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Abstract. In the past decades, data-driven Machine Learning (ML) models have emerged as promising tools for short-term

streamflow forecasts. Among other qualities, the popularity of ML for such applications is due to the methods’ competitive

performance compared with alternative approaches, ease of application, and relative lack of strict distributional assumptions.

Despite the encouraging results, most applications of ML for streamflow forecast have been limited to watersheds where rainfall

is the major source of runoff. In this study, we evaluate the potential of Random Forest (RF), a popular ML method, to make5

streamflow forecast at 1-day lead time at 86 watersheds in the Pacific Northwest. These watersheds span climatic conditions and

physiographic settings and exhibit varied contributions of rainfall and snowmelt to their streamflow. Watersheds are classified

into three hydrologic regimes: rainfall-dominated, transisent, and snowmelt-dominated based on the timing of center of annual

flow volume. RF performance is benchmarked against Naïve and multiple linear regression (MLR) models, and evaluated using

four metrics Coefficient of determination, Root mean squared error, Mean absolute error, and Kling-Gupta efficiency. Model10

evaluation metrics suggest RF performs better in snowmelt-driven watersheds. Largest improvement in forecasts, compared

to benchmark models, are found among rainfall-driven watersheds. We obtain Kling-Gupta Efficiency (KGE) scores in the

range of 0.62 - 0.99. RF performance deteriorates with increase in catchment slope and increase in soil sandiness. We note

disagreement between two popular measures of RF variable importance and recommend jointly considering these measures

with the physical processes under study. These and other results presented provide new insights for effective application of15

RF-based streamflow forecasting.

1 Introduction

Nearly all aspects of water resource management, risk assessment, and early warning water quality and flood systems rely on

accurate streamflow forecast. Yet streamflow forecasting remains a challenging task due to the dynamic nature of runoff in

response to spatial and temporal variability in rainfall and catchment characteristics. Therefore, development of skillful and20

robust streamflow models is an active area of study in hydrology and related engineering disciplines.

In the past decades, Machine Learning (ML) models have gained popularity as promising tools to predict streamflow in ad-

dition to physical and stochastic models. These data-driven tools identify patterns in input-output relationship without explicit

knowledge of the physical processes or formulation of mathematical equations. To make up for their lack of ability to provide
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interpretation of the underlying mechanisms, these models often require fewer data, have demonstrated high accuracy in their25

performance, are computationally efficient, and can be used in real-time forecast (Adamowski, 2008; Mosavi et al., 2018). ML

models are particularly useful when accurate prediction is the central inferential goal (Dibike and Solomatine, 2001). Artificial

neural networks (ANNs), neuro-fuzzy, support vector machine (SVM), and decision trees (DT) are reported to be among the

most popular and effective for both short-term and long-term flood forecast (Mosavi et al., 2018). For example, Dawson et al.

(2006) provided flood risk estimation at ungauged sites using ANN at catchments across United Kingdom. Rasouli et al. (2012)30

predicted streamflow at lead times of 1-7 days with local observations and climate indices using three ML methods Bayesian

neural network (BNN), SVM, and Gaussian process (GP). They found BNN outperformed multiple linear regression (MLR)

as well as two other competing ML models. Their study also found models trained using climate indices yielded improved

longer lead time forecasts (e.g., 5–7 days). Tongal and Booij (2018) forecasted daily streamflow in four rivers in the United

States with SVR, ANNs, and Random Forest (RF) coupled with a baseflow separation method. Obringer and Nateghi (2018)35

compared eight parametric, semi-parametric, and non-parametric ML algorithms to forecast urban reservoir levels in Atlanta,

Georgia. Their results showed RF yielded the most accurate forecasts.

Despite the promising results reported in existing literature, most ML streamflow forecast applications are limited to water-

sheds where rainfall is the major contributor. In many settings, particularly, non-arid mountainous regions, a combination of

rainfall and spring snowmelt can drive streamflow (Johnstone, 2011; Knowles et al., 2007). The amount of snow accumulation40

and its contribution to discharge also vary among the watersheds (Knowles et al., 2006). A natural question is whether ML

models can produce comparable performance in watersheds where streamflow contributions come from a mix of snowmelt

and rainfall, as well as where snowmelt dominates sources. Considering the prominent role of snowpack in water management

and contribution of rapid snowmelt in flood events, such question is worth exploring. To this end, we evaluate the potential

of RF in making short-term streamflow forecast at 1-day lead time across 86 watersheds in the Pacific Northwest Hydrologic45

Unit. The United States Geological Survey (USGS) defines this region as hydrologic unit code (HUC) 17 (U.S. Geological

Survey, 2020). HUC-17 consists of sub-basins and watersheds of the Columbia River that span varying hydrologic regimes.

The selected watersheds have long-term record of unregulated streamflow and different streamflow contributions of rainfall

and snowmelt. Other streamflow forecast studies commonly apply several ML models to a chosen watershed and evaluate

the performance of the models in terms of R2 or other goodness of-fit measures. Drainage basin factors such as topography,50

vegetation, and soil can affect the response time and mechanisms of runoff (Dingman, 2015). Few studies attempted to account

for and reported these effects on models’ performance. Without such consideration, it is difficult to determine if a data-driven

model can be generalized to watersheds not included in the given study. Therefore, our objectives are to (1) examine and

compare the performance of RF in a number of watersheds across hydrologic regimes and (2) explore the role of catchment

characteristics in model performance that are overlooked in previous studies.55

In practice, RF can be trained to forecast streamflow at various timescales, depending on the selection of input variables. We

focus on 1-day lead time because we assume only antecedent information of predictors are available at the time forecast is made.

