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ABSTRACT 22 

The global availability of satellite rainfall products (SRPs) at an increasingly high temporal/spatial 23 

resolution has made possible their exploitation in hydrological applications, especially over data-24 

scarce regions. In this context, understanding how uncertainties transfer from SRPs into river 25 

discharge simulation, through the hydrological model, is a main research question.  26 

SRPs accuracy is normally characterized by comparing them with ground observations via the 27 

calculation of categorical (e.g., threat score, false alarm ratio, probability of detection) and/or 28 

continuous (e.g., bias, root mean square error, Nash-Sutcliffe index, Kling-Gupta efficiency index, 29 

correlation coefficient) performance scores. However, whether these scores are informative about the 30 

associated performance in river discharge simulations (when the SRP is used as input to a 31 

hydrological model) is an underdiscussed research topic. 32 

This study aims to relate the accuracy of different SRPs both in terms of rainfall and in terms of river 33 

discharge simulation. That is, the following research questions are addressed: is there any 34 

performance score that can be used to select the best performing rainfall product for river discharge 35 

simulation? Are multiple scores needed? And, which are these scores? To answer these questions 36 

three SRPs, namely the Tropical Rainfall Measurement Mission Multi-satellite Precipitation 37 

Analysis, TMPA; the Climate Prediction Center Morphing algorithm, CMORPH, and the SM2RAIN 38 

algorithm applied to the ASCAT (Advanced SCATterometer) soil moisture product, SM2RAIN-39 

ASCAT, have been used as input into a lumped hydrologic model (MISDc, “Modello Idrologico 40 

Semi-Distribuito in continuo”) on 1318 basins over Europe with different physiographic 41 

characteristics.  42 

Results suggest that, among the continuous scores, correlation coefficient and Kling-Gupta efficiency 43 

index are not reliable indices to select the best performing rainfall product for hydrological modelling 44 

whereas bias and root mean square error seem more appropriate. In particular, by constraining the 45 

relative bias to absolute values lower than 0.2 and the relative root mean square error to values lower 46 
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than 2, good hydrological performances (Kling-Gupta efficiency index on river discharge greater than 47 

0.5) are ensured for almost 75% of the basins fulfilling these criteria. Conversely, the categorical 48 

scores have not provided suitable information to address the SRPs selection for hydrological 49 

modelling.  50 

 51 

Key words: satellite rainfall products, hydrological validation, rainfall-runoff modelling, Europe. 52 

1. INTRODUCTION 53 

Accurate rainfall estimate is essential in many fields spanning from climate change research, weather 54 

prediction and hydrologic applications (Tapiador et al., 2017, Ricciardelli et al., 2018, Lu et al., 2018). 55 

In particular, the delivery of real time rainfall observations is one of the most challenging task in 56 

operational flood forecasting both for technical reasons, related to the need of a prompt release of the 57 

observations and for scientific motives linked to the necessity of ensuring sufficient accuracy to 58 

provide a reliable forecasting. Generally, rainfall observations are obtained through real time ground 59 

monitoring networks (e.g., Artan et al., 2007), meteorological and numerical weather prediction 60 

models (e.g, Montani et al., 2011; Zappa et al., 2008) and, more recently, by satellite observations 61 

(Mugnai et al., 2013) that, albeit with some difficulties (Maggioni and Massari, 2018) are becoming 62 

potential alternative to the classical rainfall monitoring methods, thanks to their global availability 63 

and increasing accuracy.  64 

The global availability of near real time satellite rainfall products (SRPs) has boosted their use for 65 

hydrological applications, specifically for river discharge estimation via rainfall-runoff models 66 

(Casse et al., 2015; Elgamal et al., 2017; Camici et al., 2018; Beck et al., 2017, see Maggioni and 67 

Massari, 2018 and Jiang and Wang, 2019 for a more complete review). In particular, in the past 68 

decade a special attention has been paid on the propagation of the satellite rainfall error on flood 69 

simulations (Hong et al., 2006; Hossain, and Anagnostou, 2006; Pan et al., 2010; Maggioni et al. 70 

2013; Thiemig et al. 2013; Bhuiyan et al., 2019) and two approaches, one probabilistic and one 71 
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statistical, can be recognized (Quintero et al., 2016). In the probabilistic approach a statistical model 72 

is first used to produce an ensemble of possible rainfall realizations. Then, each rainfall realization is 73 

used to simulate a river discharge time series through a hydrological model and the difference 74 

between simulated and observed in situ discharge data is used to assess how rainfall accuracy transfers 75 

to the flood simulation (e.g., Hong et al., 2006; Hossain, and Anagnostou, 2006; Demaria et al. 2014; 76 

Maggioni et al. 2013, 2011). In the deterministic approach, SRPs are first compared with a reference 77 

dataset to assess the accuracy in terms of rainfall estimate. Then, SRPs are used as input in rainfall-78 

runoff models to estimate river discharge that is then compared with in situ discharge observations. 79 

Eventually, the existence and the shape of the relationship between the SPR accuracy and the 80 

associated discharge score is analysed (e.g, Serpetzoglou et al. 2010; Pan et al., 2010; Thiemig et al. 81 

2013; Chintalapudi et al. 2014; Pakoksung and Takagi, 2016; Shah and Mishra, 2016; Qi et al. 2016; 82 

Ren et al., 2018; Bhuiyan et al., 2019). 83 

In both approaches, several continuous (e.g., bias, root mean square error, RMSE, correlation 84 

coefficient, R, Nash-Sutcliffe efficiency index, NSE, Kling-Gupta efficiency index, KGE) and 85 

categorical (e.g., probability of detection, POD, false alarm ratio, FAR, threat score, TS) performance 86 

scores are used to characterize the accuracy in terms of rainfall and river discharge. Generally, this 87 

comparison has been carried out for few basins (e.g., Hong et al., 2006; Pan et al., 2010; Demaria et 88 

al., 2014; Chintalapudi et al., 2014; Qi et al. 2016; Ren et al., 2018; Thiemig et al. 2013), rarely at 89 

regional scale (e.g., Bhuiyan et al., 2019), whereas no studies investigated the hydrological 90 

propagation of SRP error at a continental scale. In Beck et al. (2017), the authors carried out an 91 

evaluation of multiple (22) global daily rainfall datasets both in terms of rainfall and river discharge 92 

for many (+9000) basins over the globe, however, the relationship between the accuracy in terms of 93 

rainfall and river discharge was not investigated in detail. 94 

From the analysis of both the probabilistic and the statistical approaches arises that the hydrological 95 

performances of SRPs depend on a complex interaction among the characteristics of the input data 96 

