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Abstract 8 

  Bivariate wavelet coherency is a measure of correlation between two spatial (or time) 9 

series in the location-scale (or time-frequency) domain. It is particularly suited to 10 

geoscience where relationships between multiple variables commonly differ with locations 11 

or/and scales because of various processes involved. However, it is well-known that 12 

bivariate relationships can be misleading when both variables are dependent on other 13 

variables. Partial wavelet coherency (PWC) has been proposed to detect the scale-specific 14 

and localized bivariate relationships by excluding the effects of other variables, but is 15 

limited to one excluding variable and presents no phase information. We aim to develop a 16 

new PWC method that can deal with multiple excluding variables and presents phase 17 

information. Both stationary and non-stationary artificial datasets with the response 18 

variable being the sum of five cosine waves at 256 locations are used to test the methods. 19 
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The new method was also applied to a free water evaporation dataset. Our results verified 20 

the advantages of the new method in capturing phase information and dealing with multiple 21 

excluding variables. Compared with the previous PWC calculation, the new method 22 

produces more accurate results where there is one excluding variable. This is because 23 

bivariate real coherence rather than the bivariate complex coherence was mistakenly used 24 

in the previous PWC calculation, which underestimates the PWC. We suggest the PWC 25 

method to be used in combination with previous wavelet methods to untangle the scale-26 

specific and localized multivariate relationships in geosciences. The PWC calculations 27 

were coded with Matlab and are freely accessible 28 

(https://figshare.com/s/bc97956f43fe5734c784). 29 

 30 

1. Introduction 31 

  Geoscience data, such as spatial distribution of soil moisture in undulating terrains and 32 

time series of climatic variables, usually consist of a variety of transient processes with 33 

different scales or frequencies that may be localized in space or time (Torrence and Compo, 34 

1998; Si, 2008; Graf et al., 2014). For example, time series of air temperature usually 35 

fluctuates periodically at different scales (e.g., daily and yearly), but abrupt changes in air 36 

temperature (e.g., extremely high or low) may occur at certain time points as a result of 37 

extreme weather and climate events (e.g., heat and rain). Wavelet methods are widely used 38 

to detect scale-specific and localized features of geoscience data irrespective of whether 39 

they are stationary or non-stationary.  40 
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  Wavelet analyses are based on wavelet transform using mother wavelet function which 41 

expands spatial (or time) series into location-scale (or time-frequency) space for 42 

identification of localized intermittent scales (or frequencies). For convenience, we will 43 

mainly refer to location and scale irrespective of spatial or time series unless otherwise 44 

mentioned. Among these wavelet methods, bivariate wavelet coherency (BWC) is widely 45 

accepted as a tool for detecting scale-specific and localized bivariate relationships in a range 46 

of areas in geoscience (Lakshmi et al., 2004; Si and Zeleke, 2005; Das and Mohanty, 2008; 47 

Polansky et al., 2010; Biswas and Si, 2011). The BWC partitions correlation between two 48 

variables into different locations and scales, which are different from the overall 49 

relationships at the sampling scale as shown by the traditional correlation coefficient. For 50 

example, BWC analysis indicated that soil water content of a hummocky landscape in the 51 

Canadian Prairies was negatively correlated to soil organic carbon content at a slope scale 52 

(50 m), but they were positively correlated at a watershed scale (120 m) in summer because 53 

of the different processes involved at different scales (Hu et al., 2017). Because the positive 54 

correlation may cancel out with the negative at different scales and/or locations, the 55 

traditional correlation coefficient between soil water content and soil organic carbon 56 

content does not differ significantly from zero, which is misleading.  57 

  Recently, Hu and Si (2016) have extended the BWC to multiple wavelet coherence 58 

(MWC) that can be used to untangle multivariate (≥3 variables) relationships in multiple 59 

location-scale domains. This method has been successfully used in hydrology (Hu et al., 60 

2017; Nalley et al., 2019; Su et al., 2019; Gu et al., 2020; Mares et al., 2020) and other areas 61 

such as soil science (Centeno et al., 2020), environmental science (Zhao et al., 2018), 62 
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meteorology (Song et al., 2020), and economics (Sen et al., 2019). The MWC application 63 

has shown that an increased number of predictor variables does not necessarily explain 64 

more variations in the response variable, partly because predictor variables are usually 65 

cross-correlated (Hu and Si, 2016). For the same reason, bivariate relationships can be 66 

misleading if the predictor variable is correlated with other variables that control the 67 

response variable. Partial correlation analysis is one such method to avoid the misleading 68 

relationships resulting from the interdependence between other variables and both predictor 69 

and response variables (Kenney and Keeping, 1939), but the extension of partial correlation 70 

to the multiple location-scale domain is limited. In order to better understand the bivariate 71 

relationships at multiple scales and locations, the BWC needs to be extended to partial 72 

wavelet coherency (PWC) by eliminating the effects of other variables. 73 

  The BWC was extended to PWC by Mihanović et al. (2009). Their method has been 74 

widely used in the areas of marine science (Ng and Chan, 2012a, b), meteorology (Tan et 75 

al., 2016; Rathinasamy et al., 2017), and economics (Aloui et al., 2018; Altarturi et al., 76 

2018a; Wu et al., 2020), as well as in the study of greenhouse gas emissions (Jia et al., 2018; 77 

Li et al., 2018; Mutascu and Sokic, 2020), among others. For example, PWC analysis 78 

indicated that Southern Oscillation Index and Pacific Decadal Oscillation did not affect 79 

precipitation across India, while this was misinterpreted by the BWC analysis because of 80 

their interdependence on Niño 3.4 that affects precipitation (Rathinasamy et al., 2017). 81 

