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Key Points: 13 

• A human-machine interactive method is proposed for practical real-time reservoir flood 14 

control operation. 15 

• Modeling, observation, and operators’ experiences are integrated for more effective 16 

decision support for real-time reservoir operation. 17 

• Optimization, simulation, and observation are combined for reservoir flood control via 18 

data assimilation for long and narrow reservoirs. 19 
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Abstract: 21 

Real world reservoir operations are usually not fully automatic based on computer models; 22 

instead, reservoir operators conduct the operations based on their experiences, professional 23 

justification, as well as modeling support for some cases due to unavoidable gap between 24 

computer modeling and real world reservoir operation conditions. In this paper, we propose a 25 

human-machine interactive method, namely Real-time Optimization Model Enhanced by Data 26 

Assimilation (ROMEDA) for reservoirs which have complex storage and stage relations (e.g. 27 

long and narrow reservoirs). The system is composed of 1) an optimization model to search for 28 

optimal releases, 2) reservoir operators’ choices based on their experiences, knowledge, and 29 

behaviors, and 3) a reservoir storage-stage simulation and data assimilation schedule to update 30 

the storage based on real-time reservoir stage observations. For every time period and based 31 

on the updated storage, ROMEDA provides optimal releases as recommendations, actual 32 

releases made by operators, as well as a warning of flood risk when the storage exceeds a 33 

threshold level. ROMEDA does not assume that operators strictly accept the recommendations, 34 

and storage will be updated based on actual release at each time period. Via a case study on-35 

channel reservoir, it is found that for both small and large flood events, ROMEDA, which 36 

integrates the advantages of both machine and human, shows better performance on flood risk 37 

mitigation and water use (hydropower) benefit than the case with historical operation records 38 

(HOR) or optimization with single/multi-objective. ROMEDA is one of the first attempts of a 39 

human-machine interactive method for online use of an optimization model for real-time 40 

reservoir operation based on integrated modeling, observation, and operators’ choice. 41 

 42 
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Plain Language Summary 45 

Real-time reservoir flood control operation is normally controlled manually by 46 

reservoir operators based on their experiences and justifications, rather than by computer 47 

automatically. Computer models usually are limited in reflecting reservoir operators’ 48 

behaviors, thoughts, and priorities at particular times, resulting difficulty in direct use of the 49 

models. In this study, we investigate how to combine machine (computer optimization model) 50 

and human together to make the optimization model useful for real-time reservoir flood control 51 

operation. To do this, a human-machine interactive modeling method is established to combine 52 

computer optimization model, human’s consideration, and reservoir stage observations for 53 

actual decisions on release for real-time reservoir flood control operation. Specifically, the 54 

optimization model provides release recommendations and a warning of flood risk; reservoir 55 

operators determine actual release decisions based on their justification and experience based 56 

on optimal release recommendation; however, they must deal with flood risk. To maintain the 57 

actual reservoir storage over time, we use reservoir stage observations to update the reservoir 58 

storage through data assimilation at each period. Via a case study reservoir, we find that real-59 

time reservoir flood control operation enhanced by data assimilation can reduce the flood risk 60 

and improve water use benefit simultaneously.  61 
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1 Introduction 62 

Real world reservoir operations are usually not fully automatic based on computer 63 

models; instead, reservoir operators conduct the operations based on their experiences, 64 

professional justification, and modeling support for some cases. This is because of the 65 

unavoidable gap between computer modeling and real world reservoir operation conditions 66 

(Hejazi and Cai, 2011). Especially, at present, models can hardly replace the “mental model” 67 

that is composed of experiences, knowledge, and behaviors of reservoir operators. Computer-68 

based models for reservoir operations, especially optimization models, are usually used for 69 

“offline” analysis and providing information support for reservoir operators. Thus, it is not 70 

appropriate to assume that a model, no matter how complex it is, can be used for automatic 71 

real-time reservoir operation, although this is often the attempt of modelers. 72 

In this paper, a human-machine interactive method is presented to support real-time 73 

reservoir operation, using reservoir flood control as an example. By this method, an 74 

optimization model for minimizing flood hazard is used for online reservoir operation via 75 

interactions with reservoir operators, as shown in Figure 1. 76 
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   77 

Figure 1 The schematic of the human-machine interactive method for the online use of a 78 

computer model for reservoir operation 79 

Many reservoir operation studies have addressed the problems of real-time optimal 80 

reservoir releases (Becker and Yeh, 1974; Chu and Yeh, 1978; Hsu and Wei, 2007). A typical 81 

real-time optimization model follows a two-stage automatic rolling-over operation scheme as 82 

shown in Figure 2: at each time period (t), the model determines reservoir releases at the current 83 

stage and projects releases during the periods of hydrological forecast horizon (T), updates the 84 

storage at the end of the period based on the release decision at the current stage, and moves 85 

forward to next time period to conduct the same modeling exercise (You and Cai, 2008; Ding 86 

et al., 2015; Draper, 2001; Draper and Lund, 2004; Zhao et al., 2012). In previous studies, such 87 

a two-stage model runs period by period and assumes that reservoir operators always follow 88 

the release provided by the optimization model at each time period (i.e., automation enabled 89 

by the optimization model).  90 
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 91 

Figure 2 Schematic of real-time two-stage rolling-over operation; t represents the time step; T 92 

is the forecast horizon (Zhao et al., 2019); L is the remaining study period of the entire flooding 93 

season.  94 

Bauser et al. (2010) proposed that real-time control concept should include three parts: 95 

real-time system simulation model, real-time observations, and optimization algorithm. Real-96 

time observations can be used to update the system simulation and make them close to reality. 97 