At longer lead times, changes in weather conditions would likely exert much greater control on runoff and the performance of

the model.
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We select RF to forecast streamflow for two reasons. First, RF has been referenced to deliver high performance in short-term60

streamflow forecasts (Mosavi et al., 2018; Papacharalampous and Tyralis, 2018; Li et al., 2019; Shortridge et al., 2016), making

it a good candidate for our study. Second, RF allows for some level of interpretability. This is delivered through two measures of

predictive contribution of variables: Mean Decrease in Accuracy (MDA) and Mean Decrease in Node Impuritiy (MDI). These

two metrics have been widely used as means for variable selection in classification and regression studies in bioinformatics

(Chen and Ishwaran, 2012), remote sensing classification (Pal, 2005), and flood hazard risk assessment (Wang et al., 2015).65

This can be considered an advantage of RF compared with the more “black-box” nature of competing ML algorithms. While

the referred interpretability does not directly translate to interpretation of the physical processes, it can provide insight into

relationships among predictor variables and streamflow response.

The remainder of the paper is arranged as follows. Section 2 provides a brief introduction to RF and relevant parameters,

and selected evaluation indices. Section 3 describes the study area, datasets, and predictor selection. Results and discussion70

are in Sect. 4. Acknowledgement of limitations and recommendation for future research are also discussed. A summary of

conclusions is presented in Sect. 5.

2 Methodology

2.1 Random Forest

Proposed by Breiman (2001), RF is a semi-unsupervised, non-parametric algorithm within the decision tree family that com-75

prises an ensemble of uncorrelated trees to yield prediction for classification and regression tasks. Since a single decision tree

can produce high variance and is prone to noise (James et al., 2013), RF addresses this limitation by generating multiple trees

where each tree is built on a bootstrapped sample of the training data. Each time a binary split is made in a tree (also known

as split node), a random subset of predictors (without replacement) from the full set of predictor variables is considered. One

predictor from these candidates is used to make the split where the expected sum variances of the response variable in the two80

resulting nodes is minimized. The randomization process in generating the subset of the features prevents one or more particu-

larly strong predictor from getting repeatedly chosen at each split, resulting in highly correlated trees (James et al., 2013). After

all the trees are grown, each tree casts a vote on a label class for classification task or a prediction value for regression task. The

output is the most popular class or the average of all regression values. Breiman (2001) provided full details on Random Forest

and its merit. The randomForest package in R developed by Liaw et al. (2002) was used for model training and validation85

in our study. The step-by-step of building a regression RF follows:
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Algorithm 1 Building a regression Random Forest
Step 1: n bootstrap samples are drawn from training set, each has the same size as the training sample. This is also known as
ntree or number of trees in the forest.
Step 2: At each binary node split, a subset of mtry predictors,Xi, is randomly selected from p predictor space, Ωp, that results
in Xi ∈ Ωp for {i ∈ 1,..., mtry}, mtry < p.
Step 3: The single best combination of predictor X among Xi predictor variables and threshold t is selected to split the
observations, yj , into binary regions
R1 = { yj | Xi < t } and R2 = { yj | Xi > t } that minimize:∑
j:yj∈R1

(yj − ŷR1
)2 +

∑
j:yj∈R2

(yj − ŷR2
)2 (1)

where ŷR1
is the mean of observations in R1 and ŷR2

is the mean of observations in R2.
Step 4: Repeat step 2-3 until all terminal region contains less than nodesize observations.

Due to sampling with replacement, some observations may not be selected during the bootstrap. These are referred as out-

of-bag or OOB, and used to estimate the error of the tree on unseen data. It has been estimated that approximately 37% of

samples constitute OOB data (Huang and Boutros, 2016). An average OOB error is calculated for each subsequently added

tree to provide an estimate of the performance gain. The OOB error can be particularly sensitive to the number of random90

predictors used at each split mtry and number of trees ntree (Huang and Boutros, 2016). Generally, predictive performance

improves (or reduction in OOB error) as ntree increases. However, recent research has shown that depending on the dataset,

there is a limit for number of trees where additional growing does not improve performance (Oshiro et al., 2012). It has been

advised that mtry is set to no larger than 1/3 of total number of predictors for optimal regression prediction (Liaw et al., 2002),

which is also the default value in randomForest function in R and widely adopted in literature. Nevertheless, Huang and95

Boutros (2016) found that this value is dataset-dependent and could be tuned to improve the performance of Random Forest.

Bernard et al. (2009) argued the number of relevant predictors highly influences optimal mtry value. In this study, we select

the optimal mtry using an exhaustive search strategy, in which all possible values of mtry are considered, using R package

Caret (Kuhn et al., 2008). Figure 1 illustrates the step-by-step operating principle of growing a Random forest and its relevant

parameters.100

2.2 Variable importance in Random Forest

In addition to assessing a model’s overall predictive ability, there is also interest in understanding the contribution of each

predictor variable to model performance. There are two built-in metrics for assessing variable importance in RF: MDA and

MDI. After all trees are grown, OOB data during training is used to compute the first measure. At each tree, the Mean squared

error (MSE) between predicted and observed is calculated. Then the values of each of the p predictors are randomly permuted105

with other predictor variables held constant. The difference between the previous and new MSE is averaged over all trees.

