
Referee 1 

General comments 

The paper addresses the relevant scientific question of what are the most important metrics to assess 

the goodness of a SRPs product for hydrological applications. The question as well as the motivation 

of this work are stated clearly in the context of a comprehensive literature review. The methodology 

is appropriate to answer the question and the extensive analysis over 1318 basins across Europe 

defines the main novelty of this paper. Substantial conclusions about the most relevant indexes for 

assessing the quality of SRPs product for hydrological applications are reached, so overall this is good 

contribution for the scientific community. However, there are a number of issues that the authors need 

to address before the paper is accepted for publication. 

R: We thank the reviewer for his/her supportive review. In the revised version of the manuscript the 

following changes have been implemented: 

 the title has been changed in “Which rainfall score is more informative about the performance 

in river discharge simulation? A comprehensive assessment on 1318 basins over Europe”.  

 Any reference to flood has been removed and modified with river discharge to highlight that 

the purpose of the study is to investigate the performances between rainfall and river discharge 

time series (without specific focus on high and/or low flows); 

 a discussion about the quality of the E-OBS rainfall data and the impact of its density network 

on river discharge simulation has been added;  

 to avoid misunderstanding between KGE of rainfall and discharge throughout the manuscript 

(and in the figures) KGE has been replaced by KGE-P and KGE-Q, to indicate the KGE index 

referred to precipitation and the one referred to river discharge respectively; 

 more information about why only the KGE-Q index has been selected for the analysis has 

been added to the revised manuscript; 

 Tables and figures have been modified according to the reviewer’s suggestions. 

 

Specific comments 

1. Line 158-169: the E-OBS dataset is built on a station network with an average station density of 1 

in 4000 km2 and the basin areas range from 200 to 136’000 km2. Is the E-OBS dataset a reliable 

benchmark for the smaller basins? Maybe it is worth to discuss this in your discussion section. 

R: In the submitted version of the paper, an error occurred in the definition of station used within the 

E-OBS datasets. Indeed, 2316 stations (i.e., equivalent on average to a density of 1 station every 4000 

km2) is referred to the first versions of E-OBS whereas in the version 17 (used in the manuscript) the 

number of stations increased up to 9618 (equivalent on average to a density of 1 station every 1000 

km2). However, as correctly raised by the reviewer even the E-OBS density network referred to 

version 17 could be too low to correctly represent the rainfall spatial variability over small basins. 

This, in turn could affect the river discharge simulation. To consider this aspect, it has been verified 

that 1) for all the analysed basins the KGE-Q values obtained by the calibration of the model by using 

E-OBS dataset as input were greater than -0.41, i.e., the model improves upon the mean flow 

benchmark 2) no relationship between basin area and KGE-Q exists (see Figure 1, below). As these 

conditions were satisfied and as the purpose of the study was to investigate the performances between 



rainfall and discharge time series (without specific focus on high and/or low flows), the limitations 

about the E-OBS station density can be assumed to have a negligible impact for the analysis purpose.  

 

Figure 1. Relationship between basin area and KGE-Q for the analysed catchments. 

Accordingly, two sentences have been added in the revised version of the manuscript (see Lines 361-

371, section 5.2):  

“The results of this calibration, carried out for the entire observation period (2007-2016), are good 

as illustrated in Figure 3a: for all the analysed basins the KGE-Q values are greater than -0.41, i.e., 

the model improves upon the mean flow benchmark and the median KGE-Q value obtained for the 

European area is equal to 0.768 (0.770 over the TMPA area). In addition, to explore the impact of 

the density of E-OBS rainfall on smaller basins (area<1’000 km2), the relationship between basin 

area and KGE-Q has been investigated (not shown). As no relationship was found, and considering 

that the purpose of the study is to investigate the performances between rainfall and discharge time 

series (without specific focus on high and/or low flows), the limitations about the E-OBS station 

density can be assumed to have a negligible impact on the analysis results and QE-OBS data can be 

assumed as a good benchmark for the successive analysis.” 

2. Line 331: for the discharge assessment you used only one performance score, the KGE. Can you 

provide more information about why you selected this score? 

R: We selected only the KGE score to evaluate the hydrological model performances for three main 

reasons:  

1) due to inherent limitations recognized for NSE (e.g., Schaefli and Gupta 2007; Gupta et al., 2009), 

KGE is today the criterion most commonly recommended and applied to evaluate the performance 

of hydrological models and therefore its use allows meaningful comparisons with other studies.  

2) the purpose of the of analysis was to investigate the relationship between rainfall score and 

discharge simulation, without specific focus on high and/or low flows. In this respect, it is known that 

KGE assign a relatively more importance to discharge variability with respect to other scores (e.g., 

NSE or RMSE) generally found to be highly sensitive to high discharge values (Gupta et al., 2009); 
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3) for a practical reason, i.e., it was a decision of the author to limit the number of investigated 

performance scores to communicate in the most efficient way the results of the work. However, as 

stated in the conclusion section, in the future a more comprehensive study could consider a larger set 

of discharge scores metrics to better address the SRP selection. 

The reasons of why we selected the KGE score have been added in the revised manuscript in the 

section “performance scores” as in the following (see Lines 303-314):  

“To evaluate the suitability of rainfall products for river discharge modelling, the KGE index between 

observed and simulated river discharge data has been computed. In particular, we selected only this 

score for three main reasons: 1) due to inherent limitations recognized for other indices (e.g., Nash-

Sutcliffe Efficiency index, Schaefli and Gupta 2007; Gupta et al., 2009), KGE is today the criterion 

most commonly recommended and applied to evaluate the performance of hydrological models and 

therefore its use allows meaningful comparisons with other studies; 2) the purpose of the analysis 

was to investigate the relationship between rainfall score and river discharge simulation, without 

specific focus on high and/or low flows. In this respect, it is known that KGE assigns a relatively 

more importance to discharge variability with respect to other scores (e.g., NSE or RMSE) generally 

found to be highly sensitive to high discharge values (Gupta et al., 2009); 3) for a practical reason, 

i.e., it was a decision of the author to limit the number of investigated performance scores to 

communicate in the most efficient way the results of the work.” 

3. Line 397: Can you explain better why KGE of rainfall is not relevant? From figure 4 the increasing 

trends of KGE-Q with rBIAS and KGE of rainfall look quite similar. 

R: The authors verified the increasing trend both for KGE-Q vs rBIAS and KGE-Q vs KGE-P. 

Although a difference in the magnitude and correlation of the relationship between KGE-Q vs rBIAS 

and KGE-Q vs KGE-P can be noted, i.e., the slope coefficient is equal to 1.07 (R2= 0.98 ) and 0.80 

(R2= 0.81) for KGE-Q vs rBIAS and for KGE-Q vs KGE-P, respectively, the sentence in the revised 

manuscript has been smoothed as (see Lines 435-438): 

“SRP hydrological performances decrease by increasing the absolute value of rBIAS, |rBIAS|, and 

the RRMSE values (higher |rBIAS| and RRMSE values indicate lower rainfall performances, Figure 

4a and c) whereas KGE-Q increases with R and KGE-P (higher R and KGE-P values indicate higher 

rainfall performances, Figure 4b and d).” 

4. Line 411: How do assess that R and KGE ranges are large?  

R: In Line 411 it has been observed that “R and KGE-P seem to have a small impact on KGE-Q as 

for a large range of R and KGE-P values (from 0.5 to 0.8 and from 0.4 to 0.8, respectively), it is 

possible to obtain high KGE-Q values.” The assessment about the “large ranges” for R and KGE-P 

values has been carried out by considering that, even if the two scores potentially range from -1 to 1 

and from –∞ to 1, respectively, meaningful range of R (KGE-P) is between 0 and 1 (-0.41 and 1). 

Therefore, a range of 0.3 and 0.4 can be considered “large” with respect to the variability range for 

which the rainfall scores suggest reliable rainfall data. 

To better explain this aspect in the revised manuscript a sentence has been added in the discussion 

section as follows (see Lines 482-486): 

“In particular, it has been noted that R and KGE-P rainfall scores have a small impact on KGE-Q 

as for R ranging from 0.5 to 0.8 and for KGE-P ranging from 0.4 to 0.8, it is possible to obtain high 

(>0.5) KGE-Q values. As the meaningful range of R (KGE-P) is between 0 and 1 (-0.41 and 1), we 



can conclude that R and KGE-P are not suitable scores to define a criterion able to discern between 

good/bad hydrological simulations.” 

Technical corrections 

1. Line 124: State all the questions here. I can see that you have more questions later (e.g. lines 416, 

417, 418) 

R: According to the reviewer suggestion, all the questions have been moved at the end of the 

introduction (see Lines 123-128). 

2. Line 167: add spatial resolution of the product in the text. 

R: The resolution of the E-OBS dataset has been added to the revised manuscript (see Line 170).  

3. Line 215: it is a bit confusing when you say below TMPA area because I guess you mean the 

TMPA area. Change accordingly also in the other paragraphs and tables. 

R: The reviewer is right. With “below TMPA area” the authors were referring to the TMPA area. The 

sentence has been modified with “TMPA area” throughout the manuscript.  

4. Line 262-263: swap the two lines because in the plots you present first rBIAS 

R: According to the review suggestion, the two lines have been swapped in the new version of the 

manuscript.  

5. Line 262: remove “x” 

R: Accordingly, the “x” has been removed in the formula.  

6. Line 263: I think the numerator shouldn’t be squared 

R: The reviewer is right; the numerator shouldn’t be squared. In the revised version of the manuscript 

the rBIAS formula has been modified, accordingly.  

7. Line 265: in the second bracket under the square root I think there is a mistake (see Gupta et al., 

2009). The ratio in the bracket should be just between standard deviation of the SRP and of the E-

OBS. 

R: The reviewer is right. The KGE formula has been modified in the revised version of the 

manuscript.  

8. Line 300-Figure 2: you are talking about “patterns” so I assume you are referring to Figure 2, but 

then the values at line 302 are the ones reported in Table 3, so for the TMPA area. It is a bit 

complicated to follow, maybe you can just condense the most relevant information in figure 2 and 

put table 3 in supplementary material, since it doesn’t provide much more information. 

R: The reviewer is right; this part is difficult to follow. Therefore, in the revised version of the 

manuscript it has been modified as (see Lines 348-358): “. Already at first glance of Figure 2, it is 

possible to note that the three products show similar patterns in terms of R (Figure 2d-f) and RRMSE 

(Figure 2g-i) whereas the same does not hold for the rBIAS (Figure 2a-c) and KGE-P (Figure 2l-n). 

The rBIAS is small for TMPA and SM2RASCAT, with median values equal to -0.127 and 0.047, 

respectively, whereas CMOR show a clear underestimation of the daily rainfall data over the entire 

European area. Higher/lower R/RRMSE values are obtained in Central Europe; the opposite is 

observed in the Mediterranean area. In terms of KGE-P, TMPA presents higher values with respect 



to the other two products above all over the basins whose outlet section is located between 40° and 

50° latitude. Median KGE-P value for TMPA is equal to 0.516; this value reduces of about 24% and 

42% for SM2RASCAT and CMOR, respectively. The median rBIAS, R, RRMSE and KGE-P rainfall 

score values for the three products remain approximately the same if the analysis is focused over the 

TMPA area (see Table 2).” 