Optimization algorithm can couple the three parts together to deliver optimal control decisions 98 

at a rate in accordance with the response time of the real-time system (Bauser et al., 2010). 99 

Current studies on real-time reservoir operation mostly focus on real-time system models and 100 

optimization algorithms, aiming to explore a normative optimal solution with potential 101 

benefits. How to use observations in real-time control system and make it useful for practical 102 

reservoir operation remains a research challenge (Chang and Chang, 2001; Chang et al., 2005; 103 

Dubrovin et al., 2002; Galelli et al., 2014).  104 

The simplest method to incorporate real-time observations into real-time decision 105 

support system is to update the model states by using the real-time observations directly as the 106 

new states. Deng et al. (2015) used observed reservoir stages to estimate the reservoir inflow 107 

by a simple water balance method. However, the procedure can result in inflow fluctuations 108 

and even negative inflow values due to observation error and the uncertainty of the relationship 109 
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between reservoir storage and stage. This indicates that the direct use of real-time observations, 110 

which ignores the model error and observation error, could lead to the error propagation. In 111 

addition, the direct use of limited real-time observations can only update some but not all 112 

modeling states. If the model is continuous, it is inappropriate to replace only a limited number 113 

of model states using available observations and ignore others. Thus, the direct use of real-time 114 

observations at limited locations or time points may end with significant errors, and combining 115 

observations and modeling is a more effective way to simulate the continuous states of a 116 

process (Crow and Loon, 2006; Huang et al., 2002; Trenberth et al., 2008).  117 

Real-time observations are usually incorporated via more sophisticated data 118 

assimilation techniques to improve dynamic modeling, as demonstrated by numerous modeling 119 

efforts in ocean modeling (Evensen, 1994; Carton and Giese, 2008; Oke et al., 2005), weather 120 

forecasting (Kanamitsu, 1989; Houtekamer and Mitchell, 1998; Barker et al., 2004), 121 

hydrological modeling (Xie and Zhang, 2010; Reichle et al., 2008; Wang and Cai, 2008), etc. 122 

Data assimilation has been also applied to the water resources system modeling for more 123 

efficient operation (Bauser et al., 2010; Munier et al., 2015). Bauser et al. (2010) used an 124 

optimal real-time control approach with data assimilation to manage the urban groundwater 125 

well fields to reduce diffuse pollution in the Hardhof field of Zurich, Switzerland. Ensemble 126 

Kalman Filter (EnKF) was applied to incorporate 87 online groundwater head observations 127 

into a three-dimensional finite element subsurface flow model for real-time allocation of 128 

artificial recharge. Munier et al. (2015) applied data assimilation for operational water 129 

management on the upper Niger River Basin. The virtual Surface Water and Ocean 130 

Topography (SWOT) observations of reservoir and river levels with a repeat cycle of 21 days 131 
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were assimilated to initialize a model predictive control algorithm for optimal reservoir 132 

operation. These studies showed that water resources management supported by the 133 

assimilation of real-time observations outperformed the optimization models without the online 134 

data support. 135 

This study utilizes data assimilation to connect reservoir optimization-simulation 136 

models and observations resulting from actual reservoir releases decisions. Many previous 137 

studies on real-time reservoir operation optimization used a simple lumped water balance 138 

model to represent the reservoir dynamics (Galelli et al., 2014), or simply use the observed 139 

stages and the storage-stage relationship to calculate the reservoir storage. In this study we 140 

demonstrate that an unsteady flow routing simulation model is needed for reservoirs that are a 141 

long and narrow channel, for which it is not accurate enough to use a static storage-stage 142 

relationship to simulate the reservoir storage; while it is also impossible to measure the storage 143 

directly because the reservoir surface is not flat. This special case, which exists for many large 144 

and long reservoirs around the world, solicits the use of the data assimilation technique to 145 

enhance the accuracy of the unsteady flow routing model using observed stages at different 146 

sections along the reservoir channel to update model states and also control model and 147 

observation errors. 148 

The primary goal of the present paper is to combine the traditional optimization model 149 

(i.e. computer model) and human’s consideration together for real use of an optimization model 150 

on real-time reservoir flood control. This paper is to address the following three questions: (1) 151 

How can the computer model and human’s consideration be combined for online real-time 152 

reservoir operation? (2) What is the performance of the combined method compared to the 153 
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actual operation or the result of the optimization model? (3) What is the impact of observations 154 

on the real-time reservoir flood control? To answer these questions, we propose the Real-time 155 

Optimization Model Enhanced by Data Assimilation (ROMEDA) via a human-machine 156 

interactive method with the assimilation of real-time observations. Observed data, reservoir 157 

operators’ choices, and computer models will be coupled in the ROMEDA. In the rest of this 158 

paper, we start with an overview of the two methods (ROMEDA method and OPT method) 159 

and detailed introduction of ROMEDA. Then, an example of an on-channel reservoir for flood 160 

control is used to demonstrate ROMEDA. Finally, the discussion on performances and 161 

characteristics of ROMEDA is compared to those of the optimization model and historical 162 

operation records (HOR). 163 

2 Methodology 164 

2.1 Overview 165 

For the real-time rolling-over reservoir operation, the OPT method, i.e. computer 166 

models, determines the optimal releases with the current storage and forecasted inflow at every 167 

time period (t) (Figure 3). The optimal release is automatically assumed as the actual release 168 

and taken as input into an on-channel reservoir system simulation model to calculate the stages 169 

at all cross sections of the channel upstream of the dam, based on which, the simulated reservoir 170 

storage is then determined as the initial storage for the next time period. The on-channel 171 

reservoir system model is a one-dimensional (1-D) hydrodynamic model during flood events 172 

in the Preissmann scheme (Preissmann, 1961). 173 
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 174 

