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Abstract. For most hydroclimatic applications, precipitation and temperature are of particular interest as they strongly affect 10 

the water cycle, can easily be measured and are often readily available from many meteorological stations worldwide. To 

account for precipitation and temperature variability, their co-dependence and their correlation, several multivariate analysis 

methods have been adopted in the hydroclimatic literature in recent years. In line with the steadily rising number of publications 

on this topic, the notion of copula-based probability distribution has also attracted tremendous interest to deal with the 

complexity of compound events in the multidimensional context. A copula is a function that connects a multivariate 15 

distribution to its one-dimensional margins, which allows for a joint distribution of random variables with great flexibility for 

the marginal distribution. However, there seems to be a lack of comprehensive understanding of the fundamental requirements 

of the copula concept such as the strength and significance of correlation between variables, autocorrelation effects and the 

choice of representative copula families, which potentially compromises the robustness of projections of future environmental 

processes and natural hazards. Therefore, by combining a systematic literature review with a specific hydroclimatic case study 20 

in Sweden, we illustrate a practical approach to copula-based modeling, which (1) provides end-users with an overview of 

necessary requirements, statistical assumptions and consequential limitations of copulas, (2) highlights possible pitfalls and 

misconceptions, and (3) offers a decision support framework for the application of copulas to support researchers and decision 

makers in addressing climatological hazards and sustainable development, thereby demystifying what is currently an area of 

great confusion. 25 

1. Introduction 

Water touches every aspect of our lives, from public health to safety, to the foundation of our economy. Alterations to the 

hydroclimatic drivers of the water cycle form a potential threat, as they influence socioeconomic, ecological and climate 

systems (Vogel et al., 2015). In this paper, we adopt the definition of hydroclimatology as the “study of the influence of climate 

upon the waters of the land” originally proposed by Walter Langbein in the 1970’s and later further expanded to include 30 

hydrometeorology (i.e., the land-atmosphere interface) as well as the surface and near-surface water processes of evaporation, 

runoff, groundwater recharge and interception (Wendland, 1987). As such, hydroclimatology encompasses a large number of 
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applications, e.g. (1) the assessment of a changing climate on water resources (including water quantity and quality), (2) the 

analysis of feedback of the water cycle variations on climate change, and (3) the evaluation of anthropogenic impacts such as 

land-use change on local climate conditions and water resources. 35 

For most hydroclimatic applications, precipitation and temperature are of main interest for modeling and future projections as 

both variables can easily be measured and are typically readily available from many meteorological stations worldwide (see 

e.g. NOAA Climate Data Online) or from global gridded databases such as NCEP/NCAR  (Kalnay et al., 1996), ERA-interim 

(Dee et al., 2011) or JRA-55 reanalysis  (Ebita et al., 2011). Both variables also strongly affect the water cycle: precipitation 

as a direct component of the water cycle, and temperature as a proxy for energy availability, which in turn is of key interest 40 

for estimating evapotranspiration as well as snow accumulation and melt, both of which exert influence on the amount and 

timing of runoff. As a result, the spatiotemporal trends of precipitation and temperature greatly affect environmental processes, 

control natural hazards such as floods and droughts, and influence water quality and availability (Alidoost et al., 2019; Ribeiro 

et al., 2019). Therefore, future socio-economic development and sustainable use of water resources is highly dependent on 

reliable representations and modeling of these two variables (Alexandrov and Hoogenboom, 2000; Phiri et al., 2019; Satgé et 45 

al., 2019). 

On top of the natural variability of these meteorological variables, anthropogenic climate change has resulted in more surface 

water being transferred to the atmosphere, increasing the saturation water vapor mixing ratio there (Ashraf Vaghefi et al., 

2014). These processes have exacerbated droughts (Trenberth et al., 2014) and intensified rainfall and flooding events 

(Mangini et al., 2018). To account for precipitation and temperature variability, numerous studies have focused on assessing 50 

these two variables separately at different spatiotemporal scales (Hundecha and Bárdossy, 2005; Maftei et al., 2011; 

Teutschbein and Seibert, 2012). However, such hydroclimatic variables are interconnected and have a combined impact on the 

water balance. Focusing on these variables separately ignores their co-dependence, which  may lead to an insufficient 

characterization of their variability and co-dependence (Hao et al., 2018). Hence, to consider the co-dependence and correlation 

between these two variables, there have been attempts to study them simultaneously in a compound context.  For example, 55 

Benestad and Haugen (2007) examined the joint probabilities of high temperatures and heavy precipitation during spring in 

Norway to evaluate flood hazards. Piani and Haerter (2012) studied compound precipitation and temperature data derived from 

different stations in Germany to assess and correct biases in climate model data by using their joint distribution. Zscheischler, 

Orth, and Seneviratne (2017) used bivariate return periods of precipitation and temperature over Europe to investigate crop 

yield variability. Boeck et al. (2011) explored the combined influence of precipitation and temperature on plant communities 60 

and concluded that the negative effects of a dry spell combined with a heatwave on plant growth and functioning were 

considerably greater than the sum of their individual impacts.  

All these studies highlight the importance of jointly considering the compound effects of precipitation and temperature 

dynamics in hydroclimatic studies. However, an accurate assessment of the joint distribution of these two variables – especially 

in the context of a changing climate - is not straightforward, as their degree of co-dependence can vary with changes in 65 

spatiotemporal scales and for extreme events (Li et al. 2014). For example, Trenberth et al. (2003) argue that at large spatial 
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scales the intensity of extreme precipitation events should increase exponentially with temperature. However, because of the 

influence of local atmospheric circulations at local scales, precipitation and temperature are likely to be weakly correlated in 

many regions (Chou and Neelin, 2004; Colacino and Dell’osso, 1978; Dai and Bloecker, 2019). The strength of precipitation-

temperature correlation is additionally affected by the temporal resolution under consideration. At the annual resolution 70 

AghaKouchak et al. (2014) found a significant negative correlation between anomalies of temperature and precipitation over 

California. At the monthly resolution, Trenberth (2018) found a strong negative correlation between temperature and 

precipitation in the mid-latitude continental regions during summer. However at the daily resolution there is typically weak 

statistical evidence of a link between temperature and precipitation in many regions (Ferrari et al., 2018). 

