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Abstract. Pedotransfer functions are used to relate gridded databases of soil texture information to the soil hydraulic and

thermal parameters of land surface models. The parameters within these pedotransfer functions are uncertain and calibrated

through analyses of point soil samples. How these calibrations relate to the soil parameters at the spatial scale of modern land

surface models is unclear, because gridded databases of soil texture represent an area average. We present a novel approach

for calibrating such pedotransfer functions to improve land surface model soil moisture prediction by using observations from5

the Soil Moisture Active Passive (SMAP) satellite mission within a data assimilation framework. Unlike traditional calibration

procedures data assimilation always takes into account the relative uncertainties given to both model and observed estimates to

find a maximum likelihood estimate. After performing the calibration procedure we find improved estimates of soil moisture

for the JULES land surface model (run at a 1 km resolution) when compared to estimates from a cosmic-ray soil moisture

monitoring network (COSMOS–UK). The spatial resolution of these COSMOS probes is much more representative of the10

1 km model grid than traditional point based soil moisture sensors. For 11 cosmic–ray neutron soil moisture probes located

across the modelled domain we find an average 22% reduction in root-mean squared error, a 16% reduction in unbiased root-

mean squared error and a 16% increase in correlation after using data assimilation techniques to retrieve new pedotransfer

function parameters.

1 Introduction

Land surface models are important tools for translating meteorological forecasts and reanalyses into real-world impacts by

providing schemes for how energy, water and other matter will interact with the Earth’s surface, outputting relevant diagnostics

and variables and understanding the role of variability in the terrestrial hydrological cycle in the Earth system. As the spatial

resolution of available meteorological information has become increasingly fine (Clark et al., 2016) it is necessary to ensure20
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land surface models can utilise this information at its native resolution in order to provide outputs that are as accurate as possi-

ble for local populations. In this paper our focus is on soil moisture which plays an essential role in agriculture (Asfaw et al.,

2018), weather and climate prediction (Hauser et al., 2017) and land surface energy partitioning (Beljaars et al., 1996; Bateni

and Entekhabi, 2012). The modelling of soil moisture is highly sensitive to driving precipitation and model parameterisations

(Pitman et al., 1999). Typically, models of soil moisture will determine parameters based on spatial datasets of soil texture25

information using pedotransfer functions such as those defined by Cosby et al. (1984) for the Brooks and Corey (1964) soil

model. The majority of pedotransfer relationships are calibrated for point samples of soil for a specific geographic location

(Cosby et al., 1984; Wösten et al., 1999; Schaap et al., 2004; Tóth et al., 2015). Selecting the appropriate set of pedotransfer

functions for the modelled area will allow for more representative results. It is unclear how these calibrations of pedotransfer

functions and their resulting soil model parameters relate to the varying spatial scales of modern land surface models, and30

indeed the use of additional streams of information from remote sensing and in-situ observations is seen as increasingly im-

portant for calibration and validation (Van Looy et al., 2017). Pedotransfer functions can be continuous or discrete (setting

predefined model parameters for different ranges of soil texture). Discrete examples of pedotransfer functions can be found

in Wösten et al. (1999) for the van Genuchten (1980) soil model. Continuous versions of these functions may be preferential

as they provide greater heterogeneity for resulting soil model parameter maps which may be more realistic. Tóth et al. (2015)35

provide more recent examples of continuous pedotransfer functions for the van Genuchten (1980) model. For this paper con-

tinuous functions will also allow us to seek updated parameter values that improve the prediction of a land surface model at a

given spatial scale and properly account for uncertainty in both the soils information and resulting model predictions.

