
Although the reviewer has chosen to reject the manuscript in current form, the authors appreciate
the reviewer for his/her valuable comments and suggestions. We would like to take this opportunity to
provide further clarification and improve our manuscript. We included below the review’s comments
(italic black font) and our responses (plain blue font).

1 Overall comments

This paper describes the use of random forests (ensembles of decision trees) to predict streamflow
in various basins in the Pacific Northwest at one-day lead time. The authors use two methods to
understand the most important predictor variables, and they also investigate the effect of other basin
characteristics (not included as predictor variables) on the performance of the random forest. With
some improvements this work could be a valuable contribution to the literature, especially given the
analyses of predictor importance and confounding variables (basin characteristics not included as
predictors). However, at this time I have chosen to reject, due to several major issues with the paper.
Major comments are summarized below, and inline comments are attached in a PDF.

We appreciate the reviewer’s kind words on the merit of the manuscript and its contribution to
the literature. While we believe there are instances in the manuscript that can be improved, most of
them can be addressed with better clarification. Please see the Inline comments section below.

2 Major comments

1. The paper has serious grammatical issues, which make it difficult to follow. I have pointed all
grammatical errors in the abstract (see pham2020 annotations abstract.pdf). After the abstract,
I have mostly abstained from pointing out every grammatical error. However, the frequency of gram-
matical errors is approximately the same throughout the paper. I would like to make it clear that I
am not rejecting on the basis of grammar alone, but it does make the paper difficult to follow (there
are many sentences that I simply do not understand).

Thanks for carefully reviewing our manuscript. We have revised these errors based on your
suggestions and believe the overall language is now clearer and improved.

2. The explanation of machine-learning methods (the random forest and associated predictor-
importance methods) is unclear and contains several false statements. See inline comments for more
detail. The explanation is probably not clear enough for readers unfamiliar with ML to follow, and it
contains enough false statements that readers familiar with ML will probably be left scratching their
heads.

We believe our description and discussion of random forests algorithm is sufficient given the scope
of the paper. We also clarified statements the reviewer considered “false” and supported with cited
literature.

3. No significance-testing. The authors claim that their random forest outperforms the two baseline
models (persistence, which they call the “näıve” model, and linear regression), but no significance-
testing is conducted to support this claim. Especially for the comparison of the random forest with
linear regression, the numbers are close enough (see line 277) that I doubt the differences are statis-
tically significant.

Our comparisons for the three models using correlation coefficient statistics are consistent with
published literature. Specifically, Yaseen et al. [2015] conducted a review of ML models for streamflow
forecasting in the period 2000–2015 and noted, “It was also found, the majority of the reviewed articles
evaluated based on the correlation coefficient (R) and Root Mean Square Error (RMSE) in addition
to other evaluation criteria (e.g., Relative error; RE, Mean Absolute Error; MAE, Mean Square
Error; MSE, Nash–Sutcliffe Coefficient; NS, Sum of Square Error; SSE), clearly illustrated in (Fig.
1). The modeling that yields a maximum value of correlation coefficient and minimum values of
RMSE and MAE presented a good evaluation of model performance.” Also, result of a significance
test for the differences between the correlation coefficients does not provide useful information. R, in
this case, is an evaluation score for the models similar to KGE, RMSE, and MAE. Because we used
persistence model as baseline, the positive difference in R values between the two respective models
can be interpreted as a gain in forecast skillfulness. It would not make sense to perform a statistical
significance test for the difference between two evaluation scores of two models otherwise.

4. Interpretation of model performance is lacking in detail and contains several confusing state-
ments. See inline comments on lines 274, 283, 287, 293, 295, 298, 302, 304, 308, 309, and 311.
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We addressed these comments and suggestions below.

3 Inline comments

Simple typos and punctuation errors are corrected directly to the revised manuscript.

3.1 Abstract

Line 1: ”Data-driven machine learning” is redundant, since all machine learning is data-driven. Also,
”machine learning” should not be capitalized.

In this sentence, we included “data-driven” to contrast ML approach with the traditional hydro-
logic models, which are physically based and we later discussed this under the Introduction section.

Line 3: What do you mean by “performance”? Forecast quality, or computational efficiency?
We agree this was vague. Following is the revised sentence, “Among other qualities, the popu-

larity of ML models for such applications is due to their relative ease in implementation, less strict
distributional assumption, and competitive computational and predictive performance.”