Despite these limitations at relatively fine spatio-temporal resolutions, several multivariate analysis methods have been 75 

adopted in the hydroclimatic literature in recent years (Fig. 1(a)). A keyword search in Scopus (Burnham, 2006), resulted in 

914 published papers since 1970 until the 1st of June 2020 when combining the terms ‘multivariate’ and ‘hydrology’, and 6,090 

publications when combining the terms ‘multivariate’ and ‘climate’. It should be noted that the total number of papers 

published per year has nearly doubled since 2010 (Fig. 1(a)). These papers utilize a number of different multivariate methods, 

including, for instance, multivariate analysis of variance (Shukla and Gedam, 2019), multivariate regression (Abdulelah Al-80 

Sudani et al., 2019) or principal component analysis (Wang et al. 2019). 

In line with the increasing use of multivariate methods, the application of copula-based probability distributions - a specific 

type of multivariate approaches - has also attracted tremendous interest (Fig. 1(b)) to deal with the complexity of compound 

events in the multidimensional space. The copula concept is particularly advantageous, because it allows for constructing a 

joint distribution of random variables without any constraint on their marginal distributions (Fig. 2) (AghaKouchak et al., 85 

2010). A copula is a function that connects a multivariate distribution to its one-dimensional margins (Schweizer, 1991). It is 

based on the early works of Sklar (1959) and has been widely used in different fields of study such as in finance (Cherubini et 

al., 2013) or in the energy sector (Ghoddusi, 2017). Since the early 2000’s, copula methods have been adopted in hydrological 

modeling, which was triggered by the study of Salvadori and De Michele (2010). Since then researchers have  applied copulas 

to study interactions between a variety of different hydroclimatic variables related to e.g. sediment transport (Shojaeezadeh et 90 

al., 2020), flood hazard (Didier et al., 2019) heatwave mortality (Mazdiyasni et al., 2017) or to study hydrology and climate in 

general (Fig. 1(b)).  

Copulas have been used in both theoretical and applied analyses of hydroclimatic data. Theoretical studies adopted the copula-

based methodology for instance to gain a better understanding of the dependence structures of temperature and precipitation, 

in different parts of the world (Cong and Brady, 2012; Lazoglou and Anagnostopoulou, 2019). Applied studies adopted the 95 

copula-based methodology to examine e.g. agricultural droughts (Wang et al. 2019; Ribeiro et al. 2019) or joint effects of 

temperature and precipitation extremes on vegetation growth (Alidoost et al., 2019; Cong and Brady, 2012). In addition, 

numerous climate-change impact studies applied copulas to bias-correct future projections by global or regional climate models 

(Piani and Haerter 2012; Li et al. 2014; Gennaretti, Sangelantoni, and Grenier 2015; Vrac and Friederichs 2015; Rana, 
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Moradkhani, and Qin 2017; Chen et al. 2018; Li and Babovic 2019; Mesbahzadeh et al. 2019) even though the usefulness of 100 

multivariate bias-correction methods for hydrological purposes has recently been put into question (Räty et al., 2018).    

Despite the growing number of applied studies that adopt copulas, practitioners have to rely on statistical literature, which 

often focuses on the theoretical concept behind copulas (e.g., Genest, Rémillard, and Beaudoin 2009 or Berg 2009) while only 

a few papers also relate to practical challenges encountered in hydroclimatic research (e.g., Dupuis 2007). Hence, there seems 

to be a lack of comprehensive documentation in the scientific hydroclimatic literature that (1) provides an overview of 105 

necessary requirements, statistical assumptions and consequential limitations of copulas, (2) clarifies some of the common 

misconceptions around copulas, and (3) offers clear guidelines on how to implement copulas, in particular for studies of future 

hydroclimatic impacts.  

Accordingly, this paper aims at filling this gap and serves as an overview of the state of the art of using copulas in 

hydroclimatology for practitioners interested in adopting this method for their research. We aim to illustrate a practical 110 

approach on copula-based modeling of hydroclimatic variables exemplified by precipitation and temperature. We introduce 

copula concept and bring forward a step-by-step copula approach (section 2). Based on a systematic literature review and a 

case study in Sweden we also explain common pitfalls and misconceptions (section 3), and provide a decision support 

framework for applying copulas (section 4) to support researchers and decision makers in addressing climatological hazards 

and sustainable development.  115 

2. Step by step copulas 

2.1. What is a copula? 

A copula is a mathematical function that couples marginal distributions and represents the joint probability distribution (Fig. 

2). Copulas have been introduced in the early work of Sklar (1959), who showed that any multivariate joint cumulative 

distribution function (CDF) could be specified as a copula function of the margins, assuming that the margins are continuous, 120 

time-independent and uniformly distributed on the [0, 1] interval. Therefore, if 𝐻 is an m-dimensional cumulative distribution 

function with one-dimensional margins denoted as 𝐹1, 𝐹2, … , 𝐹𝑚, then an m-dimensional copula (C) exists such that: 

𝐻(𝒙𝟏, 𝒙𝟐, … , 𝒙𝒎) = 𝐶(𝐹1(𝒙𝟏), 𝐹2(𝒙𝟐), … , 𝐹𝑚(𝒙𝒎))                                                                                                                   (1) 

for which (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒎) are vectors of inputs. 

