean 298 

PWCsig (0.94 versus 0.96). When less noise is included in the excluding variables (i.e., y2,m 299 

and y2,w) (Fig. 1c-d), the significant PWC band becomes narrower. The PASC values are 300 

86%, 77%, and 32% for excluding y2,s, y2,m and y2,w, respectively, at scales of 6–10. 301 

Moreover, the mean PWCsig decreases from 0.94 (y2,s) to 0.93 (y2,m) and 0.89 (y2,w) when 302 

progressively less noise is added (Fig. 1b-d). For the non-stationary case, similar results are 303 

obtained (Fig. 1e-h). The only difference is that the scales with significant PWC values 304 

change with location, as is found for MWC (Hu and Si, 2016). 305 

  When the second half of the excluding variable series is replaced by 0, the PWC values 306 

in that half are close to 1, while those in the first half of data series are 0 at scales 307 

corresponding to the predictor variable (Fig. 1i and 1m). For the stationary case, after 308 

excluding the effect of y2,h0, the PWC values are close to 1 (0.98) and 0 in the second and 309 

first half of the data series, respectively, at the dimensionless scale of 8 (Fig. 1i). Similar 310 

results are observed for the non-stationary case (Fig. 1m). This is anticipated because the 311 

series of 0s is independent of the predictor variable and hence has no effect on the 312 

correlations between response and predictor variables at these locations. If different 313 
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magnitudes of noises are added to the first half of the excluding variables (y2 or z2), the 314 

significant PWC band in the first half becomes wider as the magnitude of noises increases, 315 

while the significant PWC band in the second half remains almost unchanged (Fig. 1j-l and 316 

Fig. 1n-p). In the stationary case, for example, the PASC values at scales of 6–10 are 40% 317 

(y2,w,h0), 74% (y2,m,h0), and 86% (y2,s,h0) in the first half, while those values vary from 86% 318 

to 90% in the second half (Fig. 1j-l). Meanwhile, the mean PWCsig in the first half at scales 319 

of 6–10 increases from 0.91 to 0.94 in both the stationary (Fig. 1j-l) and non-stationary (Fig. 320 

1n-p) cases as more noises are added to the excluding variable y2 or z2. This indicates that 321 

the new PWC method can also capture the abrupt changes (Fig. 1i and 1m) in the data series, 322 

and has the ability to deal with localized relationships.  323 

3.2.2 PWC with two excluding variables using the new method 324 

  When both y2 and y4 (or z2 and z4) are considered in the predictor variables, there are two 325 

bands of wavelet coherence of 1 between y (or z) and y24 (or z24) (Hu and Si, 2016), which 326 

correspond to the scales of two predictor variables. However, after the effect of y4 (or z4) is 327 

removed, only one band with PWC of around 1 occurs at the scale of the predictor variable 328 

y2 (or z2) (Fig. 2a and 2f). After both predictor variables y2 and y4 (or z2 and z4) are excluded 329 

(Fig. 2b and 2g), PWC between y (or z) and y24 (or z24) is 0 at all location-scale domains as 330 

expected. When one of the excluding variables y2 (or z2) is added with noises, the 331 

relationship between response variable y (or z) and predictor variable y24 (or z24) becomes 332 

significant at scales of the excluding variable y2 (or z2) (Fig. 2c and 2h). Similar to the case 333 

of one excluding variable (Fig. 1), less noise in the excluding variable of y2 (or z2) results 334 
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in a narrower significant PWC band, and reduced mean PWCsig values, e.g., from 0.96 (y2,s) 335 

to 0.90 (y2,w) in the stationary case (Fig. 2c-e) and from 0.95 (z2,s) to 0.92 (z2,w) in the non-336 

stationary case (Fig. 2h-j).  337 

 338 

Figure 2.   339 

Partial wavelet coherency (PWC) between response variable y (or z) and predictor variable 340 

y24 (or z24) after excluding the effect of variables y4 (or z4), y2+y4 (or z2+z4), y2,s+y4 (or z2,s+z4), 341 

y2,m+y4 (or z2,m+z4), and y2,w+y4 (or z2,w+z4) for the stationary (or non-stationary) case using 342 

the new method. All variables were generated by following Yan and Gao (2007) and Hu 343 

and Si (2016) and are explained in Sect. 3.1 and shown in Fig. S2 of Sect. S3 in the 344 

Supplement. 345 

4. Method application with real dataset 346 

4.1 Description of free water evaporation dataset 347 

  The free water evaporation dataset was used to test MWC (Hu and Si, 2016). In brief, 348 

this dataset includes monthly free water evaporation (E), mean temperature (T), relative 349 
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humidity (RH), sun hours (SH), and wind speed (WS) between January 1979 and December 350 