This is considered the predictor variable’s MDA (Liaw et al., 2002) and values are reported in percent difference in MSE. The

procedure is repeated for each predictor variable. Given that there is a strong association between a predictor and response
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variable, breaking such bond would result in large error in the prediction (ie., large MDA). It is noted MDA value can be

negative where a predictor has no predictive power and adds noise to the model.110

The second method, MDI, measures the average gain in residual error reduction each time a predictor is selected to make

a split during training. It is based on the principle that a binary split only occurs when residual errors (or impurity) of two

descendent nodes are less than that of their parent node. The MDI of a predictor is the sum of all gains across all trees divided

by the number of trees. Because the scale of MDI depends on values of response variable, raw MDI provides little interpretation.

Following Wang et al. (2015), we computed relative MDI for each variable, which in our case is calculated by dividing each115

predictor variable’s MDI by the sum of MDI from all predictors at each watershed. When scaled by 100, this relative MDI is a

percentage and can be interpreted as the relative contribution of each predictor to the total reduction in node impurities. In case

the predictor makes no contribution during the splitting, the relative MDI would be effectively zero. In both metrics, the larger

the value, the more important the predictor.

2.3 Benchmark models120

We benchmark the performance of RF during the validation period against multiple linear regression (MLR) and simple Naïve

models using the calculated Pearson correlation coefficient (r) between forecasted and observed values for each model. In Naïve

model, we assume “minimal-information" scenario and the best estimate of the streamflow from the next day is the observed

value from current day (Gupta et al., 1999). Its r, in this case, is the 1-day autocorrelation coefficient in the time series and

measures of the strength of persistence. We train and verify MLR model using same data sets and predictors supplied to RF125

model.

2.4 Evaluation metrics

There exists different model performance metrics and each provides unique insights on the correspondence between forecasted

and observed streamflow values. While Pearson correlation coefficient (r) and its square, namely Coefficient of determination

(R2), are often used, Legates and McCabe Jr (1999) discussed the limitation of these two measures. The authors recommended130

that absolute error measures (i.e., Root mean squared error or Mean absolute error) and goodness-of-fit measure, such as

the Nash-Sutcliffe efficiency (NSE), could provide more reliable and conservative assessment of the models. Kling-Gupta

efficiency (KGE) is a relatively new metric that was developed based on a decomposition of NSE (Gupta et al., 2009). This

goodness-of-fit measure is gaining popularity as a benchmark metric for hydrologic models by addressing several shortcomings

diagnosed with NSE. For these reasons, we selected the following four metrics to evaluate RF performance: R2, RMSE, MAE,135

and KGE. These metrics cover various aspects of model’s performance and are also provide intuitive interpretation.
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R2 can be interpreted as the proportion of the variance in the observed values that can be explained by the model. Values are

in the range between 0 and 1 where 1 indicates the model is able to explain all variation in the observed dataset.

R2 =


N∑
i=1

(ŷi− ŷ)(yi− y)√
N∑
i=1

(ŷi− ŷ)2

√
N∑
i=1

(yi− y)2


2

(2)

where ŷi and yi are the forecasted and observed values respectively with140

yi =
1

N

N∑
i=1

yi and ŷi =
1

N

N∑
i=1

ŷi (3)

MAE provides an average magnitude of the errors in the model’s predictions without considering the direction (underesti-

mation or overestimation).

MAE =

N∑
i=1

|ŷi− yi|

N
(4)

RMSE is the standard deviation of the residuals between the predictions and observers. It is more sensitive to larger error145

due to the squared operation. Both MAE and RMSE values are scale-dependent as they depend on the magnitude of values.

The standardization in streamflow measurements (described in Sect. 3) allows comparison of MAE and RMSE across gauges.

RMSE =

√√√√√ N∑
i=1

(ŷi− yi)2

N
(5)

KGE metric ranges between -inf and 1. While there currently is not a definitive KGE scale, negative KGE values are

considered “not satisfactory” or “undesirable” (Schönfelder et al., 2017; Siqueira et al., 2018) and model performance is150

considered as “poor" with 0 < KGE < 0.5 (Rogelis et al., 2016). KGE is calculated as follows:

KGE = 1−
√

(r− 1)2 + (α− 1)2 + (β− 1)2 (6)

where r is the correlation coefficient, α is a measure of relative variability in the forecasted and observed values, and β

represents the bias:

α=
σŷ
σy

and β =
µŷ

µy
(7)155

6

Anonymous: Please define all variables in this
equation, including the N and i.

Anonymous: observations

Anonymous: What do you mean by this?  More
sensitive to outliers?

Anonymous: Please state the ranges and optimal
values for MAE and RMSE, like you did for R^2.  (I know
that it's probably obvious to most readers, but it's a
small amount of additional text and worth specifying.)

Anonymous: Please use the real mathematical symbol
here.



where σŷ is the standard deviation in observations, σy is the standard deviation in forecasted values, µŷ is the forecasted mean,

and µy is observation mean.

In hydrological forecast, one might be interested in the ability of the model to capture more extreme events rather than

the overall performance. The definition of “extreme” depends on the objective of the studies. Here, we adopt the peak-over-

threshold method of classifying points extreme daily discharge at 90th, 95th, and 99th percentile thresholds during the validation160

period. We measure the ability of RF to capture these events using two additional metrics: Probability of Detection (POD) and

False Alarm Rate (FAR). The calculation followed as in (Karran et al., 2013).

POD =
P (ŷi > ω|yi > ω)

P (yi > ω)
(8)

FA=
P (ŷi > ω|yi < ω)

P (yi < ω)
(9)165

where ω is a specified threshold.

