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Abstract. In the past decades, data-driven machine learning (ML) models have emerged as promising tools for short-term

streamflow forecasting. Among other qualities, the popularity of ML models for such applications is due to their relative ease

in implementation, less strict distributional assumption, and competitive computational and predictive performance. Despite

the encouraging results, most applications of ML for streamflow forecasting have been limited to watersheds where rainfall

is the major source of runoff. In this study, we evaluate the potential of random forests (RF), a popular ML method, to make5

streamflow forecast at 1-day lead time at 86 watersheds in the Pacific Northwest. These watersheds cover diverse climatic

conditions and physiographic settings and exhibit varied contributions of rainfall and snowmelt to their streamflow. Watersheds

are classified into three hydrologic regimes: rainfall-dominated, transient, and snowmelt-dominated, based on the timing of

center-of-annual flow volume. RF performance is benchmarked against naïve and multiple linear regression (MLR) models

and evaluated using four criteria: coefficient of determination, root mean squared error, mean absolute error, and Kling-Gupta10

efficiency (KGE). Model evaluation scores suggest that the RF performs better in snowmelt-driven watersheds compared to

rainfall-driven watersheds. The largest improvement in forecasts, compared to benchmark models, are found among rainfall-

driven watersheds. RF performance deteriorates with increase in catchment slope and soil sandiness. We note disagreement

between two popular measures of RF variable importance and recommend jointly considering these measures with the physical

processes under study. These and other results presented provide new insights for effective application of RF-based streamflow15

forecasting.

1 Introduction

Nearly all aspects of water resource management, risk assessment, and early-warning systems for floods rely on accurate

streamflow forecast. Yet streamflow forecasting remains a challenging task due to the dynamic nature of runoff in response

to spatial and temporal variability in rainfall and catchment characteristics. Therefore, development of skillful and robust20

streamflow models is an active area of study in hydrology and related engineering disciplines.

While physical models remain a common and powerful tool for predicting streamflow, ML models are gaining popularity

due to some of their unique qualities and potential advantages. Compared with the often labor-intensive and computationally

expensive task of parameterizing in physical model (Tolson and Shoemaker, 2007; Boyle et al., 2000), ML models are data-
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driven and can identify patterns in the input-output relationship without explicit knowledge of the physical processes and25

onerous computational demand. To make up for their limited ability to provide interpretation of the underlying mechanisms,

ML models often require fewer calibiration data than physical models, have demonstrated high accuracy in their predictive

performance, are computationally efficient, and can be used in real-time forecasting (Adamowski, 2008; Mosavi et al., 2018).

ML models are particularly useful when accurate prediction is the central inferential goal (Dibike and Solomatine, 2001),

whereas conceptual rainfall-runoff model can provide a better understanding of hydrologic phenomena and catchment yields30

and responses (Sitterson et al., 2018). Artificial neural networks (ANN), neuro-fuzzy, support vector machine (SVM), and

decision trees (DT) are reported to be among the most popular and effective for both short-term and long-term flood forecast

(Mosavi et al., 2018). For example, Dawson et al. (2006) provided flood risk estimation at ungauged sites using ANN at

catchments across United Kingdom. Rasouli et al. (2012) predicted streamflow at lead times of 1-7 days with local observations

and climate indices using three ML methods Bayesian neural network (BNN), SVM, and Gaussian process (GP). They found35

BNN outperformed multiple linear regression (MLR) as well as two other competing ML models. Their study also found

models trained using climate indices yielded improved longer lead time forecasts (e.g., 5–7 days). Tongal and Booij (2018)

forecasted daily streamflow in four rivers in the United States with SVR, ANN, and RF coupled with a baseflow separation

method. Obringer and Nateghi (2018) compared eight parametric, semi-parametric, and non-parametric ML algorithms to

forecast urban reservoir levels in Atlanta, Georgia. Their results showed RF yielded the most accurate forecasts.40

Despite the promising results reported in existing literature, most ML streamflow forecast applications are limited to water-

sheds where rainfall is the major contributor. In many settings, particularly non-arid mountainous regions in Western USA, a

combination of rainfall and spring snowmelt can drive streamflow (Johnstone, 2011; Knowles et al., 2007). The amount of snow

accumulation and its contribution to discharge also vary among the watersheds (Knowles et al., 2006). Both watershed-scale

hydrologic and statistical models have been used to assess the current and future stream hydrology and associated flood risks45

(Salathé Jr et al., 2014; Wenger et al., 2010; Tohver et al., 2014; Pagano et al., 2009). Safeeq et al. (2014) simulated streamflows

in 217 watersheds at annual and seasonal time scales using the Variable Infiltration Capacity (VIC) model at 1/16◦ and 1/20◦

spatial resolutions. The study found that the model was able to capture the hydrologic behavior of the studied watersheds with

a reasonable accuracy. Yet the authors recommend careful site-specific model calibration using not only streamflow but also

snow water equivalent (SWE) data would be expected to improve model performance and reduce model bias. Pagano et al.50

(2009) applied Z-score regression to daily SWE from Snow Telemetry (SNOTEL) stations and year-to-date precipitation data

to predict seasonal streamflow volume in unregulated streams in Western US. The authors reported the skill of these forecasts is

comparable to the official published outlooks. A natural question is whether ML models can produce comparable performance

in these watersheds where streamflow contributions come from a mixture of snowmelt and rainfall, as well as where snowmelt

dominates sources. Considering the prominent role of snowpack in water management and contribution of rapid snowmelt in55

flood events, such question is worth exploring. To this end, we evaluate the potential of RF in making short-term streamflow

forecast at 1-day lead time across 86 watersheds in the Pacific Northwest Hydrologic Region (Fig. 1). The U.S. Geological

Survey (2020) defines this region as hydrologic region 17 or HUC 17. HUC-17 consists of sub-basins and watersheds of the