Line 6: This phrase seems to be missing a word. Perhaps you mean many/diverse climatic
conditions and physiographic settings?

We revised it as following, “These watersheds cover diverse climatic conditions and physiographic
settings.”

Line 8: What does this mean? (I know you define the term later, but it should be defined at first
mention. Alternatively, if you do not want to define jargon in the abstract, you could use a different
term.)

We believe the current description, “timing of center-of-annual-flow volume” is adequate for the
purpose of the Abstract.

Line 12-13: What does this mean? Is 0.62-0.99 good, or bad? Since most readers are probably
unfamiliar with KGE, I suggest reporting the other evaluation scores here as well. Alternatively, you
could just report percent improvement over the baseline models (since this is what really tells you how
good the random forest is).

Although 0.62 - 0.99 KGE score range would be considered “good”, we believe these values should
be evaluated comparatively not absolutely. We also did not compute “percent improvement” in our
analysis. In the interest of conciseness, we also only reported raw KGE score, which has increasingly
been used as a metric to access model performance in hydrology and is more objective in our opinion,
in the Abstract.

Line 15-16: What are the “new insights”? This statement is very generic and could be found in
almost any paper abstract, so you should make it a bit more specific.

We were referring to these insights: (1) “RF performance deteriorates with increase in catchment
slope and increase in soil sandiness” and (2) “We note disagreement between two popular measures of
RFvariable importance and recommend jointly considering these measures with the physical processes
under study.”

3.2 Manuscript body

Line 23-24: This is very close to the definition of ML, although you do not explicitly say so.
You are right; we were giving the definition of ML models.
Line 24-25: This is a controversial statement. Many methods have been developed to interpret ML

models and use ML to understand the underlying physical processes. Entire books have been written
on the subject (https: // christophm. github. io/ interpretable-ml-book/ ) .

We believe ML models do not provide the same level of interpretation as physical models. We
included below a comparison table from the EPA that provides an overview on different rainfall-
runoff model types [Sitterson et al., 2018]. ML models would fall under “Empirical” category. Also,
Breiman [2001] himself wrote, “A forest of trees is impenetrable as far as simple interpretations of
its mechanism go. In some applications, analysis of medical experiments for example, it is critical to
understand the interaction of variables that is providing the predictive accuracy.” He later discussed
the application of permutation-based variable importance as a proxy to understand the input-output
relationship. We discussed the limitation of this method in our manuscript under Section 4.5.
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Line 27: What are other possible goals for ML? This will not be obvious to readers unfamiliar
with ML.

We revised the sentence to, “ML models are particularly useful when accurate prediction is the
central inferential goal (Dibike and Solomatine, 2001), whereas conceptual rainfall-runoff model can
help gain a better understanding of hydrologic phenomena and catchment yields and responses (Sit-
terson et al., 2018).

Line 28: Neuro-fuzzy what? This is an adjective in a list of nouns.
Neuro-fuzzy refers to combinations of artificial neural networks and fuzzy logic and is commonly

used as a noun in the literature. For example, Mosavi et al. [2018] discussed flood forecasting using
ML models and wrote, “Many ML algorithms, e.g., artificial neural networks (ANNs), neuro-fuzzy,
support vector machine (SVM), and support vector regression (SVR) were reported as effective for
both short-term and long-term flood forecast.”

Line 33: Which other models? Be specific. Your literature review should motivate the methods
that you end up using.

We were referring to the two models, SVM and GP, from the previous sentence. In this para-
graph, we would like to review the applications of various ML models in streamflow forecasting. We
specifically discussed the reasons we used RF for our study on line 74-81.

Line 35: Define.
We feel like this is not relevant because we did not use “baseflow separation” in our study. Readers

who are interested in this method can look into it the referenced paper.
Line 46: If this the region shown in Figure 2? If yes, you should reference Figure 2 here. If no,

you should include a map of the region in a different figure.
Yes, it is the same region in Figure 2 and we referenced it here in the revised manuscript.
Line 48: Does “unregulated” mean “not human-modified”?
Yes.
Line 56: “RF can be trained to forecast streamflow at various timescales, depending on the se-

lection of input variables.” I don’t know what you mean by this. Random forests (and the individual
trees therein) perform variable selection automatically, so random forests should not “depend on the
selection of input variables”.