Figure 3 Scheme diagram of the OPTimization (OPT) method 175 

The ROMEDA method is illustrated in Figure 4. The real-time optimization model can 176 

provide the optimal releases at each time period of the entire study period. The reservoir 177 

operators can choose to take the result provided by the optimization model or any decision 178 

based on their own priority for the current time period (t). At the end of period t, the reservoir 179 

storage will be updated based on what the operators’ choice of reservoir releases and the 180 

optimization model will decide the optimal releases for period t+1 based on the updated 181 

reservoir storage (i.e., the state variable) and the inflow forecast for the rest of the study period. 182 

This procedure will be continued till the end of flooding season. The essential difference 183 

between this method and the direct use of OPT is the online incorporation of 1) reservoir 184 

operators’ choices based on their experiences, knowledge and behaviors to determine actual 185 

reservoir releases; 2) the real-time observation of stages along the channel upstream of the dam 186 

to update the reservoir storage so as to provide the optimal release based on actual storage. 187 

Actually, the operators can choose when to adopt the modeling results themselves. This is 188 

because reservoir operators’ considerations vary by person and by reservoir. In this paper, as 189 

an illustration example, we set that reservoir operators adopt modeling results when the storage 190 

is over the maximum storage required for leaving space for coming storms. This is only one of 191 

the possible ways of the operators may choose via the human-machine interactive method. 192 
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A data assimilation method is used to assimilate the observations at some channel 193 

sections to the on-channel reservoir system simulation model, taking account of both the model 194 

error and observation error, to update the stages at all cross sections. In this way, the stage 195 

resulting from the actual decision at time period t is observed and assimilated to simulate the 196 

storage at time period t+1, which is taken as real-time input for the optimization model. Thus, 197 

compared to the OPT method, ROMEDA provides release decision recommendations for 198 

reservoir operators period by period and does not assume all the recommendations will be 199 

adopted by the reservoir operators. In addition, an advanced data assimilation algorithm, 200 

Constrained Ensemble Kalman Filter with accept/reject method (Wang et al., 2009), to be used 201 

in the ROMEDA, will handle the impact of both model and observation errors, as detailed later.  202 

Optimization 

modelForecasted 

Inflow On-channel reservoir 

system model

Updated levels(t+1) at all cross sectionst = t + 1

Data Assimilation

Policy/Regulations, etc

Optimal release 

(t+1)
Actual decision 

on release (t+1)
Storage (t) 

Observed levels(t+1) at 

limited cross sections

Simulated levels(t+1) at 

all cross sections

Reservoir operators’ 

consideration

 203 

Figure 4 Scheme diagram of the Real-time Optimization Model Enhanced by Data 204 

Assimilation (ROMEDA) method 205 

ROMEDA is similar to Model Predictive Control (MPC) (Garcia et al., 1989; Camacho 206 

and Alba, 2013; Macian-Sorribes and Pulido-Velazquez, 2019) and other real time control 207 

approaches, such as on-line adaptive control (Soncini-Sessa et al., 2007), open-loop and closed-208 

loop control (Soncini-Sessa et al., 2007; Gerdts, 2012) with respect to more effective use of 209 

computer-based models and observed data. MPC conducts rolling-horizon optimization based 210 

on state observations and input forecasts. Essentially, MPC targets a computer-based automatic 211 
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operation program; while ROMEDA follows the human-machine interactive method. Both 212 

ROMEDA and MPC update the model states using observations at each time step. However, 213 

MPC methods handle predictive environmental disturbance, such as weather forecast 214 

uncertainty (Ficchì et al., 2015; Raso et al., 2014; Maestre et al., 2012); while ROMEDA 215 

integrates operators’ choices with the solutions from a computer model. Particularly, MPC 216 

methods usually use the observed data directly; while ROMEDA assimilates observed stages 217 

via a data assimilation technique to update the simulation of reservoir storage. Thus, ROMEDA 218 

couples optimization, simulation, data assimilation, and human choices; the method is tested 219 

with real-time reservoir operation for flood control in this paper. 220 

2.2 Real-time modeling of an on-channel reservoir system for flood control 221 

2.2.1 1-D hydrodynamic model 222 

The 1-D unsteady flow routing in on-channel reservoir system can be described by the 223 

Saint-Venant equations, including the continuity equation and the momentum equation, as 224 

follows: 225 

0
A Q

q
t x

 
+ − =

 
 (1) 

22

4/3

1 1
0

n Q QQ Q z
g g

A t A x A x AR

   
+ + − = 

   
 (2) 

where A is active flow area, i.e. the proportion of the total cross-sectional area with flow; Q is 226 

the streamflow; q is the lateral inflow/outflow per unit length, including the runoff generated 227 

along the river channel; x and t are the independent variables of space and time, respectively; 228 

g is the acceleration due to gravity; z is the depth of flow; n is the roughness coefficient; and R 229 
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is the hydraulic radius, 
A

R


= ; and   is the wetted perimeter. The Preissmann implicit four-230 

point finite difference scheme, a widely used numerical method, is used to solve the 1D 231 

hydrodynamic model (Preissmann, 1961; Castellarin et al., 2009). The streamflow and stages 232 

at all cross sections of the channel upstream of the dam at next time period t+1 can be 233 

determined with the boundary conditions (streamflow at the first and last cross sections, i.e. 234 

inflow and release) at period t+1 and the streamflow and stages at all cross sections at period 235 

t. The water storage between two adjacent cross sections can be calculated as the volume of 236 

prismoid. Thus, the reservoir storage can be determined by accumulating the storage between 237 

all adjacent cross sections. The details of the Preissmann scheme should be referred to 238 