Columbia River that span varying hydrologic regimes. The selected watersheds have long-term record of unregulated stream-
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Figure 1. (a) Elevation (m) shading map showing the Pacific Northwest Hydrologic Unit, 86 selected stream gauges (triangles), and their
drainage area (cyan delination lines), and SNOTEL stations (brown squares). Examples of annual hydrographs of (b) rainfall-dominated, (c)
transient, and (d) snowmelt-dominated watersheds. Figures (b-d) are based on 2009-2018 daily flow data at three sites 12043300 (48.2◦ N,
124.4◦ W), 12048000 (48◦ N, 123.1◦ W), and 10396000 (42.7◦ N, 118.9◦ W) respectively.

flow and different streamflow contributions of rainfall and snowmelt. Drainage basin factors such as topography, vegetation,60

and soil can affect the response time and mechanisms of runoff (Dingman, 2015). Few studies attempted to account for or

report these effects on models’ performance. Without such consideration, it is difficult to determine if a data-driven model can

be generalized to watersheds not included in the given study. Therefore, our objectives are (1) to examine and compare the

performance of RF in a number of watersheds across hydrologic regimes and (2) to explore the role of catchment characteristics

in model performance that are overlooked in previous studies.65
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Figure 2. Structure of a RF and relevant parameters
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In practice, RF can be trained to forecast streamflow at various timescales, depending on the selection of input variables.

We focus on 1-day lead time because we assume only antecedent information for predictors are available at the time fore-

cast is made. At longer lead times, changes in weather conditions would likely exert much greater control on runoff and the

performance of the model.

We select RF to forecast streamflow for two reasons. First, RF has been referenced to deliver high performance in short-term70

streamflow forecasts (Mosavi et al., 2018; Papacharalampous and Tyralis, 2018; Li et al., 2019; Shortridge et al., 2016), making

it a good candidate for our study. Second, RF allows for some level of interpretability compared with other ML models. This is

delivered through two measures of predictive contribution of variables: mean decrease in accuracy (MDA) and mean decrease

in node impuritiy (MDI). These two measures have been widely used as means for variable selection in classification and

regression studies in bioinformatics (Chen and Ishwaran, 2012), remote sensing classification (Pal, 2005), and flood hazard75

risk assessment (Wang et al., 2015). This can be considered an advantage of RF compared with the more “black-box” nature

of competing ML algorithms. While the referred interpretability does not directly translate to interpretation of the physical

processes, it can provide insight into relationships among predictors and streamflow response.

The remainder of the paper is arranged as follows. Section 2 provides a brief introduction to RF, relevant parameters, and

selected evaluation criteria. Section 3 describes the study area, datasets, and predictor selection. Results and discussion are80

given in Sect. 4 along with limitations and recommendation for future research. A summary and indication of future work are

is provided in Sect. 5.
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2 Methodology

2.1 Random forests

Proposed by Breiman (2001), RF is a supervised, non-parametric algorithm within the decision tree family that comprises85

an ensemble of decorrelated trees to yield prediction for classification and regression tasks. Since a single decision tree can

produce high variance and is prone to noise (James et al., 2013), RF addresses this limitation by generating multiple trees where

each tree is built on a bootstrapped sample of the training data. Each time a binary split is made in a tree (also known as split

node), a random subset of predictors (without replacement) from the full set of predictor variables is considered. One predictor

from these candidates is used to make the split where the expected sum variances of the response variable in the two resulting90

nodes is minimized. The randomization process in generating the subset of the features prevents one or more particularly strong

predictor from getting repeatedly chosen at each split, resulting in highly correlated trees (Breiman, 2001). After all the trees

are grown, the forests make prediction on a new data point by having all trees run through the predictors. In the end, the forests

cast a majority vote on a label class for classification task or produce a value for regression task by averaging all predictions.

Breiman (2001) provided full details on RF and its merit. The randomForest package in R developed by Liaw et al. (2002)95

was used for model training and validation in our study. The step-by-step of building a regression RF follows:

Algorithm 1 Building a regression RF
Step 1: n bootstrap samples are drawn from training set, each has the same size as the training sample. This is also known as
ntree or number of trees in the forest.
Step 2: At each binary node split, a subset of mtry predictors,Xi, is randomly selected from p predictor space, Ωp, that results
in Xi ∈ Ωp for {i ∈ 1,..., mtry}, mtry < p.
Step 3: The single best combination of predictor Xi among X predictor variables and threshold t is selected to split the
observations, yj , into binary regions R1 = { yj |Xi < t } and R2 = { yj |Xi ≥ t } that minimize:∑
j:yj∈R1

(yj − ŷR1
)2 +

∑
j:yj∈R2

(yj − ŷR2
)2 (1)

where ŷR1
is the mean of observations in R1 and ŷR2

is the mean of observations in R2.
Step 4: Repeat step 2-3 until all terminal region contains less than nodesize observations.

Due to sampling with replacement, some observations may not be selected during the bootstrap. These are referred to

as out-of-bag or OOB and used to estimate the error of the tree on unseen data. It has been estimated that approximately

37% of samples constitute OOB data (Huang and Boutros, 2016). An average OOB error is calculated for each subsequently

added tree to provide an estimate of the performance gain. The OOB error can be particularly sensitive to the number of100

random predictors used at each split mtry and number of trees ntree (Huang and Boutros, 2016). Generally, the predictive

performance improves (or OOB error decreases) as ntree increases. However, recent research has shown that depending on

the dataset, there is a limit for number of trees where additional growing does not improve performance (Oshiro et al., 2012).

It has been advised that mtry is set to no larger than 1/3 of total number of predictors for optimal regression prediction (Liaw

et al., 2002), which is also the default value in randomForest function in R and widely adopted in literature. Nevertheless,105
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Huang and Boutros (2016) found that this value is dataset-dependent and could be tuned to improve the performance of RF.