(i.e., precipitation type, seasonality, data resolution or time window considered, see e.g., Ebert et al., 97 
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2007; Vergara et al., 2014; Satgé et al., 2019), the hydrological model formulation (i.e. parameter 98 

estimation and modelled processes, Quintero et al., 2016; Mei et al., 2017; Bhuiyan et al., 2019), the 99 

characteristics of the basin (e.g., area and initial soil moisture conditions, land use and land cover 100 

(Yong et al., 2010; Yilmaz et al., 2005; Nikolopoulos et al., 2010; Mei et al., 2016; Shah and Mishra, 101 

2016; Gebregiorgis et al., 2012)) and observations (i.e., streamflow data, see e.g., Nikolopoulos et 102 

al., 2012). In this context, it is not trivial to draw general guidelines about which SRPs should be 103 

favoured or which performance score(s) should be used to identify the best performing rainfall 104 

product for river discharge estimation (Qi et al., 2016; Hossain and Huffman, 2008). The only largely 105 

accepted suggestion is about SRP bias, recognized as a major issue for a reliable flood forecast across 106 

several basins around the world (Maggioni et al., 2013; Thiemig et al., 2013; Shah and Mishra 2016; 107 

Jiang and Wang, 2019). Based on that, bias correction methods have shown to significantly reduce 108 

streamflow errors (e. g, Yilmaz et al., 2005; Bitew et al., 2012; Valdes-Pined et al., 2016). For 109 

instance, by using the MIKE SHE model on a small and mountainous basin in the Blue Nile basin, 110 

Bitew et al. (2012) stated that large biases in satellite rainfall directly translate into bias in one or 111 

more of the hydrology simulation components. Zhu et al. (2016) found that for two humid basins in 112 

China, the accuracy on flood simulations is related to the mean error and to bias in the rainfall 113 

estimates as also found by Yilmaz et al. (2005). Besides bias, it is difficult to find literature studies 114 

advising on rainfall error metrics able to indicate river discharge simulation performances. The work 115 

of Bisselink et al. (2016), even if conducted over only 4 basins in south Africa, is an exception. The 116 

authors, by using different SRPs as input to LISFLOOD model, proved that a high correlation 117 

between monthly rainfall and observed streamflow is a needed prerequisite for obtaining good 118 

hydrological performances, as long as the rainfall variability in time is not too high.  119 

Based on that, there is a need to investigate metrics that can more effectively advance the use of SRPs 120 

for hydrological applications, and specifically for river discharge modelling at regional scales. This 121 

paper aims to explore the link between satellite rainfall accuracy of different products and their river 122 

discharge modelling performance. The following research questions are addressed: is there any 123 
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performance score that can be used to select the best performing rainfall product for river discharge 124 

simulation? Are multiple scores needed? And, which are these scores? Are R and RMSE, generally 125 

used to characterize the rainfall accuracy, informative about the hydrological modelling performance? 126 

How small/large should be these rainfall scores to obtain good performances in river discharge 127 

simulations, i.e., KGE on discharge greater than 0.5? 128 

In pursuing this goal, three different near real time SRPs, i.e., Tropical Rainfall Measurement Mission 129 

(TRMM) Multi-satellite Precipitation Analysis (TMPA) real time product (TMPA 3B42RT, Huffman 130 

et al., 2010), the Climate Prediction Center (CPC) morphing technique (CMORPH, Joyce et al., 2004) 131 

and SM2RAIN-ASCAT rainfall product (Brocca et al., 2019) obtained by applying the SM2RAIN 132 

algorithm (Brocca et al., 2014) to the ASCAT satellite soil moisture product, are used to force a 133 

lumped hydrological model, MISDc (Brocca et al., 2011) over 1318 basins across Europe. An 134 

intercomparison of SRPs with respect to a benchmark rainfall dataset, i.e., E-OBS (Haylock et al., 135 

2008), is carried out. This step, along with the reliability assessment of the different SRPs for flood 136 

modelling over Europe, constitutes only an intermediate output of the work. The ultimate aim of the 137 

paper is to investigate how SRPs accuracy propagates through the river discharge simulations, as to 138 

help in the selection of the rainfall performance scores more informative of better hydrological 139 

performances. As the intent of the paper is to analyse the performances of near-real time satellite 140 

rainfall products, gauge-corrected satellite or reanalysis rainfall products are not considered in this 141 

work.  142 

2. STUDY AREA 143 

The study area is composed of 1318 basins, with area ranging in size from 200 to 136’000 km2 144 

belonging to 23 different countries and spread over the whole of Europe, over longitude varying from 145 

-10° to 25° and latitude from 35° to 70° (Figure 1a). The European continent is characterized by a 146 

complex topography ranging, from south to north, from huge mountains towards hilly plateaus to a 147 

large plain. The Alpine mountain chain, crossing the continent from west to east represents the highest 148 
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and more extensive mountain range system in Europe. Hilly plateaus gently slopes towards the Great 149 

European Plain, a low flat region, extending from the Atlantic coast of France to the Urals, crossed 150 

by many rivers and with densely populated cities. 151 

The climate is humid continental with cold summers in central and eastern Europe. Mean annual 152 

rainfall across Europe ranges between 300 mm year−1 and 4000 mm year−1, depending on the location. 153 

The north Atlantic coast of Spain, the Alps and Balkan Mediterranean countries generally receive 154 

higher rainfall amounts while along the west edges of the Mediterranean Sea, in northern Europe and 155 

in northern Scandinavia, lighter rainfall is common. In terms of floods, their occurrence range from 156 

spring to summer moving from northeastern Europe towards the Alps, whereas Mediterranean region 157 

and western Europe are prevailingly subject to winter floods (Berghuijs et al., 2019). 158 

The main features of the study basins, clustered according to the latitude of the outlet section, are 159 

illustrated in Figure 1b and c: among the 1318 basins, more than half (889) have the outlet section 160 

located below the 50° latitude and for about 11% of them the outlet section is placed above 60° 161 

latitude. The median area of the basins located below 50° is lower than the one of basins located in 162 

northern part of Europe (above 50° latitude). By considering these features, the selected set of basins 163 

can be considered a comprehensive sample of the European basin characteristics. 164 

3. DATASETS 165 

The datasets used in this study include both ground observations and satellite rainfall products (Table 166 

1). 167 

3.1 Ground observations 168 

Ground observations comprise rainfall, air temperature and river discharge data. Rainfall and air 169 

temperature are extracted from the European high-resolution 0.22°x0.22° gridded data sets version 170 

