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Abstract. In the past decades, data-driven Machine Learning (ML) models have emerged as promising tools for short-term

streamflow forecasts. Among other qualities, the popularity of ML for such applications is due to the methods’ competitive

performance compared with alternative approaches, ease of application, and relative lack of strict distributional assumptions.

Despite the encouraging results, most applications of ML for streamflow forecast have been limited to watersheds where rainfall

is the major source of runoff. In this study, we evaluate the potential of Random Forest (RF), a popular ML method, to make5

streamflow forecast at 1-day lead time at 86 watersheds in the Pacific Northwest. These watersheds span climatic conditions and

physiographic settings and exhibit varied contributions of rainfall and snowmelt to their streamflow. Watersheds are classified

into three hydrologic regimes: rainfall-dominated, transisent, and snowmelt-dominated based on the timing of center of annual

flow volume. RF performance is benchmarked against Naïve and multiple linear regression (MLR) models, and evaluated using

four metrics Coefficient of determination, Root mean squared error, Mean absolute error, and Kling-Gupta efficiency. Model10

evaluation metrics suggest RF performs better in snowmelt-driven watersheds. Largest improvement in forecasts, compared

to benchmark models, are found among rainfall-driven watersheds. We obtain Kling-Gupta Efficiency (KGE) scores in the

range of 0.62 - 0.99. RF performance deteriorates with increase in catchment slope and increase in soil sandiness. We note

disagreement between two popular measures of RF variable importance and recommend jointly considering these measures

with the physical processes under study. These and other results presented provide new insights for effective application of15

RF-based streamflow forecasting.

1 Introduction

Nearly all aspects of water resource management, risk assessment, and early warning water quality and flood systems rely on

accurate streamflow forecast. Yet streamflow forecasting remains a challenging task due to the dynamic nature of runoff in

response to spatial and temporal variability in rainfall and catchment characteristics. Therefore, development of skillful and20

robust streamflow models is an active area of study in hydrology and related engineering disciplines.

In the past decades, Machine Learning (ML) models have gained popularity as promising tools to predict streamflow in ad-

dition to physical and stochastic models. These data-driven tools identify patterns in input-output relationship without explicit

knowledge of the physical processes or formulation of mathematical equations. To make up for their lack of ability to provide
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interpretation of the underlying mechanisms, these models often require fewer data, have demonstrated high accuracy in their25

performance, are computationally efficient, and can be used in real-time forecast (Adamowski, 2008; Mosavi et al., 2018). ML

models are particularly useful when accurate prediction is the central inferential goal (Dibike and Solomatine, 2001). Artificial

neural networks (ANNs), neuro-fuzzy, support vector machine (SVM), and decision trees (DT) are reported to be among the

most popular and effective for both short-term and long-term flood forecast (Mosavi et al., 2018). For example, Dawson et al.

(2006) provided flood risk estimation at ungauged sites using ANN at catchments across United Kingdom. Rasouli et al. (2012)30

predicted streamflow at lead times of 1-7 days with local observations and climate indices using three ML methods Bayesian

neural network (BNN), SVM, and Gaussian process (GP). They found BNN outperformed multiple linear regression (MLR)

as well as two other competing ML models. Their study also found models trained using climate indices yielded improved

longer lead time forecasts (e.g., 5–7 days). Tongal and Booij (2018) forecasted daily streamflow in four rivers in the United

States with SVR, ANNs, and Random Forest (RF) coupled with a baseflow separation method. Obringer and Nateghi (2018)35

compared eight parametric, semi-parametric, and non-parametric ML algorithms to forecast urban reservoir levels in Atlanta,

Georgia. Their results showed RF yielded the most accurate forecasts.

Despite the promising results reported in existing literature, most ML streamflow forecast applications are limited to water-

sheds where rainfall is the major contributor. In many settings, particularly, non-arid mountainous regions, a combination of

rainfall and spring snowmelt can drive streamflow (Johnstone, 2011; Knowles et al., 2007). The amount of snow accumulation40

and its contribution to discharge also vary among the watersheds (Knowles et al., 2006). A natural question is whether ML

models can produce comparable performance in watersheds where streamflow contributions come from a mix of snowmelt

and rainfall, as well as where snowmelt dominates sources. Considering the prominent role of snowpack in water management

and contribution of rapid snowmelt in flood events, such question is worth exploring. To this end, we evaluate the potential

of RF in making short-term streamflow forecast at 1-day lead time across 86 watersheds in the Pacific Northwest Hydrologic45

Unit. The United States Geological Survey (USGS) defines this region as hydrologic unit code (HUC) 17 (U.S. Geological

Survey, 2020). HUC-17 consists of sub-basins and watersheds of the Columbia River that span varying hydrologic regimes.

The selected watersheds have long-term record of unregulated streamflow and different streamflow contributions of rainfall

and snowmelt. Other streamflow forecast studies commonly apply several ML models to a chosen watershed and evaluate

the performance of the models in terms of R2 or other goodness of-fit measures. Drainage basin factors such as topography,50

vegetation, and soil can affect the response time and mechanisms of runoff (Dingman, 2015). Few studies attempted to account

for and reported these effects on models’ performance. Without such consideration, it is difficult to determine if a data-driven

model can be generalized to watersheds not included in the given study. Therefore, our objectives are to (1) examine and

compare the performance of RF in a number of watersheds across hydrologic regimes and (2) explore the role of catchment

characteristics in model performance that are overlooked in previous studies.55

In practice, RF can be trained to forecast streamflow at various timescales, depending on the selection of input variables. We

focus on 1-day lead time because we assume only antecedent information of predictors are available at the time forecast is made.

At longer lead times, changes in weather conditions would likely exert much greater control on runoff and the performance of

the model.
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