However, to be consistent with Table 3, Table 2 has not been removed from the main manuscript.  

9. Line 328: I would put Figure 1.b which belong to result section in a separate figure from Fig.1.a 

which belong to the dataset section 

R: Accordingly, Figure 1b has been merged in Figure 3. 

10. Line 342: the 39% is not for CMOR but for TMPA 

R: We thank the reviewer. The values in the manuscript have been modified in accordance with Table 

4 (see Lines 391-392). 

11. Line 379: higher absolute values of rBIAS 

R: We thank the reviewer. The sentence has been modified accordingly (see Line 419). 

12. Line 389: maybe name the KGE as KGE-Q otherwise it can be confused with KGE of rainfall 

R: We thank the reviewer for this suggestion. The KGE has been modified as KGE-P and KGE-Q to 

refer to KGE of rainfall and discharge, respectively. A sentence to clarify this distinction has been 

added to the revised manuscript (section 4.5, Lines 315-316): 

“To distinguish between the KGE of rainfall and discharge, hereinafter, the symbols KGE-P and 

KGE-Q will be used.” 

13. Figure 2-3: you can add the name of each SRP product at the top of each column.  

R: Figure 2 and 3 have been modified according to the reviewer suggestion.  

14. Line 734: there are no figures d), e), f). Change CMORPH to CMOR to be consistent. 

R: The caption of figure 3 has been modified accordingly.  
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Referee 2 

General comments  

The authors propose the evaluation of satellite rainfall products with different metrics and compare 

the results to the performance of a hydrological discharge model. The aim is to determine which 

rainfall accuracy metrics are suitable in describing satellite rainfall accuracy in regard to flood 

simulation performance. The authors compare the performance of a hydrological model forced with 

a benchmark rainfall dataset with the performance of the same model forced with three different 

satellite rainfall products. In my opinion the work described is novel and worthy of publication. The 

results presented support the conclusion reached. The findings of the study will be very relevant for 

future research. However, there are several minor issues that need clarification, which are outlined 

below. 

 

R: We thank the reviewer for his/her supportive review. In the revised version of the manuscript the 

following changes have been implemented: 

 the title has been changed in “Which rainfall score is more informative about the performance 

in river discharge simulation? A comprehensive assessment on 1318 basins over Europe”.  

 Any reference to flood has been removed and modified with river discharge to highlight that 

the purpose of the study is to investigate the performances between rainfall and river discharge 

time series (without specific focus on high and/or low flows); 

 a discussion about the quality of the E-OBS rainfall data and the impact of its density network 

on river discharge simulation has been added;  

 to avoid misunderstanding between KGE of rainfall and discharge throughout the manuscript 

(and in the figures) KGE has been replaced by KGE-P and KGE-Q, to indicate the KGE index 

referred to precipitation and the one referred to river discharge respectively; 

 more information about why only the KGE-Q index has been selected for the analysis has 

been added to the revised manuscript; 

 Tables and figures have been modified according to the reviewer’s suggestions. 

 

Specific comments 

1. The authors claim in the title, introduction and methodology that satellite rainfall performance is 

evaluate in regard to flood modelling. However, no high flow specific analyses are performed and in 

their conclusions the authors them-selves state that the focus was on the entire discharge time series. 

I therefore propose to remove any reference to flood simulation and instead refer to runoff or 

discharge simulation. 

 

R: According to the reviewer suggestion, the title and the manuscript have been changed to outline 

that the analysis is not specifically oriented to floods but it is related to the simulation of the entire 

river discharge time series (see Lines 308-310).  

 

2. The title can be perceived as misleading, since “rainfall metric” generally refers to rainfall 

statistics (e.g. spatial and temporal distribution, amount, seasonality, ... etc.). Please change the title 



(and mentions in the paper, for example L135) in a way that reflects to focus on satellite rainfall 

product performance metrics.  

R: We thank the reviewer for raising this issue. Accordingly, the terms “rainfall metric” have been 

changed as “rainfall performance score” throughout the revised manuscript. In particular, the title, by 

considering also the comment n#1 has been modified as: “Which rainfall score is more informative 

about the performance in river discharge simulation? A comprehensive assessment on 1318 basins 

over Europe”.  

 

3. Please discuss what effect the station density of the benchmark dataset (E-OBS) has on the 

results. Similarly, please mention if any quality checks have been performed on the discharge data.  

R: A discussion on the station density has been added to the revised manuscript (see Lines 173-182) 

to highlight that “E-OBS station density significantly varies across Europe (see Haylock et al., 2008; 

Cornes et al., 2018): for some regions, the station density is sufficiently low to expect a strong 

tendency for interpolated daily rainfall and temperature values to be underestimated with respect to 

the “true” area-average stations (Hofstra et al., 2009; Hofstra et al., 2010; Kyselý and Plavcová, 

2010). As the smoothing is greatest for higher percentiles, an underestimation of peak floods is 

expected if E-OBS rainfall data are used for rainfall-runoff modelling above all for basins with area 

lower than 1000 km2 (Hofstra et al., 2010). However, as this product is composed by time series 

thoroughly checked both in terms of quality and homogeneity (Klok and Tank, 2009) and it is 

continuously available from 1950 up to now at daily time step, it can be considered a good benchmark 

for the analysis of long rainfall time series.” 

Similarly, some sentences have been added to the revised manuscript to describe the quality checks 

performed on the discharge data. In particular, it has been specified that (Lines 192-198): “To ensure 

quality on discharge observations the following steps have been followed: 1) visual hydrograph 

inspection, which is probably the most thorough method (Crochemore et al., 2020); 2) check on data 

availability; 3) check the presence of outliers; 4) check the presence of inhomogeneities. Only stations 

with less than 20% of missing data in one year, showing no inhomogeneities in the time series were 

retained in the compiled European dataset. The time series were checked also against the presence 

of anomalous values (i.e., values greater than five times the standard deviation), flagged as outliers.” 

 

4. In Line 185 the authors very briefly mention that they developed and used a catchment 

delineation algorithm. Since this is a new approach, please elaborate on the methodology and quality 

checks used. Do et al. (2018) applied a catchment delineation procedure to a global river dataset and 

found only 68 % of catchments to have a “high” quality result. An evaluation of the quality of the 

delineated catchments is therefore imperative. 

 

R: We thank the reviewer for the very relevant comment. In the manuscript we have added details 

about the adopted procedure and associated quality checks (see Lines 201-210): “The procedure is 

based on the following steps: (i) we select cells having contributing area larger or equal to 4 km2 

over the entire study area, (ii) we move the discharge measurement locations from the coordinates 

reported in the original metadata to the closest cells of the river network, (iii) we delineate the 

catchments. Adopting the method used by Do et al. (2018), we evaluated the quality of the products 



comparing the area of the delineated catchment (Ad) with that available from the original metadata 

(Am). The absolute percentage difference (Dp) was calculated according to the following formula Dp 

=(Ad - Am)/ Ad *100 |. Median and 75th percentile of the distribution of the Dp values were, 

respectively, 2.67% and 22.07%. We excluded from the following hydrological simulation, 

catchments having Dp values larger than 50% (less than the 20% of the total number of catchments).” 

 

5. L62: Please clarify what do you mean with “gaining ground”? Are satellite rainfall observations 

used more often? Do they improve in accuracy? 

 

R: Yes, the meaning of the sentence was “satellite rainfall observations are are becoming potential 

alternative to the classical rainfall monitoring methods, thanks to their global availability and 

increasing accuracy”. The manuscript has been modified, accordingly (see Lines 62-64).  

 

6. L122: Please specify that “best performing” in this context is meant in regard to hydrological 

model performance and not in regard to rainfall accuracy in comparison to a benchmark rainfall 

product. 

 

R: In the revised version of the manuscript this part has been modified as, according to the suggestion 

of reviewer 1, all the questions raised throughout the manuscript have been moved here. For that this 

sentence has been modified as follows (see Lines 123-128):  

“The following research questions are addressed: is there any performance score that can be used to 

select the best performing rainfall product for river discharge simulation? Are multiple scores 

needed? And, which are these scores? Are R and RMSE, generally used to characterize the rainfall 

accuracy, informative about the hydrological modelling performance? How small/large should be 

these rainfall scores to obtain good performances in river discharge simulations, i.e., KGE on 

discharge greater than 0.5? 

We hope that in this way the misunderstanding highlighted by the reviewer has been solved.  

 

7. L150-152: Please improve your description of the rainfall distribution over Europe. The Alps 

receive high rainfall amounts (not just the surrounding areas), as does the coast of Croatia (which is 

at the edge of the Mediterranean Sea). 

 

R: Accordingly, the description of the rainfall distribution over Europe has been improved. The 

sentence has been modified as follows (see Lines 154-156):  

“The north Atlantic coast of Spain, the Alps and Balkan Mediterranean countries generally receive 

higher rainfall amounts while along the west edges of the Mediterranean Sea, in northern Europe 

and in northern Scandinavia, lighter rainfall is common.” 

 

8. L204-208: Since the SM2RAIN-ASCAT product is relatively can add a brief explanation of the 

SM2RAIN algorithm. 

 



R: Accordingly, in the revised version of the manuscript a brief description of the SM2RAIN 

algorithm has been given. Specifically, it has been added to the manuscript that (see Lines 230-232): 

“SM2RAIN is an algorithm based on the concept that the soil acts as a “natural rain gauge”: by 

inverting the soil water balance equation, the algorithm allows to estimate the accumulated rainfall 

from soil moisture observations.” 

 

9. L249: Can you elaborate what you mean with “QE-OBS is used as reference for parameter values 

calibration”  

 

R: The sentence has been modified to better explain that (see Line 273): “QE-OBS is used as 

benchmark to calibrate the parameters of MISDc model.” 

 

10. L312/313: Please move this thought to the discussion. 

 

R: The authors would prefer to leave this sentence in section 5.1, focused on rainfall assessment, 

instead of to move it in the discussion section, focused on the relationship between rainfall and 

discharge performances.  

 

11. L341-343: Please check these values. They do not match the values reported in Table 4. 

 

R: We thank the reviewer. The values in the manuscript have been modified in accordance with Table 

4. 

 

12. L394/395: Please check the reference to the Figure. RRMSE is Figure 4c) and R is Figure 4b).  

 

R: The text has been changed accordingly.  

 

13. L394/395: Please elaborate how you differentiate between strong increase/decrease and how the 

individual increase/decrease might be related to the definition of the individual metric. 

 

R: To differentiate between strong increase/decrease, the authors verified the increasing trend 

between both KGE-Q with rBIAS and KGE-Q and KGE-P. Although a difference in the magnitude 

and correlation of the relationship between KGE-Q vs rBIAS and KGE-Q vs KGE-P can be noted, 

i.e., the slope coefficient is equal to 1.07 (R2= 0.98 ) and 0.80 (R2= 0.81) for KGE-Q vs rBIAS and 

for KGE-Q vs KGE-P, respectively, the sentence in the revised manuscript has been smoothed. 