However, Mihanović et al. (2009) considered one excluding variable (i.e., variable that 82 

influences the response variable is excluded) only and did not include the phase angle 83 

difference between response and predictor variables. The coherence between response and 84 
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predictor variables can still be misleading if more than one variable is interdependent with 85 

the predictor variable. This is especially true if these variables are correlated with the 86 

predictor variable at different locations and/or scales. In addition, without phase 87 

information, it is hard to tell if the correlation at a location and scale is positive or negative.  88 

  As an extension of previous studies (Mihanović et al., 2009; Hu and Si, 2016), this paper 89 

aims to develop a PWC method that considers more than one excluding variable and 90 

presents phase information. This method reveals the magnitude and type of bivariate 91 

relationships after removing the effects from all potentially interdependent variables. The 92 

new method is an extension from the multi-variate partial coherency in the frequency (scale) 93 

domain (Koopmans, 1995). The proposed method is first tested with artificial datasets 94 

following Yan and Gao (2007) and Hu and Si (2016) to demonstrate its capability of 95 

capturing the known relationships of the artificial data. Then it is applied to a real dataset, 96 

i.e., time series of free water evaporation at the Changwu site in China (Hu and Si, 2016). 97 

Finally, the advantages and weaknesses of the new method are discussed by comparing it 98 

with the previous PWC method. 99 

2. Theory 100 

  Wavelet analysis is based on the calculations of wavelet coefficients using wavelet 101 

transform at different locations and scales for each variable involved. Two types of wavelet 102 

transform exist including continuous wavelet transform and discrete wavelet transform. 103 

While the discrete wavelet transform is mainly used for data compression and noise 104 

reduction, the continuous wavelet transform is widely used for extracting scale-specific and 105 
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localized features, as is the case of this study (Grinsted et al., 2004). For the continuous 106 

wavelet transform, the Morlet wavelet is used as a mother wavelet function to transform a 107 

spatial (or time) series into location-scale (or time-frequency) domain, which allows us to 108 

identify both location-specific amplitude and phase information of wavelet coefficients at 109 

different scales (Torrence and Compo, 1998). From wavelet coefficients, auto- and cross-110 

wavelet power spectra for two variables can be calculated as the product of wavelet 111 

coefficient and the complex conjugate of itself (auto-wavelet power spectra) or another 112 

variable (cross-wavelet power spectra). The BWC is calculated as the ratio of smoothed 113 

cross-wavelet power spectra of two variables to the product of their auto-wavelet power 114 

spectra (Grinsted et al., 2004). Hu and Si (2016) extended wavelet coherence from two to 115 

multiple (≥3) variables and developed MWC. Detailed information on the calculations of 116 

wavelet coefficients, auto- and cross-wavelet power spectra, BWC, and MWC based on the 117 

continuous wavelet transform can be found elsewhere (Torrence and Compo, 1998; 118 

Grinsted et al., 2004; Si and Farrell, 2004; Si, 2008; Hu and Si, 2016; Hu et al., 2017). Here, 119 

we will only introduce the theory and calculation that is very relevant to the PWC.   120 

  Similar to BWC and MWC, PWC is calculated from auto- and cross-wavelet power 121 

spectra, for the response variable 𝑦, predictor variable 𝑥, and excluding variables 𝑍 (𝑍 =122 

{𝑍1, 𝑍2, ⋯ , 𝑍𝑞} ). Koopmans (1995) developed the multivariate complex PWC in the 123 

frequency (scale) domain. Here, we extend the Koopmans (1995) method from the 124 

frequency (scale) domain to the time-frequency (location-scale) domain. Therefore, the 125 

complex PWC between 𝑦  and 𝑥 after excluding variables 𝑍 at scale 𝑠 and location 𝜏, 126 

𝛾𝑦,𝑥∙Z(𝑠, 𝜏), can be written as                  127 
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𝛾𝑦,𝑥∙Z(𝑠, 𝜏) =
(1 − 𝑅𝑦,𝑥,𝑍

2 (𝑠, 𝜏)) 𝛾𝑦,𝑥(𝑠, 𝜏)

√(1 − 𝑅𝑦,𝑍
2 (𝑠, 𝜏)) (1 − 𝑅𝑥,𝑍

2 (𝑠, 𝜏))

            (1)               128 

where 𝑅𝑦𝑥,𝑍
2 (𝑠, 𝜏), 𝑅𝑦,𝑍

2 (𝑠, 𝜏), and 𝑅𝑥,𝑍
2 (𝑠, 𝜏) can be calculated by following Hu and Si 129 

(2016) as 130 

𝑅𝑦,𝑥,𝑍
2 (𝑠, 𝜏) = 𝑊

↔𝑦,𝑍 (𝑠, 𝜏)
𝑊
↔𝑍,𝑍 (𝑠, 𝜏)−1

𝑊
↔𝑥,𝑍 (𝑠, 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑊
↔𝑦,𝑥 (𝑠, 𝜏)

                 (2) 131 

𝑅𝑦,𝑍
2 (𝑠, 𝜏) = 𝑊

↔𝑦,𝑍 (𝑠, 𝜏)
𝑊
↔𝑍,𝑍 (𝑠, 𝜏)−1

𝑊
↔𝑦,𝑍 (𝑠, 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑊
↔𝑦,𝑦 (𝑠, 𝜏)

                    (3) 132 

𝑅𝑥,𝑍
2 (𝑠, 𝜏) = 𝑊

↔𝑥,𝑍 (𝑠, 𝜏)
𝑊
↔𝑍,𝑍 (𝑠, 𝜏)−1

𝑊
↔𝑥,𝑍 (𝑠, 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑊
↔𝑥,𝑥 (𝑠, 𝜏)