Bernard et al. (2009) argued that the number of relevant predictors highly influences optimal mtry value. In this study, we

select the optimal mtry using an exhaustive search strategy, in which all possible values of mtry are considered, using R

package Caret (Kuhn et al., 2008). Figure 2 illustrates the step-by-step operating principle of growing RF and the relevant

parameters.110

2.2 Variable importance in random forests

In addition to assessing a model’s overall predictive ability, there is also interest in understanding the contribution of each

predictor variable to model performance. There are two built-in measures for assessing variable importance in RF: mean

decrease in accuracy (MDA) and mean decrease in node impurity (MDI). After all trees are grown, OOB data during training

is used to compute the first measure. At each tree, the mean squared error (MSE) between predicted and observed is calculated.115

Then the values of each of the p predictors are randomly permuted with other predictor variables held constant. The difference

between the previous and new MSE is averaged over all trees. This is considered the predictor variable’s MDA (Liaw et al.,

2002) and values are reported in percent difference in MSE. The procedure is repeated for each predictor variable. Given that

there is a strong association between a predictor and response variable, breaking such bond would potentially result in large

error in the prediction (i.e., large MDA). MDA value can be negative where a predictor has no predictive power and adds noise120

to the model. Strobl et al. (2007), however, expressed caution that permutation-based measures such as MDA could show a

bias towards correlated predictor variables by overestimating their importance, particularly in high-dimensional data sets.

The second method, MDI, measures the average gain in residual error reduction each time a predictor is selected to make

a split during training. It is based on the principle that a binary split only occurs when residual errors (or impurity) of two

descendent nodes are less than that of their parent node. The MDI of a predictor is the sum of all gains across all trees divided125

by the number of trees. Because the scale of MDI depends on values of response variable, raw MDI provides little interpretation.

Following Wang et al. (2015), we computed relative MDI for each variable, which in our case is calculated by dividing each

predictor variable’s MDI by the sum of MDI from all predictors at each watershed. When scaled by 100, this relative MDI

is a percentage and can be interpreted as the relative contribution of each predictor to the total reduction in node impurities.

In the case where a predictor makes no contribution during the splitting, the relative MDI would be effectively zero. For both130

measures, the larger the value, the more important the predictor.

2.3 Benchmark models

We benchmark the performance of RF during the validation period against multiple linear regression (MLR) and simple naïve

models using the calculated Pearson correlation coefficient (r) between forecasted and observed values for each model. In naïve

model, we assume “minimal-information" scenario and the best estimate of the streamflow from the next day is the observed135

value from current day (Gupta et al., 1999). Its r, in this case, is the 1-day autocorrelation coefficient in the time series and

measures of the strength of persistence. We train and verify MLR model using same data sets and predictors supplied to RF

model.

6



2.4 Performance evaluation criteria

There exist different model performance criteria and each provides unique insights on the correspondence between forecasted140

and observed streamflow values. While r and its square, namely coefficient of determination (R2), are often used, Legates

and McCabe Jr (1999) discussed the limitation of these two measures where they were reported to be especially oversensitive

to extreme values or outliers. The authors recommended that absolute error measures (i.e., root mean squared error or mean

absolute error) and goodness-of-fit measure, such as the Nash-Sutcliffe efficiency (NSE), could provide more reliable and

conservative assessment of the models. Kling-Gupta efficiency (KGE) is a relatively new metric that was developed based on145

a decomposition of NSE (Gupta et al., 2009). This goodness-of-fit measure is gaining popularity as a benchmark metric for

hydrologic models by addressing several shortcomings diagnosed with NSE. For these reasons, we selected the following four

criteria to evaluate RF performance: R2, RMSE, MAE, and KGE. These criteria cover various aspects of model’s performance

and are also provide intuitive interpretation.

R2 can be interpreted as the proportion of the variance in the observed values that can be explained by the model. Values are150

in the range between 0 and 1 where 1 indicates the model is able to explain all variation in the observed dataset.

R2 =


N∑
i=1

(ŷi− ŷ)(yi− y)√
N∑
i=1

(ŷi− ŷ)2

√
N∑
i=1

(yi− y)2


2

(2)

where N is total number of the observations during the validation period, ŷi and yi are the forecasted and observed values at

day i respectively with

yi =
1

N

N∑
i=1

yi and ŷi =
1

N

N∑
i=1

ŷi (3)155

MAE provides an average magnitude of the errors in the model’s predictions without considering the direction (underesti-

mation or overestimation).

MAE =

N∑
i=1

|ŷi− yi|

N
(4)
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RMSE is the standard deviation of the residuals between the predictions and observations. It is more sensitive to larger error

due to the squared operation. Both MAE and RMSE scores are scale-dependent as they depend on the magnitude of values.160

The standardization in streamflow measurements (described in Sect. 3) allows comparison of MAE and RMSE across gauges.

RMSE =

√√√√√ N∑
i=1

(ŷi− yi)2

N
(5)

KGE metric ranges between −∞ and 1. While there currently is not a definitive KGE scale, Knoben et al. (2019) showed

KGE values in the range between−0.41 and 1 indicate the model improves upon the mean flow benchmark, which assumes the

predicted streamflow values equal to the mean of all observations. KGE value of 1 suggests the model can perfectly reproduce165

observations. KGE is calculated as follows:

KGE = 1−
√

(r− 1)2 + (α− 1)2 + (β− 1)2 (6)

where r is the correlation coefficient, α is a measure of relative variability in the forecasted and observed values, and β

represents the bias:

α=
σŷ
σy

and β =
µŷ

µy
(7)170

where σŷ is the standard deviation in observations, σy is the standard deviation in forecasted values, µŷ is the forecasted mean,

and µy is observation mean.