Concerning how the individual increase/decrease might be related to the definition of the individual 

metric, the meaning of each score will be recalled in the revised manuscript. Specifically, the sentence 

in line 394/395 has been modified as (see Lines 435-438): “SRP hydrological performances decrease 

by increasing the absolute value of rBIAS, |rBIAS|, and the RRMSE values (higher |rBIAS| and 

RRMSE values indicate lower rainfall performances, Figure 4a and c) whereas KGE-Q increases 

with R and KGE-P (higher R and KGE-P values indicate higher rainfall performances, Figure 4b 

and d)..” 

 



14. L400/401: Can you explain how the categorical values are different than expected? Higher (= 

better) POD and TS scores lead to better performance. Only FAR behaves differently than expected 

(but only for rainfall >0.5 and rainfall >5 mm). It even seems like not very high values of TS and 

POD are necessary to still get high KGE. 

 

R: The reviewer is right, only FAR behaves differently than expected and only for small and moderate 

rainfall events. This sentence has been modified according to the reviewer suggestion (see Lines 440-

442):  

“Indeed, it has been found that higher (= better) POD and TS scores lead to better performance 

whereas the relationships between KGE-Q and the FAR for small and moderate rainfall are different 

(i. e, inverse) from what can be expected.” 

 

15. L410-418: Could the difference in which range reaches high KGE performance be due to 

differences in how these metrics are calculated? This will impact what is considered a “large range” 

of values. This makes the interpretation of the plot slightly subjective. Please elaborate how you came 

to the conclusion that “rBIAS and RRMSE [...] seem to have a stronger link with the hydrological 

performance”. In regard to this, please also see the comment on Figure 4 below. 

 

R: According to the authors this result could be linked to the hydrological model structure and to the 

parameters calibrated into the model. Indeed, it has been largely demonstrated in the scientific 

literature (e.g., Zeng et al., 2018) that the impact of imperfect precipitation estimates on model 

efficiency can be reduced to some extent through the adjustment of model parameters. In this case, it 

is clear that the hydrological model calibration step is able to correct the rainfall time shift, allowing 

to obtain good hydrological performances (KGE-Q) for a large range of R values. A similar 

consideration holds for KGE-P, largely influenced by the correlation coefficient.  

A sentence highlighting this aspect has been added in the revised manuscript (in the discussion 

section, Lines 482-493): 

“In particular, it has been noted that R and KGE-P rainfall scores have a small impact on KGE-Q 

as for R ranging from 0.5 to 0.8 and for KGE-P ranging from 0.4 to 0.8, it is possible to obtain high 

(>0.5) KGE-Q values. As the meaningful range of R (KGE-P) is between 0 and 1 (-0.41 and 1), we 

can conclude that R and KGE-P are not suitable scores to define a criterion able to discern between 

good/bad hydrological simulations. This result could be linked to the hydrological model structure 

and to the parameters calibrated into the model. Indeed, it has been largely demonstrated in the 

scientific literature (e.g., Zeng et al., 2018) that the impact of imperfect precipitation estimates on 

model efficiency can be reduced to some extent through the adjustment of model parameters. In this 

case, it is clear that the hydrological model calibration step is able to correct the rainfall time shift, 

allowing to obtain good hydrological performances (KGE-Q) for a large range of R values. A similar 

consideration holds for KGE-P, largely influenced by the correlation coefficient.” 

 

16. Tables/Figures: If possible, the authors might want to consider including the supplement figures 

in the main text.  

 



R: Thanks for this suggestion, but we think that to make the manuscript more readable it would be 

better to not increase the number of figures and related comments.  

 

17. Table 1: This table is not necessary. Instead a plot showing catchment area distribution might be 

more useful.  

 

R: In the revised version of the manuscript, the table has been removed and, according the reviewer 

suggestion, in Figure 1 a plot showing catchment area distribution has been added. 

 

18. Table 3: KGE is missing in the list of metrics mentioned in the caption. For better readability, 

can you add the information from this sentence "The more R, rBIAs, RRMSE and KGE values goes 

to-ward 1, 0, 0, 1 respectively, the higher is the agreement between E-OBS and SRPs. "to the table 

caption? 

R: The caption of the table has been improved according to the reviewer suggestion, specifying also 

that “the more R, rBIAs, RRMSE and KGE-P values goes to-ward 1, 0, 0, 1 respectively, the higher 

is the agreement between E-OBS and SRPs.” 

 

19. Figure 2: Please add column headings. Although using the same colour scale is aesthetically 

pleasing, it makes it difficult to compare the different metrics, since “best” value varies. E.g. for 

rBIAS a diverging colour scale would be more appropriate.  

 

R: Figure 2 has been modified in the revised version of the manuscript, adding a column heading for 

each product and modifying the colour scale for rBIAS and RRMSE. Specifically, as suggested by 

the reviewer a diverging colour scale has been used for rBIAS whereas for RRMSE an inverse 

colorbar with respect to R and KGE has been considered.  

  

20. Figure 3: Plots d, e and f are mentioned in the caption but are not part of the Figure.  

 

R: The caption of the figure has been modified deleting any reference to plots d, e, f that are not part 

of Figure 3.  

 

21. Figure 4: There is a high density of points. Can you use empty (e.g. transparent) filling of the 

points, so that the points do not cover each other. Otherwise the distribution, particularly of the TMPA 

points, is not visible. (Same for Figure S2). Also, can you clarify if the boxplots are for all products 

together? S1: Please add which values are considered better (e.g. higher for POD and TS and lower 

for FAR) to the figure caption. 

 

R: Figure4, Figure S2 and caption of Figure S1 have been modified according to the reviewer 

suggestion.  

 

Concerning the boxplot, they are evaluated for all products together. This aspect is clarified in the 

manuscript at lines 388-390: “to extract useful information from Figure 4 and Figure S2, the scores 



obtained separately for each product have been grouped and the KGE-Q data points have been binned 

into uniform ranges (with step 0.1) of rainfall scores”.  

 

Technical corrections 

I want to compliment the authors for communicating a complex topic very well, however the 

manuscript would benefit from a thorough grammar and spell check to improve understanding.  

 

22. L25: “understanding how uncertainties[...]”  

R: In the correct version of the manuscript the sentence has been correct. 

 

23. L42: “Results suggest that, among [...] are not reliable scores to select the best performing rainfall 

product for hydrological modelling[...]”  

R: In the correct version of the manuscript the sentence has been correct. 

 

24. L58: “Generally, rainfall observations [...]”  

R: In the correct version of the manuscript the sentence has been correct. 

 

25. L63: “[...] (SRPs) has boosted their use [...]”  

 

R: In the correct version of the manuscript the sentence has been correct. 

 

26. L72: “is used to simulate a discharge time series [...]”  

 

R: In the correct version of the manuscript the sentence has been correct. 

 

27. L86: “Generally, this comparison [...]” 

R: In the correct version of the manuscript the sentence has been correct. 

 

28. L98/99: Missing bracket  

R: In the correct version of the manuscript bracket has been added. 

 

29. L108: “by using the MIKE SHE model[...]”  

R: In the correct version of the manuscript the sentence has been corrected. 

 

30. L112: “it is difficult to find literature [...]”  

R: In the correct version of the manuscript the sentence has been corrected. 

 

31. L140/141: “is composed of 1318 basins[...] over the whole of Europe [...]”  

R: In the correct version of the manuscript the sentence has been corrected. 

 

32. L142: “The European continent [...]”  

R: In the correct version of the manuscript the sentence has been corrected. 



 

33. L145: “gently slopes towards [...]”  

R: In the correct version of the manuscript the sentence has been corrected. 

 

34. L150: “the Alps generally has higher rainfall amounts [...]”  

R: In the correct version of the manuscript the sentence has been corrected. 

 

35. L154: “prevailingly subject to [...]”  

R: In the correct version of the manuscript the sentence has been corrected. 

 

36. L155: “according to the latitude[...]”  

R: In the correct version of the manuscript the sentence will be corrected. 

 

37. L157: “and for about11% [...]”  

R: In the correct version of the manuscript the sentence has been corrected 

 

38. L161: “basin characteristics.”  

R: In the correct version of the manuscript the sentence has been corrected 

 

39. L175: “an European daily dataset [...]”  

R: In the correct version of the manuscript the sentence the sentence has been corrected. 

 

40. L190: “period in 2012[...]”  

R: In the correct version of the manuscript the sentence has been corrected 

 

41. L201:” provided by the CPC [...]”  

R: In the correct version of the manuscript the sentence has been corrected. 

 

42. L219-221: “applied to carry out[...] model composed of a component [...] of soil moisture and a 

rainfall-runoff model[...]”  

R: In the correct version of the manuscript the sentence has been corrected. 

 

43. L233/234: “allow us to consider the model suitable for the purpose of this analysis.”  

 

44. L236: “analysis regards the quality assessment [...]”  

R: done 

 

45. L270/271: “The more R [...], respectively, the higher is [...]”  

R: done 

 

46. L275: “(TS). POD reports [...]”  

R: done 

 



47. L278: too many dots 

R: removed. 

 

48. L356: “This is the first notable result [...]”  

R: done 

 

49. L368: “for the CMOR product[...]”  

R: done 

 

L371/404. As amusing as it is, it might be better to refer to FAR and TS as TS/FAR instead of the 

other way around.  

R: done 

 

50. L372: “of this product in terms [...]”  

R: done 

 

51. L380: “in terms of RRMSE[...]”  

R: done 

 

52. L454-457: This sentence would benefit from commas.  

R: done 

 

53. L456: “errors in rainfall [...]” 

R: done 

 

54. L498: “limitation, this study contributes to the better understanding of the propagation of [...] 

simulations. This could be very [...]” 