There now exists a large amount of information from different satellite missions relating to the spatial and temporal variabil-

ity of soil moisture. These can be based on either active (e.g. The Advanced Scatterometer (ASCAT) (Wagner et al., 2013)) or40

passive (e.g. The Soil Moisture Ocean Salinity (SMOS) mission (Kerr et al., 2001)) observing instruments with good results

found when combining both (e.g. the Soil Moisture Active Passive (SMAP) mission (Entekhabi et al., 2010)). The NASA

SMAP mission was originally designed with both an active and passive sensor on board, soon after launch in January 2015

the active sensor malfunctioned. Sentinel 1 is now used as the active component in the SMAP soil moisture retrieval. Recent

validation studies have shown SMAP to perform well in comparison with other satellite estimates (Montzka et al., 2017; Chen45

et al., 2018; Peng et al., 2020). These remotely sensed products are available at scales comparable to current land surface

models from 50 km down to 9 km. Traditional in-situ observations of soil moisture are made at a single point using a variety of

different methods (Walker et al., 2004). These in-situ measurements provide accurate estimates to the true state of the amount

of water contained within the soil. However, the scale of such measurements can be unrepresentative to the scales of the model,

even when land surface models are run at a high resolution (∼1 km). The recent developments of cosmic–ray neutron sensing50

soil moisture probes (Zreda et al., 2008) somewhat alleviates this issue. Cosmic–ray neutron probe observations have a variable

spatial footprint dependent on atmospheric air density (130 m - 240 m (Köhli et al., 2015) with some studies quoting a radius

of∼600 m Desilets and Zreda (2013)) that is much more representative of land surface model estimates than that of traditional

soil moisture probes. There are now good networks of cosmic–ray probes within several countries (Zreda et al., 2012). This

is true in the UK where the COsmic-ray Soil Moisture Observing System United Kingdom (COSMOS-UK) network (Evans55
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et al., 2016) has been established by The UK Center for Ecology and Hydrology (UKCEH) and returning observations since

2013 (Stanley et al., 2019). These observations can act as valuable validation data of both satellite and land surface model soil

moisture estimates (Duygu and Akyürek, 2019).

Data assimilation provides methods for combining new observations with land surface models in order to improve predic-

tions. These techniques can either be used to update the soil moisture state of the model in real-time as new observations are60

available (Liu et al., 2011; Draper et al., 2012; De Lannoy and Reichle, 2016; Kolassa et al., 2017) or to update the parameters

of the model and find improved calibrations which better represent the observations (Rasmy et al., 2011; Sawada and Koike,

2014; Yang et al., 2016; Pinnington et al., 2018). Unlike traditional calibration procedures data assimilation always takes into

account the relative uncertainties given to both model and observed estimates to find a maximum-a-posteriori estimate. Previous

studies have used data assimilation to update the parameters of land surface models. However, we are unaware of any studies65

using data assimilation to update the parameters of pedotransfer functions to improve land surface model predictions. Updating

the parameters of these pedotransfer functions by combining them with observations from satellites addresses a key uncertainty

within their calibration with respect to land surface models, adding additional information about spatial heterogeneity and the

larger scales of both satellite and land surface model estimates.

We have used the Land Variational Ensemble Data Assimilation Framework (LAVENDAR) (Pinnington et al., 2020) to70

combine soil moisture estimates from the NASA SMAP mission with the Joint UK Land Environment Simulator (JULES)

model run at a high-resolution (1 km) and update the parameters of the Tóth et al. (2015) pedotransfer functions for the van

Genuchten (1980) soil model. In our experiments we assimilated 2016 SMAP data and then ran a hindcast for the year 2017.

The experiments were conducted over a sub-domain of the UK due to considerations of computational expense. We selected

the region of East Anglia due to it being equally susceptible to flooding and drought and therefore displaying a good dynamic75

range of soil moisture values. This region also had a good availability of high quality SMAP data and a high distribution

of COSMOS probes to allow for thorough validation of any results. While reducing the spatial domain in our experiments

eased the computational load we were still modelling over 30,000 grid points due to the high-resolution of the JULES model.