3 Study Area and data

3.1 Watersheds in Pacific Northwest Hydrological Unit

In this study, we focus on watersheds in the Pacific Northwest or USGS designated HUC 17. This region covers an area

of 836,517 km2 and encompasses all of Washington, six other states, and British Columbia, Canada. For the purpose of170

maintaining consistency in monitoring protocol and data, we only consider watersheds on the US territory. Columbia River

and its tributaries make up the majority of the drainage area, traveling more than 1,240 miles with an extensive network of

more than 100 hydroelectric dams and reservoirs have been built along these river channels. Hydropower in the Columbia River

Basin supplies approximately 70 percent of Pacific Northwest energy (Payne et al., 2004). Flood control is also an important

aspect of reservoir operation in this region.175

The north-south running Cascade Mountain Range divides the region into eastern and western parts and strongly influence

the regional climate. The windward side of the mountain receives an ample amount of winter precipitation compared to the

leeward side. When temperature falls near freezing point, precipitation comes in the form of snow and provides water storage

for dry summer months. East of the Cascades, summer rainfall result from rapidly built thunderstorm and convective events that

can produce flash floods (Mass, 2015). Proximity to the ocean provides buffering effect, resulting in more mild temperature in180

the winter.
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3.2 Data

3.2.1 Streamflow

Our analysis uses streamflow data available through the USGS National Water Information System (NWIS) (https://waterdata.

usgs.gov/nwis/sw). From NWIS, we selected daily streamflow time series for gauges using the following criteria: 1) continu-185

ous operation during the 10-year period between 2009 and 2018; 2) have less than 10 percent of missing data; 3) positioned in

watersheds with “natural” flow that is minimally interrupted by anthropogenic intervention such reservoirs. The third criterion

was met using the GAGES-II: Geospatial Attributes of gauges for Evaluating Streamflow dataset (Falcone, 2011) classification

to identify watersheds with least-disturbed hydrologic condition and represented natural flow. Additional screening was per-

formed to remove gauges that were inconsistent with others based on correlation coefficient comparison between the respective190

gauge and mean basin streamflow. We also excluded small creeks with drainage area less than 50 km2. In total, 86 watersheds

were selected (complete watershed physical characteristics are provided in Supplementary materials).

Following methodology proposed in Wenger et al. (2010), the watersheds were further grouped into three classes of hydro-

logic regimes based on the timing of center of annual flow, which is defined as the date at which half of the total annual flow

volume is exceeded. The annual flow calculations follow a water-year calendar that begins October 1st and ends September195

30th. These three hydrologic regimes include: “early” streams with flow time < 150 (27 February), “late” streams with flow

time > 200 (18 April), and “intermediate” streams with flow time between 150 and 200. These hydrologic regimes correspond

to rainfall-dominated, snowmelt-dominated, and transient or transitional (mixture of rain and snowmelt) hydrographs, respec-

tively. While this particular classification and its variants have been used in various studies related to water resources in this

region (Mantua et al., 2009; Elsner et al., 2010; Vano et al., 2015), we adopted this partition in our study for two reasons.200

First, as Regonda et al. (2005) pointed out, the classification provides a summary of information about type and timing of

precipitation, timing of snowmelt, and the contribution of these hydro-climatic variables to streamflow. This helps us assess

model performance in consideration of sources of runoff. Second, the classification provides a basis to generalize the results to

other watersheds that are not part of the study.

On average, records at these watersheds have less than 3 percent missing data during the 2009–2018 period. The drainage205

area of the watersheds range between 51 km2 and 3355 km2, and the mean elevation range from 239 m and 2509 m, estimated

from 30-m resolution digital elevation model (Table 1). Spatial distribution of watersheds is shown in Fig. 2.

3.2.2 Precipitation

Daily precipitation observations were obtained from the AN81d PRISM dataset (Di Luzio et al., 2008). This gridded dataset

has a resolution of 4km, covers the entire continental US from January 1981 to present, and is continuously updated every 6210

months. Best estimate gridded value is derived by using all the available data from numbers of station networks ingested by

the PRISM Climate Group. A combination of Climatologically aided interpolation (CAI) and RADAR interpolation were used

in developing PRISM dataset. In our study, watershed daily precipitation (measured in mm) time series were constructed by

computing the arithmetic mean for precipitation values of all grid points that fall within the given watershed.
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3.2.3 Snow water equivalent and temperatures215

Snow water equivalent (SWE) is defined as the depth of water that would be obtained if a column of snow were completely

melted (Pan et al., 2003). Daily SWE data were retrieved from 201 Snow Telemetry (SNOTEL) Stations in the PNW. These

stations are part of the network of over 800 sites located in remote, high-elevation mountain watersheds in the western U.S.

The elevation of these stations are in the range of 128 m and 3142 m. At SNOTEL sites, SWE is measured by a snow pillow—a

pressure sensitive pad that weighs the snowpack and records the reading via a pressure transducer. As the temperature shift220

is the primary trigger for snowmelt, daily maximum temperature (TMAX) and minimum temperature (TMIN) from SNOTEL

sensors were also retrieved and included as predictors. The obtained data reflected the last measurement recorded for the

respective day at each site. The dataset is mostly complete, with 99.6%/99.6%/99.9% of the observations are available for

three variables TMAX, TMIN, and SWE respectively. Because of the sparse coverage of SNOTEL sites, daily average values

were calculated at USGS basin level (or 6-digit Hydrological Unit) and subsequently applied to the watersheds located in that225

basin. There is a total of 15 basins, each contains a number of SNOTEL stations in the range between 6 and 30. It is noted the

in situ data from these of stations cannot capture the spatial variability of snow accumulation and computing an area-averaged

snowpack value from observations remains a challenging task (Mote et al., 2018). The SNOTEL averages, therefore, represent

first-order estimates of snow coverage and temperature conditions.