R: done 
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ABSTRACT 23 

The global availability of satellite rainfall products (SRPs) at an increasingly high temporal/spatial 24 

resolution has made possible their exploitation in hydrological applications, especially over in-situ 25 

data -scarce regions. In this context, understanding how uncertainties transfer from SRPs into flood 26 

river discharge simulation, through the hydrological model, is a main research question.  27 

SRPs accuracy is normally characterized by comparing them with ground observations via the 28 

calculation of categorical (e.g., threat score, false alarm ratio, probability of detection) and/or 29 

continuous (e.g., bias, root mean square error, Nash-Sutcliffe index, Kling-Gupta efficiency index, 30 

correlation coefficient) performance scores. However, whether these scores are informative about the 31 

associated performance in flood river discharge simulations (when the SRP is used as input to an 32 

hydrological model) is an underdiscussed research topic. 33 

This study aims to relate the accuracy of different SRPs both in terms of rainfall and in terms of flood 34 

river discharge simulation. That is, the following research questions areare addressed: is (are) there 35 

any appropriate performance score that can be used to (s) selectto drive the choice of the best 36 

performing rainfall product for flood river discharge simulation? Are multiple scores needed? And, 37 

which are these scores? ? To answer theseis questions three SRPs, namely the Tropical Rainfall 38 

Measurement Mission Multi-satellite Precipitation Analysis, TMPA; the Climate Prediction Center 39 

Morphing algorithm, CMORPH, and the SM2RAIN algorithm applied to the ASCAT (Advanced 40 

SCATterometer) soil moisture product, SM2RAIN-ASCAT, have been used as input into a lumped 41 

hydrologic model (MISDc, “Modello Idrologico Semi-Distribuito in continuo”) on 1318 basins over 42 

Europe with different physiographic characteristics.  43 

Results have suggested that, among the continuous scores, correlation coefficient and Kling-Gupta 44 

efficiency index are not reliable indices to select the best rainfall product performing rainfall product 45 

best for hydrological modelling whereas bias and root mean square error seem more appropriate. In 46 

particular, by constraining the relative bias to absolute values lower than 0.2 and the relative root 47 



3 

 

mean square error to values lower than 2, good hydrological performances (Kling-Gupta efficiency 48 

index on river discharge greater than 0.5) are ensured for almost 75% of the basins fulfilling these 49 

criteria. Conversely, the categorical scores have not provided suitable information to address the SRPs 50 

selection for hydrological modelling.  51 

 52 

Key words: satellite rainfall products, hydrological validation, rainfall-runoff modelling, Europe. 53 

1. INTRODUCTION 54 

Accurate rainfall estimate is essential in many fields spanning from climate change research, weather 55 

prediction and hydrologic applications (Tapiador et al., 2017, Ricciardelli et al., 2018, Lu et al., 2018). 56 

In particular, the delivery of real time rainfall observations is one of the most challenging task in 57 

operational flood forecasting both for technical reasons, related to the need of a prompt release of the 58 

observations and for scientific motives linked to the necessity of ensuring sufficient accuracy to 59 

provide a reliable forecasting. Generally, rainfall observations are obtained through real time ground 60 

monitoring networks (e.g., Artan et al., 2007), meteorological and numerical weather prediction 61 

models (e.g, Montani et al., 2011; Zappa et al., 2008) and, more recently, by satellite observations 62 

(Mugnai et al., 2013) that, albeit with some difficulties (Maggioni and Massari, 2018) are becoming 63 

potential alternativegaining ground with respect to the classical rainfall monitoring methods, thanks 64 

to their global availability and increasing accuracy.  65 

The global availability of near real time satellite rainfall products (SRPs) has boosted their use for 66 

hydrological applications, specifically for river discharge estimation via rainfall-runoff models 67 

(Casse et al., 2015; Elgamal et al., 2017; Camici et al., 2018; Beck et al., 2017, see Maggioni and 68 

Massari, 2018 and Jiang and Wang, 2019 for a more complete review). In particular, in the past 69 

decade a special attention has been paid on the propagation of the satellite rainfall error on flood 70 

simulations (Hong et al., 2006; Hossain, and Anagnostou, 2006; Pan et al., 2010; Maggioni et al. 71 

2013; Thiemig et al. 2013; Bhuiyan et al., 2019) and two approaches, one probabilistic and one 72 
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statistical, can be recognized (Quintero et al., 2016). In the probabilistic approach a statistical model 73 

is first used to produce an ensemble of possible rainfall realizations. Then, each rainfall realization is 74 

used to simulate a river discharge time series through an hydrological model and the difference 75 

between simulated and observed in situ discharge data is used to assess how rainfall accuracy transfers 76 

to the flood simulation (e.g., Hong et al., 2006; Hossain, and Anagnostou, 2006; Demaria et al. 2014; 77 

Maggioni et al. 2013, 2011). In the deterministic approach, SRPs are first compared with a reference 78 

dataset to assess the accuracy in terms of rainfall estimate. Then, SRPs are used as input in rainfall-79 

runoff models to estimate river discharge that is then compared with in situ discharge observations. 80 

Eventually, the existence and the shape of the relationship between the SPR accuracy and the 81 

associated discharge score is analysed (e.g, Serpetzoglou et al. 2010; Pan et al., 2010; Thiemig et al. 82 

2013; Chintalapudi et al. 2014; Pakoksung and Takagi, 2016; Shah and Mishra, 2016; Qi et al. 2016; 83 

Ren et al., 2018; Bhuiyan et al., 2019). 84 

In both approaches, several continuous (e.g., bias, root mean square error, RMSE, correlation 85 

coefficient, R, Nash-Sutcliffe efficiency index, NSE, Kling-Gupta efficiency index, KGE) and 86 

categorical (e.g., probability of detection, POD, false alarm ratio, FAR, threat score, TS) performance 87 

scores are used to characterize the accuracy in terms of rainfall and river discharge. Generally, this 88 

comparison has been carried out for few basins (e.g., Hong et al., 2006; Pan et al., 2010; Demaria et 89 

al., 2014; Chintalapudi et al., 2014; Qi et al. 2016; Ren et al., 2018; Thiemig et al. 2013), rarely at 90 

regional scale (e.g., Bhuiyan et al., 2019), whereas no studies investigated the hydrological 91 

propagation of SRP error at a continental scale. In Beck et al. (2017), the authors carried out an 92 

evaluation of multiple (22) global daily rainfall datasets both in terms of rainfall and river discharge 93 

for many (+9000) basins over the globe, however, the relationship between the accuracy in terms of 94 

rainfall and river discharge was not investigated in detail. 95 

From the analysis of both the probabilistic and the statistical approaches arises that the hydrological 96 

performances of SRPs depend on a complex interaction among the characteristics of the input data 97 

(i.e., precipitation type, seasonality, data resolution or time window considered, see e.g., Ebert et al., 98 
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2007; Vergara et al., 2014; Satgé et al., 2019), the hydrological model formulation (i.e. parameter 99 

estimation and modelled processes, Quintero et al., 2016; Mei et al., 2017; Bhuiyan et al., 2019), the 100 

characteristics of the basin (e.g., area and initial soil moisture conditions, land use and land cover 101 

(Yong et al., 2010; Yilmaz et al., 2005; Nikolopoulos et al., 2010; Mei et al., 2016; Shah and Mishra, 102 

2016; Gebregiorgis et al., 2012)) and observations (i.e., streamflow data, see e.g., Nikolopoulos et 103 

al., 2012). In this context, it is not trivial to draw general guidelines about which SRPs should be 104 

favoured or which error metricperformance score(s) should be used to identify the best performing 105 

rainfall product for flood forecastingriver discharge estimation (Qi et al., 2016; Hossain and Huffman, 106 

2008). The only largely accepted suggestion is about SRP bias, recognized as a major issue for a 107 

reliable flood forecast across several basins around the world (Maggioni et al., 2013; Thiemig et al., 108 

2013; Shah and Mishra 2016; Jiang and Wang, 2019). Based on that, bias correction methods have 109 

shown to significantly reduce streamflow errors (e. g, Yilmaz et al., 2005; Bitew et al., 2012; Valdes-110 

Pined et al., 2016). For instance, by using the MIKE SHE model on a small and mountainous basin 111 

in the Blue Nile basin, Bitew et al. (2012) stated that large biases in satellite rainfall directly translate 112 

into bias in one or more of the hydrology simulation components. Zhu et al. (2016) found that for two 113 

humid basins in China, the accuracy on flood simulations is related to the mean error and to bias in 114 

the rainfall estimates as also found by Yilmaz et al. (2005). Besides bias, it is difficult to fiound 115 

literature studies advising on rainfall error metrics able to indicate flood river discharge simulation 116 

performances. The work of Bisselink et al. (2016), even if conducted over only 4 basins in south 117 

Africa, is an exception. The authors, by using different SRPs as input to LISFLOOD model, proved 118 

that a high correlation between monthly rainfall and observed streamflow is a needed prerequisite for 119 

obtaining good hydrological performances, as long as the rainfall variability in time is not too high.  120 

Based on that, there is a need to investigate metrics that can more effectively advance the use of SRPs 121 

for hydrological applications, and specifically for flood river discharge modelling at regional scales. 122 

This paper aims to explore the link between satellite rainfall accuracy of different products and their 123 

flood river discharge modelling performance. The following research questions are addressed: is there 124 
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any performance score that can be used to select the best performing rainfall product for river 125 

discharge simulation? Are multiple scores needed? And, which are these scores? which is the most 126 

appropriate performance metric to be used to select the best performing satellite rainfall product for 127 

flood modelling? Are R and RMSE, generally used to characterize the rainfall accuracy, informative 128 

about the hydrological modelling performance? How small/large should be these rainfall scores to 129 

obtain good performances in river discharge simulations, i.e., KGE on discharge greater than 0.5? 130 

In pursuing this goal, three different near real time SRPs, i.e., Tropical Rainfall Measurement Mission 131 

(TRMM) Multi-satellite Precipitation Analysis (TMPA) real time product (TMPA 3B42RT, Huffman 132 

et al., 2010), the Climate Prediction Center (CPC) morphing technique (CMORPH, Joyce et al., 2004) 133 

and SM2RAIN-ASCAT rainfall product (Brocca et al., 2019) obtained by applying the SM2RAIN 134 

algorithm (Brocca et al., 2014) to the ASCAT satellite soil moisture product, are used to force a 135 

lumped hydrological model, MISDc (Brocca et al., 2011) over 1318 basins basins spread out 136 

overacross Europe. An intercomparison of SRPs with respect to a benchmark rainfall dataset, i.e., E-137 

OBS (Haylock et al., 2008), is carried out. This step, along with the reliability assessment of the 138 

different SRPs for flood modelling over Europe, constitutes only an intermediate output of the work. 139 

The ultimate aim of the paper is to investigate how SRPs accuracy propagates through the river 140 

discharge simulations, as to help in the selection of the rainfall performance scores metrics more 141 

informative of better hydrological performances. As the intent of the paper is to analyse the 142 

performances of near-real time satellite rainfall products, gauge-corrected satellite or reanalysis 143 

rainfall products are not considered in this work.  144 

2. STUDY AREA 145 

The study area is composed by of 1318 basins, with area ranging in size from 200 to 136’000 km2  146 

belonging to 23 different countries and spread over the whole of Europe, over longitude varying from 147 

-10° to 25° and latitude from 35° to 70° (Figure 1a). The European continent is characterized by a 148 

complex topography ranging, from south to north, from huge mountains towards hilly plateaus to a 149 
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large plain. The Alpine mountain chain, crossing the continent from west to east represents the highest 150 

and more extensive mountain range system in Europe. Hilly plateaus gently slopes towards the Great 151 

European Plain, a low flat region, extending from the Atlantic coast of France to the Urals, crossed 152 

by many rivers and with densely populated cities. 153 

The climate is humid continental with cold summers in central and eastern Europe. Mean annual 154 

rainfall across Europe ranges between 300 mm year−1 and 4000 mm year−1, depending on the location. 155 

The north Atlantic coast of Spain, the Alps and Balkan Mediterranean countries generally receive 156 

higher rainfall amounts area east, west and north of the Alps generally is interested by higher rainfall 157 

amount, while along the west edges of the Mediterranean Sea, in northern Europe and in northern 158 