After assimilation we found a 20% reduction in error for the JULES model using the new calibration of the Tóth et al. (2015)

pedotransfer functions when compared to the SMAP observations. As independent validation we also found an average 22%80

reduction in error and 16% increase in correlation over 11 COSMOS probe sites in the model domain.

2 Method

2.1 JULES land surface model

The Joint UK Land Environment Simulator (JULES) is a community developed process based land surface model and forms

the land surface component in the next generation UK Earth System Model (UKESM). A description of the energy and water85

fluxes is given in Best et al. (2011), with carbon fluxes and vegetation dynamics described in Clark et al. (2011). We drive the

JULES model with the Climate Hydrology and Ecology research Support System meteorology (CHESS) dataset (Robinson

et al., 2017) which is a 1 km daily dataset of meteorological variables, an example implementation of JULES with the CHESS-
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met dataset can be found in Martínez-de la Torre et al. (2019). In our experiments we have used JULES version 5.3, the code

and model settings are available through the MetOffice JULES repository (https://code.metoffice.gov.uk/trac/jules), with Rose90

suite number u-bq357. This model setup is based on the Rose suite u-au394 used to create the CHESS-land dataset (Martinez-

de la Torre et al., 2018). The JULES model utilises the Harmonized World Soil Database (HWSD) (Fischer et al., 2008) as

the underlying soil texture map for the creation of its soil parameter ancillaries using a pedotransfer function. The HWSD has

been gap-filled in urban areas where no information is available as we ran JULES without urban tiles switched on. The soil

scheme is made up of 4 separate layers with depths of 0.1 m, 0.25 m, 0.65 m and 2 m respectively. We include a 4 year spin up95

period at the start of each JULES run to allow the soil moisture state to reach a point of equilibrium after parameter values are

changed.

2.2 Pedotransfer functions

The JULES model implements both the Brooks and Corey (1964) and the van Genuchten (1980) soil models. The JULES

implementation of these models can be found in Clark et al. (2011). In this paper we have used the van Genuchten (1980) soil100

model and have selected a set of pedotransfer functions from Tóth et al. (2015). The Tóth et al. (2015) pedotransfer functions

have been calibrated across a large range of European soils and should be representative of the study area. The mathematical

formulation of these pedotransfer functions is:

θres =





0.041 fsand > 2

0.179 fsand < 2

θsat = φa−φbρ
2 +φcfclay +κapH2

log10(α) =−φd−φeρ
2−φefclay −φgfsilt +

κb

(Corganic + 1)
+κcpH2 +κdtopsoil

log10(N − 1) =−φh−φiρ
2−φjfclay −φkfsilt +

κe

(Corganic + 1)

log10(Ksat) = φl−φmfclay −φnfsilt−φoCEC +κf pH2 +κgtopsoil,

(1)

where θres is the residual soil moisture, θsat the saturated soil moisture, α and (N − 1) parameters of the van Genuchten105

(1980) soil model, Ksat the saturated hydraulic conductivity, φa, . . . ,φo are model parameters to be optimised (values given in

table 1) and κa, . . . ,κg are static model parameters (values given in table 2). We optimise the parameters controlling the impact

of bulk density (ρ), fraction of clay and silt (fclay, fsilt) and the cation exchange capacity (CEC) as these terms have a first

order impact on the outputted van Genuchten (1980) soil parameters. The organic carbon content (Corganic), soil pH value

and topsoil flag have a less pronounced effect on the van Genuchten (1980) soil parameters. We treat the top two soil layers110

of JULES as topsoil (topsoil = 1) and the bottom two as subsoil (topsoil = 0). From equations (1) we can see that defining a

soil as topsoil will act to increase the saturated hydraulic conductivity and the value of α, which will both allow water to flow

more freely through the soil. The prior values for the parameters (φa, . . . ,φo) are shown in table 1. We used the values given

by Tóth et al. (2015) for the prior except for φo for which we found better results (experiments not shown) when the magnitude
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of this parameter was increased. To create the JULES soil parameter ancillary files these pedotransfer functions are applied to115

soil texture information from the HWSD (Fischer et al., 2008) at a 1 km resolution.