In hydrological forecast, one might be interested in the ability of the model to capture more extreme events rather than the

overall performance. The definition of “extreme” depends on the objective of the study. Here, we adopt the peak-over-threshold

method. For the validation period, we calculated the 90th, 95th, and 99th percentile streamflow values at each watershed. These175

are considered thresholds. If an observed daily streamflow exceeded this threshold, it would be considered an extreme event.

We measure the ability of RF to capture these events using two additional criteria: probability of detection (POD) and false

alarm rate (FAR). The calculation followed as in (Karran et al., 2013).

POD =
P (ŷi > ω|yi > ω)

P (yi > ω)
(8)

and180

FA=
P (ŷi > ω|yi < ω)

P (yi < ω)
(9)
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where ω is a specified threshold.

3 Study Area and data

3.1 Watersheds in the Pacific Northwest Hydrologic Region

In this study, we focus on watersheds in the Pacific Northwest Hydrologic Region. This region covers an area of 836,517185

km2 and encompasses all of Washington, six other states, and British Columbia, Canada. For the purpose of maintaining

consistency in monitoring protocol and data, we only consider watersheds on the US territory. The Columbia River and its

tributaries make up the majority of the drainage area, traveling more than 2000 km with an extensive network of more than

100 hydroelectric dams and reservoirs have been built along these river channels. Hydropower in the Columbia River Basin

supplies approximately 70 percent of Pacific Northwest energy (Payne et al., 2004). Flood control is also an important aspect190

of reservoir operation in this region.

The north-south running Cascade Mountain Range divides the region into eastern and western parts and strongly influence

the regional climate. The western windward side of the mountain receives an ample amount of winter precipitation compared

to the leeward side. When temperature falls near freezing point, precipitation comes in the form of snow and provides water

storage for dry summer months. Summers tend to be cool and comparatively dry. East of the Cascades, summer rainfall result195

from rapidly built thunderstorm and convective events that can produce flash floods (Mass, 2015). Proximity to the ocean

creates a more moderate climate with a narrower seasonal temperature range, particularly in the winter. Spatial trends and

variations in annual mean temperature, total precipitation, drainage area, and elevation of the watersheds are shown in Fig. 3.
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Figure 3. Gauge locations with color gradient indicating variations in (a) drainage area (km2), watershed mean elevation (m), (c) annual
precipitation (cm), and (d) annual mean temperature (◦C).

3.2 Data

3.2.1 Streamflow200

Our analysis uses streamflow data available through the USGS National Water Information System (NWIS) (https://waterdata.

usgs.gov/nwis/sw). From NWIS, we selected daily streamflow time series for gauges using the following criteria: 1) continuous

operation during the 10-year period between 2009 and 2018, 2) have less than 10 percent of missing data, and 3) positioned in

watersheds with “natural” flow that is minimally interrupted by anthropogenic intervention such reservoirs. The third criterion

was met using the GAGES-II: Geospatial Attributes of gauges for Evaluating Streamflow dataset (Falcone, 2011) classification205

to identify watersheds with least-disturbed hydrologic condition and represented natural flow. We performed additional screen-

ing by computing correlation coefficient between the respective gauge and mean basin streamflow and removed those with a

correlation of less than 0.5. We also excluded small creeks with drainage area less than 50 km2. In total, 86 watersheds were

selected (Fig. 1).

Following methodology proposed in (Wenger et al., 2010), the watersheds were further grouped into three classes of hydro-210

logic regimes based on the timing of center-of-annual flow, which is defined as the date at which half of the total annual flow

volume is exceeded. The annual flow calculations follow a water-year calendar that begins October 1st and ends September

30th. These three hydrologic regimes include: “early” streams with flow time < 150 (27 February), “late” streams with flow

time > 200 (18 April), and “intermediate” streams with flow time between 150 and 200. These hydrologic regimes correspond

10
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Table 1. Number of USGS gauges used in the study for each flow regime, mean watershed elevation, drainage area, annual precipitation, and
annual mean temperature ranges.

Hydrologic regime Number of gauges Mean watershed
elevation (m)

Drainage area
(km2)

Mean annual
precipitation (cm)

Mean annual
temperature (◦C)

Rainfall-dominated 33 239 - 1207 58 - 703 122.0 - 367.0 5.4 - 11.5
Transient 28 813 - 1477 58 - 1855 63.2 - 314.0 4.16 - 8.42

Snowmelt-dominated 25 1349 - 2509 51 - 3355 58.0 - 177.0 0.4 - 6.62

to rainfall-dominated, snowmelt-dominated, and transient or transitional (mixture of rain and snowmelt) hydrographs, respec-215

tively. While this particular classification and its variants have been used in various studies related to water resources in this

region (Mantua et al., 2009; Elsner et al., 2010; Vano et al., 2015), we adopted this partition in our study for two reasons.

First, as Regonda et al. (2005) pointed out, the classification provides a summary of information about type and timing of

precipitation, timing of snowmelt, and the contribution of these hydro-climatic variables to streamflow. This helps us assess

model performance in consideration of sources of runoff. Second, the classification provides a basis to generalize the results to220

other watersheds that are not part of the study.

On average, records at these watersheds have less than 3 percent missing data during the 2009–2018 period. The drainage

area of the watersheds range between 51 km2 and 3355 km2, and the mean elevation range from 239 m and 2509 m, estimated

from 30-m resolution digital elevation model (Table 1).

3.2.2 Precipitation225

Daily precipitation observations were obtained from the AN81d PRISM dataset (Di Luzio et al., 2008). This gridded dataset

has a resolution of 4 km, covers the entire continental US from January 1981 to present, and is continuously updated every 6

months. Best estimate gridded value is derived by using all the available data from numbers of station networks ingested by

the PRISM Climate Group. A combination of climatologically aided interpolation (CAI) and radar interpolation were used in

developing PRISM dataset. In our study, watershed daily precipitation time series were constructed by computing the arithmetic230

mean for precipitation values of all grid points that fall within the given watershed.