Scandinavia, lighter rainfall is common. In terms of floods, their occurrence range from spring to 159 

summer moving from northeastern Europe towards the Alps, whereas Mediterranean region and 160 

western Europe are prevailingly prevailing subject to winter floods (Berghuijs et al., 2019). 161 

The main features of the study basins, clustered according to the latitude of the outlet section, are 162 

summarized illustrated in Figure 1b and cTable 1: among the 1318 basins, more than half (889) have 163 

the outlet section located below the 50° latitude and for about 11% of them the outlet section is placed 164 

above 60° latitude. Basin areas range in size from 200 to 136’000 km2 and tThe median area of the 165 

basins located below 50° is lower than the one of basins located in northern part of Europe (above 166 

50° latitude). By considering these features, the selected set of basins can be considered a 167 

comprehensive sample of the European basin characteristics, definitely. 168 

3. DATASETS 169 

The datasets used in this study include both ground observations and satellite rainfall products (Table 170 

21). 171 

3.1 Ground observations 172 

Ground observations comprise rainfall, air temperature and river discharge data. Rainfall and air 173 

temperature are extracted from the European high-resolution 0.22°x0.22° gridded data sets version 174 



8 

 

176.0 (E-OBS, Haylock et al., 2008), currently maintained by the Copernicus Climate Change 175 

Service. The E-OBS dataset is built by using data from nearly 2316 9618 stations (i.e., equivalent on 176 

average to a density of 1 stations every 4000 1000 km2) but the station density significantly varies 177 

across Europe (see Haylock et al., 2008; Cornes et al., 2018): for some regions, the station density is 178 

sufficiently low to expect a strong tendency for interpolated daily rainfall and temperature values to 179 

be underestimated with respect to the “true” area-average stations (Hofstra et al., 2009; Hofstra et al., 180 

2010; Kyselý and Plavcová, 2010). As the smoothing is greatest for higher percentiles, an 181 

underestimation of peak floods is expected if E-OBS rainfall data are used for rainfall-runoff 182 

modelling above all for basins with area lower than 1000 km2 (Hofstra et al., 2010). However, as this 183 

product is composed by time series thoroughly checked both in terms of quality and homogeneity 184 

(Klok and Tank, 2009) and it is continuously available from 1950 up to now at daily time step, it can 185 

be considered a good benchmark for the analysis of long rainfall time series.  186 

. 187 

Daily river discharge data are obtained through an Eeuropean daily dataset, compiled by the authors 188 

merging stations from 5 different databases: the Global Runoff Data Base (GRDC, 189 

https://www.bafg.de/GRDC/EN/Home/homepage_node.html), the European Water Archive (EWA, 190 

https://www.bafg.de/GRDC/EN/04_spcldtbss/42_EWA/ewa.html?nn=201574), the Italian ISPRA 191 

HIS national database (http://www.hiscentral.isprambiente.gov.it/hiscentral/default.aspx); the 192 

Portuguese national database (http://snirh.pt/) and the Spanish national database (http://ceh-193 

flumen64.cedex.es/anuarioaforos/default.asp). From the resulting European dataset, composed by 194 

3913 quality checked stations covering the period 1900-2016, 1318 stations with available 195 

observations after 2007 (according the availability of SRPs, see paragraph 3.2) have been extracted.  196 

To ensure quality on discharge observations the following steps have been followed: 1) visual 197 

hydrograph inspection, which is probably the most thorough method (Crochemore et al., 2020); 2) 198 

check on data availability; 3) check the presence of outliers; 4) check the presence of inhomogeneities. 199 

Only stations with less than 20% of missing data in one year, showing no inhomogeneities in the time 200 
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series were retained in the compiled European dataset. The time series were checked also against the 201 

presence of anomalous values (i.e., values greater than five times the standard deviation), flagged as 202 

outliers. 203 

The authors, using the EU-DEM digital elevation model (Mouratidis and Ampatzidis, 2019) 204 

resampled at 100m ground resolution, developed an automatic and rapid procedure to delineate the 205 

drainage watersheds located upstream of each discharge measurement location (outlet section). The 206 

procedure is based on the following steps: (i) we select cells having contributing area larger or equal 207 

to 4 km2 over the entire study area, (ii) we move the discharge measurement locations from the 208 

coordinates reported in the original metadata to the closest cells of the river network, (iii) we delineate 209 

the catchments. Adopting the method used by Do et al. (2018), we evaluated the quality of the 210 

products comparing the area of the delineated catchment (Ad) with that available from the original 211 

metadata (Am). The absolute percentage difference (Dp) was calculated according to the following 212 

formula Dp =(Ad - Am)/ Ad *100 |. Median and 75th percentile of the distribution of the Dp values 213 

were, respectively, 2.67% and 22.07%. We excluded from the following hydrological simulation, 214 

catchments having Dp values larger than 50% (less than the 20% of the total number of catchments). 215 

The study basins and the related observation period length after 2007 is shown in Figure 1a: more 216 

than 50% of the basins have an observation period longer than 7 years; Spanish, Italian and Northern 217 

European basins have a nearly complete observation period (10 years), whereas for Central Europe 218 

some stations end the monitoring period onoin  2012 and the median length of discharge observations 219 

is about 6/7 years (see Table Figure 1a).  220 

3.2 Satellite rainfall products 221 

Three different SRPs have been used in this study: TMPA 3B42RT, CMORPH and 222 

SM2RAIN-ASCAT satellite products. As these products have been largely used in literature, only a 223 

brief product description is reported in the following whereas for major details the reader is referred 224 

to Huffman et al. (2010); Joyce et al. (2004) and Brocca et al. (2019) for TMPA 3B42RT, CMORPH 225 

and SM2RAIN-ASCAT, respectively. 226 



10 

 

TMPA 3B42RT, provided by NASA (National Aeronautics and Space Administration, 227 

http://disc.sci.gsfc.nasa.gov/) covers ±50° north-south latitude band with a spatial sampling of 0.25° 228 

and a temporal resolution of 3 h from 1997 onward.  229 

CMORPH is provided by the CPC (Climate Prediction Center, ftp://ftp.cpc.ncep.noaa.gov) for the 230 

+60°/-60° latitude band from March 2000 up to now. In this study, the CMORPH raw version is 231 

extracted with a spatial/temporal resolution of 0.25°/3 hours. 232 

In addition to these state-of-the-art SRPs, we used the SM2RAIN-ASCAT rainfall product (Brocca 233 

et al., 2019) obtained through the application of the SM2RAIN algorithm (Brocca et al., 2014) to the 234 

ASCAT satellite soil moisture product (Wagner et al., 2013). SM2RAIN is an algorithm based on the 235 

concept that the soil acts as a “natural rain gauge”: by inverting the soil water balance equation, the 236 

algorithm allows to estimate the accumulated rainfall from soil moisture observations. 237 

SM2RAIN-ASCAT, downloadable at https://zenodo.org/record/3635932https://zenodo.org/record/3405563, is available for the period 238 

2007-2019, with a 12.5 km spatial sampling and a daily temporal aggregation. 239 

For sake of simplicity, the TMPA 3B42RT, CMORPH and SM2RAIN-ASCAT satellite datasets are 240 

indicated in the following as TMPA, CMOR and SM2RASCAT, respectively. By considering the 241 

spatial/temporal availability of both ground-based and satellite observations (see Table 2 1 for a 242 

summary), the analysis has been carried out to cover the maximum common observation period, i.e., 243 

from 2007 to 2016 at daily time scale (TMPA and CMOR are aggregated at daily scale), with three 244 

different areal masks cut: 1) at the original spatial coverage of each SRP, i.e., until 50°, 60° and 70° 245 

latitude for TMPA, CMOR and SM2RASCAT, respectively; 2) below over the TMPA area (latitude 246 

<50°); 3) above TMPA area (latitude >50°). 247 

4. METHOD 248 

4.1 Hydrological model 249 

The model applied to carryied out the flood discharge simulation is MISDc (“Modello Idrologico 250 

Semi-Distribuito in continuo” Brocca et al. 2011) is, a two-layer continuous hydrological model 251 

Codice campo modificato

http://disc.sci.gsfc.nasa.gov/
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composed characterized byby of a component simulating the temporal pattern of soil moisture and 252 

by a rainfall-runoff transformation component for simulating river model simulating flooddischarge 253 

time series. By using as input daily rainfall and air temperature data, MISDc simulates the most 254 

important processes involved in the rainfall-runoff transformation (e.g., infiltration, 255 

evapotranspiration, saturation excess and percolation). The geomorphological Instantaneous Unit 256 

Hydrograph (IUH) is used to transfer surface and subsurface runoff to the outlet of the catchment. 257 

The model (downloadable at: http://hydrology.irpi.cnr.it/download-area/midsc-code/) uses 9 258 

parameters calibrated by maximizing the Kling-Gupta efficiency index (KGE, Gupta et al., 2009; 259 

Kling et al., 2012, see paragraph 4.5 for more details) between observed and simulated river 260 

discharge.  261 

The successful results obtained through MISDc model for flood discharge simulation in many 262 

different basins (in Italy, see e.g., Brocca et al., 2011; 2013a, Massari et al. 2015; Masseroni et al. 263 

2016; Cislaghi et al. 2019, and in Europe, see e.g., Brocca et al., 2013b; Massari et al. 2018; Camici 264 

et al., 2018) and for different applications (e.g., climate change impact studies, see Camici et al., 265 

2014) allow us to consider the model suitable for the purpose of this analysisfor the analysis purpose. 266 

4.2 Experimental design 267 

The first step of the analysis concerned regards on theis the quality assessment of the SRPs in terms 268 

of rainfall. For that, each SRP has been compared with the daily E-OBS data used as reference. Then, 269 

river discharge simulations have been performed obtained by running the lumped version of MISDc 270 

model with E-OBS dataset (river discharge reference) and with each SRP as input. Specifically:, the 271 

two following steps have been performed: 272 

1) MISDc model has been calibrated over the entire 2007-2016 period by using as input the mean 273 

areal E-OBS rainfall and air temperature data for each basin; these simulated discharge data, 274 

QE-OBS, has been used as benchmark to estimate the accuracy of the selected SRPs for river 275 

discharge simulation. 276 

Codice campo modificato

http://hydrology.irpi.cnr.it/download-area/midsc-code/
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2) MISDc has been run for each basin by using as input the mean areal SRPs and E-OBS air 277 

temperature data. In accordance with literature studies (e.g, Thiemig et al., 2013), in these 278 

runs the model parameters are calibrated separately for each SRP. The period 2007-2012 is 279 

used for the parameter values calibration, whereas the remaining 2013-2016 period is used for 280 

the validation; QE-OBS is used as reference benchmark to calibrate the parameters of MISDcfor 281 

parameter values calibrationmodel. 282 

 283 

The use of QE-OBS as benchmark presents three advantages as it allows: 1) to consider a common and 284 

extended analysis period for all basins, 2) to consider a common benchmark in evaluating the SRP 285 

accuracy both in terms of rainfall and in terms of river discharge and, more important, 3) to neglect 286 

the uncertainty due to the hydrological model structure in the SRPs comparison. 287 