Parameter Prior value

φa 0.63052

φb 0.10262

φc 0.0003335

φd 1.16518

φe 0.16063

φf 0.008372

φg 0.01300

φh 0.25929

φi 0.10590

φj 0.009004

φk 0.001223

φl 0.40220

φm 0.02329

φn 0.01265

φo 0.10380

Table 1. Prior values for parameters of the Tóth et al. (2015) pedotransfer functions used in experiments.

Parameter Value

κa 0.0002904

κb 0.40515

κc 0.002166

κd 0.08233

κe 0.2568

κf 0.26122

κg 0.44565

Table 2. Static parameter values for the Tóth et al. (2015) pedotransfer functions used in experiments.

2.3 SMAP Observations

The NASA Soil Moisture Active Passive (SMAP) satellite mission provides estimates of soil moisture every 2-3 days (En-

tekhabi et al., 2010). The mission is an orbiting observatory with a passive radiometer and an active radar instrument. SMAP
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was designed to deliver a 36 km spatial resolution estimate of soil moisture from the passive instrument alongside a 9 km120

estimate from a retrieval using both the passive and active sensors. After its launch in January 2015 the radar instrument mal-

functioned. Subsequently ESA’s Sentinel 1 mission has been used as a replacement for the active sensor. For the work in this

paper we use the 9 km level 3 soil moisture product with a prescribed error of 0.05 m3 m−3. This error is a slight inflation

of the SMAP baseline aim of 0.04 m3 m−3. However, other studies have found slightly higher values for the error in SMAP

observations (Li et al., 2018; Zhang et al., 2019). As part of the retrieval procedure SMAP relies on some ancillary informa-125

tion, one example of this is soil texture where the Harmonized World Soil Database (HWSD) (Fischer et al., 2008) is used to

calculate the soil dielectric constant for use within the retrieval algorithm. The use of such ancillary data in the retrieval could

introduce biases into the SMAP soil moisture estimates that are not consistent with estimates from the land surface model we

are comparing to. However, as the HWSD is also used to create the JULES soil parameter ancillary files this effect should be

minimised. We have only used SMAP observations corresponding to best retrieval quality flag and surface flag in experiments.130

The effect that removing poor quality observations has on the total number of observations assimilated can be seen in Figure 1.
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Figure 1. Location of COSMOS probes and number of SMAP observations assimilated in experiment period (2016). No colour corresponds

to no observations being assimilated in that location due to low quality retrieval or surface flag.

2.4 COSMOS–UK Observations

The COSMOS–UK network has been producing observations of soil moisture and other meteorological variables at an ex-

panding number of stations (currently 52) since 2013 (Stanley et al., 2019). For the area of interest in this paper we have 11

stations available to us with data for the relevant time period, see Figure 1. Some of these stations may not be representative of135
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JULES model estimates due to the current setup of JULES not considering some processes (ground water, organic soils, urban

tiles). Cosmic–ray sensing soil moisture probes have a variable depth as well as horizontal sensitivity (Zreda et al., 2008). The

COSMOS–UK network report the representative depth of each soil moisture measurement. To make a fair comparison between

the COSMOS–UK and JULES soil moisture estimates we have constructed a variable depth algorithm for JULES which takes

a weighted average of the different soil layers of the model given the relative depth of the COSMOS–UK observation.140

2.5 Data Assimilation Framework

In order to estimate the identified pedotransfer function parameters we use the LAVENDAR data assimilation framework

(Pinnington et al., 2020). This involves running an ensemble of JULES models, with each model in the ensemble utilising

a distinct soil ancillary data–set. Each ancillary file is created by sampling from the normal distribution defined by taking a

10% standard deviation around the prior mean in table 1 then using the unique set of sampled parameters within equations (1)145

applied to the HWSD for the domain. In this type of experiment the number of ensemble members will control the quality of

the results, with a larger ensemble more likely to identify the optimum parameters. However, running a land surface model at a

