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Introduction

This is a particularly interesting work that concerns a very active topic of research in
the hydrological domain (and beyond). Below there are a few comments that | hope
the Authors might find useful, aiming to improve the quality of the manuscript, as well
as better highlight some common misconceptions and pitfalls that regard particularly
the case of Gaussian copula.

Comments
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1. L88-89. The Authors write: “Since the early 2000’s, copula methods have been
adopted in hydrological modeling, which was triggered by the study of Salvadori and
De Michele (2010).” With above sentence in mind | would like to bring to the Authors
attention the works of Favre et al. (2004) and Salvadori and De Michele (2004), which
if | am not mistaken are the first applications of copulas in hydrological domain (chrono-
logically preceding the one already mentioned in the manuscript).

2. L90-101. In this paragraph the Authors mention numerous works that have used the
notion of copulas for the development of various methods in hydrological domain. In
this extent | think that it is useful to mention that copulas have also been used for the
generation of synthetic hydroclicmatic data, such as synthetic time series of rainfall,
runoff, etc. (an important task required by many uncertainty-aware methods/models
driven by stochastically-generated data). As in the case of random variables and mul-
tivariate distributions, also in this case copulas offer the necessary flexibility for mod-
elling/simulation of non-Gaussian processes. For instance see the works of Lee and
Salas (2011), Chen et al. (2015) and Hao and Singh (2013), as well as recent ap-
proaches in hydrological domain, based on the Gaussian copula (a construct related
with the Nataf’s joint distribution; see Lebrun and Dutfoy (2009), and references be-
low for a discussion in a hydrological context) that allow the parsimonious simulation
of multivariate stationary and cyclostationary processes with any marginal distribution
and correlation structure (Kossieris et al., 2019; Tsoukalas et al., 2020, 2018a, 2018b)
- also in a multi-scale/disaggregation context (Tsoukalas et al., 2019).

3. L204-205. With reference to Elliptical copula (i.e., the Gaussian and Student-t cop-
ula), the Authors write: “Later, Aas (2004) showed that the co-dependence structure for
Elliptical copulas can be presented by linear (Pearson) correlation. Correspondingly,
their copula parameter 6 can either be estimated as being equal to the linear (Pearson)
correlation or derived from Kendall' 7 or Spearman’s dISE. For more details on the
corresponding equations, we refer the readers to Aas (2004).” Indeed there are rela-
tionships that link the Pearson’s correlation coefficient with Kendall’s and Spearman’s
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rank-based correlation coefficients, yet as highlighted in Tsoukalas et al. (2018b), sec-
tion 3.2.3, these are valid if and only if both the marginals, and the copula are Gaussian
(see also references therein).

When the copula is Gaussian, and the marginals are not (which is typical in hydrology),
these relationships are no longer valid. In fact, in such cases, the Pearson’s correlation
coefficient depends on the marginals; since it involves the first cross-product moment
among the variables (i.e., it involves the term E[X1, X2]), while the Kendall's and Spear-
man’s correlations do not (since they are rank-based measures of dependence). In the
case of Gaussian copula and non-Gaussian marginal, there is a non-analytical rela-
tionship that links the Pearson’s correlation coefficient in Gaussian (in the manuscript’s
notation, the Gaussian copula parameter 6) and target domain that has to be found by
resolving of a double infinite integral. In particular, and with reference to hydrological
domain, see Tsoukalas et al. (2020, 2019, 2018a, 2018b) and references therein.

In my view, the above are delicate, often neglected, points that concern the Gaussian
copula, and therefore should be made clear in the manuscript, since they are both
(very) common misconceptions/pitfalls that concerns the later (widely-used) copula.

4. L310-318. In this paragraph, as well as in other parts of the manuscript, the Authors
discuss the debate between stationarity and non-stationarity. On this topic, and beyond
the work of Lins and Cohn (2011), already cited in the manuscript, my suggestion to
the Authors would be to review, (and cite if it is considered appropriate), the recent
works of, Serinaldi et al. (2018), with emphasis on section 4.2, Koutsoyiannis and
Montanari, (2007), (2015), Lins and Cohn (2011), Matalas (2012), and Montanari and
Koutsoyiannis (2014). All these works discuss the importance of the assumption of
stationarity, highlighting that it is an essential tool for inferencing from data (e.g., model
fitting). See also the very interesting, note of Harry F. Lins[1], which concludes as
follows:

Stationarity # static
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Non-stationarity # change (or trend)

In my view, stationarity should not be viewed as a shortcoming, nor considered dead.
It is recalled that non-stationarity implies non-ergodicity, which in turn makes inference
from observed data impossible, unless of course the deterministic dynamics of the
process (and hence potential change) are known; which in my understanding, is never
the case in hydrological sciences.

Regards,

loannis Tsoukalas

PS. For convenience, please see the attached PDF file.

[1] http://www.wmo.int/pages/prog/hwrp/chy/chy14/documents/ms/Stationarity_and_Nonstati
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