The performance of the model to forecast “at various timescales” does depend on selection of
predictor variables. For example, a study focuses on seasonal streamflow forecasting would consider
including climate indices such as Southern Oscillation Index as one of the predictor variables.

Line 58: I don’t understand why this prevents you from forecasting at longer lead times. All
forecasts are made with antecedent information, but some phenomena can still be forecast skillfully at
lead times much longer than 1 day.

In [Rasouli et al., 2012], the authors forecasted streamflow at 1-7 day lead times using three
models: Bayesian neural network, support vector regression, and Gaussian process, and data from
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combinations of climate indices and local meteo-hydrologic observations. They concluded local obser-
vations as predictors were generally best at shorter lead times while local observations plus climate
indices were best at longer lead times of 5–7 days. Also, the skillfulness of all three models decreased
with increasing lead times. We cited this study on line 35. In our study, we focused on 1-day lead
time forecasting and therefore did not include long-term climate information.

Line 63: This is a controversial point. Interpretation methods have been developed for many ML
models. Also, many interpretation methods are model-agnostic and therefore can be applied to any
ML model. In fact, one could argue that neural networks are more interpretable than random forests,
since many interpretation methods rely on gradients (of the prediction with respect to model weights
or input variables) and therefore cannot be applied to random forests, which are gradient-free models.

We understand you think the statement is controversial. However, we provided the reason why we
believe RF “allows for some level of interpretability.” This is delivered through its permutation-based
and Gini-based variable importance measures, which have been used across disciplines (citied on lines
76-78). The permutation-based feature importance in particular was developed in the original paper
and also included as one of the model-agnostic methods from the book you cited above. The author
also discussed the advantages and disadvantages of each method. While you are suggesting, “one could
argue that neural networks are more interpretable than random forests, since many interpretation
methods rely on gradients,” it doesn’t seem fair as this implies gradient-based methods are better
than permutation-based or Gini-based methods.

Line 66: What do you mean by this? Internal parameters (those adjusted by training), or hyper-
parameters?

While we are aware of the term “hyperparameter” that is used in the ML literature, we chose
to adhere to the original usage of “parameter” in [Breiman, 2001] and randomForest R package
description [Liaw et al., 2002]. These two parameters are discussed under Section 2 Methodology.

Line 75: This is false. Random forests (at least the ones you trained) are supervised learning,
because the correct answer is supplied for each training example.

As you said, we trained RF to perform supervised learning in our study. However, random forests
can be used to perform supervised and unsupervised learning [Liaw et al., 2002, Criminisi et al., 2012].

Line 75: What do you mean by this? Random forests have two parameters for each split node (the
predictor variable and threshold), so a forest with 2000 trees has (104) parameters at least.

The term “non-parametric” does not suggest the model doesn’t contain parameters. Rather,
“Non-parametric methods do not assume any particular family for the distribution of the data and
so do not estimate any parameters for such a distribution” [Altman and Bland, 1999].

Line 76: This is false. The trees are always somewhat correlated, because there is overlap among
training sets for the different trees (since training sets are resampled *with replacement* from the full
training set).

A fundamental element of random forests is the randomization of predictor selection at each split,
thus minimizing the correlation among the trees. Breiman [2001] himself wrote, “The randomness
used in tree construction has to aim for low correlation ρ while maintaining reasonable strength.”
Bharathidason and Venkataeswaran [2014] discussed the idea of only including uncorrelated trees in
the forest, which was shown to improve the performance of the model. As you pointed out, “trees are
always somehwhat correlated,” we believe this is true and changed “uncorrelated” to “decorrelated”.
This is consistent with the description of RF in the Elements of Statistical Learning text [Friedman
et al., 2001].

Line 83: How does this happen? How does each tree make a prediction for a new example? Please
clarify.

We added the following sentence to the manuscript, “After all the trees are grown, the forests
make prediction on a new data point by having all trees run through the predictors. In the end, the
trees cast a majority vote on a label class for classification task or produce a value for regression task
by averaging all predictions.”

Algorithm 1: This algorithm will probably not be intuitive for readers unfamiliar with ML. I think
a plain-language explanation, along with a figure, would be much better.