If  𝐹1(𝒙𝟏) = 𝑢1 , 𝐹2(𝒙𝟐) = 𝑢2 and 𝐹𝑚(𝒙𝒎) = 𝑢𝑚, the copula density function, c can be derived as (Shojaeezadeh et al., 2018): 125 

 𝑐(𝑢1, 𝑢2, … , 𝑢𝑚) =
𝜕𝑑𝐶(𝑢1,𝑢2,…,𝑢𝑚)

𝜕𝑢1…𝜕𝑢𝑚
                                                                                                                                             (2) 

Then, the joint density function can be decomposed as: 

𝑓(𝒙𝟏, 𝒙𝟐, … , 𝒙𝒎) = 𝑐(𝑢1, 𝑢2, … , 𝑢𝑚) ∏ 𝑓𝑘(𝒙𝒌)   𝒎
  𝒌=𝟏                                                                                                                (3) 

where 𝑓𝑘 denotes the density function of the 𝑘th dimension.  
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Although copulas can be defined for any number of variables 𝑛 (so-called n-dimensional copulas), two-dimensional copulas 130 

that link only two variables, such as temperature and precipitation, are much more common in hydroclimatic applications and 

therefore in the focus of this paper. In the following sections, we give a brief overview of both empirical and theoretical copula 

distributions. 

2.2. Empirical copula 

To capture the underlying joint probability between two random variables, the joint rank correlation of the variables, termed 135 

empirical copula (Genest and Favre, 2007), needs to be  derived. The empirical bivariate copula is defined as the discrete 

function 𝐶𝑛 given by: 

𝐶𝑛 (
𝑖

𝑛
,

𝑗

𝑛
) =

{𝑟1𝑖≤𝑅1∧𝑟2𝑗≤𝑅2}

𝑛
                                                                                                                                                          (4) 

where 𝑟1 and 𝑟2 denote the order statistics of the sample and provides the cardinality of the subsequent set and 𝑖 and 𝑗 label the 

individual sample elements. The result would be the joint CDF of uniformly distributed marginal (Charpentier et al., 2007). 140 

According to Eq. (4), the empirical copula can be interpreted as the cumulative distribution of rank-transformed data.  

2.3. Theoretical copula families 

The governing pattern of the empirical copula can be used to guide decisions towards suitable theoretical copulas or so-called 

copula families. The two most widely used copula families in hydroclimatic modeling studies are Elliptical and Archimedean 

copulas. These two families are different in complexity, tail behaviour, dependence structure and their theoretical parameter 145 

estimation method (Sadegh et al., 2017). In order to demonstrate how these families behave in shape and tail dependence, 1000 

normally-distributed points with Pearson correlation coefficient, 𝜌 = 0.75 were generated. Thereafter, the five most widely 

used copulas were fitted to the data (Fig. 3).  

It should be noted that the parameters of bivariate copulas reflect the strength of mutual dependence between two variables 

(e.g., between temperature and precipitation). To account for the degree of dependence between two variables, a critical 150 

assessment of their correlation is essential. The strength of dependence can be quantified through empirical measures, including 

Pearson’s correlation coefficient ρ, Kendall’s 𝜏, or Spearman’s S. 

Pearson correlation (Pearson 1920) represents the linear correlation between 𝑥1and 𝑥2 as follows: 

𝜌𝑥1𝑥2
=

𝐶𝑜𝑣(𝑥1,𝑥2)

𝜎𝑥1𝜎𝑥2

                                                                                                                                                                              (5) 

Kendall’s 𝜏 (Kendall 1938) and Spearman’s 𝑆 (Spearman 1904) are measures of rank correlation between the ranks of two 155 

variables, which can be expressed as: 

 𝜏 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠−𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠

𝑛(𝑛−1)

2

                                                                                                (6) 

𝑆 = 1 −
6 ∑ 𝑑𝑖

2𝑛
1

𝑛(𝑛2−1)
                                                                                                                                                                      (7) 
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where 𝑑𝑖 is the difference between two ranks and 𝑛 is the number of observations. These correlation measures can further be 

used as a guide to estimate copula parameters for different copula families. 160 

2.3.1. Archimedean copulas  

Archimedean copulas are flexible tools to capture various dependence structures, e.g. concordance and tail dependence (Hofert, 

2008). This makes them especially suitable for the modeling of extreme events. 

The general form for Archimedean copulas is:  

𝐶(𝑢1, 𝑢2; 𝜃)=𝜓−1(𝜓 (𝑢1) +   𝜓(𝑢2)), 𝑢 ∈  [0, 1]                                                                                                                    (8) 165 

where 𝜃 is the selected Archimedean copula parameter,  𝜓  is defined on (0 1] is a continuous strictly decreasing convex 

function, known as the generator function and its pseudo-inverse 𝜓−1 (Genest and Rivest, 1993). 

Aloui, Ben Aïssa, and Nguyen (2013) distinguished between three different types of Archimedean copulas (Fig. 3): 

The Gumbel copula (Gumbel 1960) is an asymmetric copula with higher probability concentrated in the upper tail. It is given 

by: 170 

𝐶(𝑢1, 𝑢2) = 𝑒𝑥𝑝 {−[(−𝑙𝑛𝑢1)𝜃 + (−𝑙𝑛𝑢2)𝜃]
1

𝜃}                                                                                                                      (9) 

The Clayton copula (Clayton 1978) has higher probability in the lower tail and is expressed as: 

 𝐶(𝑢1, 𝑢2) = (𝑢1
−𝜃 + 𝑢2

−𝜃 − 1)
−1

𝜃                                                                                                                                         (10) 

The Frank copula (Frank 1979) tends to have lower density in the tails compared to Clayton and Gumbel copulas. Also, it is 

capable of retaining negative correlations. Frank copula is defined as:  175 

𝐶(𝑢1, 𝑢2) =
−1

𝜃
𝑙𝑛 (1 +

(𝑒𝑥𝑝(−𝜃𝑢1)−1)(𝑒𝑥𝑝(−𝜃𝑢2)−1)

𝑒𝑥𝑝(−𝜃)−1
)                                                                                                             (11) 

In the Archimedean copulas, the copula parameter 𝜃 can be derived from Kendall’s 𝜏 (Allen et al., 2017). Depending on the 

type of Archimedean copula, parameter 𝜃 takes different values and has different relationships to Kendall’s τ (Table 1). 