17.0 (E-OBS, https://www.ecad.eu/download/ensembles/download.php#datafiles, Haylock et al., 171 

2008), currently maintained by the Copernicus Climate Change Service. The E-OBS dataset is built 172 

by using data from nearly 9618 stations (i.e., equivalent on average to a density of 1 stations every 173 
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1000 km2) but the station density significantly varies across Europe (see Haylock et al., 2008; Cornes 174 

et al., 2018): for some regions, the station density is sufficiently low to expect a strong tendency for 175 

interpolated daily rainfall and temperature values to be underestimated with respect to the “true” area-176 

average stations (Hofstra et al., 2009; Hofstra et al., 2010; Kyselý and Plavcová, 2010). As the 177 

smoothing is greatest for higher percentiles, an underestimation of peak floods is expected if E-OBS 178 

rainfall data are used for rainfall-runoff modelling above all for basins with area lower than 1000 km2 179 

(Hofstra et al., 2010). However, as this product is composed by time series thoroughly checked both 180 

in terms of quality and homogeneity (Klok and Tank, 2009) and it is continuously available from 181 

1950 up to now at daily time step, it can be considered a good benchmark for the analysis of long 182 

rainfall time series.  183 

Daily river discharge data are obtained through an European daily dataset, compiled by the authors 184 

merging stations from 5 different databases: the Global Runoff Data Base (GRDC, 185 

https://www.bafg.de/GRDC/EN/Home/homepage_node.html), the European Water Archive (EWA, 186 

https://www.bafg.de/GRDC/EN/04_spcldtbss/42_EWA/ewa.html?nn=201574), the Italian ISPRA 187 

HIS national database (http://www.hiscentral.isprambiente.gov.it/hiscentral/default.aspx); the 188 

Portuguese national database (http://snirh.pt/) and the Spanish national database (http://ceh-189 

flumen64.cedex.es/anuarioaforos/default.asp). From the resulting European dataset, composed by 190 

3913 quality checked stations covering the period 1900-2016, 1318 stations with available 191 

observations after 2007 (according the availability of SRPs, see paragraph 3.2) have been extracted.  192 

To ensure quality on discharge observations the following steps have been followed: 1) visual 193 

hydrograph inspection, which is probably the most thorough method (Crochemore et al., 2020); 2) 194 

check on data availability; 3) check the presence of outliers; 4) check the presence of inhomogeneities. 195 

Only stations with less than 20% of missing data in one year, showing no inhomogeneities in the time 196 

series were retained in the compiled European dataset. The time series were checked also against the 197 

presence of anomalous values (i.e., values greater than five times the standard deviation), flagged as 198 

outliers. 199 
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The authors, using the EU-DEM digital elevation model (Mouratidis and Ampatzidis, 2019) 200 

resampled at 100m ground resolution, developed an automatic and rapid procedure to delineate the 201 

drainage watersheds located upstream of each discharge measurement location (outlet section). The 202 

procedure is based on the following steps: (i) we select cells having contributing area larger or equal 203 

to 4 km2 over the entire study area, (ii) we move the discharge measurement locations from the 204 

coordinates reported in the original metadata to the closest cells of the river network, (iii) we delineate 205 

the catchments. Adopting the method used by Do et al. (2018), we evaluated the quality of the 206 

products comparing the area of the delineated catchment (Ad) with that available from the original 207 

metadata (Am). The absolute percentage difference (Dp) was calculated according to the following 208 

formula Dp =(Ad - Am)/ Ad *100 |. Median and 75th percentile of the distribution of the Dp values 209 

were, respectively, 2.67% and 22.07%. We excluded from the following hydrological simulation, 210 

catchments having Dp values larger than 50% (less than the 20% of the total number of catchments). 211 

The study basins and the related observation period length after 2007 is shown in Figure 1a: more 212 

than 50% of the basins have an observation period longer than 7 years; Spanish, Italian and Northern 213 

European basins have a nearly complete observation period (10 years), whereas for Central Europe 214 

some stations end the monitoring period in 2012 and the median length of discharge observations is 215 

about 6/7 years (see Figure 1a).  216 

3.2 Satellite rainfall products 217 

Three different SRPs have been used in this study: TMPA 3B42RT, CMORPH and 218 

SM2RAIN-ASCAT satellite products. As these products have been largely used in literature, only a 219 

brief product description is reported in the following whereas for major details the reader is referred 220 

to Huffman et al. (2010); Joyce et al. (2004) and Brocca et al. (2019) for TMPA 3B42RT, CMORPH 221 

and SM2RAIN-ASCAT, respectively. 222 

TMPA 3B42RT, provided by NASA (National Aeronautics and Space Administration, 223 

https://disc.gsfc.nasa.gov/datasets/TRMM_3B42RT_7/summary?keywords=TMPA%203b42) 224 
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covers ±50° north-south latitude band with a spatial sampling of 0.25° and a temporal resolution of 3 225 

h from 1997 onward.  226 

CMORPH is provided by the CPC (Climate Prediction Center, 227 

ftp://ftp.cpc.ncep.noaa.gov/precip/global_CMORPH/3-hourly_025deg/) for the +60°/-60° latitude 228 

band from March 2000 up to now. In this study, the CMORPH raw version is extracted with a 229 

spatial/temporal resolution of 0.25°/3 hours. 230 

In addition to these state-of-the-art SRPs, we used the SM2RAIN-ASCAT rainfall product (Brocca 231 

et al., 2019) obtained through the application of the SM2RAIN algorithm (Brocca et al., 2014) to the 232 

ASCAT satellite soil moisture product (Wagner et al., 2013). SM2RAIN is an algorithm based on the 233 

concept that the soil acts as a “natural rain gauge”: by inverting the soil water balance equation, the 234 

algorithm allows to estimate the accumulated rainfall from soil moisture observations. 235 

SM2RAIN-ASCAT, downloadable at https://zenodo.org/record/3635932, is available for the period 236 

2007-2019, with a 12.5 km spatial sampling and a daily temporal aggregation. 237 

For sake of simplicity, the TMPA 3B42RT, CMORPH and SM2RAIN-ASCAT satellite datasets are 238 

indicated in the following as TMPA, CMOR and SM2RASCAT, respectively. By considering the 239 

spatial/temporal availability of both ground-based and satellite observations (see Table 1 for a 240 

summary), the analysis has been carried out to cover the maximum common observation period, i.e., 241 

from 2007 to 2016 at daily time scale (TMPA and CMOR are aggregated at daily scale), with three 242 

different areal masks cut: 1) at the original spatial coverage of each SRP, i.e., until 50°, 60° and 70° 243 

latitude for TMPA, CMOR and SM2RASCAT, respectively; 2) over the TMPA area (latitude <50°); 3) 244 

above TMPA area (latitude >50°). 245 

4. METHOD 246 

4.1 Hydrological model 247 

MISDc (“Modello Idrologico Semi-Distribuito in continuo” Brocca et al. 2011) is a two-layer 248 

continuous hydrological model characterized by a component simulating the temporal pattern of soil 249 
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moisture and a rainfall-runoff transformation component for simulating river discharge time series. 250 