2013 at Changwu site in Shaanxi province provided by the China Meteorological 351 

Administration. During this period, the average daily temperature was 9.4 °C, the average 352 

annual rainfall was 571 mm and annual potential evapotranspiration was 883 mm. Because 353 

of its location between semi-arid and subhumid climates, agricultural production at the 354 

Changwu site is constrained by water availability. Results of wavelet power spectrum of E 355 

and BWC between every two variables are shown in Fig. S3 and Fig. S4 (Sect. S3 in the 356 

Supplement), respectively. 357 

4.2 PWC with free water evaporation dataset 358 

  The PWC analysis indicates that the correlations between E and T after excluding the 359 

effect of each of other three variables (RH, SH, and WS) were almost the same as those 360 

indicated by BWC (Fig. 3a-c and Fig. S4 of Sect. S3 in the Supplement). For example, E 361 

and T, after excluding the effect of RH, were positively correlated at the medium scales (8–362 

32 months). The PASC was 61% and mean PWCsig value was 0.94. No significant 363 

correlations between E and T from 1979 to 1992 were found at scales around 64 months 364 

after eliminating the influence of RH (Fig. 3a-c). This implies that the influence of mean 365 

temperature on E at these scales and years may be associated with the negative influence of 366 

RH on both E and T (Fig. S4 of Sect. S3 in the Supplement).  367 



20 
 

 368 

Figure 3.   369 

Partial wavelet coherency (PWC) between evaporation (E) and each meteorological factor 370 



21 
 

(T, mean temperature; RH, relative humidity; SH, sun hours; WS, wind speed) after 371 

excluding the effect of each of other three meteorological factors.  372 

  PWC between E and RH depended on the excluding variable and scale (Fig. 3d-f). The 373 

mean PWC and PASC between E and RH after excluding T were 0.60 and 34%, respectively, 374 

which are comparable with the mean BWC (0.62) and PASC (40%) between E and RH. 375 

The corresponding values after excluding SH and WS were 0.50 and 0.53 (PWC), 22% and 376 

21% (PASC), respectively. In addition, compared with the BWC between E and RH (Fig. 377 

S4 of Sect. S3 in the Supplement), correlations between E and RH were weak at small scales 378 

(<8 months) and medium scales (8–32 months) after eliminating the influence of SH and 379 

WS (Fig. 3e-f), respectively. Therefore, excluding the variable of T had less influence on 380 

the coherence between E and RH compared with excluding the variables of SH and WS. 381 

This is mainly because RH and T are correlated with E at different scales (Fig. S4 of Sect. 382 

S3 in the Supplement), i.e., mean temperature affected E mainly at medium scales, while 383 

RH affected E across all scales. However, the domain where SH and WS were correlated 384 

with E was a subset of that where RH and E were correlated (Fig. S4 of Sect. S3 in the 385 

Supplement).  386 

  The relationships between E and SH after excluding the other three factors were less 387 

consistent (Fig. 3g-h). The areas with significant corrections were scattered over the whole 388 

location-scale domain but differed with excluding factor. The PASC varied from 12% 389 

(excluding RH) to 20% (excluding T and WS), which is much lower than the PASC (28%) 390 

in the case of BWC. The significant relationships between E and WS were only limited to 391 

very small areas except for the case of SH being excluded, where E and WS were positively 392 
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correlated at scales of 8–16 months most of the time (Fig. 3j-l). 393 

  In general, the PASC decreased after excluding the effects of more factors (data not 394 

shown). The correlations between E and each variable after eliminating the effects of all 395 

other variables are shown in Fig. 4. The correlations between E and T were still significant 396 

at the medium scales (8–32 months) (Fig. 4a), where PASC value was 52% with mean 397 

PWCsig of 0.92. The E was still correlated with RH at large scales (>85 months) (Fig. 4b), 398 

where PASC value was 35% with mean PWCsig of 0.96. Interestingly, the domain with 399 

significant correlation between E and SH and WS was very limited (Fig. 4c-d). This 400 

indicates that the influences of SH and WS on E have already been covered by RH and T. 401 

This is in agreement with the MWC results that RH and T were the best to explain E 402 

variations at all scales (Hu and Si, 2016). Although the RH had the greatest mean wavelet 403 

coherence and PASC at the entire location-scale domains, the PWC analysis seems to 404 

support that mean temperature was the most dominating factor for free water evaporation 405 

at the 1-year cycle (8–16 months), which is the dominant scale of E variation (Fig. S3 of 406 