4.5 Performance metricsscores 288 

The quality assessment of the different SRPs has been calculated by four continuous dimensionless 289 

metrics and three categorical scores. Among the continuous scores, the Pearson correlation 290 

coefficient, R, the relative BIAS, rBIAS, the Pearson correlation coefficient, R, the relative root mean 291 

square error, RRMSE and the KGE, an index increasingly used in hydrology to measure the goodness-292 

of-fit between simulated and observed data, have been computed between the daily E-OBS and the 293 

satellite rainfall data averaged over the area of each basin as follows:  294 

R =
Cov(SRP,Pref)

σSPR x σPref

           (1) 295 

rBIAS =
1

n
 ∑ (SRPi−n

i=1 Prefi
)2

1

n
∑ (n

i=1 Prefi
)

          (21) 296 

R =
Cov(SRP,Pref)

σSPR  σPref

           (2) 297 

 298 

RRMSE =
√

1

n
 ∑ (SRPi−n

i=1 Prefi
)2

1

n
∑ (n

i=1 Prefi
)

          (3) 299 



13 

 

KGE = 1 − √(R − 1)2 + (
1

n
∑ (n

i=1 SRPi)

1

n
∑ (n

i=1 Prefi
)

− 1)

2

+ (
1

n
∑ (n

i=1 Prefi
)∗σSPR

1

n
∑ (n

i=1 SRPi) σPref

− 1)

2

     (4) 300 

 301 

where SRP and Pref represent the SRPs and E-OBS rainfall time series; Cov and σ are the covariance 302 

and the standard deviation operator, respectively; n corresponds to the length of the time series. R 303 

values range from -1 to 1; rBIAS ranges from –∞ to +∞; R values range from -1 to 1; RRMSE is 304 

bounded from 0 to +∞ while KGE varies between –∞ to 1. More R, rBIAs, R, RRMSE and KGE 305 

values goes toward 1, 0, 1, 0, 1 respectively, higher is the agreement between E-OBS and SRPs. In 306 

particular, for KGE, model performancevalues in the range -0.41 < KGE <= 1 indicate that satellite 307 

rainfall datathe model outperforms the mean of the E-OBS observations (Knoben et al., 2019). In 308 

addition, for each SRP and for different rainfall thresholds three categorical metrics are evaluated 309 

(Chen et al., 2012, Brocca et al., 2014): probability of detection (POD), false alarm ratio (FAR) and 310 

threat score (TS). POD reports on the capability of SRP to correctly detect rainfall events, FAR counts 311 

the fraction of rainfall events that are actually non-events and TS takes into account the correctly 312 

detected, missed rainfall events and false alarms.,. These categorical metrics range from 0 to 1: higher 313 

POD and TS along with lower FAR values indicate a better capability of SRPs to detect rainfall 314 

events. 315 

To evaluate the suitability of rainfall products for river flood discharge modelling, the KGE index 316 

between the the KGE index between observed and simulated river discharge data hashas been 317 

computed. In particular, we selected only this score for three main reasons: 1) due to inherent 318 

limitations recognized for other indices (e.g., Nash-Sutcliffe Efficiency index, Schaefli and Gupta 319 

2007; Gupta et al., 2009), KGE is today the criterion most commonly recommended and applied to 320 

evaluate the performance of hydrological models and therefore its use allows meaningful 321 

comparisons with other studies; 2) the purpose of the analysis was to investigate the relationship 322 

between rainfall score and river discharge simulation, without specific focus on high and/or low 323 

flows. In this respect, it is known that KGE assigns a relatively more importance to discharge 324 

Codice campo modificato

https://www.sciencedirect.com/science/article/pii/S0309170817300374#bib0008
https://www.sciencedirect.com/science/article/pii/S0309170817300374#bib0004
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009WR008294#wrcr12363-bib-0050
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009WR008294#wrcr12363-bib-0050
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variability with respect to other scores (e.g., NSE or RMSE) generally found to be highly sensitive to 325 

high discharge values (Gupta et al., 2009); 3) for a practical reason, i.e., it was a decision of the author 326 

to limit the number of investigated performance scores to communicate in the most efficient way the 327 

results of the work.  328 

To distinguish between the KGE of rainfall and discharge, hereinafter, the symbols KGE-P and KGE-329 

Q will be used. Specifically, KGE-Q index has been evaluated both between the observed and 330 

simulated QE-OBS discharge and between QE-OBS and the simulated discharge data obtained by using 331 

SRPs as input, in order to establish the hydrological performances of E-OBS and SRPs, respectively. 332 

River dDischarge simulations characterized by KGE-Q values in the range -0.41 and 1 can be 333 

assumed as reliable; KGE-Q values greater than 0.5 have been considered good with respect to their 334 

ability to reproduce benchmark river discharge time series (Thiemig et al., 2013). 335 

5. RESULTS 336 

The findings of this work for the three SRPs are presented below. The SRP quality has been evaluated 337 

first in terms of rainfall and then in terms of river discharge. The propagation of the rainfall error into 338 

the river discharge simulation has been finally investigated.  339 

5.1 Rainfall assessment 340 

The performances of the three SRPs against the E-OBS datasets are illustrated in Figure 2. For sake 341 

of brevity, the SRPs performances are presented only for the validation period (2013-2016), but 342 

similar findings are obtained in the calibration period (see Table 32). Specifically, rBIAS, R, RRMSE 343 

and KGE-P values are illustrated in the rows of Figure 2 for each study basin, for the three products 344 

TMPA, CMOR and SM2RASCAT in each column. At the top of each plot, the median score value is 345 

reported by considering the original spatial coverage of each SRP whereas in Table 3 2 the 346 

performances of the basins whose outlet section is located below/above 50° latitude, i.e. 347 

belowover/above the TMPA coverage, are listed. Already at first glance of Figure 2, it is possible to 348 

note that the three products show similar patterns in terms of R (Figure 2d-f) and RRMSE (Figure 349 
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2g-i) whereas the same does not hold for the rBIAS (Figure 2a-c) and KGE-P (Figure 2l-n). The 350 

rBIAS is lowsmall for TMPA and SM2RASCAT, with median values equal to -0.127 and 0.08147, 351 

respectively, whereas CMOR show a clear underestimation of the daily rainfall data over the entire 352 

European area. Higher/lower R/RRMSE values are obtained in Central Europe; the opposite is 353 

observed in the Mediterranean area. In terms of KGE-P, TMPA presents higher values with respect 354 

to the other two products above all over the basins whose outlet section is located between 40° and 355 

50° latitude. Median KGE-P value for TMPA is equal to 0.516; this value reduces of about 24% and 356 

42% for SM2RASCAT and CMOR, respectively. The median rBIAS, R, RRMSE and KGE-P rainfall 357 

score values for the three products remain approximately the same if the By focusing the analysis is 358 

focused over the TMPA area (see Table 2)., median R (RRMSE) values are equal to 0.626 (1.968), 359 

0.551 (1.969), 0.609 (1.781) for TMPA, CMOR and SM2RASCAT, respectively. Higher/lower 360 

R/RRMSE values are obtained in Central Europe; the opposite is observed in the Mediterranean area. 361 

The rBIAS is low for TMPA and SM2RASCAT, with median values equal to -0.127 and 0.081, 362 

respectively, whereas CMOR show a clear underestimation of the daily rainfall data over the entire 363 

European area. In terms of KGE, TMPA presents higher values with respect to the other two products 364 

above all over the basins whose outlet section is located between 40° and 50° latitude. Median KGE 365 

value for TMPA is equal to 0.516; this value reduces of about 24% and 42% for SM2RASCAT and 366 

CMOR, respectively.  367 

Outside the TMPA area and until 60° latitude, CMOR and SM2RASCAT show quite similar 368 

performances in terms of R and RRMSE, while SM2RASCAT outperforms CMOR in terms of rBIAS 369 

and KGE-P. Likely dDue to soil freezing and snow presence, the performances of SM2RASCAT 370 

decrease in terms of R, rBIAS and KGE-P moving toward northern Europe (Brocca et al., 2019). 371 

Results in terms of categorical metrics are summarized in Figure S1, where POD (first row), FAR 372 

(second row) and TS (third row) have been computed for the validation period for three rainfall 373 

thresholds (0.5, 5, and 10 mm/day) in order to assess the capability of SRPs to detect low to high 374 

rainfall events. The nNumbers at the top of each plot represent the median score value obtained by 375 
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considering the original spatial coverage of each product. For all the three metrics and for moderate 376 

to heavy rainfall events, TMPA presents the highest values of POD (median values equal to 377 

0.500/0.415 for moderate/high events) and TS (median values equal to 0.368/0.288 for moderate/high 378 

events), overperforming outperforming the other two products. Conversely, SM2RASCAT shows a 379 

higher ability to detect small and moderate rainfall events with performances in terms of TS slightly 380 

lower than the ones of TMPA product. 381 

5.2 Discharge assessment 382 

Prior to assess the hydrological performances of the satellite rainfall data, MISDc model has been run 383 

with the E-OBS rainfall data as input to obtain QE-OBS, the benchmark river discharge data. The results 384 

of this calibration, carried out for the entire observation period (2007-2016), are good as illustrated 385 

in Figure 31ba: for all the analysed basins the KGE-Q values are greater than -0.41, i.e., the model 386 

improves upon the mean flow benchmark and the median KGE-Q value obtained for the European 387 

area is equal to 0.768 (0.770 over the TMPA area). In addition, to explore take into account that due 388 

to the impact of the density of network E-OBS rainfall on data could be not reliable for smaller basins 389 

(area<1’000 km2), the relationship between basin area and KGE-Q has been investigated (not shown). 390 

As no relationship was found, and as considering that the purpose of the study is to investigate the 391 

performances between rainfall and discharge time series (without specific focus on high and/or low 392 

flows), the limitations about the E-OBS station density can be assumed to have a negligible impact 393 

on the analysis results and This ensures the good quality of QE-OBS data that can be are assumed as a 394 

good benchmark for the successive analysis. Hereinafter, the hydrological performance has been 395 

assessed in terms of KGE-Q with respect to QE-OBS, with values higher than 0.5 considered as good. 396 

Depending on the product, SRPs show different hydrological performances as illustrated in Figure 397 

3b-d for the validation period and in Table 4 3 for both the calibration and the validation periods. At 398 

the top of each plot in Figure 3, the median KGE-Q value, averaged over the spatial coverage of each 399 

product, is reported whereas in Table 4 3 the performances of the basins whose outlet section is 400 



17 

 

located below/above 50° latitude are listed. In addition, in Table 4 3 the percentage of basins showing 401 

KGE-Q values higher than 0.5 is computed. 402 

By averaging the performances over the spatial coverage of each product, median KGE-Q values 403 

range from 0.279 to 0.722 for CMOR and SM2RASCAT, respectively, in the calibration period and 404 

from -0.090 to 0.569 for the same products in the validation period (Figure 3b-d). The percentage of 405 

the basins showing KGE-Q values higher than 0.5, is 8818% and 1888% for CMOR and SM2RASCAT, 406 

respectively, whereas the same percentage drop in the validation period up to about 392% and 362% 407 

for the same products. TMPA is in the middle between the two products in terms of performances; 408 

the percentage of basins with good hydrological performances is similar to the one of SM2RASCAT.  409 