In the submitted manuscript, we included both plain-language explanation (lines 75:85) and a
figure (Figure 1).

Line 88: This is not an estimate. It is called the “0.632” rule and has been mathematically proven:
https://www.jstor.org/stable/2965703?seq=1

In the cited paper, the author discussed that the value “0.632+” was “estimated” using bootstrap.
It is also shown in [Albert et al., 2008] that the probability of not selecting an event in the bootstrap
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procedure becomes e−1 ≈ 0.369 or approximately 37%.
Line 97: Unnecessary detail, since the hyperparameter experiment you described could be imple-

mented with a simple for-loop (does not require a special library).
We believe citation of packages used in the study is important for reproducibility.
Line 104: So you compute a different MSE for each tree, rather than computing one MSE for the

whole random forest?
MSE is calculated at tree level because the OOB sample used to compute MSE is different for

each tree.
Line 105: Is this method any different than the permutation test created by Breiman (2001)?
It is the same method.
Line 108: Not necessarily. If there are two highly correlated predictor variables (x1 and x2),

permuting one of the two may not decrease the model’s performance. For example, if you permute
only x1, even if x1 is highly important, the model may still perform well by relying on x2, since x1
and x2 contain a lot of redundant information.

We did not consider this and thank you for pointing it out. Boulesteix et al. [2012] discussed the
challenge of accurately measuring variable importance in computational biology and bioinformatics
studies when highly correlated predictor variables are involved. It is relevant in our study as we
supplied the model with maximum temperature and minimum temperature, which are correlated.
We will add a discussion of this issue under Section 4.5 Variable importance analysis.

Line 111: ? I generally don’t know what you mean in this sentence.
We provided details in the next sentence. In regression decision tree, split only occurs when the

residual sum of squares (from Step 3 in Algorithm 1) of two descendent nodes is less than that of
their parent node. In other words, there is a reduction in residual errors and the MDI measures this
reduction.

Line 114: This shouldn’t matter if you have only one response variable, right? It should matter
only if you have multiple response variables with different scales (e.g., one response variable that
ranges from 0...1 and another that ranges from 500...5000).

We standardized all variables in the training and validation sets. Because of this, raw MDI does
not have an associated unit and provides little interpretation. Scaled MDI, on the other hand, can
be interpreted as the relative contribution, in percentage, of each predictor to the total reduction in
node impurities.

Line 125: I suggest calling this the “persistence baseline,” rather than the näıve model. The word
“näıve” evokes näıve Bayes for many people.

This is valid but we believe näıve model is commonly used in the context of hydrologic forecasting.
We also defined this terminology.

Line 125: What are these limitations? Please discuss. Model evaluation is very important, and
the methods you use should be explicitly justified.

We added the following clarification,“Among the limitations, these measures were reported to be
especially oversensitive to extreme values (outliers).”

Line 136: How?
We explained this for each evaluation metric in the following paragraphs in the manuscript.
Line 139: Please define all variables in this equation, including the N and i.
We added the following to the sentence, “ ŷi and yi are the forecasted and observed values at day

i respectively, and N is total number of the observations during the validation period.”
Line 145: What do you mean by this? More sensitive to outliers?
By “error”, we were referring to the difference between the predicted and observed values (|ŷi−yi|).

Due to the squared operation, RMSE is therefore more sensitive to large errors.
Line 147: Please state the ranges and optimal values for MAE and RMSE, like you did for R2. (I

know that it’s probably obvious to most readers, but it’s a small amount of additional text and worth
specifying.)

Actually, both MAE and RMSE depend on the raw value of response variable, y, which will vary
from one study to another. They are better interpreted comparatively.

Line 160: I don’t know what this means.
For the validation period, we calculated the 90th, 95th, and 99th percentile streamflow values

at each watershed. These are considered thresholds. If an observed daily streamflow exceeded this
threshold, it would be considered an extreme event.

Line 180: A buffering effect to what? What does the ocean “buffer”.
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We acknowledge the term “buffering effect” might be vague and revised the sentence to, “Proximity
to the ocean creates a more moderate climate with a narrower temperature range, particularly in the
winter.”