1 km spatial resolution over the specified domain is computationally expensive, we therefore use an ensemble size of 50 in our

experiments. In order to compare the 1 km estimates of soil moisture from JULES to the 9 km SMAP estimates we create an

observation operator which aggregates the JULES grid cells within each SMAP pixel. This will introduce an additional source150

of representativity error alongside the observational error of SMAP and the inherent model error within JULES. For this reason

and due to the large number of observations assimilated in our years assimilation window (28698) we inflate the specified

observational error by a factor of four. The method of inflation is common practice in meteorological data assimilation when

assimilating streams of data with vast numbers of observations (Minamide and Zhang, 2017). It is largely used to account for

the fact that the representation of observational errors are often over simplified and do not account for any error correlations155

that may be present in time, space or between satellite bands (Stewart et al., 2008; Pinnington et al., 2016).

The LAVENDAR framework takes the JULES simulated soil moisture for each ensemble member (applying the SMAP spa-

tially aggregated observation operator) and the SMAP observations and performs the method of Four-Dimensional Ensemble

Variational (4DEnVar) data assimilation to find a new ‘most likely’ set of parameters for the pedotransfer functions given the

uncertainties in both the observations and prior parameter estimates. This new set of most likely parameters is then used in160

a method similar to that of the Iterative Ensemble Kalman Smoother (IEnKS) (Bocquet and Sakov, 2013) to find a posterior

set of 50 parameter vectors, for more information on how this is calculated see the Appendix A. This subsequent posterior

ensemble of JULES runs can then be used to provide uncertainty estimates on our posterior model predictions and can also be

used in future calibration studies or as an ensemble forecast for state estimation.

2.6 Experiment Formulation165

We conducted our pedotransfer function parameter estimation for the year of 2016 using all SMAP observations in this period.

We also ran the prior and posterior JULES ensembles into 2017 so that we could judge the results against independent SMAP

observations in a ‘hindcast’ experiment. Allowing us to judge if any skill added by the assimilation persisted into the future.
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For the 2016-2017 period we then used the available COSMOS probe observations for validation comparing both prior and

posterior JULES soil moisture estimates to these observations. Using the COSMOS–UK observations in this way gives us170

a better understanding of whether information added by the assimilation of SMAP observations can help to improve model

estimates at in–situ scales.

3 Results

3.1 Assimilation Output

In Figure 2 we show the difference between the mean soil moisture in 2016 for the prior and posterior JULES ensemble. The175

grid cells that are darker blue correspond to the posterior ensemble being wetter after assimilation and grid cells that are darker

red correspond to the posterior being drier. We can see that after calibration of the pedotransfer function parameters the domain

has not had a uniform increment to the value of mean soil moisture. This is due to the fact that soil texture specific parameters

have been optimised allowing the different distinct areas of soil type defined by the HWSD to behave differently rather than

having a uniform correction across the modelled area. Across the whole domain we find an average increase of 0.03 m3 m−3180

in mean soil moisture estimates after data assimilation. Figure 2 also allows us to see the high–resolution of the JULES model

when run with the CHESS data, for this domain we have over 30,000 individual model grid cells.
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Figure 2. Map showing the difference between yearly mean soil moisture for the prior and posterior ensemble of JULES model runs in 2016.

Blue corresponds to the posterior ensemble estimate being wetter, red corresponds to the posterior being drier.
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Figure 3 shows the prior and posterior parameter distributions for the 15 optimized parameters of the Tóth et al. (2015) pedo-

transfer functions. Prior distributions for the 50 JULES ensemble members are shown in light grey with posterior distributions

shown as dark grey. We can see that while the DA procedure made large updates to some parameters compared to their prior185

values others have not changed, with their mean appearing to be in a very similar place. One of the parameters with a strong

change is φa which is decreased compared to the prior, this parameter controls the absolute magnitude of the saturated soil

moisture (θsat). Decreasing it will reduce the absolute saturated soil moisture and allow the soil texture information to have

more impact on the diagnosed van Genuchten (1980) model parameter.
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Figure 3. Distributions of prior and posterior pedotransfer function parameters grouped by the term in the equations (1) that they relate to

(see row labels). Light grey: parameter distribution for the prior ensemble, dark grey: parameter distribution for the posterior ensemble.

