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Pham et al. developed a Random-Forest-based (RF) algorithm for day-ahead stream-
flow forecasting. The algorithm employs 8 weather-snow-time features (see Table
2) and was tested across 86 watersheds in the Pacific Northwest (PNW), where it
was compared with multilinear regression and previous-day streamflow as a minimum-
information forecasting approach (so called Naïve method). Results show that RFs
provide quite robust predictions across catchments with different climatology (rainfall
dominated, snowfall dominated, or transient) and generally perform better than the two
benchmark approaches – especially in rainfall-dominated and transient watersheds.
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Drops in accuracy for RFs were correlated with watershed slope and sandiness.

This is an interesting, well-written, and concise paper about an emerging machine-
learning technique in hydrology and its use for streamflow forecasting. While I have
tangential knowledge of RF technical issues, I found the description of the algorithm
clear and rigorous, which facilitates replicability and ultimately allows readers to learn
more about RFs in general rather than only looking at is as a black box (note that these
technical details are often bypassed or heavily summarized in other papers I have read
on this matter). Also, RFs and machine-learning approaches in general are on the
rise in hydrology, meaning I expect the paper to have some impact on the community.
There are still some major and minor comments that I recommend for authors (see
below), and I recommend the editor reconsider this manuscript after minor revisions.

MAJOR COMMENTS

1. The manuscript sometimes reads like a technical note, as it describes the algorithm
and its implementation in great details but ultimately falls a little short on hydrological-
process interpretation. I see that the main goal of the paper is testing an algorithm, and
applied research is certainly within the scope of HESS. And yet, I feel like implement-
ing RFs across 86 watersheds with different characteristics and 10 yrs with different
climatology without looking more specifically at how performance changes across the
landscape and between years with different characteristics is kind of a missed oppor-
tunity. For example, operational forecasters in the western US often calibrate multiple
forecasting tools based on the concept of “water-year type” (for example, a set of pa-
rameters for dry yrs, another for wet yrs, etc.). Doing so here would allow authors to
explore how predictive skills change between dry and wet yrs, or yrs with more or less
snow or more or less rainfall, which would also have some future-climate implications. I
ignore how demanding it would be to add an additional calibration experiment like this,
so these were only examples. My bottom line is that I encourage authors to better ex-
plore their results from a hydrological-process perspective to add some process-based
insights to an already interesting paper focused on an algorithm.
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2. I was a little surprised by the choice of benchmark models and particularly by the fact
that authors did not consider a full hydrologic model. I understand that authors would
probably like to stay within the realm of data-driven models, but a Naïve approach
looks very simplistic, especially at a daily time scale and in basins where rainfall and
snowfall coexist. How can this approach predict, e.g., intense rain-on-snow events that
are ubiquitous in the PNW? Most flood-forecasting tools I have been exposed to use
full hydrologic models, and I encourage authors to at least discuss this matter in their
manuscript.

3. Relatedly, I was also a little surprised that authors did not consider rainfall and
snowfall as separate features in their model (see their Table 2). I am aware that PRISM
only provides total precip, but it also provides temperature and relative humidity that
could be employed to separate snowfall from rainfall. Perhaps considering SWE al-
ready makes up for this, but I encourage authors consider this at least for future work.
This was again particularly puzzling to me given the well-known role of rain on snow in
this region.

SPECIFIC COMMENTS

- Title: I have usually seen “rainfall-dominated” and “snowfall-dominated” being used,
rather than rainfall and snowmelt driven. Consider revising.

- Line 3: I think “ease of application” might be relative, especially in ungauged areas or
for users with limited computational capabilities. Consider revising or expanding.

- Line 8: transisent -> transient?

- Line 11: better than what?

- Line 24: I believe even ML algorithms need the formulation of some mathematical
equations, although maybe not in a predictive role.

- Line 25: I am not sure if ML algorithms really require “fewer data” than, e.g., concep-
tual, minimal hydrologic models. Here again, a comparison with a hydrologic model
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would be a great addition to the paper.

- Line 38ff: maybe also mention glaciers here, although they might not be an important
driver for hydrology in your study region.

- Line 56: indeed, statistical forecasting models are widely used across the western US
to predict summer flow (e.g., April to July total runoff). I understand this is out of the
scope of your paper, but maybe mention this application to provide broader framing to
your work.

- Algorithm 1 Step 3: I believe the case Xi = t is missing, contrary to Figure 1.

- Section 2.2: maybe redefine acronyms for MDA and MDI here since you introduce
them in the Introduction. This will be greatly appreciated by diagonal readers.

- Section 2.3: see my major comment 2.

- Line 149: Knoben at al. (https://hess.copernicus.org/articles/23/4323/2019/) have
recently pointed out that KGE = 0 has a different implication from NSE = 0, and so
KGE = 0 should be used with caution. Please revise as relevant.

- Line 172 and Table 2: please use SI rather than customary units.

- Line 176: maybe some more quantitative climatology would be more appropriate
here. For instance, replace “ample amount of winter precipitation” with statistics of
winter precip for your watersheds. Same for “mild temperature”. It would also be
interesting to provide some statistics of mean-max SWE across the basins.

- Line 186: have you tried to impute missing values? What’s the impact of gaps in your
framework?

- Line 196ff: how “place-based” is this classification based on the day of the water
year? I would have expected one to classify basins based on proportion of rainfall over
total precipitation, which look more general to me.
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- Section 3.2.3: it has been reported that snow pillows have a certain bias in capturing
the onset of snowmelt, basically because they isolate the overlying snowpack from
the ground. I understand they are the only continuous-time data source to estimate
snowmelt, but consider adding a warning about this bias here.

- Line 244: I believe at least some SNOTEL stations do measure soil moisture. Please
specify this if relevant.

- Line 246: how were the validation and calibration period chosen? May this choice
have played a role in your results? What were the climatological characteristics of
these two periods? Please expand and support your choice here.

- Line 269: I might have missed this, but do you show any statistics of persistence for
your catchments to support this statement? Again, I may be missing something here.

- Line 292: see my previous point regarding KGE

- Line 307: may these be due to rain on snow?

- 355: streamflow (typo)

- Figure 9: consider adding the scatter plot for slope

- Table 1: is there any reason why snowmelt-driven catchments have a larger range of
drainage areas? Just out of my curiosity.

-Table 2: please add t or t -1 as relevant in the “predictors” column; you only did that
for predictor 1.

- Table 5: what is the data source for these characteristics? Especially sandiness and
forested area.

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-
305, 2020.
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