                   (4) 133 

Eq. (1) can be also derived analogously from the complex partial spectrum for the frequency 134 

domain and the definition of complex coherence between two variables in the time-135 

frequency domain (see the Supplement (Sect. S1) for the derivation process).  Note that 136 

𝑅𝑦,𝑥∙𝑍
2 (𝑠, 𝜏) is a matrix with complex values while 𝑅𝑦,𝑍

2 (𝑠, 𝜏) and 𝑅𝑥,𝑍
2 (𝑠, 𝜏) are matrices 137 

with real numbers. 𝛾𝑦,𝑥(𝑠, 𝜏) is the complex wavelet coherence between 𝑦  and 𝑥, which 138 

can be written as 139 

𝛾𝑦,𝑥(𝑠, 𝜏)  = 𝑊
↔𝑦,𝑥(𝑠,𝜏)

(
𝑊
↔𝑦,𝑦(𝑠,𝜏)

𝑊
↔𝑥,𝑥(𝑠,𝜏))

1/2                     (5) 140 

where 
(∙)
↔  is the smoothing operator, (∙)̅̅ ̅  is the complex conjugate operator,  (∙)−1 141 

indicates the inverse of the matrix, and 142 
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𝑊
↔𝑦,𝑍 (𝑠, 𝜏) = [

𝑊
↔𝑦,𝑍1 (𝑠, 𝜏)

𝑊
↔𝑦,𝑍2 (𝑠, 𝜏) ⋯

𝑊
↔𝑦,𝑍𝑞 (𝑠, 𝜏)]         (6) 143 

𝑊
↔𝑥,𝑍 (𝑠, 𝜏) = [

𝑊
↔𝑥,𝑍1 (𝑠, 𝜏)

𝑊
↔𝑥,𝑍2 (𝑠, 𝜏) ⋯

𝑊
↔𝑥,𝑍𝑞 (𝑠, 𝜏)]          (7) 144 

𝑊
↔𝑍,𝑍 (𝑠, 𝜏) = [

𝑊
↔𝑍1,𝑍1 (𝑠, 𝜏) ⋯ 

𝑊
↔𝑍1,𝑍𝑞 (𝑠, 𝜏)

⋮ ⋱ ⋮

𝑊
↔𝑍𝑞,𝑍1 (𝑠, 𝜏) ⋯

𝑊
↔𝑍𝑞,𝑍𝑞 (𝑠, 𝜏)

]             (8) 145 

where  
𝑊
↔𝐴,𝐵 (𝑠, 𝜏)  is the smoothed auto-wavelet power spectra (when A=B) or cross-146 

wavelet power spectra (when A≠B) at scale s and location  , respectively.  147 

The squared PWC (hereinafter referred to as PWC) at scale s and location  , 𝜌𝑦,𝑥∙𝑍
2 , 148 

can be written as 149 

𝜌𝑦,𝑥∙𝑍
2 =

|1−𝑅𝑦,𝑥,𝑍
2 (𝑠,𝜏)|

2
𝑅𝑦,𝑥

2 (𝑠,𝜏)

(1−𝑅𝑦,𝑍
2 (𝑠,𝜏))(1−𝑅𝑥,𝑍

2 (𝑠,𝜏))
                      (9) 150 

where 𝑅𝑦,𝑥
2 (𝑠, 𝜏) is squared BWC between 𝑦  and 𝑥, which can be expressed as 151 

𝑅𝑦,𝑥
2 (𝑠, 𝜏) = 𝑊

↔𝑦,𝑥(𝑠,𝜏)
𝑊
↔𝑦,𝑥(𝑠,𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑊
↔𝑦,𝑦(𝑠,𝜏)

𝑊
↔𝑥,𝑥(𝑠,𝜏)

                  (10) 152 

The phase angle (i.e., angle between two complex numbers) between 𝑦  and 𝑥 after 153 

excluding effect of 𝑍 is 154 

𝜗𝑦,𝑥∙𝑍(𝑠, 𝜏) = 𝜑𝑦,𝑥∙𝑍(𝑠, 𝜏) + 𝜗𝑦,𝑥(𝑠, 𝜏)             (11) 155 

where 156 

𝜑𝑦,𝑥∙𝑍(𝑠, 𝜏) = arg (1 − 𝑅𝑦,𝑥,𝑍
2 (𝑠, 𝜏))           (12)    157 

and 𝜗𝑦,𝑥(𝑠, 𝜏) is the wavelet phase between 𝑦  and 𝑥, which can be expressed as 158 
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𝜗𝑦,𝑥(𝑠, 𝜏)  = tan−1 (Im(𝑊𝑦,𝑥(𝑠, 𝜏))/Re(𝑊𝑦,𝑥(𝑠, 𝜏)))    (13) 159 

where arg denotes the argument of the complex number, 𝑊𝑦,𝑥(𝑠, 𝜏) is the cross-wavelet 160 

power spectrum between 𝑦  and 𝑥 at scale 𝑠 and location 𝜏; Im and Re denote the 161 

imaginary and real part of 𝑊𝑦,𝑥(𝑠, 𝜏), respectively.  162 

  When only one variable (e.g.,  𝑍1 ) is excluded, Eq.(9) can be written as (see the 163 

Supplement (Sect. S2) for the derivation process) 164 

𝜌𝑦,𝑥∙𝑍1
2 =

|𝛾𝑦,𝑥(𝑠,𝜏)−𝛾𝑦,𝑍1(𝑠,𝜏)𝛾𝑥,𝑍1(𝑠,𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |
2

(1−𝑅𝑦,𝑍1
2 (𝑠,𝜏))(1−𝑅𝑥,𝑍1

2 (𝑠,𝜏))
                            (14) 165 

  The widely used Monte Carlo method (Torrence and Compo, 1998; Grinsted et al., 2004; 166 

Si and Farrell, 2004) is used to calculate PWC at the 95% confidence level. In brief, the 167 