3.2.4 Predictor selection230

Future daily mean streamflow (Qt+1) is the response variable in our study. We attempt to explain the variability in Qt+1 using

eight relevant predictors from the three datasets (Table 2). Selection of predictors is based on thorough review of the literature

from previous studies and our understanding of the hydrology of this region. Specifically, precipitation (Pt) is intuitively a

driver of streamflow. SWEt metric provides storage information on the amount of accumulated snow available for runoff

and is influenced by changes in temperature (TMAXt and TMINt). Previous day streamflow (Qt) is particularly important235

due to high degree of persistence that exist in the time series. The Pentad Index (PENt) is introduced to account for highly

seasonal characteristics of the streamflow in this region (Zheng et al., 2018). A hydrological year consists of 73 pentads where

each comprises of five consecutive days. Data preprocessing showed moderate to strong non-linear correlation between daily

streamflow and Pentad Index across gauges. We also derived two variables: sum of 3-day precipitation (P3t) and snowmelt

(SDt) from available data. Inclusion of 3-day precipitation was to account for large winter storms that can last for several days,240

which often result in surges in streamflow. SDt was calculated as the difference between SWE at day t and t− 1. It is noted

that we use the term “snowmelt” to facilitate discussion in the context of runoff generated mechanism. A positive value of SDt

indicates snow accumulation and negative value indicates melt.

Soil moisture is also a relevant variable in streamflow modeling as it controls the partition between infiltration and runoff

of precipitation (Aubert et al., 2003). However, soil moisture data is often limited and incomplete, especially at daily interval245

and therefore not included in this study. The data were divided into two sets: training consisting of seven years 2009–2015 and
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a validation set of three years 2016–2018. All data was standardized using Min-Max Scaling to facilitate comparison across

gauges. A flowchart representing the input-output model based on RF is shown in Fig. 3.

4 Results and discussion

4.1 Parameter tuning250

As we mentioned in Sect. 2, error rate in RF can be sensitive to two parameters: the number of trees ntree and number of

randomly selected predictors available for splitting at each node mtry. We trained RF on a sample of training data sets and

observed that the reduction in error is negligible after 2000 trees. Therefore, ntree=2000 was set across watersheds. mtry,

on the other hand, was tuned empirically using a combination of exhaustive search approach and cross-validation.

The goal of tuning is to select the mtry parameter value that would optimize the performance of the model. The candidates255

were evaluated based on their out-of-bag Mean absolute error (MAE). At each watershed, eight possible candidate values of

mtry (1-8) were analyzed by 3 repetitions of 10-fold cross validation from the train data set. Averaging the MAE of repetitions

of the cross-validation procedure can provide more reliable results as the variance of the estimation is reduced (Seibold et al.,

2018). To illustrate, in Fig. 4, lowest cross-validation MAE is obtained at mtry = 3 at Carbon River Watershed (USGS Site

12094000). The results of tuning for all gauges (Table 3) show that the optimal mtry values are {3,4,5} with median MAE of260

0.0127, 0.0116, and 0.0079 respectively. These values are close to the suggested default mtry for regression (i.e., round-up

of the square root of total number of predictors or 3 in our study). The optimal mtry at each gauge was then used in both

training and validating the model. Because the number of predictors in our study is relatively small, computation burden of the

exhaustive search was manageable. As the number of candidate grows, a random search strategy (Probst et al., 2019) in which

values are drawn randomly from a specified space can be more computationally efficient.265

4.2 Benchmark RF against Multiple Linear Regression and Naïve models

Figure 5 shows the pair-wise comparisons of r values for RF, MLR, and Naïve models. In Fig. 5a, we observe RF mostly out-

performs Naïve Model in rainfall-driven and transient watersheds. We also discern large improvement, defined as the positive

difference in r values between RF and Naïve Model, tends to occur where persistence is relatively lower. This suggests that

application of RF would be most benefiting at watersheds where next-day streamflow is less dependent on the condition of the270

current day. Among snowmelt-driven watersheds, three models show marginal difference in r values. As Mittermaier (2008)

pointed out, the choice of reference can affect the perceived performance of the forecast system. Our pair-wise comparisons

highlight the fact that evaluating data-driven models should be performed in consideration of the autocorrelation structure in

the data (Hwang et al., 2012). Without accounting for persistence model, it would inadequate to conclude that RF gives better

performance in snowmelt-driven watersheds. Nevertheless, we observe RF outperformed MLR in all watersheds in rainfall-275

dominated and transitional watersheds and 19 out of 25 snowmelt-dominated watersheds. The median r values for RF in the
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three groups are (0.88, 0.89, 0.98) compared to (0.85, 0.87, 0.98) for MLR. This may reflect RF’s better ability to capture

non-linear relationship between streamflow and other variables.

4.3 Evaluation of RF overall performance

We next evaluated the overall performance of RF across three flow regimes using four metrics R2, KGE, MAE, and RMSE280

(Fig. 6). We observe similar trend reported in Fig. 5 where RF performs better in snowmelt-dominated than rainfall-dominated

(higher R2, lower MAE). Snowmelt-dominated watersheds have the smallest range of R2 values across the three groups. This

may suggest that there is less variability in flow behaviors at individual gauges in this group. Not surprisingly, transitional

group has the largest spread in R2 values as watersheds in this group share characteristics from the other two groups.