Similar findings hold if the comparison is carried out below over the TMPA area (see Table 43): poor 410 

results are obtained by CMOR during the validation period (median KGE-Q<0; only 2.6% show 411 

KGE-Q higher than 0.5), whereas SM2RASCAT outperforms TMPA in both periods. In particular, 412 

during the validation period a median KGE-Q value equal to 0.580 is obtained for SM2RASCAT against 413 

a value equal to 0.428 for TMPA. Moreover, by comparing SM2RASCAT against TMPA in terms of 414 

basins with KGE-Q greater than 0.5, the ratio is nearly two to one, i.e., 64% of basins show good 415 

hydrological performances when forced with SM2RASCAT with respect to 39% for TMPA. The lowest 416 

performances for both products are obtained over southern Spain and northern Italy. Conversely, the 417 

basins located over northern Spain and central Europe show a better agreement with respect to QE-OBS 418 

benchmark data, above all when SM2RASCAT is used as rainfall input. The performances of 419 

SM2RASCAT remain good also when the analysis is extended above the TMPA area, with a median 420 

KGE-Q higher than 0.5 (Table 43). This is the first notabley result of the paper, i.e., among the SRPs 421 

available in near real time, there are some products that can be reasonably profitably used to force a 422 

hydrological model for obtaining in order to obtain reliable river discharge data over Europe. 423 

However, a some questions raised in the introduction are still unsolvedquestion remains:, i. e., if there 424 

why do some SRPs perform better than others? Is it possible to find a rainfall score to select a priori 425 

the best SRP to obtain reliable discharge simulations? iIs any link between rainfall and river discharge 426 
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performances and if it is possible to find a rainfall performance score to select a priori the best SRP 427 

to obtain reliable river discharge simulations.? The answer to these questions is given in the next 428 

paragraph where the rainfall performances are compared with the river discharge performances. 429 

why do some SRPs perform better than others? Is it possible to find a rainfall score to select a priori 430 

the best SRP to obtain reliable discharge simulations? 431 

5.3 Rainfall vs river discharge performances: is there any link between them? 432 

By comparing the patterns of Figure 2 against the patterns of Figure 3b-d, some insights about the 433 

link between the rainfall accuracy and the hydrological performance can be noted: the basins with the 434 

highest RRMSE (e.g., in the Mediterranean area and in particular in southern Spain and northern 435 

Italy) correspond to basins with poorer hydrological performances (KGE-Q<0.4). In addition, as 436 

occurs for the CMOR product, high rBIAS values (both negative or positive) produce negative KGE-437 

Q values. Interestingly, R and KGE-P rainfall scores seem to be weakly linked to the hydrological 438 

performances. Finally, no clear link can be highlighted between KGE-Q  of discharge and the rainfall 439 

categorical scores as for instance, the low/high/low values of SM2RASCAT in terms of FAR/TS/ FAR 440 

do not explain the higher performances of this products in terms of discharge (see Figure 3 against 441 

Figure S1).  442 

To better investigate these relationships, the scatterplots of Figure 4 and Figure S2 (in the 443 

supplementary material) have been constructed for the continuous and categorical scores, 444 

respectively. For each basin and for each SRP, the rainfall scores (x-axis) are plotted against the KGE-445 

Q values (y-axis), resulting in a large ensemble of points spread out in the full range of 446 

rainfall/discharge scores without any apparent relationship. The unique remark from Figure 4 is that 447 

CMOR shows higher absolute values of rBIAS and lower KGE-P values with respect to the other two 448 

products; rBIAS of SM2RASCAT varies near zero and, in terms of RRMSE, SM2RASCAT is 449 

characterized by a reduced range of variability, (i.e., most of the SM2RASCAT data are characterized 450 

by RRMSE ranging from 1.5 and 2.5) with respect to the other two products. By looking at the 451 

categorical scores (Figure S2), the three products show a similar variability range for moderate to 452 
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high rainfall events whereas some differences are evident for low rainfall events, that however should 453 

have a minor impact on flood river discharge modelling. In particular, SM2RASCAT tend to have higher 454 

POD values for rainfall threshold equal to 0.5, due to the tendency of the product to overestimate the 455 

rainfall occurrence (Brocca et al., 2019).  456 

To extract useful information from Figure 4 and Figure S2, the scores obtained separately for each 457 

product have been grouped and the KGE-Q data points have been binned into uniform ranges (with 458 

step 0.1) of rainfall scores. The median KGE-Q, and the 25th and 75th percentiles of KGE-Q values, 459 

have been computed for each rainfall score within each bin. The white dots in Figure 4 and Figure S2 460 

represent, for each bin of each rainfall score, the median KGE-Q value, the two ends of the black 461 

lines in the same figure represent the 25th and 75th percentile of the KGE-Q data points. By looking 462 

at the boxplots so obtained, some insights already anticipated by inspecting Figure 2 versus Figure 3 463 

for the continuous scores can be confirmed: SRP hydrological performances decrease by increasing 464 

the absolute value of rBIAS, |rBIAS|, and the RRMSE values (higher |rBIAS| and RRMSE values 465 

indicate lower rainfall performances, Figure 4a and c) whereas KGE-Q increases with R and KGE-P 466 

(higher R and KGE-P values indicate higher rainfall performances, Figure 4b and d).SRP 467 

hydrological performances strongly decrease by increasing the absolute value of rBIAS, |rBIAS|, and 468 

the RRMSE values (Figure 4a and b) whereas KGE of discharge slightly increase with R and KGE 469 

of rainfall (Figure 4c and d) If these relationships have reflected the expectations, the same did not 470 

occur for all the categorical scores and the rainfall events here investigated. Indeed, it has been found 471 

that higher (= better) POD and TS scores lead to better performance whereas except for the rainfall 472 

threshold equal to 10 mm/day, the relationships between KGE-Q of discharge and the categorical 473 

scoresFAR of for small and moderate rainfall are different (i. e, and sometimes inverse) from what 474 

can be expected. This could be due to the lowest impact of small/moderate rainfall events on flood 475 

generation. Then, focusing the attention only on high rainfall events, seems that KGE-Q of discharge 476 

slightly increase with POD whereas a stronger link can be noted between KGE-Q and TS/FAR/TS.  477 
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The findings obtained so far become even more interesting if the following question is posed: for 478 

which values of rainfall scores is it possible to obtain good results in terms of river discharge 479 

simulation (i.e., KGE-Q>0.5 evaluated on the discharge data)? The straight grey line in Figure 4 (and 480 

Figure S2), drawn for a threshold value of KGE-Q equal to 0.5, helps us to answer the question 481 

suggesting that good hydrological performances can be obtained for SRPs characterized by rBIAS 482 

values close to 0 and small RRMSE scores, i. e. for good rainfall data. Conversely, R and KGE-P of 483 

rainfall seem to have a small impact on KGE-Q of discharge as for a large range of R and KGE-P 484 

values (from 0.5 to 0.8 and from 0.4 to 0.8, respectively), it is possible to obtain high KGE-Q values. 485 

Similar conclusions hold for the categorical scores evaluated for heavy rainfall events: it can be noted 486 

that the higher capability of SRPs to detect rainfall events does not affect the hydrological 487 

performances, i.e., it is possible to obtain KGE-Q of discharge higher than 0.5 for a large range of 488 

POD, FAR and TS values. Finally, a last point has to be addressed to fulfil the purpose of the 489 

manuscript, i.e., it has to be investigated A further question remains: how small/large should be the 490 

rainfall scores to obtain good hydrological performances, i.e., KGE-Q greater than 0.5. ? In particular, 491 

should be defined a range of variability for what about rBIAS and RRMSE that seem to have a 492 

stronger link with the hydrological performances.? 493 

 494 

The boxplot of Figure 5a shows the hydrological performances that have been obtained during the 495 

validation period by the three SRPs without any constraint on the rainfall scores. In order to consider 496 

always the same number of basins for all the products, the area of analysis is cut below over the 497 

TMPA area and a median KGE-Q value equal to 0.342 is obtained for the 889 basins. According to 498 

Table 43, nearly 35% of the basins show KGE-Q greater than 0.5. If the absolute value of rBIAS (i.e., 499 

, |rBIAS|), is constrained to values lower than 0.2 (Figure 5b), the median KGE-Q value over the 400 500 

basins that fulfils the criteria is equal to 0.525. As shown in Figure 5c, a constraint on RRSME lower 501 

than 2 is not enough to assure ensure good hydrological performances (median KGE-Q lower than 502 

0.5) whereas if a combination of the two rainfall scores is considered, the threshold on KGE-Q>0.5 503 



21 

 

is exceeded by nearly 75% of the basins fulfilling the criteria (see first boxplot of Figure 5d). In other 504 

words, thisit means that nearly less than 25% of the basins fulfilling the criteria shows low 505 

performance (first boxplot of Figure 5d). Alternatively, less than 25% of basins not fulfilling the 506 

rainfall constraintss shows good hydrological performances (see second boxplot of Figure 5d).  507 

For the sake of completeness of the work, a figure similar to Figure 5 has been added in the 508 

Supplementary material (Figure S3) for the other rainfall scores (R, KGE-P, POD, FAR and TS and 509 

relative combinations), but no one of the shown rainfall constraint can be considered satisfactory for 510 

the purpose of the analysis purpose. Indeed, no one of the rainfall constraint in Figure S3 allows a 511 

clear separation between basins fulfilling/not fulfilling the criteria with a corresponding increase of 512 

KGE-Q on discharge. 513 

6. DISCUSSION 514 

The findings of Figure 4 and Figure 5 draw some interesting conclusions about the main research 515 

question of the paper, i.e., for which rainfall metric performance score(s) can be used to select the 516 

best performing rainfall product for river discharge simulationit is possible to obtain good results in 517 

terms of river discharge simulation. In particular, it has been noted that R and KGE-P rainfall scores 518 

seem to have a small impact on KGE-Q as for R ranging from 0.5 to 0.8 and for KGE-P ranging from 519 

0.4 to 0.8, it is possible to obtain high (>0.5) KGE-Q values. As the meaningful range of R (KGE-P) 520 

is between 0 and 1 (-0.41 and 1), we can conclude that R and KGE-P are not suitable scores to define 521 

a criterion able to discern between good/bad hydrological simulations. This result could be linked to 522 

the hydrological model structure and to the parameters calibrated into the model. Indeed, it has been 523 

largely demonstrated in the scientific literature (e.g., Zeng et al., 2018) that the impact of imperfect 524 

precipitation estimates on model efficiency can be reduced to some extent through the adjustment of 525 

model parameters. In this case, it is clear that the hydrological model calibration step is able to correct 526 

the rainfall time shift, allowing to obtain good hydrological performances (KGE-Q) for a large range 527 

of R values. A similar consideration holds for KGE-P, largely influenced by the correlation 528 
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coefficient. Conversely, rBIAS along with RRMSE seem to be the most appropriate error metrics to 529 

be used in conjunction to select the best performing SRP for floodriver  discharge 530 

modellingsimulation. With respect to bias, the finding is in line with literature studies. For instance, 531 