Figure 4 shows the error reduction after performing data assimilation when comparing JULES spatially aggregated estimates190

to SMAP observations. For the majority of the domain we find a reduction in error after assimilation, with a mean error

reduction of 20% in 2016 and 21% in 2017 (see Figure 5). The exception to this being the area corresponding to the city of

London. There are two reasons for this, firstly we have not assimilated SMAP soil moisture estimates over this area due to the

surface flag corresponding to poor quality observations (poor quality SMAP grid cells are shown in Figure5 with stippling).

Secondly the setup of JULES we have used in our experiments does not have the urban tile turned on, instead we have had195

to gap-fill the HWSD over London with the surrounding grid cells soil type. This means that soil moisture estimates for this

location will not be realistic. To visualise what the time-series of results looks like we plot SMAP observations and JULES
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model predictions for different pixels in Figure 6 & 7. For Figure 6 we can clearly see the improvement in the posterior JULES

ensemble estimate when compared to the prior. This improvement continues into the 2017 hindcast period when judged against

observations that have not been used in the data assimilation framework. From Figure 6 we can also see the spread in our200

model estimates with the JULES ensemble standard deviation displayed as shading. This spread is decreased from the prior to

posterior estimates. In Figure 7 we plot the results for a SMAP pixel over London where the posterior error increases compared

to the prior. However, we can see that the SMAP observations do not appear reliable here with many observations hitting the

lower bound of soil moisture in the SMAP retrieval.
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Figure 4. Map showing the difference between Root-Mean Squared Error (RMSE) when JULES spatially aggregated estimates are compared

to SMAP observations for the prior and posterior ensemble. Blue corresponds to reductions in RMSE for the posterior ensemble, red to an

increase. Grid-cells displaying stippling signify low quality SMAP pixels which have not been used in the assimilation procedure. Over the

whole domain we find an average reduction in RMSE of 20% after data assimilation.

3.2 Comparison to COSMOS–UK205

After performing the data assimilation procedure we use the observation operator described in section 2.4 to compare the prior

and posterior JULES 4–layer soil moisture estimates to the 11 COSMOS probes located in our experiment domain. For each

COSMOS site we select the nearest JULES grid–cell to the given site longitude and latitude. In Figure 8 we show results at

the Cardington COSMOS sites, here we can see the posterior JULES estimate is a large improvement from the prior, although

some of the driest values are still not captured. Figure 9 shows results for Morley COSMOS site where both prior and posterior210

JULES estimates perform similarly. There are also some sites where even after calibration we still do not capture the COSMOS
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Figure 5. Map showing the difference between Root-Mean Squared Error (RMSE) when JULES spatially aggregated estimates are compared

to SMAP observations for the prior and posterior ensemble in the hindcast period (2017), where no observations have been assimilated. Blue

corresponds to reductions in RMSE for the posterior ensemble, red to an increase. Grid-cells displaying stippling signify low quality SMAP

pixels which have not been used in the assimilation procedure. Over the whole domain we find an average reduction in RMSE of 21% after

data assimilation for the hindcast period.

estimates, Stoughton in Figure 10 is such an example where both prior and posterior estimates are too dry. However, here the

posterior estimate is still much improved from the prior. Figure 11 is an example where both prior and posterior perform

equally poorly. In table 3 we show summary statistics for the 11 COSMOS sites, we see that when looking over all sites the

posterior estimate yields a 16% increase in correlation, 16% reduction in unbiased Root-Mean-Squared Error (ubRMSE) and215

a 22% reduction in Root-Mean-Squared Error (RMSE) when compared to the prior.