Appendix A. 239 

2.2.2 Real-time reservoir optimization model 240 

Flood control is the primary objective during the flooding season, and the tradeoff 241 

between the upstream and downstream flooding damage is a longstanding challenge for 242 

reservoir operation. To account for the tradeoff, the real-time reservoir deterministic 243 

optimization model with a short forecast horizon can be set up with a single objective to 244 

minimize the maximum reservoir storage during the forecast horizon (Eq. 3) subject to a 245 

constraint on the maximum release for downstream. However, the reservoir operators’ 246 

consideration could go beyond the sole flood control objective even during the flooding season, 247 

and consider to minimize hydropower generation loss during and after the flood control period. 248 

Thus the optimization can also be set up with multi-objectives, i.e., one for flood control and 249 

the other for maximizing hydropower generation (Eq. 4). 250 
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( )*min   min   maxOBJ S t     (3) 

( )*

1

*

2

min   min   max

max  max   
t T

t

t

OBJ S t

OBJ P
+

    

  

  
 


 (4) 

where ( )max S t  is the maximum reservoir storage during the forecast horizon (T); and tP  is 251 

the hydropower generation during time period t. 252 

The major constraints include the lower and/or upper bounds for reservoir release, 253 

stages at all cross sections, storage, power generation output, and the largest incremental 254 

release between consecutive time periods: 255 

( ) maxR t R  (5) 

( )min max

j j jZ Z t Z   (6) 

( )min maxS S t S   (7) 

( ) ( ) ( )PL t P t PU t   (8) 

( ) ( )1R t R t R− +    (9) 

where ( )R t  and ( )1R t +  are the reservoir releases during time period t and t+1, respectively; 256 

maxR  is the maximum allowed release during the flood event; ( )jZ t  is the stage at cross 257 

section j for the on-channel reservoir at time period t; 
min max and j jZ Z  are the minimum and 258 

maximum allowed stage at cross section j for the on-channel reservoir; min max and S S  are the 259 

minimum and maximum allowed storage for the on-channel reservoir; ( ) ( ) and PL t PU t  are 260 

the minimum and maximum hydropower generation output limits for the on-channel reservoir 261 

during time period t; R  is the allowed maximum incremental release over consecutive 262 

periods. 263 
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The forecast horizon of the real-time reservoir flood control model is 3 days with a 1-264 

hour time step. At every time period, the 72 hourly releases during the forecast horizon are the 265 

decision variables. Stochastic global optimization algorithms, Dynamically Dimensioned 266 

Search algorithm (DDS) (Tolson and Shoemaker, 2007) and Pareto archived dynamically 267 

dimensioned search algorithm (PADDS) (Jahanpour et al., 2018), are applied to find the 268 

optimal releases at each time period for a single objective or multi-objective optimization 269 

model (OPT-S and OPT-M). The maximum number of function evaluations with the above 270 

steps is set to 1,000 for every time period by DDS and PADDS. DDS and PADDS can converge 271 

to good solutions rapidly and avoid the poor local optima.  272 

2.3. Data assimilation 273 

Data assimilation techniques can effectively estimate the states of a complex system 274 

with the observations. Ensemble Kalman Filter (EnKF), a sequential data assimilation scheme, 275 

has been widely used in hydrological modeling (Botto et al., 2018; Liu and Gupta, 2007; 276 

Moradkhani et al., 2005; Feng et al., 2017). Two processes, i.e. forecasting and updating 277 

processes, constitute the EnKF framework, described by: 278 

( ) ( )1| | , , 0,k k k k

t t t t t t tZ f Z n N W + = +   (10) 

( ),

1| 1 1| 1 1 1|

k k obs k k

t t t t t t t tZ Z K Z h Z+ + + + + +
 = + −
 

 (11) 

( ),

1 1 1 1 1, 0,obs k obs k k

t t t t tZ Z N V + + + + += +   (12) 

where | 1| 1,k k

t t t tZ Z + +  are the kth updated ensemble member of the stage vector at time period t 279 

and t+1; 1|

k

t tZ +  is the kth forecasted ensemble member of stage vector at time period t+1; n  is 280 

the system parameter, i.e. roughness coefficient (see Appendix B); f represents the system 281 
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model; 
,

1

obs k

tZ +  is the perturbed observed stage of selected cross sections of kth ensemble 282 

member at time period t+1, obtained by adding Gaussian observation error 
1

k

t +
 to the 283 

observation 
1

obs

tZ +
; h  is the observation function, i.e. selecting the forecasted stage at selected 284 

cross sections, corresponding to the observations; k

t and 
1

k

t +
 are the system model error and 285 

Gaussian observation error, which are assumed to follow Gaussian distribution with zero mean 286 

and specified diagonal covariance matrix tW  and tV . The standard derivation of model state 287 

errors and observation errors are set as 0.5 and 0.01, respectively; and 1tK +  is the Kalman gain 288 

matrix. 289 

As the forecasted states and updated states may violate the states constraints, 290 

Constrained Ensemble Kalman Filter (CEnKF) is proposed to deal with the violations (Pan and 291 

Wood, 2006; Wang et al., 2009). Because of its computational efficiency and modeling 292 

accuracy, CEnKF with the Accept/Reject Method is used in this paper (Wang et al., 2009). All 293 

constraints in the forecasted and updated states are checked in the forecasting and updating 294 

processes, respectively. A threshold of maximum number of rejections, 500, is set for each 295 

ensemble member at every period to limit the computational burden. If the forecasted/updated 296 

states still violate the constraints when the number of rejections reaches the threshold, the loop 297 

stops, and the states would be set to the boundary directly. The details of the data assimilation 298 

procedures can be referred in Wang et al. (2009). 299 
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3 Case study 300 