PWC calculation is repeated for a sufficient number of times using data generated by Monte 168 

Carlo simulations based on the first-order autocorrelation coefficient (r1). The first-order 169 

autoregressive model (AR(1)) is chosen because it can be used to simulate most geoscience 170 

data very well (Wendroth et al., 1992; Grinsted et al., 2004; Si and Farrell, 2004). Different 171 

combinations of r1 values (i.e., 0.0, 0.5, and 0.9) were used to generate 10 to 10 000 AR(1) 172 

series with three, four and five variables. Our results indicate that the noise combination 173 

has little impact on the PWC values at the 95% confidence level as also found by Grinsted 174 

et al. (2004) for the BWC case (data not shown). The relative difference of PWC at the 95% 175 

confidence level compared with that calculated from the 10 000 AR(1) series decreases 176 

with the increase in number of AR(1) series. When the number of AR(1) is above 300, a 177 

very low maximum relative difference (e.g., <2%) is observed (Fig. S1 of Sect. S3 in the 178 
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Supplement). Therefore, a repeating number of 300 seems to be sufficient for a significance 179 

test. However, if calculation time is not a barrier, a higher repeating number, such as ≥1000, 180 

is recommended. The 95th percentile of PWCs of all simulations at each scale represents 181 

the PWC at the 95% confidence level. The average PWC, percent area of significant 182 

coherence (PASC) relative to the whole wavelet location–scale domain, and average value 183 

of significant PWC (PWCsig) are also calculated for different location–scale domains.  184 

  In the case of one excluding variable (𝑍 = {𝑍1}), Mihanović et al. (2009) suggested that 185 

the PWC can be calculated by an equation analogous to the traditional partial correlation 186 

squared (Kenney and Keeping, 1939) without giving the detailed derivation process. Their 187 

equation is the same as Eq. (14). Unfortunately, Ng and Chan (2012a) might have 188 

misinterpreted the equation of Mihanović et al. (2009) and developed Matlab code for 189 

calculating PWC using the equation expressed as  190 

𝜌𝑦,𝑥∙𝑍1
2 =

|𝑅𝑦,𝑥(𝑠,𝜏)−𝑅𝑦,𝑍1(𝑠,𝜏) 𝑅𝑥,𝑍1(𝑠,𝜏)|
2

(1−𝑅𝑦,𝑍1
2 (𝑠,𝜏))(1−𝑅𝑥,𝑍1

2 (𝑠,𝜏))
                                 (15) 191 

where 𝑅𝑦,𝑥(𝑠, 𝜏) , 𝑅𝑦,𝑍1(𝑠, 𝜏) , and 𝑅𝑥,𝑍1(𝑠, 𝜏) are the square root of 𝑅𝑦,𝑥
2 (𝑠, 𝜏) , 192 

𝑅𝑦,𝑍1
2 (𝑠, 𝜏), 𝑅𝑥,𝑍1

2 (𝑠, 𝜏), respectively. 𝑅𝑦,𝑍1
2 (𝑠, 𝜏) and 𝑅𝑥,𝑍1

2 (𝑠, 𝜏) can be calculated from 193 

Eq. (10) by replacing 𝑦  and 𝑥 with their corresponding variables. Eq. (15) has been 194 

widely used to calculate PWC in the case of one excluding variable (Ng and Chan, 2012b; 195 

Rathinasamy et al., 2017; Aloui et al., 2018; Altarturi et al., 2018b; Jia et al., 2018; Li et al., 196 

2018; Mutascu and Sokic, 2020; Wu et al., 2020). Note that complex coherence and real 197 

coherence are involved in the numerators of Eqs. (14) and (15), respectively, while the 198 
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denominators are exactly the same. Further comparison indicates that Eq. (15) 199 

underestimates PWC value relative to Eq. (14) unless 𝛾𝑦,𝑥(𝑠, 𝜏) and  𝛾𝑦,𝑍1(𝑠, 𝜏) 𝛾𝑥,𝑍1(𝑠, 𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 200 

in Eq. (14) are collinear (i.e., their arguments are identical) under which the two equations 201 

produce the same PWC values. Differences between Eqs. (14) and (15) will be discussed 202 

further using both artificial data and a real dataset. For comparison purposes, we refer to 203 

Eqs. (14) and (15) as the new method and the classical method, respectively.  204 

3. Method test using artificial data  205 

3.1 Artificial data and analysis  206 

  The PWC is first tested using the cosine-like artificial dataset produced following Yan 207 

and Gao (2007). The cosine-like artificial datasets are suitable for testing the new method 208 

because they mimic many spatial or temporal series in geoscience such as climatic variables, 209 

hydrologic fluxes, seismic signals, El Niño-Southern Oscillation, land surface topography, 210 

ocean waves, and soil moisture. The procedures to test the PWC is largely based on Hu and 211 

Si (2016), where the same dataset has been used to test the MWC method (refer to Hu and 212 

Si (2016) for a detailed description of the artificial dataset). The response variable (y and z 213 

for the stationary and non-stationary case, respectively) is the sum of five cosine waves (y1 214 

to y5 and z1 to z5 for the stationary and non-stationary case, respectively) at 256 locations 215 

(Hu and Si, 2016). For y1, y2, y3, y4, and y5, they have consistent dimensionless scales of 4, 216 

8, 16, 32, and 64, respectively, across the series. For z1, z2, z3, z4, and z5, the dimensionless 217 

scales gradually change with location, with the maximum dimensionless scales of 4, 8, 16, 218 