4 Discussion

Typically pedotransfer functions have been calibrated using point samples of soil. We have shown that satellite data can pro-

vide additional information to find parameters that will allow for the improved prediction of soil moisture from land surface

models at varying spatial scales. There are obviously uncertainties which have not been taken into consideration within the220

DA procedure to find optimized pedotransfer function parameters. There will be errors in the underlying soil texture map from

the HWSD which will imapct results, although these will not be as large for European countries as they will be in other loca-

tions with sparser soil texture information. There will also be inherent bias and errors in both the observations and model. For
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Figure 6. Time–series of soil moisture for 52.96◦ N 0.40◦ W. Pink dots: SMAP observations, blue line and shading: prior JULES mean

and ensemble spread, orange line and shading: posterior ensemble mean and spread. Black dotted line represents the end of the assimilation

window and start of the hindcast period.

the SMAP observations we have dealt with this by inflating the observation uncertainty within the DA algorithm. However,

specifying the errors arising from structural uncertainties and missing processes within the JULES model is more difficult. We225

can see these errors manifesting themselves in our comparisons to COSMOS–UK observations in Figures 8 to 11. Figure 8

displays results for the Cardington cosmic–ray probe, this site is a level well–managed grassland with a typical mineral soil

and is therefore well modelled by JULES which has the ability to represent the processes of such a site. Both the Morley

and Stoughton sensors (Figure 9 and 10 respectively) are positioned on arable land with typical mineral soils and while we

model Morley well we struggle to match the magnitude of the Stoughton observations. It is possible that different management230

practices at the respective sites are impacting on the ability of JULES to predict the observations. In this paper we have not run

JULES with its in–built crop model turned on, so that the model will struggle to represent heavily managed crops that behave

distinctly from a grassland. The site at which both prior and posterior perform worst is Redmere (Figure 11), this cosmic-ray

probe is again on arable land but with a soil type of peat. In its current configuration JULES does not model organic soils and

estimates of soil moisture from microwave satellite sensors over peatland are problematic, so it is understandable that we are235
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Figure 7. Time–series of soil moisture for 51.81◦ N 0.17◦ W. Pink dots: SMAP observations, blue line and shading: prior JULES mean

and ensemble spread, orange line and shading: posterior ensemble mean and spread. Black dotted line represents the end of the assimilation

window and start of the hindcast period.

unable to match the much wetter conditions observed at this site. The accuracy of JULES posterior estimates is also contingent

on the assimilated SMAP observations, so if SMAP estimates have large errors compared to cosmic-ray probe observations

JULES will be unable to improve from its prior predictions. Within the Hydro–JULES project work is being undertaken to

improve the representation of hydrological processes at different scales, especially lateral soil water flow and groundwater. It

will be informative to re–run this parameter estimation experiment again as new processes are added to the model to understand240

the effect on the retrieved pedotransfer function parameters. We will then be able to see where we might be over–fitting these

parameters to account for current structural deficiencies within the model (such as the current lack of a groundwater model).

Both SMAP and COSMOS–UK observations represent a valuable resource for validation and improvement of land surface

models and could be further utilised still. It is possible that our formation of a spatially aggregated observation operator to

compare SMAP 9 km estimates to JULES 1 km estimates could be improved upon and that more signal may be coming from245

the centre of the satellite pixel, so that we could weight these JULES model pixels more highly within the observation operator.

In future work it may also be beneficial to build towards a full radiative transfer scheme on top of JULES to assimilate the
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Figure 8. Times–series of soil moisture at Cardington COSMOS site. Pink dots: COSMOS soil moisture observations, blue line: prior JULES

estimate, orange line: posterior JULES estimate.

raw brightness temperature observations from the SMAP satellite to increase the representativty between the observations and

the model and reduce sources of bias that may be introduced by the use of ancillary data in the soil moisture retrieval. The

COSMOS–UK observations could also be used within the data assimilation algorithm, rather than just acting as validation,250

to capture information on another spatial scale. Much work would be needed here to process and organise site level driving

data and understand the different characteristics of each site before combining these observations with the JULES land surface

model.