After estimating 𝜃 based on Kendall’s τ (Table 1), the copulas can be computed using their respective formulas.  

2.3.2. Elliptical copulas 180 

Elliptical copulas are widely used in hydroclimatic modeling, as they are symmetric and capable of representing positive and 

negative correlation. They are, however, less suitable to analyse and model hydroclimatic extremes, when there is evidence of 

a sharp tail dependence. 

The governing function for Elliptical copulas is: 

 𝐶(𝑢1, 𝑢2) =  Φ(Φ−1(𝑢1), Φ−1(𝑢2))                                                                                                                            (12) 185 

where Φ is a suitable multivariate distribution and Φ−1  denote the inverses of univariate marginal distributions. Several 

methods varying in accuracy and complexity have been suggested to estimate the associated copula parameters for Elliptical 
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copulas. For example, Aas (2004) suggested a Monte-Carlo-based method for parameter estimation, whereas Weiß (2011), 

used a Maximum likelihood approach.  

The two most widely used types of Elliptical copulas are Gaussian and student-t copulas.  190 

The Gaussian copula is expressed as:  

𝐶(𝑢1, 𝑢2) = Φ(Φ−1(𝑢1), Φ−1(𝑢2)) = ∫ ∫
1

2𝜋√1−𝜃2
exp (−

𝑥1
2−2𝜃𝑥1𝑥2+𝑥2

2

2(1−𝜃2)
) 𝑑𝑥1 𝑑𝑥2

Φ−1(𝑢2)

−∞

Φ−1(𝑢1)

−∞
                                    (13) 

where Φ  is the standard bivariate normal distribution with linear correlation coefficient  𝜃   and is restricted to the 

interval (−1  1). There is no closed form to estimate the associated copula, but there are numerous ways to estimate it 

numerically (Aloui et al., 2013).  195 

The Student-t copula is given by:  

𝐶(𝑢1, 𝑢2) = Φ(Φ−1(𝑢1), … , Φ−1(𝑢2)) 

= ∫ ∫
1

2𝜋√1−𝜃2
 (−

𝑥1
2−2𝜃𝑥1𝑥2+𝑥2

2

𝑣(1−𝜃2)
)−

𝑣+2

2 𝑑𝑥1 𝑑𝑥2
𝑡𝑣

−1(𝑢2)

−∞

𝑡𝑣
−1(𝑢1)

−∞
                                                                                               (14) 

The Student-t copula is characterized by a higher density in tails and an increased probability of joint extreme events compared 

to the Gaussian copula (Aas, 2004). This is reflected by the added 𝜐  parameter, which represents the degrees of 200 

freedom.  𝑡𝑣
−1(𝑢) denotes the inverse of the CDF of the standard univariate Student-t distribution. By increasing the value of 

𝜐, the co-dependence strength in the tails will decrease.   

Embrechts, Mcneil, and Strauman (1999) estimated the Elliptical copula parameter from the rank-based Kendall’s 𝜏  or 

Spearman’s 𝑆. Later, Aas (2004) showed that the co-dependence structure for Elliptical copulas can be presented by linear 

(Pearson) correlation. Correspondingly, their copula parameter   can either be estimated as being equal to the linear (Pearson) 205 

correlation or derived from Kendall’ τ or Spearman’s 𝑆. For more details on the corresponding equations, we refer the readers 

to Aas (2004). 

2.4. Copulas as a basis for computing conditional distributions 

In a bivariate case, copulas can be used to compute the conditional distribution of one variable given a specific value of second 

variable. An example is the estimation of the conditional probability distribution of precipitation, given one particular 210 

temperature probability and the known joint probability distribution. 

The conditional probability of 𝑥2, given the occurrence of 𝑥1, can be shown as: 

𝑓(𝑥2|𝑥1) =
𝑓(𝑥1,𝑥2)

𝑓(𝑥1)
                                                                                                                                       (15) 

where 𝑓(𝑥1, 𝑥2) gives the joint density of 𝑥1 and 𝑥2, while 𝑓(𝑥1) gives the marginal density of 𝑥1. Considering Eq. (3) the 

conditional copula function is reorganized as: 215 

𝑓(𝑥2|𝑥1) =
𝑐(𝑢1,𝑢2)𝑓(𝑥1)𝑓(𝑥2)

𝑓(𝑥1)
= 𝑐(𝑢1, 𝑢2)𝑓(𝑥2)                                                                                                             (16) 
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In practice, the conditional distribution can be obtained via Monte Carlo simulation, which is a numerical approach that relies 

on repeated random sampling (Aas, 2004). In order to compute the conditional probability from the copula, the following steps 

should be taken (Salvadori et al., 2007): 

 Generate two independent sets of random variables 𝑢1 and 𝑟 on (0,1) domain. 220 

 Set 𝑢2 = 𝑐𝑢1
−1(r) 

 Repeat until the latter is solved. 

It is noteworthy to mention that in case of the Elliptical copulas, the conditional probability, can be calculated by Cholesky 

decomposition of the Elliptical copula parameter (Li and Babovic 2019).  