32, and 64, respectively. The variance of the response variable y and z is 2.5. All other 219 
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variables (y1 to y5 or z1 to z5) are orthogonal to each other with equal variance of 0.5. The 220 

predictor and excluding variables (Fig. S1 of Sect. S4 in the Supplement) are selected from 221 

the five cosine waves (e.g., y1 to y5 or z1 to z5) or their derivatives. The exact variables and 222 

procedures to test the new PWC method are explained below.  223 

  The PWC between response variable y (or z) and predictor variable, i.e., y2 (or z2), is first 224 

calculated after excluding the effect of one variable. Four types of excluding variable are 225 

involved (Fig. S2 of Sect. S4 in the Supplement): (a) original series of y2 (or z2) or y4 (or 226 

z4); (b) second half of the original series of y2 (or z2) are replaced by 0 to simulate abrupt 227 

changes (i.e., transient and localized feature) of the spatial series. They are referred to as 228 

y2h0 (or z2h0); (c) white noises with zero-mean and standard deviations of 0.3 (weak noise), 229 

1 (moderate noise), and 4 (high noise) are added to y2 (or z2) as suggested by Hu and Si 230 

(2016) to simulate non-perfect cyclic patterns of the excluding variables. They are referred 231 

to as y2wn (or z2wn), y2mn (or z2mn), and y2sn (or z2sn), respectively; and (d) a combination 232 

of type b and type c. They are referred to as y2wnh0 (or z2wnh0), y2mnh0 (or z2mnh0), and 233 

y2snh0 (or z2snh0), respectively.  234 

  The PWC between response variable y (or z) and predictor variable, i.e., y2y4 (sum of y2 235 

and y4) for the stationary case or z2z4 (sum of z2 and z4) for the non-stationary case, is 236 

calculated with two excluding variables, which is a combination of y4 (or z4) and y2 (or z2) 237 

or its noised series (y2wn or z2wn, y2mn or z2mn, and y2sn or z2sn). Note that PWC between 238 

y (or z) and other predictor variables (e.g., y4 or z4) after excluding y2 or z2 and their 239 

equivalent derivative variables (i.e., noised variables or variables with 0) are also calculated. 240 
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The related results are not shown because they are analogous to those in case of predictor 241 

variable of y2 (or z2). 242 

  The merit of the artificial data is that we know the exact scale-specific and localized 243 

bivariate relationships after the effect of excluding variables is removed. Theoretically, we 244 

expect (a) PWC is 1 at scales corresponding to scale difference of excluding variables from 245 

predictor variable, and 0 at other scales. For example, PWC between y and y2y4 after 246 

excluding the effect of y4 is expected to be 1 at the scale of 8, which is the difference of y4
 247 

(32) from y2y4 (8 and 32), and 0 at other scales (e.g., 32); (b) PWC remains 1 at the second 248 

half of series where spatial series is replaced by 0, and 0 at the first half of the original 249 

series. For example, PWC between y and y2 after excluding the effect of y2h0 is expected to 250 

be 0 and 1 at the first and second half of series, respectively, at the scale of 8; and (c) PWC 251 

increases as more noises are included in the excluding variables. For example, PWC 252 

between y and y2 after excluding the effect of noised series of y2 is expected to increase with 253 

increasing noises in an order of y2sn>y2mn>y2wn at the scale of 8. 254 

3.2 PWC with artificial data 255 

3.2.1 PWC with one excluding variable using the new method 256 

  Fig. 1 shows PWC between dependent variable y (or z) and predictor variable y2 (or z2) 257 

by excluding one variable. For the stationary case, there is one horizontal band (red color) 258 

representing an in-phase high PWC value at scales around 8 for all locations after 259 

eliminating the effect of y4 (Fig. 1a). Note that the PWC values between y and y2 after 260 
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excluding the effect of y4 are not exactly 1 as would be expected at all location-scale 261 

domains, because of the effect of smoothing along locations and scales. However, the PWC 262 

values at the center of the significance band, which corresponds to the predictor variable y2 263 

at exactly the scale of 8, are very close to 1 (0.996), and the mean PWCsig values are very 264 

high (i.e., 0.96). The result is similar to the BWC between y and y2. This is understandable 265 

because y4 is orthogonal to y2, and excluding the effect of y4 does not affect the relationship 266 

between y and y2 at all.  267 

  268 

Figure 1.   269 

Partial wavelet coherency (PWC) between response variable y (or z) and predictor variable 270 
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y2 (or z2) after excluding the effect of variables y4 (or z4), y2sn (or z2sn), y2mn (or z2mn), 271 

y2wn (or z2wn), y2h0 (or z2h0), y2wnh0 (or z2wnh0), y2mnh0 (or z2mnh0), and y2snh0 (or z2snh0) 272 

for the stationary (or non-stationary) case using the new method. Arrows represent the 273 

phase angles of the cross-wavelet power spectra between two variables after eliminating 274 

the effect of excluding variables. Arrows pointing to the right (left) indicate positive 275 

(negative) correlations. Thin and thick solid lines show the cones of influence and the 95% 276 

confidence levels, respectively. All variables were generated by following Yan and Gao 277 

(2007) and Hu and Si (2016) and are explained in Section 3.1 and shown in Fig. S2 of Sect. 278 

S3 in the Supplement. 279 

  Similar results were obtained by excluding either y4 or the strongly noised series of y2 280 

(y2sn). Compared with the case of excluding variable of y4 (Fig. 1a), excluding the effect of 281 

y2sn (Fig. 1b) results in slightly narrower band of significant PWC and slightly reduced 282 

mean PWCsig (0.94 versus 0.96). When less noise is included in the excluding variables (i.e., 283 

y2mn and y2wn) (Fig. 1c-d), the significant PWC band becomes narrower. The PASC values 284 

are 86%, 77%, and 32% for excluding y2sn, y2mn and y2wn, respectively, at scales of 6–10. 285 