By using daily rainfall and air temperature data, MISDc simulates the most important processes 251 

involved in the rainfall-runoff transformation (e.g., infiltration, evapotranspiration, saturation excess 252 

and percolation). The geomorphological Instantaneous Unit Hydrograph (IUH) is used to transfer 253 

surface and subsurface runoff to the outlet of the catchment. The model (downloadable at: 254 

http://hydrology.irpi.cnr.it/download-area/midsc-code/) uses 9 parameters calibrated by maximizing 255 

the Kling-Gupta efficiency index (KGE, Gupta et al., 2009; Kling et al., 2012, see paragraph 4.5 for 256 

more details) between observed and simulated river discharge.  257 

The successful results obtained through MISDc model for discharge simulation in many different 258 

basins (in Italy, see e.g., Brocca et al., 2011; 2013a, Massari et al. 2015; Masseroni et al. 2016; 259 

Cislaghi et al. 2019, and in Europe, see e.g., Brocca et al., 2013b; Massari et al. 2018; Camici et al., 260 

2018) and for different applications (e.g., climate change impact studies, see Camici et al., 2014) 261 

allow us to consider the model suitable for the purpose of this analysis. 262 

4.2 Experimental design 263 

The first step of the analysis is the quality assessment of the SRPs in terms of rainfall. For that, each 264 

SRP has been compared with the daily E-OBS data used as reference. Then, river discharge 265 

simulations have been obtained by running the lumped version of MISDc with E-OBS dataset (river 266 

discharge reference) and with each SRP as input. Specifically: 267 

1) MISDc model has been calibrated over the entire 2007-2016 period by using as input the mean 268 

areal E-OBS rainfall and air temperature data for each basin; these simulated discharge data, 269 

QE-OBS, has been used as benchmark to estimate the accuracy of the selected SRPs for river 270 

discharge simulation. 271 

2) MISDc has been run for each basin by using as input the mean areal SRPs and E-OBS air 272 

temperature data. In accordance with literature studies (e.g, Thiemig et al., 2013), in these 273 

runs the model parameters are calibrated separately for each SRP. The period 2007-2012 is 274 
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used for the parameter values calibration, whereas the remaining 2013-2016 period is used for 275 

the validation; QE-OBS is used as benchmark to calibrate the parameters of MISDc model. 276 

The use of QE-OBS as benchmark presents three advantages as it allows: 1) to consider a common and 277 

extended analysis period for all basins, 2) to consider a common benchmark in evaluating the SRP 278 

accuracy both in terms of rainfall and in terms of river discharge and, more important, 3) to neglect 279 

the uncertainty due to the hydrological model structure in the SRPs comparison. 280 

4.5 Performance scores 281 

The quality assessment of the different SRPs has been calculated by four continuous dimensionless 282 

metrics and three categorical scores. Among the continuous scores, the relative BIAS, rBIAS, the 283 

Pearson correlation coefficient, R, the relative root mean square error, RRMSE and the KGE, an index 284 

increasingly used in hydrology to measure the goodness-of-fit between simulated and observed data, 285 

have been computed between the daily E-OBS and the satellite rainfall data averaged over the area 286 

of each basin as follows:  287 
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 292 

where SRP and P୰ୣ୤ represent the SRPs and E-OBS rainfall time series; Cov and σ are the covariance 293 

and the standard deviation operator, respectively; n corresponds to the length of the time series. rBIAS 294 

ranges from –∞ to +∞; R values range from -1 to 1; RRMSE is bounded from 0 to +∞ while KGE 295 

varies between –∞ to 1. More rBIAs, R, RRMSE and KGE values goes toward 0, 1, 0, 1 respectively, 296 

higher is the agreement between E-OBS and SRPs. In particular, for KGE, values in the range -0.41 297 
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< KGE <= 1 indicate that satellite rainfall data outperform the mean of the E-OBS observations 298 

(Knoben et al., 2019). In addition, for each SRP and for different rainfall thresholds three categorical 299 

metrics are evaluated (Chen et al., 2012, Brocca et al., 2014): probability of detection (POD), false 300 

alarm ratio (FAR) and threat score (TS). POD reports on the capability of SRP to correctly detect 301 

rainfall events, FAR counts the fraction of rainfall events that are actually non-events and TS takes 302 

into account the correctly detected, missed rainfall events and false alarms. These categorical metrics 303 

range from 0 to 1: higher POD and TS along with lower FAR values indicate a better capability of 304 

SRPs to detect rainfall events. 305 

To evaluate the suitability of rainfall products for river discharge modelling, the KGE index between 306 

observed and simulated river discharge data has been computed. In particular, we selected only this 307 

score for three main reasons: 1) due to inherent limitations recognized for other indices (e.g., Nash-308 

Sutcliffe Efficiency index, Schaefli and Gupta 2007; Gupta et al., 2009), KGE is today the criterion 309 

most commonly recommended and applied to evaluate the performance of hydrological models and 310 

therefore its use allows meaningful comparisons with other studies; 2) the purpose of the analysis 311 

was to investigate the relationship between rainfall score and river discharge simulation, without 312 

specific focus on high and/or low flows. In this respect, it is known that KGE assigns a relatively 313 

more importance to discharge variability with respect to other scores (e.g., NSE or RMSE) generally 314 

found to be highly sensitive to high discharge values (Gupta et al., 2009); 3) for a practical reason, 315 

i.e., it was a decision of the author to limit the number of investigated performance scores to 316 

communicate in the most efficient way the results of the work.  317 

To distinguish between the KGE of rainfall and discharge, hereinafter, the symbols KGE-P and KGE-318 

Q will be used. Specifically, KGE-Q index has been evaluated both between the observed and 319 

simulated QE-OBS discharge and between QE-OBS and the simulated discharge data obtained by using 320 

SRPs as input, in order to establish the hydrological performances of E-OBS and SRPs, respectively. 321 

River discharge simulations characterized by KGE-Q values in the range -0.41 and 1 can be assumed 322 