Because RMSE gives more weight to larger errors compared to MAE, the difference between the two metrics represents the285

extent in which outliers are present in error values (Legates and McCabe Jr, 1999). In rainfall-driven and transient groups, the

shape of the boxplot distributions remain fairly consistent between the two error metrics, suggesting that distribution of large

errors is similar to that of mean errors in these watersheds. In snowmelt-driven watersheds, we observe a noticeably wider

interquartile range (difference between first quartile and third quartile) in RMSE plot compared to MAE plot. This indicates

that RF can still be susceptible to underestimation or overestimation in watersheds where the mean error is relatively low.290

In Table 4, KGE scores are reported in a range of 0.64–0.99 for all watersheds. The median values for each flow regime are

0.84, 0.87, and 0.94. Based on assessment proposed by Rogelis et al. (2016) where model performance is considered “poor”

for 0.5 > KGE > 0, RF can be seen to give satisfactory performance at all watersheds. Our results are comparable to findings

in Tongal and Booij (2018) where authors compare the performance of RF, SVM, and ANNs to simulate daily discharge

with baseflow separation at four rivers in California and Washington. Although authors did not classified these basins, it can295

be inferred three of the rivers were rainfall-driven and one was snowmelt-driven. RF model in their study produced KGE

scores of 0.41, 0.81, and 0.92 for the rainfall-driven water basins (without baseflow separation). However, our KGE scores for

snowmelt-fed watersheds (with a median of 0.94) are higher compared to the reported 0.55 in their study.

4.4 RF performance on extreme streamflows

We also examine the model’s capacity to forecast extreme events because of their potential high impact and associated flood300

risks in this region. As seen in Fig. 7a, RF becomes expectedly less skilful in its forecasts with increase in magnitude of

the events. At 90th percentile threshold, we observe the same pattern as seen in the R2 and KGE boxplots. The model tends

to perform better among snowmelt-dominated watersheds compared to those in transient and rainfall-driven groups. At 95th

threshold, RF can forecast correctly at least 50 percent of the times at most watersheds. At 99th threshold, there are large

spreads in POD and the difference in RF’s ability to forecast extreme streamflow among the three flow regimes becomes less305

obvious. In snowmelt-driven watersheds, 8 out of 25 have POD > 0.5, 9 have POD between 0.01 and 0.5, and 8 have a POD

of 0. While few studies have examined complex diel hydrologic responses in high-elevation catchments (Graham et al., 2013),

our particular result suggests large surges in streamflow sustained by spring and early summer snowmelt can be difficult to

predict, even at 1-day lead time, and is an ongoing research subject (Ralph et al., 2014). We see in Fig. 7b, False alarm rate
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(FAR) is in agreement with POD and suggests that RF is consistent in its forecasts of rare events. That is, a high POD value is310

not a result of systematic overestimation. In such cases, we would observe both high POD and FAR among snowmelt-driven

watersheds.

4.5 Analysis of variable importance

Variable importance is a useful feature in both understanding the underlying process of current model and generating insights

for selection of variable in future studies (Louppe et al., 2013). RF quantifies variable importance through two metrics: DMA315

and MDI (Fig. 8). In both metrics, the higher value indicates variable contributes more to the model accuracy. Intuitively,

streamflow from previous day is shown to be the most importance variable due to persistence. This is reflected across three

flow regimes and two metrics. We also observe the sum of 3-day precipitation tends to more predictive power than than 1-day

precipitation. Maximum temperature and minimum temperature share similar contribution where minimum temperatures tend

to receive slightly higher scores. Among snowmelt-dominated watersheds (Fig. 8c and 8f), we anticipate snow indices (SDt320

and SWEt) contribute more in the prediction than precipitation and this is also reflected. Surprisingly, Pentad Index comes

third in both metrics. This supports the long-term snowpack memory of daily streamflow (Zheng et al., 2018) and can be

useful in real prediction. Precipitation does not seem to have significant contribution to the model’s accuracy in this group.

Although PRISM precipitation data includes both rainfall and snowfall, it is likely that the majority of fallen precipitation in

these high-altitude watersheds is stored as snow on the surface and does not immediately contribute to runoff. Li et al. (2017)325

estimated that 37% of the precipitation falls as snow in western US, yet snowmelt is responsible for 70% of the total runoff in

mountainous areas. It is still very surprising to observe such low contribution of precipitation variable to RF model accuracy.

Nevertheless, we observe general agreement between the two metrics in ranking of the variables in snowmelt-driven group.

In transient and rainfall-dominated groups, there are noticeable disagreement between the two metrics. Precipitation (Pt) and

3-day precipitation (P3t) tend to rank lower in MDA measure (Fig. 8a and 8b) compared to MDI (Fig. 8d and 8e). Specifically,330

in rainfall-dominated group, 3-day precipitation and precipitation are placed 2nd and 3rd based on median MDI compared to

4th and 7th in MDA. Maximum and minimum temperatures, on the other hand, tend to be more important in MDA calculation

compared to in MDI. In Shortridge et al. (2016), RF model was used to predict streamflow at five rain-fed rivers in Ethiopia.