Moreover, the mean PWCsig decreases from 0.94 (y2sn) to 0.93 (y2mn) and 0.89 (y2wn) when 286 

progressively more noise is added (Fig. 1b-d). For the non-stationary case, similar results 287 

are obtained (Fig. 1e-h). The only difference is that the scales with significant PWC values 288 

change with location, as is found for MWC (Hu and Si, 2016). 289 

  When the second half of the excluding variable series is replaced by 0, the PWC values 290 

in that half are close to 1, while those in the first half of data series are 0 at scales 291 

corresponding to the predictor variable (Fig. 1i and 1m). For the stationary case, after 292 

excluding the effect of y2h0, the PWC values are close to 1 (0.98) and 0 in the second and 293 

first half of the data series, respectively, at the dimensionless scale of 8 (Fig. 1i). Similar 294 
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results are observed for the non-stationary case (Fig. 1m). This is anticipated because the 295 

removing series of 0s from a portion of the predictor variable series does not affect their 296 

correlations at these locations. If different magnitudes of noises are added to the first half 297 

of the excluding variables (y2 or z2), the significant PWC band in the first half becomes 298 

wider as the magnitude of noises increases, while the significant PWC band in the second 299 

half remains almost unchanged (Fig. 1j-l and Fig. 1n-p). In the stationary case, for example, 300 

the PASC values at scales of 6–10 are 40% (y2wnh0), 74% (y2mnh0), and 86% (y2snh0) in 301 

the first half, while those values vary from 86% to 90% in the second half (Fig. 1j-l). 302 

Meanwhile, the mean PWCsig in the first half at scales of 6–10 increases from 0.91 to 0.94 303 

in both the stationary (Fig. 1j-l) and non-stationary (Fig. 1n-p) cases as more noises are 304 

added to the excluding variable y2 or z2. This indicates that the new PWC method can also 305 

capture the abrupt changes (Fig. 1i and 1m) in the data series, and has the ability to deal 306 

with localized relationships.  307 

3.2.2 PWC with two excluding variables using the new method 308 

  When both y2 and y4 (or z2 and z4) are considered in the predictor variables, there are two 309 

bands of wavelet coherence of 1 between y (or z) and y2y4 (or z2z4) (Hu and Si, 2016), which 310 

correspond to the scales of two predictor variables. However, after the effect of y4 (or z4) is 311 

removed, only one band with PWC of around 1 occurs at the scale of the predictor variable 312 

y2 (or z2) (Fig. 2a and 2f), which is identical to the PWC between y (or z) and y2 (or z2) after 313 

excluding the effect of variable y4 (or z4) (Fig. 1a and 1f). After both predictor variables y2 314 

and y4 (or z2 and z4) are excluded (Fig. 2b and 2g), the PWC between y (or z) and y2y4 (or 315 
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z2z4) is 0 at all location-scale domains as we expect. When one of the excluding variables 316 

y2 (or z2) is added with noises, the relationship between response variable y (or z) and 317 

predictor variable y2y4 (or z2z4) becomes significant at scales of the excluding variable y2 318 

(or z2) (Fig. 2c and 2h). Similar to the case of one excluding variable (Fig. 1), less noise in 319 

the excluding variable of y2 (or z2) results in a narrower significant PWC band, and reduced 320 

mean PWCsig values (from 0.96 (y2sn) to 0.90 (y2wn) in the stationary case (Fig. 2c-e) and 321 

from 0.95 (z2sn) to 0.92 (z2wn) in the non-stationary case) (Fig. 2h-j).  322 

 323 

Figure 2.   324 

Partial wavelet coherency (PWC) between response variable y (or z) and predictor variable 325 

y2y4 (or z2z4) after excluding the effect of variables y4 (or z4), y2+y4 (or z2+z4), y2sn+y4 (or 326 

z2sn+z4), y2mn+y4 (or z2mn+z4), and y2wn+y4 (or z2wn+z4) for the stationary (or non-327 

stationary) case using the new method. All variables were generated by following Yan and 328 

Gao (2007) and Hu and Si (2016) and are explained in Section 3.1 and shown in Fig. S2 of 329 

Sect. S3 in the Supplement. 330 
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4. Method application with real dataset 331 

4.1 Description of free water evaporation dataset 332 

  The free water evaporation dataset was used to test the MWC (Hu and Si, 2016). In brief, 333 

this dataset includes monthly free water evaporation (E), mean temperature (T), relative 334 

humidity (RH), sun hours (SH), and wind speed (WS) between January 1979 and December 335 

2013 at Changwu site in Shaanxi province provided by the China Meteorological 336 

Administration. During this period, the average daily temperature was 9.4 °C, the average 337 

annual rainfall was 571 mm and annual ETp was 883 mm. Being located in the transition 338 

between semi-arid and subhumid climates, agricultural production at the Changwu site is 339 

constrained by water availability. Results of wavelet power spectrum of E and BWC 340 

between every two variables are shown in Fig. S3 and Fig. S4 (Sect. S3 in the Supplement), 341 

respectively. 342 

4.2 PWC with free water evaporation dataset 343 

  The PWC analysis indicates that the correlations between E and T after excluding the 344 

effect of each of other three variables (RH, SH, and WS) were almost the same as those 345 

indicated by the BWC (Fig. 3a-c and Fig. S4 of Sect. S3 in the Supplement). For example, 346 

E and T, after excluding the effect of RH, were positively correlated at the medium scales 347 