3.2.3 Snow water equivalent and temperatures

SWE is defined as the depth of water that would be obtained if a column of snow were completely melted (Pan et al., 2003).

Daily SWE data were retrieved from 201 SNOTEL stations in HUC 17. These stations are part of the network of over 800

sites located in remote, high-elevation mountain watersheds in the western U.S. The elevation of these stations are in the235

range of 128 m and 3142 m. At SNOTEL sites, SWE is measured by a snow pillow—a pressure sensitive pad that weighs the

snowpack and records the reading via a pressure transducer. As the temperature shift is the primary trigger for snowmelt, daily

maximum temperature (TMAX) and minimum temperature (TMIN) from SNOTEL sensors were also retrieved and included

as predictors. The obtained data reflected the last measurement recorded for the respective day at each site. The dataset is

11



Table 2. List of potential predictors.

No. Predictors Index Unit Source

1 Streamflow at day t Qt m3 s-1 USGS
2 Precipitation Pt mm PRISM
3 Sum of 3-day precipitation (Pt + Pt−1+ Pt−2) P3t mm Derived from PRISM
4 Snow water equivalent SWEt mm SNOTEL
5 Maximum temperature TMAXt

◦C SNOTEL
6 Minimum temperature TMINt

◦C SNOTEL
7 Snowmelt (SWt - SWt−1) SDt mm Derived from SNOTEL
8 Pentad PENt - -

mostly complete, with 99.6 %, 99.6 %, and 99.9 % of the observations are available for three variables TMAX, TMIN, and240

SWE respectively. Because of the sparse coverage of SNOTEL sites, daily average values were calculated at USGS basin

level (6-digit Hydrological Unit) similar to the currently reported snow observations from National Water and Climate Center

(www.wcc.nrcs.usda.gov/snow/snow_map.html) and subsequently applied to the watersheds located in that basin. There is a

total of 15 basins, each contains a number of SNOTEL stations in the range between 6 and 30 (Table 2 in the Supplement).

It is noted the in situ data from these of stations cannot capture the spatial variability of snow accumulation and computing245

an area-averaged snowpack value from observations remains a challenging task (Mote et al., 2018). The SNOTEL averages

therefore represent first-order estimates of snow coverage and temperature conditions.

3.2.4 Predictor selection

Future daily mean streamflow (Qt+1) is the response variable in our study. We attempt to explain the variability in Qt+1 using

eight relevant predictors from the three datasets (Table 2). Selection of predictors is based on thorough review of the literature250

from previous studies and our understanding of the hydrology of this region. Specifically, precipitation (Pt) is intuitively a

driver of streamflow. SWEt provides storage information on the amount of accumulated snow available for runoff and is

influenced by changes in temperature (TMAXt and TMINt). Previous day streamflow (Qt) is particularly important due to

high degree of persistence that exist in the time series. A hydrological year consists of 73 pentads where each comprises of five

consecutive days and observation for each day is indexed with a pentad value between 1 and 73. Data preprocessing showed255

moderate to strong non-linear temporal correlation between daily streamflow and the pentad across gauges. We also derived

two variables: sum of 3-day precipitation (P3t) and snowmelt (SDt) from available data. Inclusion of 3-day precipitation was

to account for large winter storms that can last for several days, which often result in surges in streamflow. SDt was calculated

as the difference between SWE at day t and t− 1. A positive value of SDt indicates snow accumulation and negative value

indicates melt.260

Soil moisture is also a relevant variable in streamflow modeling as it controls the partition between infiltration and runoff

of precipitation (Aubert et al., 2003). However, soil moisture data is often limited and incomplete, especially at daily interval

and therefore not included in this study. The data were divided into two sets: training consisting of seven years 2009–2015 and

12
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Figure 4. Flowchart showing the input-output model using RF

a validation set of three years 2016–2018.We standardized training and validation data at each gauge using min-max scaling.

The standardize data for all variables have values between 0 and 1. A flowchart representing the input-output model using RF265

is shown in Fig. 4.

4 Results and discussion

4.1 Parameter tuning

As we mentioned in Sect. 2, error rate in RF can be sensitive to two parameters: the number of trees ntree and number of

randomly selected predictors available for splitting at each node mtry. We tested RF on training data sets of 30 randomly270

chosen watersheds and observed that the reduction in error is negligible after 2000 trees. We then set ntree=2000 for all 86

watersheds. mtry, on the other hand, was tuned empirically using a combination of exhaustive search approach and cross-

validation.

13



Figure 5. Out-of-bag mean absolute error plotted against mtry during optimal parameter search at Carbon River Watershed (USGS site
12094000).
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Table 3. The optimized parameter mtry using exhaustive-search strategy (mtry = {1, 2, 6, 7, 8} were considered but not found as the
optimal value at any gauge).

mtry Number of gauges Median MAE

3 29 0.0127
4 44 0.0116
5 13 0.0079

The goal of tuning is to select the mtry parameter value that would optimize the performance of the model. The candidates

were evaluated based on their OOB mean absolute error (MAE). At each watershed, eight possible candidate values of mtry275

(1-8) were analyzed by 3 repetitions of 10-fold cross validation from the train data set. Averaging the MAE of repetitions of

the cross-validation procedure can provide more reliable results as the variance of the estimation is reduced (Seibold et al.,

2018). To illustrate, in Fig. 5, lowest cross-validation MAE is obtained at mtry = 3 at Carbon River Watershed (USGS Site

12094000). The results of tuning for all gauges (Table 3) show that the optimal mtry values are {3, 4, 5} with median MAE

of 0.0127, 0.0116, and 0.0079 respectively. These values are close to the suggested default mtry for regression (i.e., round-up280

of the square root of total number of predictors or 3 in our study). The optimal mtry at each gauge was then used in both

training and validating the model. Because the number of predictors in our study is relatively small, computation burden of the

exhaustive search was manageable. As the number of candidate grows, a random search strategy (Probst et al., 2019) in which

values are drawn randomly from a specified space can be more computationally efficient.