Similarly calculated MDA in this study suggested precipitation were less important (7.71%) than temperature (12.74%). Linear

model in the same study, however, considered the coefficient for precipitation to be significant (p << 0.01) while temperature335

coefficient was not (p= 0.08). In Obringer and Nateghi (2018), authors predicted daily reservoir levels in three reservoirs

in Indiana, Texas, and Atlanta using RF and other ML techniques. Precipitation was reported as the least important variable

and ranked behind dew point temperature and humidity. Inspecting the density distribution of our predictors, we suspect that

for variables that are heavily skewed and zero-inflated (e.g., precipitation), permutation-based MDA may underestimate their

importance compared to those that are more normally distributed such as maximum and minimum temperatures. Strobl et al.340

(2007) showed RF variable importance measures can be unreliable in situations where potential predictor variables vary in

their scale of measurement or their number of categories. There is also an ongoing discussion regarding the stability of both
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metrics across different datasets (Nicodemus, 2011; Calle and Urrea, 2010). Although results from MDI make more sense in

our case, we suggest RF users to exert caution when interpreting outputs from these two metrics.

4.6 Effects of watershed characteristics on model performance345

To explore the role of catchment characteristics such as geology, topography, and land cover on the performance of RF model,

we perform Pearson correlation test between the KGE scores and selected basin physical characteristics for each flow regime.

The results are shown in Table 5. There is a strong negative correlation (p < 0.05) between KGE scores and watershed slopes

among rainfall-dominated and transient watersheds. As steeper hillslope often associates with faster surface and subsurface

water movement during event-flow runoff, this can result in shorter response time. We observe a similar trend between KGE350

scores and percent of sand in the soil (Fig. 9) where the RF performs worse in watersheds with higher hydraulic conductivities

(i.e., higher sand content). This could be a result of rapid subsurface flow from soil profile enabled by soil macropores in

mountainous forested area (Srivastava et al., 2017), where subsurface flow is the predominant mechanism. Without a quantifi-

cation of the partition of discharge into surface flow and subsurface flow at individual watersheds, it is difficult to determine

the relative importance of subsurface runoff mechanisms in regulating streafmlow and how that may have affected the RF355

performance. The findings, however, suggest RF performance can deteriorate at watersheds with quick-response runoff when

supplied with 1-day delayed observation data.

It appears that stream density and the amount of vegetation cover may also affect the performance of RF, but the relationships

are not statistically significant at α = 0.05. Aspect eastness, darainage area, and basin compactness are not determining factors

to variability in the KGE scores. We also explored the impact of land-use/land-cover, which can be represented by the extent360

of impervious cover in each watershed. However, because we only selected unregulated watersheds that experienced minimal

human disruption during the initial screening, most watersheds have very little impervious cover (less than 5%). It is noted that

these selected characteristics are not meant to be exhaustive, but rather representative of various types of factors that could help

explain the variability in model performance. Furthermore, an alternative approach to Pearson’s correlation is to use ANOVA to

test for marginal significance of each catchment variable to KGE while accounting for their interaction. Because our objective365

is not to make inference on KGE based on these variables and ANOVA analysis can be complicated to interpret, we choose to

compute correlation coefficient r.

4.7 Limitations and future research

There area some notable limitations in our study as well as RF in general. The classification of watersheds into three flow

regimes was based on the timing of the climatological mean of the annual flow volume, which can fluctuate from year to year.370

This is particularly true for watersheds in transient group where streamflow is contributed by a mix of runoff from winter

rainfall and springtime snowmelt, where inter-annual variability is tremendous in both magnitude and timing (Lundquist et al.,

2009). Therefore, the membership of the classified watersheds from this group can vary. In fact, Mantua et al. (2009) discussed

the future shift of transient runoff watersheds towards rainfall-dominated in Washington. Because we trained RF using the same
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input variables for all watersheds regardless of flow regimes and calculated performance metrics separately, the classification375

does not alter the results at individual watershed.

In the study, we used estimated precipitation from PRISM, which is an interpolation product and combines data from various

rain gauges from multiple networks. Despite of possible introduced errors and uncertainty, we believe the use of spatially

distributed product better represents the areal estimation of precipitation over the basin than a single rain gauge measurement.

In real-time forecast, this would be not be feasible due to the added time to compile and process such data. As our results380

indicate that RF can produce reasonable forecasts, potential future research could explore the sensitivity of the model using a

station data or even include t+ 1 precipitation forecast as a predictor.

An inherent limitation of RF is the lack of direct uncertainty quantification in prediction. In our case, forecasted streamflow

using RF does not yield a standard error comparable to that provided traditional linear model, and hence no way to provide

probabalistic confidence intervals on predictions. Estimation confidence interval methods have been proposed by Wager et al.385

(2014); Mentch and Hooker (2016); Coulston et al. (2016), but they are not widely applied. For future work, computation of

confidence interval in RF prediction will be useful in addressing and understanding uncertainty.

5 Conclusions

Accurate streamflow forecast has extensive applications across disciplines from water resources and planning to engineering

design. In this study, we assessed the ability of RF to make daily streamflow forecast at 86 watersheds in the Pacific Northwest.390

Key results are summarized below:

– Based on KGE scores (ranging from 0.62 to 0.99), we show RF is able to produce useful forecasts across all watersheds.

– RF performs better in snowmelt-dominated watersheds, which can be attributed to stronger persistence in the streamflow

time series. Largest improvements in forecast compared to Naïve model are found among rainfall-dominated watersheds.

– The two built-in approaches for measuring predictor importance yield noticeably different results. We recommend in-395

terpretation of the these two metrics should be coupled with understanding of the physical processes and how these

processes are connected.