14 
 

as reliable; KGE-Q values greater than 0.5 have been considered good with respect to their ability to 323 

reproduce benchmark river discharge time series (Thiemig et al., 2013). 324 

5. RESULTS 325 

The findings of this work for the three SRPs are presented below. The SRP quality has been evaluated 326 

first in terms of rainfall and then in terms of river discharge. The propagation of the rainfall error into 327 

the river discharge simulation has been finally investigated.  328 

5.1 Rainfall assessment 329 

The performances of the three SRPs against the E-OBS datasets are illustrated in Figure 2. For sake 330 

of brevity, the SRPs performances are presented only for the validation period (2013-2016), but 331 

similar findings are obtained in the calibration period (see Table 2). Specifically, rBIAS, R, RRMSE 332 

and KGE-P values are illustrated in the rows of Figure 2 for each study basin, for the three products 333 

TMPA, CMOR and SM2RASCAT in each column. At the top of each plot, the median score value is 334 

reported by considering the original spatial coverage of each SRP whereas in Table 2 the 335 

performances of the basins whose outlet section is located below/above 50° latitude, i.e. over/above 336 

the TMPA coverage, are listed. Already at first glance of Figure 2, it is possible to note that the three 337 

products show similar patterns in terms of R (Figure 2d-f) and RRMSE (Figure 2g-i) whereas the 338 

same does not hold for the rBIAS (Figure 2a-c) and KGE-P (Figure 2l-n). The rBIAS is small for 339 

TMPA and SM2RASCAT, with median values equal to -0.127 and 0.047, respectively, whereas CMOR 340 

show a clear underestimation of the daily rainfall data over the entire European area. Higher/lower 341 

R/RRMSE values are obtained in Central Europe; the opposite is observed in the Mediterranean area. 342 

In terms of KGE-P, TMPA presents higher values with respect to the other two products above all 343 

over the basins whose outlet section is located between 40° and 50° latitude. Median KGE-P value 344 

for TMPA is equal to 0.516; this value reduces of about 24% and 42% for SM2RASCAT and CMOR, 345 

respectively. The median rBIAS, R, RRMSE and KGE-P rainfall score values for the three products 346 

remain approximately the same if the analysis is focused over the TMPA area (see Table 2).  347 



15 
 

Outside the TMPA area and until 60° latitude, CMOR and SM2RASCAT show quite similar 348 

performances in terms of R and RRMSE, while SM2RASCAT outperforms CMOR in terms of rBIAS 349 

and KGE-P. Due to soil freezing and snow presence, the performances of SM2RASCAT decrease in 350 

terms of R, rBIAS and KGE-P moving toward northern Europe (Brocca et al., 2019). 351 

Results in terms of categorical metrics are summarized in Figure S1, where POD (first row), FAR 352 

(second row) and TS (third row) have been computed for the validation period for three rainfall 353 

thresholds (0.5, 5, and 10 mm/day) in order to assess the capability of SRPs to detect low to high 354 

rainfall events. The numbers at the top of each plot represent the median score value obtained by 355 

considering the original spatial coverage of each product. For all the three metrics and for moderate 356 

to heavy rainfall events, TMPA presents the highest values of POD (median values equal to 357 

0.500/0.415 for moderate/high events) and TS (median values equal to 0.368/0.288 for moderate/high 358 

events), outperforming the other two products. Conversely, SM2RASCAT shows a higher ability to 359 

detect small and moderate rainfall events with performances in terms of TS slightly lower than the 360 

ones of TMPA product. 361 

5.2 Discharge assessment 362 

Prior to assess the hydrological performances of the satellite rainfall data, MISDc model has been run 363 

with the E-OBS rainfall data as input to obtain QE-OBS, the benchmark river discharge data. The results 364 

of this calibration, carried out for the entire observation period (2007-2016), are good as illustrated 365 

in Figure 3a: for all the analysed basins the KGE-Q values are greater than -0.41, i.e., the model 366 

improves upon the mean flow benchmark and the median KGE-Q value obtained for the European 367 

area is equal to 0.768 (0.770 over the TMPA area). In addition, to explore the impact of the density 368 

of E-OBS rainfall on smaller basins (area<1’000 km2), the relationship between basin area and KGE-369 

Q has been investigated (not shown). As no relationship was found, and considering that the purpose 370 

of the study is to investigate the performances between rainfall and discharge time series (without 371 

specific focus on high and/or low flows), the limitations about the E-OBS station density can be 372 

assumed to have a negligible impact on the analysis results and QE-OBS data can be assumed as a good 373 
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benchmark for the successive analysis. Hereinafter, the hydrological performance has been assessed 374 

in terms of KGE-Q with respect to QE-OBS, with values higher than 0.5 considered as good. 375 

Depending on the product, SRPs show different hydrological performances as illustrated in Figure 376 

3b-d for the validation period and in Table 3 for both the calibration and the validation periods. At 377 

the top of each plot in Figure 3, the median KGE-Q value, averaged over the spatial coverage of each 378 

product, is reported whereas in Table 3 the performances of the basins whose outlet section is located 379 

below/above 50° latitude are listed. In addition, in Table 3 the percentage of basins showing KGE-Q 380 

values higher than 0.5 is computed. 381 

By averaging the performances over the spatial coverage of each product, median KGE-Q values 382 

range from 0.279 to 0.722 for CMOR and SM2RASCAT, respectively, in the calibration period and 383 

from -0.090 to 0.569 for the same products in the validation period (Figure 3b-d). The percentage of 384 

the basins showing KGE-Q values higher than 0.5, is 18% and 88% for CMOR and SM2RASCAT, 385 

respectively, whereas the same percentage drop in the validation period up to about 2% and 62% for 386 

the same products. TMPA is in the middle between the two products in terms of performances; the 387 

percentage of basins with good hydrological performances is similar to the one of SM2RASCAT.  388 

Similar findings hold if the comparison is carried out over the TMPA area (see Table 3): poor results 389 

are obtained by CMOR during the validation period (median KGE-Q<0; only 2.6% show KGE-Q 390 

higher than 0.5), whereas SM2RASCAT outperforms TMPA in both periods. In particular, during the 391 

validation period a median KGE-Q value equal to 0.580 is obtained for SM2RASCAT against a value 392 

equal to 0.428 for TMPA. Moreover, by comparing SM2RASCAT against TMPA in terms of basins 393 

with KGE-Q greater than 0.5, the ratio is nearly two to one, i.e., 64% of basins show good 394 

hydrological performances when forced with SM2RASCAT with respect to 39% for TMPA. The lowest 395 

performances for both products are obtained over southern Spain and northern Italy. Conversely, the 396 

basins located over northern Spain and central Europe show a better agreement with respect to QE-OBS 397 

benchmark data, above all when SM2RASCAT is used as rainfall input. The performances of 398 