3.1 An on-channel reservoir system 301 

An on-channel reservoir for flood control from China is selected to test the proposed 302 

ROMEDA method. The reservoir receives inflow from a drainage area of 56,000 km2. The 303 

flood control capacity of the reservoir is 22.2 km3. The channel upstream of the dam has a 304 

length of 658 km and the average width of the channel is 1.1 km. Figure 5 shows some selected 305 

sections of the channel. Due to the geometry and topological characteristics (i.e., a long and 306 

narrow channel upstream of the dam), the flood wave propagation requires about 24-36 hours 307 

from the upstream tail of the reservoir to the dam location. The surface of the on-channel 308 

reservoir featured by a significant slope cannot be treated as flat during the flooding season. 309 

Thus, it is not appropriate to simulate the reservoir flood routing by static storage-stage 310 

relationship assuming a flat surface. A 1-D unsteady flow routing model is used to simulate 311 

flood routing in the on-channel reservoir, by which the dynamic reservoir storage is calculated 312 

using a numerical method. Figure 6 shows the longitudinal profile of the bottom elevation of 313 

296 cross sections in the upstream channel of the dam, as well as the reservoir surface. Stage 314 

observations can be obtained from 11 sections as shown in Figures 5 and 6. The characteristic 315 

parameters of the on-channel reservoir are listed in Table 1. It should be noted that hydropower 316 

generation is one of the major functions of the on-channel reservoir, with an installation 317 

capacity of 22,400 MW. 318 

 319 
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 320 

Figure 5 Schematic diagram of the river and on-channel reservoir 321 

 322 

 323 

Figure 6 Longitudinal profile of the on-channel reservoir 324 

 325 

Table 1 Characteristic parameters of the on-channel reservoir 326 

Flood limited stage 

(m) 

Normal pool 

stage (m) 

Crest elevation 

(m) 

Flood protection storage 

(km3) 

Total reservoir storage 

(km3) 

145 175 185 22.15 39.3 

3.2 Data 327 

Two historical flood events with different magnitudes (small and large) with a time step 328 

of 1 hour are selected for case studies. Since the forecast horizon of the real-time reservoir 329 

flood control model is set to be 3 days with a 1-hour time step, the forecast uncertainty is 330 
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relatively low, historical inflows are used as perfect inflow forecast without uncertainty. The 331 

stage observations at the 11 observation sections (Figure 6) are provided with the same time 332 

step (1 hour) during both the small and large flood events. The real-time stage observations 333 

provided to ROMEDA for the case study use the historical stage records resulting from actual 334 

releases during the periods when reservoir operators do not adopt the results from OPT; 335 

otherwise “virtual stage observations” resulting from the OPT suggested releases (adopted by 336 

the operators) are used. The maximum allowed release of the on-channel reservoir during the 337 

flooding season varies depending on the flood magnitudes. In this paper, the maximum allowed 338 

releases for small and large flood events are set to 29,800 m3/s and 43,300 m3/s, respectively. 339 

The storage threshold for flood risk is 22.8 km3. 340 

4 Results  341 

The performance of OPT-S, OPT-M, ROMEDA, and the historical operation records 342 

(HOR) on flood risk and water use benefit are compared in the section. During the flooding 343 

season, the reservoir operators are required to follow the optimal operation aiming to reduce 344 

the flood risk; meanwhile they may have other considerations, such as considering the 345 

maximum allowed flow specified by the hydropower installation capacity to reduce spill. Due 346 

to complex and variable human’s considerations, we test a particular case for simplicity but 347 

without losing generality, i.e., reservoir operators do not necessarily follow the recommended 348 

releases when the current reservoir storage is lower than the storage threshold for the case 349 

reservoir (22.8 km3), but will do it when the storage exceeds the storage threshold.  350 
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4.1 Operation processes 351 

The modeling results from the three methods (OPT-S, OPT-M, and ROMEDA), along 352 

with the historical operation records (HOR), are compared in Figure 7 for a small flood event 353 

and Figure 8 for a large flood event. The maximum releases under all these cases reach to the 354 

maximum allowed release (29,800 m3/s for a small flood event and 43,300 m3/s for a large 355 

flood event). OPT-S, driven by the objective of minimizing the peak storage during a flood 356 

event, releases more water to reserve a large flood control storage for future possible flood 357 

events. Under OPT-M, the releases are slightly smaller than that of OPT-S before the flood 358 

peak, which is driven by the objective of maximizing the hydropower generation. As shown in 359 

Figure 7, before the arrival of the first flood peak (during the first 150 time periods in Figure 360 

7a), the releases of OPT-S and OPT-M are larger than those of HOR (but smaller than the 361 

maximum allowed release, 29,800 m3/s). Given the forecast of the first and second coming 362 

inflow peaks, the OPT-S and OPT-M releases increase sharply and reach to the highest allowed 363 

level during period 150-180. After the arrival of two flood peaks, the OPT-S and OPT-M 364 

releases, though lower than the maximum allowed release, can make the reservoir storage lower 365 

than the threshold level during all modeling periods. 366 

As stated above, the reservoir operators’ consideration could go beyond the sole flood 367 

control objective, as avoiding hydropower generation loss during and after the flood control 368 

period is also of concern. Consequently, they may release less water than OPT-S and OPT-M 369 

prescribes to reserve a larger water storage that is beneficial for hydropower generation. As 370 

shown in Figure 7b, rather than a sharp increase (500 m3/s per hour) under OPT-S and OPT-371 

M, the HOR releases during periods 120 to 230, only gradually increase (170 m3/s per hour), 372 
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which eventually ends with a reservoir storage that exceeds the storage threshold. During the 373 

flood peak period, the HOR release is high but smaller than the maximum allowed release 374 