– Steepness of slope and amount of sand content are found to deteriorate RF performance in two flow regime groups. This

demonstrates catchment characteristics can cause variability in performance of the model and should be considered in

both predictor selection and evaluation of the model.400

Considering the current and future vulnerabilities of the Pacific Northwest to flooding caused by extreme precipitation and

significant snowmelt events (Ralph et al., 2014), skillful streamflow forecasts can have important implications. Due to its

practical applications, RF and RF-based algorithms continue to gain popularity in hydrological studies (Tyralis et al., 2019).

Given the promising results from our study, RF can be used as part of an ensemble of models to achieve better generalization

ability and accuracy not only in streamflow forecast but also in other water-related applications in this region.405
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Figure 1. Structure of a RF and relevant parameters
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Figure 2. (a) Elevation (m) shading map showing the Pacific Northwest Hydrological Unit, 86 selected stream gauges (triangles), and their
drainage area (cyan delination lines), and SNOTEL stations (brown squares). Examples of annual hydrographs of (a) rainfall-dominated,
(b) transient regime, and (c) snowmelt-dominated watersheds. Figures (a-c) are based on 2009-2018 daily flow data at three sites 12043300
(124.4W, 48.2N), 12048000 (123.1W, 48N), and 10396000 (118.9W, 42.7N), respectively.
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Figure 3. Flowchart showing the input-output model based on Random Forest
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Figure 4. Out-of-bag Mean Absolute Error plotted against mtry during optimal parameter search at site USGS 12094000.
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Figure 5. Pairwise scatter plots of Pearson correlation coefficient between forecasted and observed values for (a) Random Forest vs. Naïve
Model, (b) Random Forest vs Multiple Linear Regression, and (c) Multiple Linear Regression vs. Naïve Model. Each dot represents one
watershed (n=86).
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Figure 6. Streamflow daily forecast scores computed over the validation period (2016-2018) for RF model across four metrics (a) R2 and
KGE (b) MAE and RMSE.
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Figure 7. (a) Number of times RF correctly forecasted events that exceeded 90th, 95th, and 99th thresholds divided by the total number of
exceedance. (b) Number of times RF incorrectly forecasted events that exceeded 90th, 95th, and 99th thresholds divided by the total number
of non-exceedance.
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Figure 8. Barplots show importance of predictor variables using (a-c) DMA and (d-f) DMI metrics. Length of the blue bars indicates the
median value across the watersheds for each flow regime and the thin black bar represents the range of the values.
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Figure 9. KGE scores plotted against average percentage of sand in soil at each watershed. Best-fit lines were determined using simple linear
regression.
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Table 1. Number of streamflow gauges used in the study for each flow regime, ranges of mean watershed elevation and drainage area.
Complete catchment physical and hydro-climatic characteristics at individual site (retrieved from Falcone (2011).

Hydrologic regime Number of gauges Mean watershed elevation (m) Drainage area (km2)

Rainfall-dominated 33 239 - 1207 58 - 703
Transitional 28 813 - 1477 58 - 1855

Snowmelt-dominated 25 1349 - 2509 51 - 3355
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Table 2. List of potential predictors.

No. Predictors Index Unit Source

1 Streamflow at day t Qt ft3/s USGS
2 Precipitation Pt mm PRISM
3 Sum of 3-day precipitation (Pt + Pt−1+ Pt−2) P3t mm Derived from PRISM
4 Snow water equivalent SWEt in SNOTEL
5 Maximum temperature TMAXt degree F SNOTEL
6 Minimum temperature TMINt degree F SNOTEL
7 Snowmelt (SWt - SWt−1) SDt in Derived from SNOTEL
8 Pentad index PENt - -

30



Table 3. The achieved parameter mtry using exhaustive-search strategy (mtry = {1,2,6,7,8} were considered but not found as the optimal
value at any gauge).

mtry Number of gauges Median MAE

3 29 0.0127
4 44 0.0116
5 13 0.0079
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Table 4. Descriptive statistics of the four metrics used to evaluate the overall performance of Random Forest: R2, KGE, MAE, and RMSE.

Metric Flow regime Min Q1 Median Q3 Max

R2
Rainfall dominant 0.59 0.71 0.77 0.81 0.87

Transient 0.57 0.71 0.80 0.87 0.99
Snowmelt dominant 0.88 0.95 0.97 0.98 0.99

KGE
Rainfall dominant 0.64 0.78 0.84 0.87 0.92

Transient 0.62 0.77 0.86 0.91 0.99
Snowmelt dominant 0.77 0.89 0.94 0.97 0.99

MAE
Rainfall dominant 0.0061 0.0096 0.0131 0.0161 0.0245

Transient 0.0070 0.0097 0.0109 0.0143 0.0189
Snowmelt dominant 0.0065 0.0087 0.0092 0.0114 0.0168

RMSE
Rainfall dominant 0.0157 0.0241 0.0326 0.0395 0.0609

Transient 0.0144 0.0227 0.0275 0.0331 0.0468
Snowmelt dominant 0.0160 0.0218 0.0270 0.0315 0.0436
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Table 5. Pearson correlation coefficient between KGE scores and selected basin variables. Highlighted red values indicate the relationship is
significant at 5 percent or 1 percent level.

Watershed characteristics Hydrologic regime
Rainfall dominant Transient Snowmelt dominant

Slope -0.42 -0.68 0.12
Aspect eastness -0.02 0.12 -0.12
Drainage area 0.14 -0.12 0.11

Basin compactness 0.09 -0.12 -0.16
Stream density -0.10 0.29 -0.27
Percent of sand -0.59 -0.46 -0.14

Percent of forested area -0.11 0.32 0.32
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