Line 221- 223: Predictors of what? Streamflow, or SWE?
They were included as predictors for the RF model. All eight predictors are listed in Table 2.
Line 223: Why only the last measurement of each day?
We only supplied the last measurement from SNOTEL stations because not all predictors have

sub-daily values.
Line 225: How big are these basins? Please show a map.
We added the following map and table to Supplementary material.

Figure 1: Map of basins within the Pacific Northwest Hydrological Unit. Blue basins contained at
least one watershed and were included in the the study.

HUC-6 Name Area (km2) Number of SNOTEL

170102 Pend Oreille 67598.70 30
170200 Upper Columbia 119755.57 10
170300 Yakima 15928.20 9
170401 Snake Headwaters 14812.20 11
170501 Middle Snake-Boise 85150.16 27
170601 Lower Snake 30198.02 7
170602 Salmon 36248.15 11
170603 Clearwater 24318.13 9
170701 Middle Columbia 29124.57 11
170703 Deschutes 27789.56 8
170800 Lower Columbia 16120.04 15
170900 Willamette 29697.66 15
171003 Southern Oregon Coastal 34510.01 6
171100 Puget Sound 52958.23 26
171200 Oregon Closed Basins 45143.34 6

Line 227: Can you discuss how much this affects the accuracy of your model? It seems like a
major caveat.

This represents a shortcoming of the study due to limited spatial coverage of SNOTEL stations
and the introduced uncertainty likely affects the accuracy of the model. We acknowledged this by
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stating, “The SNOTEL averages, therefore, represent first-order estimates of snow coverage and
temperature conditions.” We also considered an alternative approach by drawing information only
from the SNOTEL station closest to gauge location but decided the basin-average better represented
SWE conditions. Using basin-average SNOTEL SWE is consistent with previous studies in that
focused on streamflow forecast [Abudu et al., 2011] as well as contribution of snowmelt to streamflow
[Zheng et al., 2018] in western USA. Nevertheless, we believe supplying the RF with a more spatially
consistent SWE data would improve model accuracy and is certainly worthy of future research. The
reported RF performance in our study might be an underestimation.

Line 232: Why not use all predictors available? Random forests are not computationally expensive
and perform predictor selection automatically.

We believe the current selection is appropriate. We also had to consider the practical purpose
of the model. While there are other variables we could include such as soil moisture content, many
would not be available for 1-day ahead forecasting in real time.

Line 235: Why use Tmin and Tmax as predictors if their only influence is on SWE (another
predictor)? In that case you should just use SWE.

It’s worth mentioning that these predictors are at 1-day lag. SWE only reflects the current state
of snow condition and melting of snow is often triggered by changes in temperature. Given that there
is high temporal correlation in daily temperatures, Tmin and Tmax data can provide useful signal to
our streamflow forecast.

Line 237: This only tells me what a pentad is, not what the ”pentad index” is. Please define the
“pentad index”.

In this case, the “pentad index” refers to the numerical sequence of pentads in a calendar year (1
to 73).

Line 239: What do you mean by “across gauges”? Is this correlation a spatial correlation, or is
it computed at each gauge (in which case it’s temporal but not spatial)?

Temporal correlation between daily streamflow and Pentad Index was computed at each gauge
here.

Line 247: How? There are many ways to do min-max scaling. For example, what are the min
and max values after standardization? Also, which dataset do you use to compute the min and max
values for scaling? Just the training set, or both training and validation?

We added the following clarification to the manuscript, “We standardized training and validation
data at each gauge using min-max scaling. The new data for all variables have values between zero
and one.”

Line 251: Random forests have many other hyperparameters: minimum sample size per split node,
minimum sample size per leaf node, maximum depth, cost function, etc.).

We were aware of this but preferred to focus on the two parameters discussed in [Breiman, 2001].
What is a “sample of training data sets”? I thought you had only one training set (2009-15).

Thanks for allowing us to clarify this. We tested RF on training data sets of 30 randomly chosen
watersheds and observed that the reduction in error is negligible after 2000 trees. Then we set the
number of trees to 2000 for all watersheds.

Line 256: Why optimize for MAE, instead of one of the other scores you looked at (RMSE, R2,
or KGE)?

We actually optimized using both MAE and RMSE. The results were similar except for a few
watersheds. The reason we moved forward based on MAE results was because RMSE penalizes larger
errors and it was our interest to minimize the average errors, not large errors. KGE and R2, on the
other hand, do not directly capture the magnitude of errors but rather the overall performance of the
model. They are also not commonly used in parameter tuning.