2.5. Performance measures for selecting a suitable copula family 225 

After fitting copulas to the data, some performance measures are used to analyze the goodness of fit obtained from different 

copula families and parameters. This can be done by comparing cumulative distributions of empirical and theoretical copulas 

either parametrically or non-parametrically (Genest et al., 2009). The Cramér von Mises (𝑆𝑛) (Eq. 17) and Kolmogorov 

Smirnov (𝐷𝑛) (Eq. 18) statistics are two of the widely used performance measures for copula parameter estimation (Madadgar 

and Moradkhani, 2014). 230 

𝑆𝑛 = ∑ |𝐶𝑛(𝑥) − 𝐶𝜃(𝑥)|2𝑛
𝑖=1                                                                                                                                                               (17)                                                                                                                                                                        

where 𝐶𝑛 is the Empirical joint distribution and 𝐶𝜃 is the fitted copula. 

𝐷𝑛 = sup|𝐶𝑛(𝑥) − 𝐶𝜃(𝑥)|                                                                                                                                             (18) 

in which 𝑠𝑢𝑝 is the supremum of the distances at point 𝑥. 

However, it is also important to evaluate the p-values of the applied performance measures (Berg, 2009; Genest et al., 2009). 235 

The p-value of Cramér von Mises or Kolmogorov Smirnov can be found by bootstrapping via Monte Carlo approach by 

following the steps proposed by Genest, Rémillard, and Beaudoin (2009). The null hypothesis of the test is the acceptance of 

the parametric copula. For a particular copula, the p-value is sufficient to determine the acceptance or rejection of the null 

hypothesis with the significance level of 𝛼, but in a group of different acceptable copulas, the best alternative is the one with 

the smallest 𝑆𝑛 or 𝐷𝑛 and the greatest p-value (Madadgar and Moradkhani, 2014). 240 

In assessing the performance of copula models, using only one performance measure can be misleading, therefore it is 

recommended to use an ensemble of measures (Sadegh et al., 2017). The Nash-Sutcliffe Efficiency (𝐸𝑁𝑆) (Eq. 19) and Root 

Mean Square Error (𝐸𝑅𝑀𝑆) (Eq.20) are two widely used performance measures in hydroclimatic applications, which can be 

adopted in copula model selection as well.  

𝐸𝑁𝑆 = 1 −
∑ |𝐶𝑛(𝑥)−𝐶𝜃(𝑥)|2𝑛

𝑖=1

∑ |𝐶𝑛(𝑥)−𝐶�̅�(𝑥)|2𝑛
𝑖=1

                                                                                                                                         (19) 245 

𝐸𝑅𝑀𝑆 = √
∑ |𝐶𝑛(𝑥)−𝐶𝜃(𝑥)|2𝑛

𝑖=1

𝑛
                                                                                                                                                       (20) 
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3. Common issues, misconceptions and pitfalls 

To identify common issues, misconceptions and pitfalls in the application of copulas in the existing hydroclimatic literature, a 

systematic literature review was conducted. We reviewed all articles returned from the Scopus search engine using the 

keywords “Copula + Precipitation + Temperature”. As of 1st of June 2020, these keywords resulted in a list of 85 papers, of 250 

which 16 were not accessible due to missing permissions. To examine the applied copula methods and underlying assumptions, 

the remaining 69 publications were investigated to evaluate how physical characteristics had been considered in these 

publications and if they fulfilled the statistical requirements necessary to adopt a copula framework. In order to do so, the 

following six aspects were assessed in detail.  

Physical characteristics:  255 

1- What is the spatiotemporal scale of the study? 

2- Does the paper analyse and interpret the correlation between temperature and precipitation? 

Statistical requirements: 

3- Does the paper consider autocorrelation within each of the variables (i.e., autocorrelation of temperature respective 

to autocorrelation of precipitation)? 260 

4- Does the paper consider zero-precipitation, e.g. by introduction of a precipitation threshold and deals with data 

with the same rank? 

5- Does the paper reflect on the significance of correlation and stationarity issue? 

6- Are several copula families fitted and checked for errors?  

 265 

For each of these aspects, we first explain its significance. Thereafter, we demonstrate potential consequences, if not properly 

addressed, based on a real hydroclimatic case, namely the Vattholma river catchment in Southcentral Sweden (Fig. 4) close to 

the city of Uppsala and approximately 70 km north of the capital Stockholm. For this catchment, we constructed a copula of 

observed temperature and precipitation data for the climate normal periods 1961-1990. Daily precipitation and temperature 

data were downloaded from a freely available database (www.vattenwebb.smhi.se) provided by the Swedish Meteorological 270 

and Hydrological Institute (SMHI). According to this data, the catchment is characterized by a warm-summer continental 

climate with an average annual temperature of 5.2°C and an annual precipitation sum of 633 mm. 

3.1. Spatiotemporal scale 

First, each paper was scanned for the spatial scale of the investigated study site(s). Roughly 56% of the reviewed papers were 

based on meso- to large-scale studies (i.e., > 300 𝑘𝑚2), while the remaining 44% were conducted on small scales (i.e., < 300 275 

𝑘𝑚2). The spatial scale is of importance, because it affects some of the statistical requirements of copulas that are explained 

further below.  
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Our showcase catchment Vattholma has an area of 293 𝑘𝑚2 , thus, can be considered small-scale. The catchment is 

predominantly flat with altitudes ranging from 25 to 65 meters above sea level. It is mostly covered by forest (81%), while the 

remaining area includes 10% lakes/wetlands, 7% open land and 2% populated areas (Fig. 4). 280 

In the second step, we checked for the temporal resolution (i.e., hourly, daily and monthly) of the published literature. We 

found that only 3% (2 publications) considered hourly values of temperature and precipitation. Most (66%) used daily values, 

whereas 31% considered monthly values. The temporal resolution, similar to the spatial scale, is crucial when it comes to some 

of the statistical properties such as correlation and autocorrelation. 