(while the OPT-S and OPT-M releases approximately equal the maximum allowed release), 375 

which makes the storage under HOR continuously remain above the storage threshold (Figure 376 

7c). After the peak period (period 230 and further), the HOR releases approximately reach the 377 

maximum allowed release to reduce the flood risk since the reservoir storage is still above the 378 

threshold. In summary, the real-world situation (HOR) could be complicated by several 379 

conditions: first, they might take a certain level of risk of flooding for the benefits of 380 

hydropower (i.e., dealing the tradeoff). Second, the operation of the reservoir does not exactly 381 

follow the flood control requirements (i.e., the storage is over the threshold during some 382 

periods). Third, the actual releases might also be affected by the requirement of the maximum 383 

allowed releases to downstream. 384 

As assumed, the releases of ROMEDA are basically the same as those of HOR to 385 

maintain water use benefits, when the reservoir storage does not exceed the storage threshold. 386 

The reservoir storage of ROMEDA is updated with the assimilation of real-time reservoir 387 

observed stages, which can mitigate the model error from the 1-D hydrodynamic model. When 388 

the reservoir storage, updated via ROMEDA, exceeds the storage threshold, the reservoir 389 

operators follow the recommended releases from the optimization model in order to reduce the 390 

flood risk. This ends with a large increase of the releases compared to those before the storage 391 

reaches the threshold since the recommended release is close to the maximum allowed release. 392 

By doing that, the reservoir storage of ROMEDA is decreased to the threshold during the flood 393 

peak. After the flood peaks, when the storage is below the threshold, the releases of ROMEDA 394 
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come back to the HOR releases (after period 230). Due to the impact of peak-clipping 395 

conducted during the flood peak periods, the reservoir storage of ROMEDA is lower than that 396 

of HOR with the same reservoir release after two flood peaks (Figure 7c). Overall, ROMEDA 397 

reduces the flood risk with large releases from the optimization model and meanwhile increases 398 

the hydropower generation from the HOR (see more discussion in the following). 399 
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Figure 7 Reservoir operation results of HOR, OPT-S, OPT-M, and ROMEDA four cases for a 401 

small flood event (a) inflow; (b) release, ROMEDA denotes the adopted release in ROMEDA 402 

case; and (c) storage, ROMEDA denotes the updated storage in ROMEDA case 403 
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Reservoir operation results of the four cases (HOR, OPT-S, OPT-M, and ROMEDA) 404 

for a large flood event are compared in Figure 8. There are three flood peaks in this flood event. 405 

During the first peak, OPT-S releases more water than HOR to reserve the flood control storage 406 

for possible flood peak in future, resulting in smaller reservoir storage under OPT-S than HOR; 407 

while OPT-M releases less water to increase the reservoir storage for larger hydropower 408 

generation. HOR releases increase to the maximum allowed flow specified by the hydropower 409 

installation capacity before the first flood peak, aiming to reduce spill during the flood peak 410 

periods. It seems that the HOR releases correspond to the inflow variability and the reservoir 411 

storage is within the storage threshold though it is higher than those of OPT-S and OPT-M. 412 

After the first flood peak, the HOR releases keep close to the maximum allowed release; while 413 

the OPT-S and OPT-M releases exhibit variations due to the sensitivity to the flood forecast 414 

(noted that the variations can also be caused by the uncertainty of the optimal solution from the 415 

DDS and PADDS algorithms). It is found that the reservoir storage of OPT-S and OPT-M 416 

exceed that of HOR during the second flood peak. Meanwhile, for both HOR and OPT-S, the 417 

releases are close to the maximum allowed release (43,300 m3/s) and the reservoir storage 418 

exceeds the threshold, but OPT-M releases are smaller than the maximum allowed release due 419 

to objective of hydropower generation. After the second flood peak, the storage of both OPT-420 

S, OPT-M, and HOR still remains above the storage threshold for some periods, but HOR 421 

gradually reduces the releases to the maximum allowed flow designed for the installation 422 

capacity of the hydropower station; while OPT-S and OPT-M keeps the releases at the 423 

maximum level for longer periods. Thus, OPT-S and OPT-M have less periods with its storage 424 

above the threshold and accumulated value of flood risk than HOR (see more discussion in 425 
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Section 4.2). Overall, compared to a small flood event, HOR, OPT-S, and OPT-M respond to 426 

inflow variability closely during a large flood event, and both end with some periods with 427 

storage over the threshold level. OPT-M has the largest value of maximum reservoir storage. 428 

Meanwhile the HOR releases and storage still imply some considerations beyond flood control. 429 

Before period 310, the reservoir storage of ROMEDA is below the storage threshold, 430 

and the ROMEDA releases are the same as those of HOR. After that ROMEDA takes the 431 

recommended releases from the optimization model during the period from the second flood 432 

peak to the end of the third flood peak, during which the ROMEDA storage is over the threshold 433 

level too but having a smaller number of periods with its storage above the threshold than HOR 434 

and OPT-M. After the three flood peaks, the ROMEDA releases come back to the releases of 435 

HOR, and the ROMEDA storage is larger than that of OPT-S and smaller than that of HOR, 436 

which shows a balance of flood control and hydropower generation. 437 
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 438 

Figure 8 Reservoir operation results of HOR, OPT-S, OPT-M, and ROMEDA four cases for a 439 

large flood event (a) inflow; (b) release, ROMEDA denotes the adopted release in ROMEDA 440 

case; and (c) storage, ROMEDA denotes the updated storage in ROMEDA case 441 

As shown in Figure 7b, under the small flood event, the HOR releases increase from 442 

the minimum to the maximum taking 110 periods (from period 120 to 230), accounting for 443 