Line 261: On line 95 you said that the default is M/3, where M = number of predictors.
Yes, we have 8 predictors so round-up of 8/3 is 3.
Anonymous: Is this shown in the figures?
Yes, this is shown in figure 5a with correlation coefficient of RF (y-axis) plotted against correlation

coefficient of näıve model (x-axis). For rainfall-driven and transient watersheds, most points lie on the
left of the 1-to-1 line, suggesting RF outperforms näıve model. For snowmelt-driven watersheds, the
points lie on the 1-to-1 line, which indicates there is marginal difference in the models’ performance.

Line 271: Is this shown in the figures?
Yes.
Line 274: ? I don’t understand this sentence.
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Sorry for the typo. The sentence should read, “Without accounting for persistence, it would be
inadequate to conclude that RF delivered better performance compared to the other two groups.”

Line 275: How many of these differences are statistically significant? In general, all comparisons
between two models should be accompanied by a significance test.

We addressed this comment in the Major comments section.
Line 283: Could you verify this hypothesis by analyzing the data?
Yes, the hydrographs of snowmelt-driven watersheds tend to be less flashy compared to rainfall-

driven watersheds.
Line 287: How can large errors and mean errors have the same distribution? By definition, large

errors are greater than mean errors.
By “distribution”, we were referring to the dispersions of the RMSE and MAE score values for 3

groups in Figure 6b. For example, the MAE scores are heavily skewed towards 0 while RMSE scores
are more evenly spread among snowmelt-driven watersheds.

Line 293: The opposite of ”poor” is not ”satisfactory”. Does the Rogelis paper define other ranges
of KGE as ”fair,” ”good,” ”excellent,” etc.? Or does it just say that the 0-0.5 range is ”poor”?

As we explained above, these scores should be evaluated comparatively rather than absolutely.
Line 295: ? Define.
We addressed this comment above.
Line 299: Is this a fair comparison? The sets of watersheds is your paper vs. Tongal and Booij

are completely different, no?
You are right. For this very reason, we simply reported the KGE scores in our study and theirs

without making a comparison of the two models.
Line 301: Figure 7 should be plotted on a performance diagram. This would allow you to show

POD, FAR, frequency bias, and CSI all in the same figure. For example, see Figure 12 in this paper:
https://journals.ametsoc.org/waf/article/35/4/1523/347594

We think this is a good suggestion. We included here the relative operating characteristic (ROC)
plot, which measures the ability of forecast model to discriminate between events and no-events across
thresholds. This is similar to the performance diagram in the paper you referenced. We will modify
the discussion on POD and FAR based on this new plot.

Figure 2: Probability of detection plotted is plotted against false alarm rate for three extreme thresh-
olds: 90th, 95th, and 99th percentiles.

Line 302: What is the actual value corresponding to each percentile?
The actual values corresponding to each of the three thresholds varied across watersheds. Because

of this, we did not record the actual values them and focused on the FAR and POD values.
Line 308: This hypothesis seems like just a guess. Can you verify it by looking at the data (i.e.,

explicitly looking at predictions for cases with large surges vs. cases without large surges)?
This is not a guess but suggested by our understanding of the hydrology of the region, examination

of hydrographs, and the POD rate of RF among snowmelt-driven watersheds. The large surges of
runoff from these watersheds likely occur during spring and early summer (March-June in Figure 2d).
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Line 309: What does this mean? FAR and POD measure very different things, so what does it
mean for them to be “in agreement”?

Although POD and FAR provide different measurements, high POD and low FAR suggest skill-
ful forecast. This is shown on slide 25 here (https://www.nws.noaa.gov/oh/hrl/hsmb/docs/hep/
events_announce/STEWksp_Training_Hydro_Verification_30Nov06.pdf).

Line 311: You don’t know this until you have calculated frequency bias (which is shown in perfor-
mance diagrams).

We’re not sure how “frequency bias” is calculated as the paper cited above did not mention it.
However, based on our ROC plot, if there were systematic overestimation, FAR would be exceed
POD and the ROC curve would fall below the no-skill line (slide 38 in the document from NOAA we
referenced above).
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