3.2. Correlation 285 

Copulas are built on the co-dependence between variables and it is crucial to examine the correlation between the variables 

(Eqs. 5-7). For precipitation and temperature, the co-dependence often varies regionally and depends on the spatial scale at 

which the data are recorded. It is also important to check for significance of correlation because it allows to examine if 

correlation strength is independent from the selected sample. But it is not always possible to find a significant statistical 

correlation between precipitation and temperature at a given scale (Serinaldi, 2016). 290 

Out of the 69 reviewed papers, 29% did not indicate the strength or significance of their correlation by any of the 

aforementioned correlation measures. 25% mentioned that their data shows some degree of correlation, but did neither specify 

the strength nor the significance nor any copula parameters calculated based on the correlation value. Less than half of all 

papers (46%) transparently stated the correlation strength and represented the correlation of the data either graphically or with 

one of the dependence empirical measures. Only 23% presented the strength and discussed the statistical significance of the 295 

correlation, e.g. by checking the p-value of their correlation measure.  

For the Vattholma catchment, the correlation strength depends on the temporal resolution. We also checked the correlation 

significance and demonstrate that in case of Vattholma catchment there are months in which the correlation is not significant 

at the 5% level, thus cannot be considered as reliable correlation between variables. Furthermore, in the daily resolution the 

correlation is generally weaker than monthly resolution (Fig. 5(a), Lines 1 and 2).  As the Pearson correlation was weaker 300 

during winter, we considered the co-dependence structure to be addressable in the summer. We choose to use the daily 

resolution to further generate copula co-dependence structure, because daily data can readily be used for finer resolution 

hydrological purposes (e.g., bias correction, daily runoff estimation).  

3.3. Stationarity of correlation   

Copulas can also be used for multivariate frequency analyses to calculate joint return periods of extreme variables as e.g. 305 

rainfall intensity and duration of individual precipitation events or other variables (e.g., Salvadori and De Michele 2010 or 

AghaKouchak et al. 2014). In these cases, copulas are established for a set of available data within a certain time frame to 

draw conclusions about the frequency of certain events that depend on the combined influence of two variables such as 

temperature and precipitation in case of droughts. However, in these cases stationarity is of importance, because findings from 
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such an analysis are commonly used for future risk analyses. Whether or not this underlying stationarity assumption is actually 310 

met, is subject to debate (e.g.,  McCarl, Villavicencio, and Wu 2008; Vaze et al. 2010 or Lins and Cohn 2011). As McCarl et 

al. (2008) framed it, stationarity implies that “natural systems fluctuate within an unchanging envelope of variability”. 

However, given the scale of ongoing climate change and the projected changes in the climate system that we are likely to face 

in the future, the assumption of stationarity is possibly not met, which could affect the applied risk measures (Cooley, 2013). 

In the case of copulas, if the underlying idea is to draw conclusion for potential futures, it is crucial to check for changes in the 315 

correlation strength over time and the statistical significance. In other words, when the correlation is highly sensitive to the 

selected time period, it is an indication of a non-stationary behaviour. Nevertheless, we found only 5 of all 69 reviewed papers 

(7%) touching upon the assumption of stationarity of correlation or discussing changes in correlation over time.   

To check if the correlation was stationary in our Vattholma showcase, we followed a random selection technique: We first 

selected a sample of 10 random years (preserving the order of days within a year but without necessarily selecting consecutive 320 

years) from the 30 years period.  Thereafter, we computed the correlation between daily resolution variables within each month 

in the chosen sample. We repeated this procedure 1000 times and found that in many months, correlation was changing 

significantly across different sets of 10 years (Fig. 5(b)). For example, in October and November, the correlation varied from 

positive to negative values. We also assessed the significance of the correlation in each month by checking the average p-value 

of the 1000 samples. In June and July, the correlation had the lowest average p-value and is relatively strong, therefore it could 325 

be concluded that correlation within these months was significant. We adopted a copula framework on July, because it has 

significant correlation at both daily and monthly resolutions (Fig. 5(a)-(b)). 

3.4. Autocorrelation  

Autocorrelation describes how time series are dependent on a delayed copy of themselves. According to Cong and Brady 

(2012), the presence of autocorrelation reduces the efficiency of copula, because it boosts the variances of residuals and 330 

estimated coefficients. In order to benefit from the copula concept, variable sets should be time-independent (i.e., not feature 

autocorrelation) (Mao et al., 2015). 

In some studies, copulas have been applied to autocorrelated data using so-called serial copulas (Genest and Rémillard, 2004; 

Ghoudi and Rémillard, 2004) or autocopulas (Rakonczai et al., 2012). But the mathematical procedure to drive these copulas 

is quite demanding and further uncertainties may emerge (Rakonczai et al., 2012).  In contrast, other papers argued that copulas 335 

are still applicable in case of only low-degree (removable) auto-correlation in the time series (Laux et al., 2011; Vogl et al., 

2012). 

Therefore, it is important to consider the degree of autocorrelation in the studied data. However, 75% of the reviewed papers 

did not mention if their data exhibited autocorrelation. The remaining 25% did check for autocorrelation, but only about half 

of those addressed it by removing it or by bootstrapping. 340 

For the Vattholma catchment, the autocorrelation function (ACF) for precipitation (Fig. 6(a)) and temperature (Fig. 6(b)) in 

July indicates some autocorrelated behavior. In order to account for autocorrelation, Laux et al. (2011) suggested using a first-
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order autoregressive model AR(1) to synthesize time-dependence in the time series. Then the synthesized autocorrelated data 

is subtracted from the original set. We followed this procedure to create a data set free from autocorrelation, which we validate 

by plotting the ACF of the residuals (Fig.  6(c)-(d)), indicating that the data is now time-independent and can be used in the 345 

copula approach.  

