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Supplement 1: Preissmann scheme 

Preissmann implicit four-point finite difference scheme is widely used to simulate the 

streamflow and water level for 1D hydrodynamic model. The difference equations of finite 

mesh points replace the differential equation of continuous region for simplicity. The derivative 

of time is the average of forward time derivative for mesh points j and j+1, as shown in Eq. S1. 

The derivative of space is the weighted average of forward space derivative for time steps t and 

t+1, as shown in Eq. S2. In Figure S1.1, point M is the middle of mesh points j and j+1 at time 

period t + . The variables at point M can be denoted by the weighted average of the mesh 

points j and j+1 at time periods t and t+1, as shown in Eq. S3. The unknown variables of river 

streamflow and water level at time period t+1 for mesh points j and j+1 can be determined by 

the known variables (flow and water level) and the boundary conditions. The weight factor   

in Eq. S2 and S3 reflects the close degree of the variables at time period t or t+1. If the weight 

factor is closed to 0, the Preissmann method is the explicit finite difference method; otherwise, 

if the weight factor is closed to 1, the Preissmann method is the implicit finite difference 

method. 
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Figure S1.1 Illustration of the Preissmann method 

With the difference equations for finite mesh points in Eq. S1 and S2, the Saint-Venant 

Equations of each sub-river channel can be transformed into Eq. S4. The coefficients can be 

obtained with the known variables and approximate value of point M (Eq. S3), as shown in Eq. 

S5. Since the on-channel reservoir has N channel cross sections, i.e. N-1 sub-river channels, 

the group equation (Eq. S6) denotes all the difference equations of the on-channel reservoir. 

And it can be solved with known variables and boundary conditions by the chasing method. 
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Supplement 2: Parameter calibration 

Roughness coefficients depend on the nature of the channel and streamflow 

characteristics, reflecting the energy loss due to the friction along the channel and the 

turbulence in the channel (Aldridge & Garrett, 1973; Pappenberger et al., 2005). Larger flow 

resistance results in larger roughness coefficients. The most commonly used method for 

determining the roughness coefficients is to calibrate against the historical streamflow and 

water level. The roughness coefficients vary with the topography and the streamflow 

magnitude. As there are 11 water level observation sections for the on-channel reservoir, the 

roughness coefficients at 11 sections have been selected as the parameters to be calibrated. The 

roughness coefficients of other cross sections can be determined by the linear interpolation 

method. 

With the historical flow and water level observations of small and large flood events, 

the roughness coefficients can be calibrated separately. Constraint Ensemble Kalman Filter 

with accept/reject method (CEnKF accept/reject) is used as the calibration method 

(Moradkhani et al., 2005). Figures S2.1 and S2.2 show the calibration of roughness coefficients 

at 11 observation sections for small and large flood events, respectively. The results 

demonstrate that the ensemble mean of the roughness coefficients approaches stable values for 

small and large flood events. The red area, the 90% confidence interval with the ensemble size 

of 1000, shrinks quickly and approaches a stable spread. 
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Figure S2.1 Calibration of roughness coefficients at 11 observation sections for small flood event 

 

Figure S2.2 Calibration of roughness coefficients at 11 observation sections for large flood event 

The calibrated roughness coefficients for small and large flood events are determined 

based on the average value of the ensemble mean for the last 20 time-steps, as shown in Table 

S2.1. The calibrated roughness coefficients at the same section is different for small and large 

flood events, but the difference is acceptable, which is less than 0.01. 
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Table S2.1 The roughness coefficients for small and large flood events 

Event 

Section 

1 

Section 

2 

Section 

3 

Section 

4 

Section 

5 

Section 

6 

Section 

7 

Section 

8 

Section 

9 

Section 

10 

Section 

11 

Small 

flood 

0.0323 0.0445 0.0286 0.0318 0.0354 0.0320 0.0669 0.0692 0.0655 0.0492 0.0533 

Large 

flood 

0.0334 0.0446 0.0294 0.0404 0.0400 0.0297 0.0710 0.0771 0.0631 0.0598 0.0499 

 