SM2RASCAT remain good also when the analysis is extended above the TMPA area, with a median 399 
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KGE-Q higher than 0.5 (Table 3). This is the first notable result of the paper, i.e., among the SRPs 400 

available in near real time, there are some products that can be profitably used to force a hydrological 401 

model for obtaining reliable river discharge data over Europe. However, some questions raised in the 402 

introduction are still unsolved, i.e., if there is any link between rainfall and river discharge 403 

performances and if it is possible to find a rainfall score to select a priori the best SRP to obtain 404 

reliable river discharge simulations. The answer to these questions is given in the next paragraph 405 

where the rainfall performances are compared with the river discharge performances. 406 

5.3 Rainfall vs river discharge performances: is there any link between them? 407 

By comparing the patterns of Figure 2 against the patterns of Figure 3b-d, some insights about the 408 

link between the rainfall accuracy and the hydrological performance can be noted: the basins with the 409 

highest RRMSE (e.g., in the Mediterranean area and in particular in southern Spain and northern 410 

Italy) correspond to basins with poorer hydrological performances (KGE-Q<0.4). In addition, as 411 

occurs for the CMOR product, high rBIAS values (both negative or positive) produce negative KGE-412 

Q values. Interestingly, R and KGE-P rainfall scores seem to be weakly linked to the hydrological 413 

performances. Finally, no clear link can be highlighted between KGE-Q and the rainfall categorical 414 

scores as for instance, the low/high values of SM2RASCAT in terms of TS/ FAR do not explain the 415 

higher performances of this product in terms of discharge (see Figure 3 against Figure S1).  416 

To better investigate these relationships, the scatterplots of Figure 4 and Figure S2 (in the 417 

supplementary material) have been constructed for the continuous and categorical scores, 418 

respectively. For each basin and for each SRP, the rainfall scores (x-axis) are plotted against the KGE-419 

Q values (y-axis), resulting in a large ensemble of points spread out in the full range of 420 

rainfall/discharge scores without any apparent relationship. The unique remark from Figure 4 is that 421 

CMOR shows higher absolute values of rBIAS and lower KGE-P values with respect to the other two 422 

products; rBIAS of SM2RASCAT varies near zero and, in terms of RRMSE, SM2RASCAT is 423 

characterized by a reduced range of variability, (i.e., most of the SM2RASCAT data are characterized 424 

by RRMSE ranging from 1.5 and 2.5) with respect to the other two products. By looking at the 425 
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categorical scores (Figure S2), the three products show a similar variability range for moderate to 426 

high rainfall events whereas some differences are evident for low rainfall events, that however should 427 

have a minor impact on river discharge modelling. In particular, SM2RASCAT tend to have higher POD 428 

values for rainfall threshold equal to 0.5, due to the tendency of the product to overestimate the rainfall 429 

occurrence (Brocca et al., 2019).  430 

To extract useful information from Figure 4 and Figure S2, the scores obtained separately for each 431 

product have been grouped and the KGE-Q data points have been binned into uniform ranges (with 432 

step 0.1) of rainfall scores. The median KGE-Q, and the 25th and 75th percentiles of KGE-Q values, 433 

have been computed for each rainfall score within each bin. The white dots in Figure 4 and Figure S2 434 

represent, for each bin of each rainfall score, the median KGE-Q value, the two ends of the black 435 

lines in the same figure represent the 25th and 75th percentile of the KGE-Q data points. By looking 436 

at the boxplots so obtained, some insights already anticipated by inspecting Figure 2 versus Figure 3 437 

for the continuous scores can be confirmed: SRP hydrological performances decrease by increasing 438 

the absolute value of rBIAS, |rBIAS|, and the RRMSE values (higher |rBIAS| and RRMSE values 439 

indicate lower rainfall performances, Figure 4a and c) whereas KGE-Q increases with R and KGE-P 440 

(higher R and KGE-P values indicate higher rainfall performances, Figure 4b and d). If these 441 

relationships have reflected the expectations, the same did not occur for all the categorical scores and 442 

the rainfall events here investigated. Indeed, it has been found that higher (= better) POD and TS 443 

scores lead to better performance whereas the relationships between KGE-Q and the FAR for small 444 

and moderate rainfall are different (i. e, inverse) from what can be expected. This could be due to the 445 

lowest impact of small/moderate rainfall events on flood generation. Then, focusing the attention only 446 

on high rainfall events, seems that KGE-Q slightly increase with POD whereas a stronger link can be 447 

noted between KGE-Q and TS/FAR.  448 

The findings obtained so far become even more interesting if the following question is posed: for 449 

which values of rainfall scores is it possible to obtain good results in terms of river discharge 450 

simulation (i.e., KGE-Q>0.5)? The straight grey line in Figure 4 (and Figure S2), drawn for a 451 
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threshold value of KGE-Q equal to 0.5, helps us to answer the question suggesting that good 452 

hydrological performances can be obtained for SRPs characterized by rBIAS values close to 0 and 453 

small RRMSE scores, i. e. for good rainfall data. Conversely, R and KGE-P seem to have a small 454 

impact on KGE-Q as for a large range of R and KGE-P values (from 0.5 to 0.8 and from 0.4 to 0.8, 455 

respectively), it is possible to obtain high KGE-Q values. Similar conclusions hold for the categorical 456 

scores evaluated for heavy rainfall events: it can be noted that the higher capability of SRPs to detect 457 

rainfall events does not affect the hydrological performances, i.e., it is possible to obtain KGE-Q 458 

higher than 0.5 for a large range of POD, FAR and TS values. Finally, a last point has to be addressed 459 

to fulfil the purpose of the manuscript, i.e., it has to be investigated how small/large should be the 460 

rainfall scores to obtain good hydrological performances, i.e., KGE-Q greater than 0.5. In particular, 461 

should be defined a range of variability for rBIAS and RRMSE that seem to have a stronger link with 462 

the hydrological performances. 463 

The boxplot of Figure 5a shows the hydrological performances that have been obtained during the 464 

validation period by the three SRPs without any constraint on the rainfall scores. In order to consider 465 

always the same number of basins for all the products, the area of analysis is cut over the TMPA area 466 

and a median KGE-Q value equal to 0.342 is obtained for the 889 basins. According to Table 3, nearly 467 