(8–32 months). The PASC was 61% and mean PWCsig value was 0.94, which was identical 348 

to the case of BWC between E and T. No significant correlations at scales around 64 months 349 

between E and T from 1979 to 1992 were found after eliminating the influence of RH (Fig. 350 
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3a-c). This implies that the influence of mean temperature on E at these scales and years 351 

may be associated with the negative influence of RH on both E and T (Fig. S4 of Sect. S3 352 

in the Supplement).  353 

 354 

Figure 3.   355 

Partial wavelet coherency (PWC) between evaporation (E) and each meteorological factor 356 
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(T, mean temperature; RH, relative humidity; SH, sun hours; WS, wind speed) after 357 

excluding the effect of each of other three meteorological factors.  358 

  The PWC between E and RH depended on the excluding variable and scale (Fig. 3d-f). 359 

The mean PWC and PASC between E and RH after excluding T were 0.60 and 34%, 360 

respectively, which are comparable with the mean BWC (0.62) and PASC (40%) between 361 

E and RH. The corresponding values after excluding SH and WS were 0.50 and 0.53 (PWC), 362 

22% and 21% (PASC), respectively. In addition, compared with the BWC between E and 363 

RH (Fig. S4 of Sect. S3 in the Supplement), correlations between E and RH were weak at 364 

small scales (<8 months) and medium scales (8–32 months) after eliminating the influence 365 

of SH and WS (Fig. 3e-f), respectively. Therefore, excluding the variable of T had less 366 

influence on the coherence between E and RH compared with excluding the variables of 367 

SH and WS. This is mainly because RH and T are correlated with E at different scales (Fig. 368 

S4 of Sect. S3 in the Supplement), i.e., mean temperature affected E mainly at medium 369 

scales, while RH affected E across all scales. However, the domain where SH and WS were 370 

correlated with E was a subset of that where RH and E were correlated (Fig. S4 of Sect. S3 371 

in the Supplement).  372 

  The relationships between E and SH after excluding the other three factors were less 373 

consistent (Fig. 3g-h). The areas with significant corrections were scattered over the whole 374 

location-scale domain but differed with excluding factors. The PASC varied from 12% 375 

(excluding RH) to 20% (excluding T and WS), which is much lower than the PASC (28%) 376 

in the case of BWC. The significant relationships between E and WS were only limited to 377 

very small areas except for the case of SH being excluded, where E and WS were positively 378 
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correlated at scales of 8–16 months most of the time (Fig. 3j-l). 379 

  In general, the PASC decreased after excluding the effects of more factors (data not 380 

shown). The correlations between E and each variable after eliminating the effects of all 381 

other variables are shown in Fig. 4. The correlations between E and T were still significant 382 

at the medium scales (8–32 months) (Fig. 4a), where PASC value was 52% with mean 383 

PWCsig of 0.92. The E was still correlated with RH at large scales (>32 months) (Fig. 4b), 384 

where PASC value was 35% with mean PWCsig of 0.96. Interestingly, the domain with 385 

significant correlation between E and SH and WS was very limited (Fig. 4c-d). This 386 

indicates that the influences of SH and WS on E have already been covered by RH and T. 387 

This is in agreement with the MWC results that RH and T were the best to explain E 388 

variations at all scales (Hu and Si, 2016). Although the RH had the greatest mean wavelet 389 

coherence and PASC at the entire location-scale domains, the PWC analysis seems to 390 

support that mean temperature was the most dominating factor for free water evaporation 391 

at the 1-year cycle (8–16 months), which is the dominant scale of E variation (Fig. S3 of 392 

Sect. S3 in the Supplement).  393 
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 394 

Figure 4.   395 

Partial wavelet coherency (PWC) between evaporation (E) and each meteorological factor 396 

(T, mean temperature; RH, relative humidity; SH, sun hours; WS, wind speed) after 397 

excluding the effects of all other three factors.  398 

5. Discussion on the advantages and weaknesses of the new method 399 

5.1 Advantages 400 

  We extend the partial coherence method from the frequency (scale) domain (Koopmans, 401 

1995) to the time-frequency (location-scale) domain. The new method is an extension of 402 

previous work on PWC and MWC (Mihanović et al., 2009; Hu and Si, 2016). The method 403 

test and application have verified that it has the advantage of dealing with more than one 404 

excluding variable and providing the phase information associated with the PWC. In the 405 
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case of one excluding variable, Mihanović et al. (2009) has suggested to calculate PWC by 406 

using an equation analogous to the traditional partial correlation squared (Eq. 14), which 407 

can be derived from our Eq. (9). However, their equation was, unfortunately, widely used 408 

by replacing the complex coherence in Eq. (14) with real coherence as expressed in Eq. 409 

(15).  410 

  The differences between the new method (Eq.14) and the classical method (Eq. 15) are 411 

compared using both the artificial and real datasets. Except for the phase information, the 412 

two methods generally produce comparable coherence for the artificial dataset for the case 413 

of one excluding variable (Fig. S5 of Sect. S3 in the Supplement). However, the new PWC 414 

method produces consistently and slightly higher coherence than the classical method. For 415 

example, their mean PWCs between y and y2 at the scale of 8 after excluding the effect of 416 

y4 are 1.00 and 0.97, respectively. This indicates that the new method produces coherence 417 

between y and y2 at the scale (8) of y2 closer to 1 as we expect. While the classical method 418 

produces similar PWC between E and other meteorological factors in most cases especially 419 

for the coherence between E and T after excluding the effects of others (Fig. S6 of Sect. S3 420 

in the Supplement), large differences between these two methods can also be observed. For 421 

example, while the new method recognizes the strong coherence between E and RH after 422 

excluding the effect of T at scales of around 1 year (Fig. 3d), this coherence was negligible 423 

by the classical method (Fig. 5a). Mean PWC values by the new method were consistently 424 

higher than the classical method, and the differences ranged from 0.4 to 0.6 around the scale 425 

of 1 year (Fig. 5b). Considering the real coherence (Eq.15) rather than complex coherence 426 