4.2 Benchmark RF against MLR and naïve models285

Figure 6 shows the pair-wise comparisons of r values for RF, MLR, and naïve models. In Fig. 6a, we observe RF mostly

outperforms naïve model in rainfall-driven and transient watersheds. We also discern that large improvement, defined as the

positive difference in r values between RF and naïve model, tends to occur with lower persistence. This suggests that application
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Figure 6. Pairwise scatter plots of Pearson correlation coefficient between forecasted and observed values for (a) RF vs. naïve model, (b) RF
vs MLR, and (c) MLR vs. naïve model. Each dot represents a watershed (n=86).
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Regime Rainfall dominant Transient Snowmelt dominant

of RF would be most benefiting at watersheds where next-day streamflow is less dependent on the condition of the current day.

Among snowmelt-driven watersheds, three models show marginal difference in r values. As Mittermaier (2008) pointed out,290

the choice of reference can affect the perceived performance of the forecast system. Our pair-wise comparisons highlight

the fact that evaluating data-driven models should be performed in consideration of the autocorrelation structure in the data

(Hwang et al., 2012). Without accounting for persistence, it would be inadequate to conclude that RF gives better performance

in snowmelt-driven watersheds. Nevertheless, we observe RF outperformed MLR in all watersheds in rainfall-dominated and

transitional watersheds and 19 out of 25 snowmelt-dominated watersheds. The median r values for RF in the three groups are295

(0.88, 0.89, 0.98) compared to (0.85, 0.87, 0.98) for MLR. This may reflect RF’s better ability to capture non-linear relationship

between streamflow and other variables.

4.3 Evaluation of RF overall performance

We next evaluated the overall performance of RF across three flow regimes using four criteria R2, KGE, MAE, and RMSE

(Fig. 6). We observe similar trend reported in Fig. 6 where RF performs better in snowmelt-dominated than rainfall-dominated300

(higher R2, lower MAE). Snowmelt-dominated watersheds have the smallest range of R2 values across the three groups. This

may suggest that there is less variability in flow behaviors at individual gauges in this group. Not surprisingly, transitional

group has the largest spread in R2 values as watersheds in this group share characteristics from the other two groups.

Because RMSE is more sensitive to larger errors compared to MAE, the difference between the two scores represents the

extent in which outliers are present in error values (Legates and McCabe Jr, 1999). In rainfall-driven and transient groups, the305

shape of the boxplot distributions remain fairly consistent between the two error scores, suggesting that distribution of large

errors is similar to that of mean errors in these watersheds. In snowmelt-driven watersheds, we observe a noticeably wider

interquartile range (difference between first quartile and third quartile) in RMSE plot compared to MAE plot. This indicates

that RF can still be susceptible to underestimation or overestimation in watersheds where the mean error is relatively low.

In Table 4, KGE scores are reported in a range of 0.64–0.99 for all watersheds. The median values for each flow regime310

are 0.84, 0.87, and 0.94. Knoben et al. (2019) suggested KGE score greater than -0.41 indicates that a hydrologic model
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Table 4. Descriptive statistics of the four criteria used to evaluate the overall performance of RF: R2, KGE, MAE, and RMSE.

Metric Flow regime Min Q1 Median Q3 Max

R2
Rainfall-dominated 0.59 0.71 0.77 0.81 0.87

Transient 0.57 0.71 0.80 0.87 0.99
Snowmelt-dominated 0.88 0.95 0.97 0.98 0.99

KGE
Rainfall-dominated 0.64 0.78 0.84 0.87 0.92

Transient 0.62 0.77 0.86 0.91 0.99
Snowmelt-dominated 0.77 0.89 0.94 0.97 0.99

MAE
Rainfall-dominated 0.0061 0.0096 0.0131 0.0161 0.0245

Transient 0.0070 0.0097 0.0109 0.0143 0.0189
Snowmelt-dominated 0.0065 0.0087 0.0092 0.0114 0.0168

RMSE
Rainfall-dominated 0.0157 0.0241 0.0326 0.0395 0.0609

Transient 0.0144 0.0227 0.0275 0.0331 0.0468
Snowmelt-dominated 0.0160 0.0218 0.0270 0.0315 0.0436

improves upon the mean flow benchmark and RF can be seen to give satisfactory performance at all watersheds in our study.

Our results are comparable to findings in (Tongal and Booij, 2018) where authors compare the performance of RF, SVM, and

ANN to simulate daily discharge with baseflow separation at four rivers in California and Washington. Although authors did

not classify these basins, it can be inferred that three of the rivers were rainfall-driven and one was snowmelt-driven. RF model315

in their study produced KGE scores of 0.41, 0.81, and 0.92 for the rainfall-driven water basins (without baseflow separation).

However, our KGE scores for snowmelt-fed watersheds (with a median of 0.94) are higher compared to the reported 0.55 in

their study.