Sect. S3 in the Supplement).  407 
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 408 

Figure 4.   409 

Partial wavelet coherency (PWC) between evaporation (E) and each meteorological factor 410 

(T, mean temperature; RH, relative humidity; SH, sun hours; WS, wind speed) after 411 

excluding the effects of all other three factors.  412 

5. Discussion on the advantages and weaknesses of the new method 413 

5.1 Advantages 414 

  We extend the partial coherence method from the frequency (scale) domain (Koopmans, 415 

1995) to the time-frequency (location-scale) domain. The new method is an extension of 416 
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previous work on PWC and MWC (Mihanović et al., 2009; Hu and Si, 2016). The method 417 

test and application have verified that it has the advantage of dealing with more than one 418 

excluding variable and providing the phase information associated with PWC. In the case 419 

of one excluding variable, Mihanović et al. (2009) has suggested to calculate PWC by using 420 

an equation analogous to the traditional partial correlation squared (Eq. 14), which can be 421 

derived from our Eq. (9). However, their equation was, unfortunately, widely used by 422 

replacing the complex coherence in Eq. (14) with real coherence as expressed in Eq. (15) 423 

(Ng and Chan, 2012b, a; Rathinasamy et al., 2017; Aloui et al., 2018; Altarturi et al., 2018b; 424 

Jia et al., 2018; Li et al., 2018; Mutascu and Sokic, 2020; Wu et al., 2020). This mistake is 425 

corrected in this paper. 426 

  The differences between the new (Eq.14) and the classical implementation (Eq. 15) are 427 

compared in the case of one excluding variable using both the artificial and real datasets. 428 

Except for the phase information, the two implementations generally produce comparable 429 

coherence for the artificial dataset (Fig. S5 of Sect. S3 in the Supplement). However, the 430 

new implementation produces consistently and slightly higher coherence than the classical 431 

implementation. For example, their mean PWCs between y and y2 at the scale of 8 after 432 

excluding the effect of y4 are 1.00 and 0.97, respectively. This indicates that the new 433 

implementation produces coherence between y and y2 at the scale (8) of y2 closer to 1 as we 434 

expect. While the classical implementation produces similar PWC between E and other 435 

meteorological factors in most cases especially for the coherence between E and T after 436 

excluding the effects of others (Fig. S6 of Sect. S3 in the Supplement), large differences 437 

between these two implementations can also be observed. For example, while the new 438 
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implementation recognizes the strong coherence between E and RH after excluding the 439 

effect of T at scales of around 1 year (Fig. 3d), this coherence was negligible by the classical 440 

implementation (Fig. 5a). Mean PWC values by the new implementation were consistently 441 

higher than the classical implementation, and the differences ranged from 0.4 to 0.6 around 442 

the scale of 1 year (Fig. 5b). Considering the real coherence (Eq.15) rather than complex 443 

coherence (Eq.14) between every two variables in the numerators can potentially result in 444 

large underestimation of the partial wavelet coherence. Therefore, the ability of the new 445 

method and implementation to produce more accurate results than the classical 446 

implementation is one of its advantages. 447 

 448 

 Figure 5.   449 

Partial wavelet coherency (PWC) between evaporation (E) and relative humidity (RH) after 450 

excluding the effect of mean temperature (T) using the classical implementation (Eq. 15) 451 

(a) and differences in PWC between the new (Eq.14) and classical implementation as a 452 

function of scale (b). 453 

  Compared with the Mihanović et al. (2009) method, the additional phase information 454 
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from the new PWC is another advantage of this new method. This is because phase 455 

information is directly related to the type of correlation, i.e., in-phase and out-of-phase 456 

indicating positive and negative correlation, respectively. Different types of correlations 457 

were usually found at different locations and scales (Hu et al., 2017b). The phase 458 

information helps understand the differences in associated mechanisms or processes at 459 

different locations and scales. In addition, the phase information will allow us to detect the 460 

changes in not only the degree of correlation (i.e., coherence) but also the type of correlation 461 

after excluding the effect of other variables. For example, E and RH were positively 462 

correlated at the 1-year cycle (8–16 months) from year 1979 to 1995. This is because higher 463 

evaporation usually occurs in summer when high T coincides with high RH as influenced 464 

by the monsoon climate in the study area (Fig. S4 of Sect. S3 in the Supplement). 465 