(Eq.14) between every two variables in the numerators can potentially result in large 427 
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underestimation of the partial wavelet coherence. Therefore, the ability of the new method 428 

to produce more accurate results than the classical method is one of its advantages. 429 

 430 

 Figure 5.   431 

Partial wavelet coherency (PWC) between evaporation (E) and relative humidity (RH) after 432 

excluding the effect of mean temperature (T) using the classical method (Eq. 15) (a) and 433 

differences in PWC between the new method (Eq.14) and classical method as a function of 434 

scale (b). 435 

  Compared with the Mihanović et al. (2009) method, the additional phase information 436 

from the new PWC is another advantage of this new method. This is because phase 437 

information is directly related to the type of correlation, i.e., in-phase and out-of-phase 438 

indicating positive and negative correlation, respectively. Different types of correlations 439 

were usually found at different locations and scales (Hu et al., 2017). The phase information 440 

helps understand the differences in associated mechanisms or processes at different 441 

locations and scales. In addition, the phase information will allow us to detect the changes 442 

in not only the degree of correlation (i.e., coherence) but also the type of correlation after 443 
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excluding the effect of other variables. For example, E and RH were positively correlated 444 

at the 1-year cycle (8–16 months) from year 1979 to 1995. This is because higher 445 

evaporation usually occurs in summer when high T coincides with high RH as influenced 446 

by the monsoon climate in the study area (Fig. S4 of Sect. S3 in the Supplement). 447 

Interestingly, after excluding the effect of T, E was negatively correlated with RH at the 448 

scale of 1-year as we expect (Fig. 3d). 449 

  Moreover, our new PWC method applies to cases with more than one excluding variable, 450 

which is a knowledge gap. When multiple variables are correlated with both the predictor 451 

and response variables, the correlations between predictor and response variables may be 452 

misleading if the effects of all these multiple variable were not removed. For example, at 453 

the dominant scale (i.e., 1-year) of E variation, the effects of RH on E existed after 454 

excluding the effects of T or SH. However, their contrasting correlations (Fig. 3d-e) resulted 455 

in negligible effects of RH on E at this scale after the effects of all other variables were 456 

excluded (Fig. 4b). In this case, the dominant role of mean temperature in driving free water 457 

evaporation was proved at the 1-year cycle (Fig. 4a). This also further verifies the suitability 458 

of the Hargreaves model (only air temperature and incident solar radiation required) 459 

(Hargreaves, 1989) for estimating potential evapotranspiration on the Chinese Loess 460 

Plateau (Li, 2012).  461 

5.2 Weaknesses 462 

  Similar to the Mihanović et al. (2009) method, the new method has the risk to produce 463 

spurious high correlations after excluding the effect from other variables. Take the artificial 464 
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dataset for example, at a scale of 32, PWC values between y and y2 after excluding y4 are 465 

not significant, but relatively high, partly because of small octaves per scale (octave refers 466 

to the scaled distance between two scales with one scale being twice or half of the other, 467 

default of 1/12). This spurious unexpected high PWC is caused by low values in both the 468 

numerator (partly associated with the low coherence between response y and predictor 469 

variables y2 at scale of 32) and denominator (partly associated with the high coherence 470 

between response y and excluding variable y4 at a scale of 32) in Eq. (9). The same problem 471 

also exists in the classical method (Fig. S5 of Sect. S3 in the Supplement). So, caution 472 

should be taken to interpret those results. However, it seems that the domain with spurious 473 

correlation calculated by the new method is very limited and it is located mainly outside of 474 

the cones of influence. Moreover, the unexpected results can be easily ruled out with 475 

knowledge of BWC between response and predictor variables. It is expected that the 476 

correlation between two variables should not increase after excluding one or more variables. 477 

Therefore, BWC analysis is suggested for better interpretation of the PWC results.  478 

  Similar to BWC and MWC, the confidence level of PWC calculated from the Monte 479 

Carlo simulation is based on a single hypothesis testing. But in reality, the confidence level 480 

of PWC values at all locations and scales needs to be tested simultaneously. Therefore, the 481 

significance test has the multiple-testing problem (Schaefli et al., 2007; Schulte et al., 2015). 482 

The new method may benefit from a better statistical significance testing method. Options 483 

for multiple-testing can be the Bonferroni adjusted p test (Westfall and Young, 1993) or 484 

false discovery rate (Abramovich and Benjamini, 1996; Shen et al., 2002) which is less 485 

stringent than the former.  486 
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6. Conclusions 487 

  Partial wavelet coherency (PWC) is developed in this study to investigate scale-specific 488 

and localized bivariate relationships after excluding the effect of one or more variables in 489 

geosciences. Method tests using stationary and non-stationary artificial datasets verified the 490 

known scale- and localized bivariate relationships after eliminating the effects of other 491 

variables. Compared with the previous PWC method, the new PWC method has the 492 

advantage of dealing with more than one excluding variable and providing the phase 493 

information (i.e., correlation type) associated with the PWC. In the case of one excluding 494 

variable, this new method produces more accurate coherence than the previous PWC 495 

method because the former considers complex coherence between every two variables, 496 

while the latter only considers the real coherence. Application of the new method to one 497 

temporal dataset (free water evaporation) has indicated the robustness of the new method 498 

in identifying the bivariate relationships and further convinced the MWC method in 499 

identifying the best combinations for explaining variations. The new method provides a 500 

much needed data-driven tool for unraveling underlying mechanisms in both temporal and 501 

spatial series. Thus, combining with wavelet transform, BWC, and MWC, the new PWC 502 

method can be used to detect various processes in geosciences, such as stream flow, 503 

droughts, greenhouse gas emissions (e.g., N2O, CO2, and CH4), atmospheric circulation, 504 

and oceanic processes (e.g., EI Niño-Southern Oscillation). 505 

Code/Data availability 506 
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