3.5. Correlation for data with the same rank (dry days) 

Some studies have concentrated on the joint distribution of precipitation and temperature on wet days (i.e., Piani and Haerter 

2012; Li et al. 2014; Räty et al. 2018). In other words, the joint distribution has been constructed between precipitation values 

larger than zero and the associated temperature on the same day. As mentioned earlier, copulas must be built on continuous 350 

sets of variables, which is shown in Eq. (4) and is also reflected in the method for constructing empirical copula, which is 

based upon rank dependence between variables (see section 2.2). Therefore, data points with the exact same precipitation (i.e., 

most commonly dry days with zero precipitation) are problematic as they lead to several ranks associated with temperature 

but only one rank for zero precipitation. Depending on the region studied, there can be a considerable number of zero-

precipitation (dry) or drizzle days. Therefore, a precipitation threshold needs to be defined, below which all data points should 355 

be removed. Removing such data can often eliminate a large portion of the precipitation-temperature data set, especially in 

drier regions. Accordingly, some efforts have been made to control data which have the same rank by adopting some statistical 

methods. For instance, Salvadori, Tomasicchio, and D’Alessandro (2014) suggested a jittering algorithm before computing 

the copula parameters, in order to perturb the data that have the same rank. Regardless of the chosen method to deal with data 

with the same rank, an added post-processing step is probably needed that also handles the temperature data points that are not 360 

considered in the construction of the copulas because they fall below the precipitation threshold. This can be considered as a 

source of added uncertainty, especially if the data is to be later used for bias correction or crop yield estimation. Therefore, we 

suggest that each published study transparently explains what part of the data has been used for constructing the copula (e.g., 

only days with precipitation above zero or some threshold) and how the remaining data has been treated. 

However, our literature review revealed that 76% of the publications did not mention this particular issue. Only 24% of the 365 

studies transparently stated that dry/drizzle days are excluded, and only 9% explained how the remaining dry days were 

handled. For example Li and Babovic (2019) later handled the eliminated data points by scaling the associated temperature 

distribution to the full range of temperature data. This can be considered an applicable alternative, but the added uncertainties 

should not be neglected. Of course, it should be mentioned that 21% of the reviewed papers focused on the extreme part of the 

joint distribution, therefore there was no need to focus on the complete range of data and the effect of neglected variables. 370 

3.5.1. Influence of geography, spatial scale and temporal resolution 

It should be noted that whether or not the data includes zero-precipitation or drizzle days is largely dependent on the study 

region, the spatial scale and the temporal resolution, e.g. arid regions or smaller domains with few measurement stations. In 

arid regions the occurrence of data points with no precipitation is considerably higher. Similarly, at higher temporal resolution 
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(e.g., hourly or daily), more data points will fall below the threshold.  For example, in the Vattholma catchment, the number 375 

of wet days varied from month to month, ranging from 42% to 64%. We here applied a precipitation threshold of 0.1 mm to 

remove drizzle days.  

Excluding zero-precipitation or drizzle days affects the correlation between precipitation and temperature. Since a significant 

correlation is the basis for applying copulas, it is essential to re-check the correlation after removal. In our showcase Vattholma, 

for daily resolution data, correlation in the entire 30-year period changed only for some months after removing drizzle days 380 

(Fig. 5(a), line 3). The correlation in June-August was highly affected by removing days without precipitation as there were 

more dry days in these months.   

3.6. Selecting suitable copula families  

As mentioned earlier, in order to assess the copula performance, a validation of the copula model compared to the empirical 

joint distribution is vital. In the reviewed literature, 15% of the papers used the empirical copula as the co-dependence structure, 385 

therefore it was not necessary to validate the fitted copula families. However, 28% of all papers fitted a copula on the data 

without documenting any performance measures. 57% checked for the goodness of fit of different copulas using at least one 

performance measure.  

We here demonstrate how such performance measures can be applied practically. For the Vattholma case study, different 

copula families were adopted to construct the joint copula between daily temperature and daily precipitation data in July. Since 390 

these variables were negatively correlated, the Student-t, Gaussian and Clayton copulas were selected as potentially suitable 

copula families, because they are capable of addressing negative correlation as well. Thereafter, the fitted copulas were visually 

compared to the empirical copula at (0 1] scale (Fig. 7(a)).     

After transforming to the original scale, corresponding precipitation and temperature and their density plots were estimated 

(Fig. 7(b)). Thereafter, we computed the earlier-described set of performance measures: 𝐸𝑅𝑀𝑆, 𝐸NS, Sn and Dn statistic (Table 395 

2). We also checked for the significance of calculated Sn at a significance level of α = 0.05. Three of these measures (i.e., 

𝐸𝑅𝑀𝑆, 𝐸NS and Dn) resulted in the same ranking of the copulas, namely the Student-t copula having the best fit and the Clayton 

having the worst. Only the Sn criterion ranked the Gaussian copula first (Table 2).   

Here, evaluation of copulas by 𝐸𝑅𝑀𝑆 or 𝐸NS did not reveal the weak performance of Clayton copula that is shown by the other 

performance measures, underlining the need of assessing the goodness of fit by multiple performance measures. 400 

4. Decision support framework for applying copulas  

Properly accounting for the joint distribution of precipitation and temperature is of great importance for a range of different 

hydroclimatic applications. Yet, we highlighted a number of common issues, misconceptions and pitfalls that need careful 

handling to ensure an adequate, consistent and transparent use of copulas in hydroclimatology. Below, we briefly outline a 

stepwise decision support framework (Fig. 8) for hydroclimatic copula applications with the goal of preventing users from 405 

stepping into the many statistical traps that copulas conceal. The proposed decision support framework has been developed to 
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minimize the incorrect application of copulas and to ensure reliable and comparable results, by guiding the end user through 

six generic steps (Fig. 8) that should typically be adopted before and during implementation of the copula approach, and by 

elucidating different alternatives that can be undertaken.  