Interestingly, after excluding the effect of T, E was negatively correlated with RH at the 466 

scale of 1 year as we expect (Fig. 3d). 467 

  Moreover, our new PWC method applies to cases with more than one excluding variable, 468 

which is a knowledge gap. When multiple variables are correlated with both the predictor 469 

and response variables, the correlations between predictor and response variables may be 470 

misleading if the effects of all these multiple variables were not removed. For example, at 471 

the dominant scale (i.e., 1 year) of E variation, contrasting effects of RH on E existed after 472 

excluding the effects of T (negative) or SH (positive) (Fig. 3d-e). However, after the effects 473 

of all other variables were excluded, there were negligible effects of RH on E at this scale 474 

(Fig. 4b). In this case, the relationship between E and RH at the scale of 1 year can be 475 

misleading after removing the effects of only one variable. In addition, the dominant role 476 
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of mean temperature in driving free water evaporation at the 1-year cycle was proved by 477 

removing the effects of all other meteorological factors (Fig. 4a). This also further verifies 478 

the suitability of the Hargreaves model (only air temperature and incident solar radiation 479 

required) (Hargreaves, 1989) for estimating potential evapotranspiration on the Chinese 480 

Loess Plateau (Li, 2012).  481 

5.2 Weaknesses 482 

  The new method has the risk to produce spurious high correlations after excluding the 483 

effect from other variables. Take the artificial dataset for example, at the scale of 32, PWC 484 

values between y and y2 after excluding y4 are not significant, but relatively high, partly 485 

because of small octaves per scale (octave refers to the scaled distance between two scales 486 

with one scale being twice or half of the other, default of 1/12). This spurious unexpected 487 

high PWC is caused by low values in both the numerator (partly associated with the low 488 

coherence between response y and predictor variables y2 at the scale of 32) and denominator 489 

(partly associated with the high coherence between response y and excluding variable y4 at 490 

the scale of 32) in Eq. (9). The same problem also exists in the classical implementation 491 

(Fig. S5 of Sect. S3 in the Supplement). So, caution should be taken to interpret those results. 492 

However, it seems that the domain with spurious correlation calculated by the new method 493 

is very limited and it is located mainly outside of the cones of influence. Moreover, the 494 

unexpected results can be easily ruled out with knowledge of BWC between response and 495 

predictor variables. It is expected that the correlation between two variables should not 496 

increase after excluding one or more variables. Therefore, BWC analysis is suggested for 497 
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better interpretation of the PWC results.  498 

  Similar to BWC and MWC, the confidence level of PWC calculated from the Monte 499 

Carlo simulation is based on a single hypothesis testing. But in reality, the confidence level 500 

of PWC values at all locations and scales needs to be tested simultaneously. Therefore, the 501 

significance test has the problem of multiple testing, i.e., more than one individual 502 

hypothesis is tested simultaneously (Schaefli et al., 2007; Schulte et al., 2015). The new 503 

method may benefit from a better statistical significance testing method. Options for 504 

multiple testing can be the Bonferroni adjusted p test (Westfall and Young, 1993) or false 505 

discovery rate (Abramovich and Benjamini, 1996; Shen et al., 2002), which is less stringent 506 

than the former. The AR(1) model was used to generate noise series for testing the 507 

confidence level of PWC. High-order autoregressive models rather than AR(1) may be 508 

beneficial for a significance test where spatial data (or time series) are characterized by 509 

long-range dependence (Szolgayová et al., 2014).  510 

6. Conclusions 511 

  Partial wavelet coherency (PWC) is improved to investigate scale-specific and localized 512 

bivariate relationships after excluding the effect of one or more variables in geoscience. 513 

Method tests using stationary and non-stationary artificial datasets verified the known 514 

scale- and localized bivariate relationships after eliminating the effects of other variables. 515 

Compared with the previous PWC method, the new PWC method has the advantage of 516 

dealing with more than one excluding variable and providing the phase information (i.e., 517 

correlation type) associated with PWC. In the case of one excluding variable, the PWC 518 
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implementation provided here (in the paper and the published code) produces more accurate 519 

coherence than the previously published PWC implementation that considered wrongly real 520 

coherence rather than complex coherence between every two variables. Application of the 521 

new method to the real dataset has further proved its robustness in untangling the bivariate 522 

relationships after removing the effects of all other variables in multiple location-scale 523 

domains. The new method provides a much needed data-driven tool for unraveling 524 

underlying mechanisms in both temporal and spatial data. Thus, combining with wavelet 525 

transform, BWC, and MWC, the new PWC method can be used to analyze various 526 

processes in geoscience, such as stream flow, droughts, greenhouse gas emissions (e.g., 527 

N2O, CO2, and CH4), atmospheric circulation, and oceanic processes (e.g., EI Niño-528 

Southern Oscillation). 529 
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