4.4 RF performance on extreme streamflows

We also examine the model’s capacity to forecast extreme events because of their potential high impact and associated flood320

risks in this region. Ability of RF to correctly detect extreme flows exceeding 90th, 95th, and 99th percentile thresholds (de-

fined as the POD) for each watershed are plotted against the FAR in Fig. 7. A threshold point falling below the no-skill line

indicates the model yields higher FAR than POD and is considered having no predictive power for that threshold. RF becomes

expectedly less skilful in its forecasts with increase in magnitude of the events. The model tends to perform better among

snowmelt-dominated watersheds (higher POD, lower FAR) compared to those in transient and rainfall-driven groups. At the325

95th threshold, RF can forecast correctly at least 50 percent of the times (POD > 0.5) at most watersheds. At the 99th threshold,

the difference in RF’s ability to forecast extreme streamflow among the three flow regimes becomes less obvious. In snowmelt-

driven watersheds, 8 out of 25 have POD > 0.5, 9 have POD between 0.01 and 0.5, and 8 have a POD of 0. While few studies

have examined complex diurnal hydrologic responses in high-elevation catchments (Graham et al., 2013), our particular result

suggests large surges in streamflow sustained by spring and early summer snowmelt can be difficult to predict, even at 1-day330
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Figure 7. The probability of detection (POD) plotted against the false alarm rate (FAR) for three extreme thresholds: 90th, 95th, and 99th

percentiles. Thin black line connects values from the same watershed. (Vertical axis) Number of times RF correctly forecasted events that
exceeded the threshold divided by the total number of exceedance. (Horizontal axis) Number of times RF incorrectly forecasted events that
exceeded the threshold divided by the total number of non-exceedance.

lead time, and is an ongoing research subject (Ralph et al., 2014; Cho and Jacobs, 2020). In our study, we observe high POD

is accompanied by low FAR for the same threshold. This suggests that RF is skillful in its forecasts of extreme events.

4.5 Analysis of variable importance

Variable importance is a useful feature in both understanding the underlying process of current model and generating insights

for selection of variable in future studies (Louppe et al., 2013). RF quantifies variable importance through two measures: DMA335

and MDI (Fig. 8). In both measures, the higher value indicates variable contributes more to the model accuracy. Intuitively,

streamflow from previous day is shown to be the most importance variable due to persistence. This is reflected across three

flow regimes and two measures. We also observe the sum of 3-day precipitation tends to have more predictive power than than

1-day precipitation. Maximum temperature and minimum temperature share similar contribution where minimum temperature

tends to receive slightly higher scores. Among snowmelt-dominated watersheds (Fig. 8c and 8f), we anticipate snow indices340

(SDt and SWEt) contribute more in the prediction than precipitation and this is also reflected. Surprisingly, pentad comes

third in both measures. This supports the long-term snowpack memory of daily streamflow (Zheng et al., 2018) and can be

useful in real-time prediction. Precipitation does not seem to have significant contribution to the model’s accuracy in this group.

Although PRISM precipitation data includes both rainfall and snowfall, it is likely that the majority of fallen precipitation in

these high-altitude watersheds is stored as snow on the surface and does not immediately contribute to runoff. Li et al. (2017)345

estimated that 37 % of the precipitation falls as snow in western US, yet snowmelt is responsible for 70 % of the total runoff in
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Figure 8. Barplots show importance of predictor variables using (a-c) MDA and (d-f) MDI criteria. Length of the blue bars indicates the
median value across the watersheds for each flow regime and the thin black bar represents the range of the values.

mountainous areas. It is still very surprising to observe such low contribution of precipitation variable to RF model accuracy.

Nevertheless, we observe general agreement between the two measures in ranking of the variables in snowmelt-driven group.

In transient and rainfall-dominated groups, there are noticeable disagreement between the two criteria. Precipitation (Pt)

and 3-day precipitation (P3t) tend to rank lower in MDA measure (Fig. 8a and 8b) compared to MDI (Fig. 8d and 8e).350

Specifically, in rainfall-dominated group, 3-day precipitation and precipitation are placed 2nd and 3rd based on median MDI

compared to 4th and 7th in MDA. Maximum and minimum temperatures, on the other hand, tend to be more important in

MDA calculation compared to in MDI. In Shortridge et al. (2016), RF model was used to predict streamflow at five rain-

fed rivers in Ethiopia. Similarly calculated MDA in that study suggested precipitation were less important (7.71 %) than

temperature (12.74 %). Linear model in the same study, however, considered the coefficient for precipitation to be significant355

(p << 0.01) while temperature coefficient was not (p= 0.08). In Obringer and Nateghi (2018), the authors predicted daily

reservoir levels in three reservoirs in Indiana, Texas, and Atlanta using RF and other ML techniques. Precipitation was reported

as the least important variable and ranked behind dew point temperature and humidity. Inspecting the density distribution of our

predictors, we suspect that for variables that are heavily skewed and zero-inflated (e.g., precipitation), permutation-based MDA

may underestimate their importance compared to those that are more normally distributed such as maximum and minimum360

temperatures. Strobl et al. (2007) showed RF variable importance measures can be unreliable in situations where potential

predictor variables vary in their scale of measurement or their number of categories. Temperature predictors receiving higher

MDA can also be due to identified bias where permutation-based importance measures overestimates the true contribution of

correlated variables (Gregorutti et al., 2017). There is also an ongoing discussion regarding the stability of both measures
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Figure 9. KGE scores plotted against (a) the average percent of slope and (b) the average percent of sand in soil at each watershed. Best-fit
lines were determined using simple linear regression. Pearson correlation coefficients were computed with associated significance.

across different datasets (Calle and Urrea, 2010; Nicodemus, 2011; Ishwaran and Lu, 2019). Although results from MDI make365

more sense in our case, we suggest RF users to exert caution when interpreting outputs from these two measures.

4.6 Effects of watershed characteristics on model performance

To explore the role of catchment characteristics such as geology, topography, and land cover on the performance of RF model,

we perform Pearson correlation test between the KGE scores and selected basin physical characteristics for each flow regime.
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Table 5. Pearson correlation coefficient between KGE scores and selected basin physical characteristics. Highlighted red values indicate the
relationship is significant at 5 percent or 1 percent level.