28% of the total periods; the maximum release remains 170 time periods (from period 230 to 444 

400), 43% of the total periods. However, under the large flood event, HOR only takes 70 time 445 

periods (11% of the total flood periods) to increase from the minimum to the maximum release 446 
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as shown in Figure 8b; the maximum release remains 310 time periods (from period 120 to 447 

430), almost half of the total periods. These results indicate that reservoir operators in HOR 448 

behave differently when they deal with small and large flood events. It seems that the reservoir 449 

operators have aggressive behaviors toward the tradeoff between flood control and hydropower 450 

generation during a small flood event, while they are more conservative during a large flood 451 

event by taking quicker and stronger measures for peak-clipping.  452 

4.2 Flood risk vs. water use benefit 453 

The performance of HOR, OPT-S, OPT-M, and ROMEDA four cases are further 454 

compared in terms of flood risk and water use benefit. Flood risk is triggered when the reservoir 455 

storage exceeds the threshold level. Besides the maximum reservoir storage and maximum 456 

stage in front of the dam, we choose the number of periods with storage over the threshold and 457 

the accumulated value of flood risk over time as two indicators of flood risk. The accumulated 458 

value of flood risk is calculated as the sum of reservoir storage amount exceeding the threshold 459 

level during the entire flood event. Figure 9 shows the comparison of the indicators of HOR, 460 

OPT-S, OPT-M, and ROMEDA under a small and a large flood event. 461 

 462 

 463 
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Figure 9 Four indicators of flood risk (maximum storage, maximum stage in front of the dam, 465 

number of flood risk periods, and accumulated values) among HOR, OPT-S, OPT-M, and 466 

ROMEDA four cases for (a) a small flood event, and (b) a large flood event 467 

For the small flood event, OPT-S and OPT-M have the lowest maximum reservoir 468 

storage and maximum stage in front of the dam, and also have zero risk indicators of flood risk 469 

periods and accumulated values; ROMEDA has lower values of four indicators than HOR. In 470 

particular, the risk periods and the accumulated risk (i.e., the sum of reservoir storage amount 471 

exceeding the threshold level during the entire flood event) are largely reduced under 472 

ROMEDA. As can be seen in Figure 7c, during some periods, the reservoir storage of 473 

ROMEDA exceeds but is close to the threshold level.  474 
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For the large flood event, OPT-M has the largest maximum reservoir storage (27.36 475 

km3), maximum stage in front of the dam (160.96 m), and the accumulated value of flood risk 476 

(726.4 km3) due to the maximization of hydropower generation in the multi-objective 477 

optimization context. HOR has the largest number of flood risk periods (310 periods). The 478 

performance of OPT-S and ROMEDA are close, but ROMEDA has the lowest values of four 479 

indicators among the four cases , indicating that the conservative behaviors of reservoir 480 

operators as reflected in HOR have an important influence on flood risk reduction with a large 481 

flood event. Thus, the proposed ROMEDA performs well in terms of flood risk reduction by 482 

combining the optimization model results and the experiences of reservoir operators. 483 

 484 

Figure 10 Hydropower generation comparison among HOR, OPT-S, OPT-M, and ROMEDA 485 

for a small and a large flood event. 486 

To further compare the four cases with respect to the reservoir operation purpose 487 

beyond flood control, Figure 10 displays the hydropower generation during a small and a large 488 

flood event given that in the case study reservoir, hydropower is the major objective for the 489 

reservoir operators subject to flood control requirements. As there is a magnitude difference of 490 

inflow between a small and a large flood event, the hydropower generation of the four cases 491 
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under the small and the large flood event is compared with different scales as shown in Figure 492 

10. As expected, OPT-M has the largest hydropower generation among the four cases given its 493 

multi-objective of flood control and hydropower generation with a small and a large flood 494 

event. OPT-S results in the lowest hydropower generation among the four cases given its sole 495 

objective of flood control in a large flood event. The performance of ROMEDA is between 496 

OPT-M and HOR in a small and a large flood event, i.e. the hydropower generation of 497 

ROMEDA is lower than that of OPT-M but higher than that of HOR. The amount of 498 

hydropower generation depends on release and the hydraulic head (which usually has a 499 

consistent relationship with reservoir storage). As can be seen from Figure 7, for the small 500 

flood event, HOR takes low releases during the first and second flood peak in order to store 501 

water to build a high hydraulic head. While by following the recommendation from the 502 

optimization model, ROMEDA take higher releases than HOR. In general, the situation in a 503 

large flood event is the same as that in a small flood event (Figure 8). Eventually the associated 504 

levels of release and head under ROMEDA results in higher hydropower generation than HOR. 505 

Therefore, compared to ROMEDA, HOR results in a low water use profit and high flood risk 506 

under a small and a large flood event. This implies that the practices of the reservoir operators 507 

can be improved by a model which may respond more closely to the current state of the 508 

reservoir and forecasts of future inflow. 509 
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5 Discussions  510 

The effects of assimilating real-time observations for modeling error correction, the 511 

form of the objective function, and inflow forecast uncertainty on the performance of 512 

ROMEDA are discussed in this section. 513 

5. 1 Effects of real-time observations 514 

ROMEDA, a human-machine interactive method, utilizes data assimilation to connect 515 

reservoir optimization-simulation models and observations resulting from actual reservoir 516 

releases. Data assimilation of real-time observed stages at different sections along the reservoir 517 

channel can reduce model errors and enhance the accuracy of the unsteady flow routing model. 518 

Figure 11 shows the effectiveness of the assimilation of stage observations on 519 

eliminating the model errors on the reservoir storage under HOR by two cases with and without 520 

data assimilation under the small and large flood events. Under one case, the storage is 521 

calculated using the same inputs of historical inflows and releases using the numerical 522 