35% of the basins show KGE-Q greater than 0.5. If the absolute value of rBIAS (i.e., |rBIAS|) is 468 

constrained to values lower than 0.2 (Figure 5b), the median KGE-Q value over the 400 basins that 469 

fulfils the criteria is equal to 0.525. As shown in Figure 5c, a constraint on RRSME lower than 2 is 470 

not enough to ensure good hydrological performances (median KGE-Q lower than 0.5) whereas if a 471 

combination of the two rainfall scores is considered, the threshold on KGE-Q>0.5 is exceeded by 472 

nearly 75% of the basins fulfilling the criteria (see first boxplot of Figure 5d). In other words, this 473 

means that nearly less than 25% of the basins fulfilling the criteria show low performance (first 474 

boxplot of Figure 5d). Alternatively, less than 25% of basins not fulfilling the rainfall constraints 475 

show good hydrological performances (see second boxplot of Figure 5d).  476 
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For the sake of completeness, a figure similar to Figure 5 has been added in the Supplementary 477 

material (Figure S3) for the other rainfall scores (R, KGE-P, POD, FAR and TS and relative 478 

combinations), but no one of the shown rainfall constraint can be considered satisfactory for the 479 

purpose of the analysis. Indeed, no one of the rainfall constraint in Figure S3 allows a clear separation 480 

between basins fulfilling/not fulfilling the criteria with a corresponding increase of KGE-Q. 481 

6. DISCUSSION 482 

The findings of Figure 4 and Figure 5 draw some interesting conclusions about the main research 483 

question of the paper, i.e., for rainfall performance score(s) can be used to select the best performing 484 

rainfall product for river discharge simulation. In particular, it has been noted that R and KGE-P 485 

rainfall scores have a small impact on KGE-Q as for R ranging from 0.5 to 0.8 and for KGE-P ranging 486 

from 0.4 to 0.8, it is possible to obtain high (>0.5) KGE-Q values. As the meaningful range of R 487 

(KGE-P) is between 0 and 1 (-0.41 and 1), we can conclude that R and KGE-P are not suitable scores 488 

to define a criterion able to discern between good/bad hydrological simulations. This result could be 489 

linked to the hydrological model structure and to the parameters calibrated into the model. Indeed, it 490 

has been largely demonstrated in the scientific literature (e.g., Zeng et al., 2018) that the impact of 491 

imperfect precipitation estimates on model efficiency can be reduced to some extent through the 492 

adjustment of model parameters. In this case, it is clear that the hydrological model calibration step 493 

is able to correct the rainfall time shift, allowing to obtain good hydrological performances (KGE-Q) 494 

for a large range of R values. A similar consideration holds for KGE-P, largely influenced by the 495 

correlation coefficient. Conversely, rBIAS along with RRMSE seem to be the most appropriate error 496 

metrics to be used in conjunction to select the best performing SRP for river discharge simulation. 497 

With respect to bias, the finding is in line with literature studies. For instance, Maggioni et al., (2013) 498 

showed that bias can double from rainfall to runoff consistently from small to large basins. 499 

Conversely, no suggestions can be found with respect to RRMSE or R metrics to characterize the 500 

SRPs potentiality in terms of river discharge simulation. In the scientific literature, we have found 501 
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thresholds on metric scores to express the quality of SRPs in terms of rainfall. In particular, some 502 

authors considered an R value equal or greater than 0.7 (Condom et al., 2011), a normalized RMSE 503 

values less than or equal to 0.5 (Adeyewa and Nakamura, 2003, Condom et al., 2011; Satgé et al., 504 

2016; Shrestha et al., 2017) and bias ranging from − 10% ≤ bias ≤ 10% (Brown, 2006, Yang and Luo, 505 

2014) to be associated with good satellite rainfall performances, but without a reference to justify 506 

these numbers. 507 

Specifically, in this study we have found that constraining |rBIAS| to values lower than 0.2 and 508 

RRMSE to values lower than 2, good hydrological performances are assured for nearly 75% of the 509 

basins fulfilling the criteria. “The remaining percentage of basins for which the rainfall/discharge 510 

performance relationship is not satisfied highlights that it is not straightforward to find such kind of 511 

relationships as errors in rainfall and river discharge data used as benchmark as well as the 512 

hydrological model recalibration could influence the analysis”. These findings corroborate those 513 

obtained by Qi et al. (2016), stating that a good river discharge simulation is a result from a good 514 

combination between a rainfall product and an hydrological model, and the selection of the most 515 

accurate rainfall product alone does not guarantee the most accurate hydrological performances.  516 

7. CONCLUSIONS 517 

This study represents the most comprehensive European-scale evaluation to date of satellite rainfall 518 

products (SRPs). Three different near real time SRPs are used to force a lumped hydrological model 519 

over 1318 basins throughout Europe. The results can be summarized as follows: 520 

1. In terms of rainfall accuracy, the three SRPs show similar patterns in terms of R and RRMSE 521 

whereas the same does not hold for the rBIAS. For the three products, higher/lower 522 

R/RRMSE values are obtained in Central Europe; the opposite, is observed in the 523 

Mediterranean area. The rBIAS is low for TMPA and SM2RASCAT, whereas CMOR shows a 524 

clear underestimation of the daily rainfall data over the entire European area.  525 
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2. Among the SRPs available in near real time, there are some SRPs that can be reasonably used 526 

to force a hydrological model in order to obtain reliable river discharge simulations over 527 

Europe. In particular, SM2RASCAT is the best performing product for river discharge 528 

simulation across Europe (even at high latitudes). 529 

3. There is a link between rainfall accuracy and river discharge performance. In particular, by 530 

constraining |rBIAS| to values lower than 0.2 and RRMSE to values lower than 2, good 531 

hydrological performances are assured for almost 75% of the basins fulfilling these criteria. 532 

 533 

Overall, we believe the results obtained from this study provide very useful information about the 534 

application of SRPs to simulate river discharge at basin scale. In particular, for the first time, this 535 

work addresses the topic of providing quantitative guidelines in the use of SRPs for near real time 536 

hydrological applications. 537 

Nevertheless, some limitations can be recognized in the analysis. One of the main limitations lies in 538 

the use of only one hydrological model for river discharge simulation. In this respect, further analysis 539 

with multiple hydrological models will be carried out to better investigate the link between rainfall, 540 

hydrological model and discharge performances. In addition, in future researches the ranges of 541 

rainfall performance scores defined here will be checked also with the use of different satellite rainfall 542 

products (e.g., the Global Precipitation Measurement, GPM, Huffmann et al., 2018) and in different 543 

regions worldwide. In particular, the extension of the analysis over different regions in the world 544 

could allow to explore the connection between rainfall accuracy and river discharge performances as 545 

a function of additional criteria such as climate type, soil characteristics and terrain features 546 