For each step in the framework (Fig. 8), in-depth explanations, mathematical equations, common pitfalls and scientific 410 

references for the various associated tasks can be found in the previous sections. A short narrative of each step is provided 

here: Prior to constructing bivariate copulas, it is worth reflecting on whether the two involved variables are controlled by 

related driving forces that could, at a relevant spatiotemporal scale, lead to a dependence structure between them (section 3.1).  

If so, their correlation can further be assessed with a particular focus on underlying key assumptions (section 3.2). In cases 

where stationarity is relevant, it is crucial to investigate the correlation over time (section 3.3). Prior to implementation of the 415 

copula approach, it is further vital to test for autocorrelation of the variables and potentially remove any existing serial 

correlation (section 3.4). To construct an empirical copula based upon rank dependence between variables, the variables need 

to be sorted and ranked, which allows to detect data points with the same ranks that cannot be included when constructing the 

copula and that need to be handled separately (section 3.5). Thereafter, the correlation value can be used to estimate copula 

parameters for different families. The fitted copula families are then compared to the empirical copula with help of one or 420 

more performance measure to decide on the best-fitting copula family and type (section 3.6). 

5. Concluding remarks 

This paper provides an overview of the state of the art of using copulas in hydroclimatology and highlights necessary 

requirements, statistical assumptions and limitations of using copulas in hydroclimatic studies. Based on a systematic literature 

review, we identified common pitfalls and misconceptions, and highlighted ways to avoid them by providing a showcase study. 425 

We would like to mention that copula modeling, similar to any other modeling effort, is associated with a range of uncertainties 

stemming from observation errors, limited observations, and copula model structural and parameter uncertainty, among others, 

that translate into joint probability estimates and other derived inferences that should be considered (Sadegh et al., 2018). 

In our study, two general issues emerged. Firstly, important steps for deriving copulas (e.g., handling of precipitation-free 

days) are often not reported, which makes many studies not reproducible. Secondly, key statistical assumptions required by 430 

copulas (e.g., significance and stationarity of correlation or absence of autocorrelation) are often not tested, which could 

severely undermine the credibility of certain study conclusions. Considering the growing interest in copulas in hydroclimatic 

applications, we emphasize the need to address these issues and provide a visual decision support framework to foster the 

transparency and reproducibility of scientific publications, while at the same time reducing the risk for inconsistent or even 

incorrect use of copulas in hydroclimatic research.  435 

Although the framework has been specifically developed for temperature-precipitation copulas, it is anticipated that it can be 

easily applied to a wide range of hydroclimatic research studies. By breaking down the process into six generic steps and 

providing short and simple narratives, the framework can to a large extent easily be adopted for other pairs of (hydroclimatic) 
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variables to construct bivariate copulas, thereby supporting researchers and decision makers in addressing climatological 

hazards and sustainable development.  440 
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Figures 635 

 

 

Figure 1. Number of annually published peer-reviewed papers listed by Scopus (a) when combining the search term ‘multivariate’ 

with either ‘hydrology’ (beige bars) or ‘climate’ (turquoise bars), and (b) when combining the search term ‘copula’ with either 

‘hydrology’ (beige bars) or ‘climate’ (turquoise bars). 640 
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Figure 2. Schematic visualization of the empirical two-dimensional copula (surface) and its relation to the marginal cumulative 

distribution functions.  
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Figure 3. Illustration of two widely used copula families (Archimedean and Elliptical) and their common sub-types. 1000 normally-645 
distributed points with Pearson correlation of ρ=0.75 were randomly generated and transformed into uniform margins 𝐔𝟏 and 𝐔𝟐 

and plotted in two-dimensional space. 
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Figure 4. Overview of the Vattholma catchment, with its outlet being located at 60.0194°N and 17.7307°E.  650 
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Figure 5. Linear correlation between temperature and precipitation: (a) Comparison of different temporal resolutions. Filled 

markers indicate significance at 0.05% significance level. (b) Daily resolution correlation based on 1000 samples of 10 randomly 

drawn years from a 30 years period. Boxes in brown represent months with the lowest average p-value (here below 0.001). 655 
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Figure 6. The autocorrelation function (ACF) for daily precipitation (a) and temperature (b) in July compared to the precipitation 

residuals (c) and temperature residuals (d) after removing autocorrelation from the data. 660 
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Figure 7. Copulas for daily precipitation and temperature in July in the Vattholma catchment. (a) Comparison of three fitted copulas 

with the joint empirical cumulative distribution function (CDF) of transformed values.  The numeric labels on the curves correspond 

to the cumulative joint probability of 𝐔𝟏and𝐔𝟐.  (b) Joint copula distribution of the original data and different copula families.  Each 

panel shows a scatterplot of daily precipitation (mm) and daily average near-surface temperature (℃) and the associated marginal 665 
probability density function.  
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Figure 8. Decision support framework for adopting the copula approach.  Each step (beige boxes) refers to a subheading of section 

3, which brings up the statistical requirements and general assumptions that should be fulfilled. 
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Tables  

Table 1. Archimedean copula parameter range and relationship to Kendal’s τ. 
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Table 2. Different copula families and their performance measures as well as their ranking (numbers in parenthesis) in being able 

to represent the empirical copula. Families with the highest rank are shown in bold.   675 

Performance measure 
copula family 

Gaussian Student-t Clayton 

𝐸𝑅𝑀𝑆  (ranking) 0.3252 (2)  0.318 (1) 0.4062 (3) 

𝐸NS (ranking) 0.9956 (2) 0.996 (1) 0.9931 (3) 

Sn (ranking) 8.2100 (1) 9.5648 (2) 62.171 (3) 

Dn (ranking) 0.0199 (2) 0.0197 (1) 0.0341 (3) 
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