Preissmann scheme directly (OPT also takes this method); under the other case, the storage is 523 

simulated by the scheme along with the assimilation of stage observations. As shown in Figure 524 

11a, the storage simulated without data assimilation is larger than that with data assimilation, 525 

indicating that for a small flood event, the on-channel reservoir system simulation model may 526 

overestimate the reservoir storage. The overestimated storage may mislead reservoir operators 527 

into paying additional unnecessary attention to flood control, which may result in unnecessary 528 

loss of hydropower generation. However, the opposite result can be seen for a large flood event 529 

in Figure 11b, i.e., the storage simulated without data assimilation is underestimated, which 530 
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may mislead reservoir operators into underestimating flood risk. This further confirms the 531 

advantage of the data assimilation in ROMEDA method by mitigating modeling errors and 532 

enhancing the effectiveness of the modeling work. 533 
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Figure 11 The historical storage difference resulted from the model error for (a) small and (b) 535 

large flood events 536 

5. 2 On the form of the objective function of OPT 537 

An optimization model can always be improved to make it closer to the “idea one”. 538 

However, a realistic way to use a model is to combine the model result with operators’ choices 539 

based on their experiences, knowledge, and behaviors. In this study, flood control is the 540 

primary objective during flooding season, particularly the flood peak period. For the case study 541 

reservoir to test the proposed method, reservoir operators also try to avoid large reduction of 542 

hydro-energy generation. Thus, we set up a single-objective optimization model (OPT-S) 543 

considering flood control and a multi-objective optimization model (OPT-M) considering both 544 

flood control and hydropower generation. Based on the comparison of flood risk and 545 
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hydropower generation among the four cases (HOR, OPT-S, OPT-M, and ROMEDA) in Figure 546 

9 and 10, we found that OPT-S and OPT-M can both achieve better performance of flood risk 547 

and hydropower generation than HOR and ROMEDA in a small flood event (Figure 9a and 548 

10); while OPT-S has a smaller value of hydropower generation and OPT-M has larger flood 549 

risk indicators than HOR and ROMEDA in a large flood event (Figure 9b and 10). This 550 

indicates that different objective combinations have different performances for flood events 551 

with different magnitudes. However, ROMEDA, which incorporates the 552 

knowledge/experience of reservoir operators and the outputs of the optimization model, can 553 

achieve a good performance of flood risk reduction and hydropower generation in both a small 554 

and a large flood event (Figure 9 and 10). This indicates that ROMEDA makes more effective 555 

use of the reservoir operators’ experience and the optimization model. 556 

5.3 On forecast uncertainty 557 

Weather forecast uncertainty is vital to real-time reservoir flood control. The forecast 558 

uncertainty especially with long lead time (Zhao and Zhao, 2014) with climate/weather 559 

variables such as precipitation (Saavedra Valeriano et al., 2010) or hydrologic variable such as 560 

reservoir inflows (Maurer and Lettenmaier, 2004) all have significant impact on real-time 561 

reservoir operation. In this paper, historical inflow is used as “perfect inflow forecast” to test 562 

the proposed method, underlying an assumption that the uncertainty level of the forecasts with 563 

relatively short heading time horizon (72-hour) is low. While the focus of this paper is to 564 

demonstrate the human-machine interactive method, it can be extended to account forecast 565 

uncertainty, for example, by adopting Model Predictive Control (MPC) (Galelli et al., 2014; 566 

Ficchì et al., 2015). 567 
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6 Conclusions 568 

Reservoir operation models, especially optimization models are usually suitable for 569 

offline analysis, and it is unrealistic to assume the actual reservoir operation can be automatic 570 

based on any modeling results. This paper proposes the Real-time Optimization Model 571 

Enhanced by Data Assimilation (ROMEDA) method to integrate reservoir operators’ 572 

justification and optimization modeling results for actual reservoir release decisions during the 573 

flooding season. Reservoir operators can choose when to adopt the modeling results according 574 

to their considerations which vary by person and by reservoir. ROMEDA also combines the 575 

models (optimization model and an unsteady flow routing model) with observed stages of long 576 

and on-channel reservoirs via data assimilation procedures, which update the reservoir storage 577 

(state) for the optimization and simulation models and also mitigate the effect of model and 578 

observation errors.  579 

The advantage of ROMEDA method compared to the traditional single/multi-objective 580 

optimization methods (OPT-S and OPT-M) and historical operation records (HOR) is 581 

demonstrated through a case study with an on-channel reservoir. The results show that reservoir 582 

operators perform differently during a small and a large flood event in dealing with the tradeoff 583 

between flood control and hydropower generation. They behave aggressively in taking some 584 

risk in flooding for more hydropower generation during a small flood event, while 585 

conservatively during a large flood event by taking quicker and stronger measures for flood 586 

peak clipping. Such behavior difference is incorporated to ROMEDA, together with stage 587 

observations, for more realistic reservoir release decisions during a flood event. With the case 588 

study reservoir, the ROMEDA method, which integrates the advantages of both machine and 589 
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human, results in less flood risk than HOR and OPT-M and larger water use (hydropower) 590 

benefit than HOR and OPT-S. 591 

Possible future improvements to ROMEDA include a) the real-time reservoir operation 592 

model with stochastic optimization considering inflow forecast uncertainty (with improved 593 

forecast accuracy and lead time); b) the observation data (with enhanced accuracy); c) better 594 

understanding of reservoir operators’ real-world decision behaviors and choices. The 595 

ROMEDA method can be easily applied to other real-time operation problems for a joint use 596 

of optimization and data assimilation.  597 
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