(topography). 547 

Another limitation of the study relies in having considered only one performance score for the river 548 

discharge. Indeed, as the main purpose of this study has been to reproduce the entire river discharge 549 

time series, any special attention to high/low flows was not paid. A more comprehensive study should 550 

consider a larger set of river discharge metrics to better address the SRP selection. Finally, the results 551 
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of this study are likely sensitive to the quality of data taken as “reference”, i.e., the E-OBS datasets, 552 

used as benchmark to evaluate the performances of SRPs both in terms of rainfall and, through the 553 

hydrological model, in terms streamflow.  554 

Despite the aforementioned limitation, this study contributes to a better understanding of the 555 

propagation of the satellite rainfall error to streamflow simulations. This could be very helpful for 556 

data users facing the selection of the best satellite rainfall for hydrological applications.  557 
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 776 
Table 1. Main characteristics of the datasets used in this study.  777 

# 
Satellite-only rainfall 

datasets 
Spatial/ temporal 

resolution 
Spatial coverage Time period 

1 TMPA RT (3B42RT V7) 0.25° / 3-hour 
±50° north-south 

latitude band 
2000 – 2018 

2 CMORPH 0.25° /3-hour 
±60° north-south 

latitude band 
1998 – 2018 

3 SM2RASCAT 0.25° / 24-hour global, over land 2007 – 2018 

# 
Large scale gauge-based 

rainfall dataset 
Spatial/ temporal 

resolution 
Coverage Time period 

1 E-OBS 0.22° / 24-hour Europe 1950 – 2018 

# 
Gauge based discharge 

dataset 
Spatial/ temporal 

resolution 
Coverage Time period 

1  European daily dataset 1318 sites/daily Europe 1900 - 2016 
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Table 2. Performance scores for rainfall (in terms of rBIAS, R RRMSE and KGE-P) time series 780 

computed during the calibration (in italic) and the validation periods. Rainfall performances are 781 

evaluated with respect to E-OBS rainfall data and distinguished between basins whose outlet section 782 
is below or above 50° latitude. It has to be noted that the more rBIAs, R, RRMSE and KGE-P values 783 

goes toward 0, 1, 0, 1 respectively, the higher is the agreement between E-OBS and SRPs. 784 

 Rainfall performances 

       Score      
 

 
Product 

rBIAS R RRMSE KGE-P rBIAS R RRMSE KGE-P 

TMPA area 
(latitude <50°) 

above TMPA area 
(latitude >=50°) 

TMPA 
-0.127 

(-0.095) 
0.626 

(0.619) 
1.968 

(1.978) 
0.516 

(0.533) 
--- --- --- --- 

CMOR 
-0.462 

(-0.406) 
0.551 

(0.576) 
1.969 

(1.974) 
0.299 

(0.375) 
-0.635 

(-0.618) 
0.544 

(0.562) 
1.607 

(1.621) 
0.114 

(0.147) 

SM2RASCAT 
0.081 

(0.084) 
0.609 

(0.595) 
1.781 

(1.805) 
0.393 

(0.436) 
-0.086 

(-0.080) 
0.572 

(0.548) 
1.477 

(1.514) 
0.331 

(0.372) 
 785 

  786 
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Table 3. Median KGE-Q index computed by comparing QE-OBS simulated data against simulated 787 

discharge data obtained by forcing MISDc hydrological model with satellite (TMPA, CMOR, 788 

SM2RASCAT) rainfall data. Percentage of the basins showing KGE-Q values higher than 0.5 is also 789 
listed. Performances and percentages are averaged over different spatial windows: the original spatial 790 

coverage of the product and over/above the TMPA area (latitude ±50°). 791 

 KGE-Q 

 
Spatial coverage of the 

product 
TMPA area  

(latitude <50°) 
above TMPA area  
(latitude >=50°) 

     Score 
 
 

Product 

cal val cal val cal val 

TMPA 0.692 0.428 0.692 0.428 --- --- 

CMOR 0.279 -0.090 0.324 -0.014 0.201  -0.248 

SM2RASCAT 0.722 0.569 0.751 0.580 0.670 0.539 

 % of basins with KGE>0.5 

TMPA 87.9 38.6 87.9 38.6 --- --- 

CMOR 17.5 2.40 21.6 2.60 4.90 1.80 

SM2RASCAT 87.6 61.7 92.6 64.0 77.2 56.9 

Average 64.4 34.2 67.4 35.1 41.1 29.4 
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 794 

 795 

Figure 1. Location of study basins and length of discharge observation period after 2007 (a); number 796 
of basins (b) and median basin area (c) clustered according to the latitude coordinate of the outlet 797 
section of the basins. 798 
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Figure 2. Performances of satellite rainfall during the validation period in terms of rBIAS (a, b, c), R 801 
(d, e, f), RRMSE (g, h, i), KGE-P (l, m, n) over the study basins, for the three products TMPA (first 802 
column), CMOR (second column) and SM2RASCAT (third column). Numbers in each plot represent 803 
the median score value obtained by considering the original spatial coverage of each product. 804 
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 806 

 807 

Figure 3. Maps of KGE-Q index obtained by considering a) E-OBS, b)TMPA, c) CMOR and d) 808 
SM2RASCAT rainfall datasets. For E-OBS, KGE-Q index has obtained by comparing observed against 809 
modelled discharge data over the period 2007-2016. Modelled discharge data have been obtained by 810 
using E-OBS rainfall dataset as input to MISDc model. For the satellite data, KGE-Q refer to the 811 
validation period (2013-2016). In a), b), c) and d) plots, the median KGE value averaged over the 812 
original product coverage is reported.  813 
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 815 

 816 

Figure 4. Performances of discharge in terms of KGE (KGE-Q) against a) relative rainfall bias, 817 
rBIAS; b) rainfall correlation, R; c) relative root mean square error of rainfall, RRMSE, d) KGE-P. 818 
The scores are evaluated for the validation period (2013-2016) for all the 1318 basins.  819 
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 821 

 822 
  823 
 824 

Figure 5. Hydrological performances in terms of KGE values obtained during the validation period 825 
by the three satellite rainfall products for all the basins whose outlet section is located over the TMPA 826 
area (889), a) without any constrain on the rainfall scores; b) constraining the module of rBIAS to 827 
values lower than 0.2; c) constraining RRMSE to values lower than 2; d) constraining the module of 828 
rBIAS to values lower than 0.2 and RRMSE to values lower than 2.  829 
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