Watershed characteristics Hydrologic regime
Rainfall dominant Transient Snowmelt dominant

Slope -0.42 -0.68 0.12
Aspect eastness -0.02 0.12 -0.12
Drainage area 0.14 -0.12 0.11

Basin compactness 0.09 -0.12 -0.16
Stream density -0.10 0.29 -0.27
Percent of sand -0.59 -0.46 -0.14

Percent of forested area -0.11 0.32 0.32

These watershed characteristics were compiled as part of GAGES-II dataset using national data sources including US National370

Land Cover Database (NLCD) 2006 version, 100 m-resolution National Elevation Dataset (NED), and Digital General Soil

Map of the United States (STATSGO2) (Table 1 in the Supplement). The results are shown in Table 5. There is a strong

negative correlation (p < 0.05) between KGE scores and watershed slopes among rainfall-dominated and transient watersheds

(Fig. 9a). As steeper hillslope often associates with faster surface and subsurface water movement during event-flow runoff,

this can result in shorter response time. We observe a similar trend between KGE scores and percent of sand in the soil (Fig.375

9b) where the RF performs worse in watersheds with higher hydraulic conductivity (i.e., higher sand content). This could be

a result of rapid subsurface flow from soil profile enabled by soil macropores in mountainous forested area (Srivastava et al.,

2017), where subsurface flow is the predominant mechanism. Without a quantification of the partition of discharge into surface

flow and subsurface flow at individual watersheds, it is difficult to determine the relative importance of subsurface runoff

mechanisms in regulating streamflow and how that may have affected the RF performance. The findings, however, suggest RF380

performance can deteriorate at watersheds with quick-response runoff when supplied with 1-day delayed observation data.

It appears that stream density and the amount of vegetation cover may also affect the performance of RF, but the relationships

are not statistically significant at α = 0.05. Aspect eastness, darainage area, and basin compactness are not determining factors

to variability in the KGE scores. We also explored the impact of land-use/land-cover, which can be represented by the extent

of impervious cover in each watershed. However, because we only selected unregulated watersheds that experienced minimal385

human disruption during the initial screening, most watersheds have very little impervious cover (less than 5 %). It is noted that

these selected characteristics are not meant to be exhaustive, but rather representative of various types of factors that could help

explain the variability in model performance. Furthermore, an alternative approach to Pearson’s correlation is to use ANOVA to

test for marginal significance of each catchment variable to KGE while accounting for their interaction. Because our objective

is not to make inference on KGE based on these variables and ANOVA analysis can be complicated to interpret, we choose to390

compute correlation coefficient.
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4.7 Limitations and future research

There are some notable limitations in our study as well as RF in general. The classification of watersheds into three flow

regimes was based on the timing of the climatological mean of the annual flow volume, which can fluctuate from year to year.

This is particularly true for the watersheds in the transient group where streamflow is contributed by a mixture of runoff from395

winter rainfall and springtime snowmelt and the inter-annual variability is tremendous in both magnitude and timing (Lundquist

et al., 2009). Therefore, the membership of the classified watersheds from this group can vary. In fact, Mantua et al. (2009)

discussed the future shift of transient runoff watersheds towards rainfall-dominated in Washington State. Because we trained

RF using the same input variables for all watersheds regardless of flow regimes and calculated performance criteria separately,

the classification does not alter the results at individual watershed.400

In the study, we used estimated precipitation from PRISM, which is an interpolation product and combines data from

various rain gauges from multiple networks. Despite of possible introduced errors and uncertainty, we believe the use of

spatially distributed product better represents the areal estimation of precipitation over the watershed than a single rain gauge

measurement. In real-time forecast, this would be not be feasible due to the added time to compile and process such data.

Similarly, we provided RF model with a basin-average SWE from SNOTEL stations as an estimate of snowpack condition.405

Using a more spatially consistent SWE data such as the Snow Data Assimilation System (Pan et al., 2003) product would

potentially improve model accuracy. As our results indicate that RF can produce reasonable forecasts, potential future research

could explore the sensitivity of the model using satellite derived snow products and even include t+ 1 precipitation forecast as

a predictor in the model.

An inherent limitation of RF is the lack of direct uncertainty quantification in prediction. In our case, the forecasted stream-410

flow using RF does not yield a standard error comparable to that provided by traditional regression model, and hence no way

to provide probabilistic confidence intervals on predictions. Estimation confidence interval methods have been proposed by

Wager et al. (2014); Mentch and Hooker (2016); Coulston et al. (2016), but they are not widely applied. For future work,

computation of confidence interval in RF prediction will be useful in addressing and understanding uncertainty.

5 Conclusions415

Accurate streamflow forecast has extensive applications across disciplines from water resources and planning to engineering

design. In this study, we assessed the ability of RF to make daily streamflow forecasts at 86 watersheds in the Pacific Northwest

Hydrologic Region. Key results are summarized below:

– Based on the KGE scores (ranging from 0.62 to 0.99), we show that RF is capable of producing skilfull forecasts across

all watersheds.420

– RF performs better in snowmelt-dominated watersheds, which can be attributed to stronger persistence in the stream-

flow time series. The largest improvements in forecast compared to naïve model are found among rainfall-dominated

watersheds.
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– The two approaches for measuring predictor importance yield noticeably different results. We recommend interpretation

of the these two measures should be coupled with understanding of the physical processes and how these processes are425

connected.

– Increase in steepness of slope and amount of sand content are found to deteriorate RF performance in two flow regime

groups. This demonstrates catchment characteristics can cause variability in performance of the model and should be

considered in both predictor selection and evaluation of the model.

Considering the current and future vulnerabilities of the Pacific Northwest to flooding caused by extreme precipitation and430

significant snowmelt events (Ralph et al., 2014), skillful streamflow forecasts can have important implications. Due to its

practical applications, RF and RF-based algorithms continue to gain popularity in hydrological studies (Tyralis et al., 2019).

Given the promising results from our study, RF can be used as part of an ensemble of models to achieve better generalization

ability and accuracy not only in streamflow forecast but also in other water-related applications in this region.

Code and data availability. Example code for building random forests model in R and data are available at https://github.com/leopham95/435

RandomForestStreamflowForecast
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