Maggioni et al., (2013) showed that bias can double from rainfall to runoff consistently from small 532 

to large basins. Conversely, no suggestions can be found with respect to RRMSE or R metrics to 533 

characterize the SRPs potentiality in terms of river discharge simulationflood modelling. In the 534 

scientific literature, we have found thresholds on metric scores to express the quality of SRPs in terms 535 

of rainfall. In particular, some authors considered an R value equal or greater than 0.7 (Condom et 536 

al., 2011), a normalized RMSE values less than or equal to 0.5 (Adeyewa and Nakamura, 2003, 537 

Condom et al., 2011; Satgé et al., 2016; Shrestha et al., 2017) and bias ranging from 538 

− 10% ≤ bias ≤ 10% (Brown, 2006, Yang and Luo, 2014) to be associated with good satellite rainfall 539 

performances, but without a reference to justify these numbers. 540 

Specifically, in this study we have found that constraining |rBIAS| to values lower than 0.2 and 541 

RRMSE to values lower than 2, good hydrological performances are assured for nearly 75% of the 542 

basins fulfilling the criteria. “The remaining percentage of basins for which the rainfall/discharge 543 

performance relationship is not satisfied highlights that it is not straightforward to find such kind of 544 

relationships as errors ion rainfall and river discharge data used as benchmark as well as the 545 

hydrological model recalibration could influence the analysis”. These findings corroborate those 546 

obtained by Qi et al. (2016), stating that a good river discharge simulation is a results of from a good 547 

combination between a rainfall product and an hydrological model, and the selection of the most 548 

accurate rainfall product alone does not guarantee the most accurate hydrological performances.  549 

7. CONCLUSIONS 550 

This study represents the most comprehensive European-scale evaluation to date of satellite rainfall 551 

products (SRPs). Three different near real time SRPs are used to force a lumped hydrological model 552 

over 1318 basins throughout Europe. The results can be summarized as follows: 553 
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1. In terms of rainfall accuracy, the three SRPs show similar patterns in terms of R and RRMSE 554 

whereas the same does not hold for the rBIAS. For the three products, higher/lower 555 

R/RRMSE values are obtained in Central Europe; the opposite, is observed in the 556 

Mediterranean area. The rBIAS is low for TMPA and SM2RASCAT, whereas CMOR shows a 557 

clear underestimation of the daily rainfall data over the entire European area.  558 

2. Among the SRPs available in near real time, there are some SRPs that can be reasonably used 559 

to force a hydrological model in order to obtain reliable river discharge data simulations over 560 

Europe. In particular, SM2RASCAT is the best performing product for river flood discharge 561 

simulation across Europe (even at high latitudes). 562 

3. There is a link between rainfall accuracy and river discharge performance. In particular, by 563 

constraining |rBIAS| to values lower than 0.2 and RRMSE to values lower than 2, good 564 

hydrological performances are assured for almost 75% of the basins fulfilling these criteria. 565 

 566 

Overall, we believe the results obtained from this study provide very useful information about the 567 

application of SRPs to simulate river discharge at basin scale. In particular, for the first time, this 568 

work  has addressesd the topic of providing quantitative guidelines in the use of SRPs for near real 569 

time hydrological applications. 570 

Nevertheless, some limitations can be recognized in the analysis. One of the main limitations lies in 571 

the use of only one hydrological model for flood river discharge simulation. In this respect, further 572 

analysis with multiple hydrological models will be carried out to better investigate the link between 573 

rainfall, hydrological model and discharge performances. In addition, in future researches the ranges 574 

of rainfall metrics performance scores ranges here defined here will be checked also with the use of 575 

different satellite rainfall products (e.g., the Global Precipitation Measurement, GPM, Huffmann et 576 

al., 2018) and in different regions worldwide. In particular, the extension of the analysis over different 577 

regions in the world could allow to explore the connection between rainfall accuracy and river 578 
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discharge performances as a function of additional criteria such as climate type, soil characteristics 579 

and terrain features (topography). 580 

Another limitation of the study relies in having considered only one performance score for the river 581 

discharge. Indeed, as the main purpose of this study has been to reproduce the entire river discharge 582 

time series, any special attention to high/low flows was not paid. In a further analysis, Aa more 583 

comprehensive study could should consider a larger set of river discharge metrics to better address 584 

the SRP selection. Finally, the results of this study are likely sensitive to the quality of data taken as 585 

“reference”, i.e., the E-OBS datasets, used as benchmark to evaluate the performances of SRPs both 586 

in terms of rainfall and, through the hydrological model, in terms streamflow.  587 

Despite the aforementioned limitations limitation, this study , contributesing in the purpose ofto a 588 

better understanding of the propagation of the satellite rainfall error to streamflow simulations, . This 589 

could be very helpful for data users facing the selection of the best satellite rainfall for hydrological 590 

applications.  591 
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Table 1. Main characteristics of the study basins clustered according to the latitude coordinate of the 805 

outlet section.  806 

# latitude 
Number of 

basins 

Median Area 

(km2) 

Median length of available 

discharge data after 2007 

(years) 

1 35°- 50° 889 800 8 

2 50°- 60° 288 960 7 

3 > 60° 141 2484 8 

 807 

  808 
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  810 

Table 21. Main characteristics of the datasets used in this study.  811 

# 
Satellite-only rainfall 

datasets 

Spatial/ temporal 

resolution 
Spatial coverage Time period 

1 TMPA RT (3B42RT V7) 0.25° / 3-hour 
±50° north-south 

latitude band 
2000 – 2018 

2 CMORPH 0.25° /3-hour 
±60° north-south 

latitude band 
1998 – 2018 

3 SM2RASCAT 0.25° / 24-hour global, over land 2007 – 2018 

# 
Large scale gauge- based 

rainfall dataset 

Spatial/ temporal 

resolution 
Coverage Time period 

1 E-OBS 0.22° / 24-hour Europe 1950 – 2018 

# 
Gauge based discharge 

dataset 

Spatial/ temporal 

resolution 
Coverage Time period 

1  European daily dataset 1318 sites/daily Europe 1900 - 2016 

 812 

  813 
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Table 32. Performance scores for rainfall (in terms of rBIAS, R and RRMSE and KGE-P) time series 814 

computed during the calibration (in italic) and the validation periods. Rainfall performances are 815 

evaluated with respect to E-OBS rainfall data and distinguished between basins whose outlet section 816 

is below or above 50° latitude. It has to be noted that the more rBIAs, R, RRMSE and KGE-P values 817 

goes toward 0, 1, 0, 1 respectively, the higher is the agreement between E-OBS and SRPs. 818 

 819 

 Rainfall performances 

       Score       

 

 

Product 

rBIAS R RRMSE KGE-P rBIAS R RRMSE KGE-P 

below TMPA area 

(latitude <50°) 

above TMPA area 

(latitude >=50°) 

TMPA 
-0.127 

(-0.095) 

0.626 

(0.619) 

1.968 

(1.978) 

0.516 

(0.533) 
--- --- --- --- 

CMOR 
-0.462 

(-0.406) 

0.551 

(0.576) 

1.969 

(1.974) 

0.299 

(0.375) 

-0.635 

(-0.618) 

0.544 

(0.562) 

1.607 

(1.621) 

0.114 

(0.147) 

SM2RASCAT 
0.081 

(0.084) 

0.609 

(0.595) 

1.781 

(1.805) 

0.393 

(0.436) 

-0.086 

(-0.080) 

0.572 

(0.548) 

1.477 

(1.514) 

0.331 

(0.372) 

 820 
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Table 43. Median KGE-Q index computed by comparing QE-OBS simulated data against simulated 822 

discharge data obtained by forcing MISDc hydrological model with satellite (TMPA, CMOR, 823 

SM2RASCAT) rainfall data. Percentage of the basins showing KGE-Q values higher than 0.5 is also 824 

listed. Performances and percentages are averaged over different spatial windows: the original spatial 825 

coverage of the product and belowover/above the TMPA area (latitude ±50°). 826 

 KGE-Q 

 
Spatial coverage of the 

product 

below TMPA area  

(latitude <50°) 

above TMPA area  

(latitude >=50°) 

     Score 

 

 

Product 

cal val cal val cal val 

TMPA 0.692 0.428 0.692 0.428 --- --- 

CMOR 0.279 -0.090 0.324 -0.014 0.201  -0.248 

SM2RASCAT 0.722 0.569 0.751 0.580 0.670 0.539 

 % of basins with KGE>0.5 

TMPA 87.9 38.6 87.9 38.6 --- --- 

CMOR 17.5 2.40 21.6 2.60 4.90 1.80 

SM2RASCAT 87.6 61.7 92.6 64.0 77.2 56.9 

Average 64.4 34.2 67.4 35.1 41.1 29.4 

 827 

  828 



34 

 

 829 

 830 

 831 

Figure 1. Location of study basins and a) length of discharge observation period after 2007 (a); b) 832 

number of basins (b) and median basin area (c) clustered according to the latitude coordinate of the 833 

outlet section of the basins. 834 

KGE index obtained by comparing observed against modelled discharge data over the period 2007-835 

2016. Modelled data have been obtained by using E-OBS rainfall dataset as input to MISDc model.  836 
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 839 
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Figure 2. Performances of satellite rainfall during the validation period in terms of rBIAS (first rowa, 840 

b, c), R (second rowd, e, f), RRMSE (third rowg, h, i), KGE-P (fourth rowl, m, n) over the study 841 

basins, for the three products TMPA (first column), CMOR (second column) and SM2RASCAT (third 842 

column). Numbers in each plot represent the median score value obtained by considering the original 843 

spatial coverage of each product. 844 
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Figure 3. Maps of KGE-Q index obtained by considering a, d) E-OBS, b)TMPA, bc, e) CMORPH 849 

and cd, f) SM2RASCAT rainfall datasets. For E-OBS, KGE-Q index has obtained by comparing 850 

observed against modelled discharge data over the period 2007-2016. Modelled discharge data have 851 

been obtained by using E-OBS rainfall dataset as input to MISDc model. For the satellite data, KGE-852 

Q refer to in the validation period (2013-2016). In a),  b) and, c) and d) plots, the median KGE value 853 

averaged over the original product coverage is reported.  854 
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 856 

 857 

Figure 4. Performances of discharge in terms of KGE (KGE-Q) against a) relative rainfall bias, 858 

rBIAS; b) rainfall correlation, R; c) relative root mean square error of rainfall, RRMSE, d) KGE-P. 859 

The scores are evaluated for the validation period (2013-2016) for all the 1318 basins.  860 
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 862 

 863 
  864 
 865 

Figure 5. Hydrological performances in terms of KGE values that can be obtained during the 866 

validation period by the three satellite rainfall products for all the basins whose outlet section is 867 

located below over the TMPA area (889), a) without any constrain on the rainfall scores; b) 868 

constraining the module of rBIAS to values lower than 0.2; c) constraining RRMSE to values lower 869 

than 2; d) constraining the module of rBIAS to values lower than 0.2 and RRMSE to values lower 870 

than 2.  871 
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