In the initial application of this technique we have focused on a specific region at a high resolution. Here we have utilised 256

processors to run the JULES model ensemble, with each JULES run utilising message parsing interfaces to disaggregate the255

spatial domain of the model and split the computational load across multiple processors. In this set up it has taken approximately

1.5 days to complete 100 JULES model runs, with each model being for 30614 grid cells and over 6 years (2016 to 2017, with a

4 year spin-up). In order to find a set of pedotransfer function parameters valid at the global scale, using the technique presented

here, we would need to decrease the spatial resolution. Working at the scale of 0.5 degrees we would have approximately 67000

land grid cells globally. Using our fairly modest experimental setup and assuming a linear scaling repeating at the global scale260
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Figure 9. Times–series of soil moisture at Morley COSMOS site. Pink dots: COSMOS soil moisture observations, blue line: prior JULES

estimate, orange line: posterior JULES estimate.

would still only take a little over 3 days. However, it may be beneficial to focus on regional efforts to ensure the optimised

pedotransfer functions best reflect the behaviour of local soils. The global domain could then be decomposed into sub-regions

with specific parameters being found for each distinct region.

In this paper we have focused on the optimisation of pedotransfer function parameters to improve estimates of water balance

from land surface models. In other regions across the globe where underlying soil texture maps are highly uncertain it may265

be necessary to also consider optimising estimates of soil properties per-grid cell, given satellite and in-situ observations

(Pinnington et al., 2018). This could further increase the skill of estimates in problematic areas. There is also the opportunity to

incorporate other streams of observations into the data assimilation procedure. For example the use of stream flow data could

give as a powerful integrated constraint on land surface model estimates of water balance and run-off. The development of the

new JULES groundwater component will allow for the use of observations from the Gravity Recovery and Climate Experiment270

(GRACE) satellites which have the ability to monitor changes in the Earth’s underground water storage.
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Figure 10. Times–series of soil moisture at Stoughton COSMOS site. Pink dots: COSMOS soil moisture observations, blue line: prior JULES

estimate, orange line: posterior JULES estimate.

5 Conclusions

We have presented novel methods for calibrating pedotranfer functions used to create the soil parameter ancillaries of a land

surface model by using satellite data from the NASA SMAP mission. After the retrieval of an optimized parameter set, using

data assimilation techniques, we find an average 20% reduction in error for JULES model estimates of soil moisture when275

compared to SMAP satellite estimates. There are still areas which remain problematic such as working over urban areas and

peatlands. These will require additional modelling efforts and new model components. The resultant posterior pedotransfer

functions also improve the prediction of soil moisture for the JULES land surface model when compared to independent in-

situ estimates from the COSMOS–UK network. At 11 COSMOS–UK research sites distributed across the experiment domain

we find an average 16% increase in correlation, 16% reduction in ubRMSE and a 22% reduction in RMSE for the posterior280

pedotransfer functions compared to the prior.
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Figure 11. Times–series of soil moisture at Redmere COSMOS site. Pink dots: COSMOS soil moisture observations, blue line: prior JULES

estimate, orange line: posterior JULES estimate.

Code availability. The code used in experiments is available from the MetOffice JULES repository (https://code.metoffice.gov.uk/trac/jules)

under Rose suite number u-bq357. The LAVENDAR data assimilation first release is available here: https://github.com/pyearthsci/lavendar

(last access: 20 February 2019).

Appendix A: Computing the posterior ensemble285

In this appendix we summarise the process to get the analysis (or posterior) ensemble of extended state variables (variables

and parameters). The following steps are a recapitulation and continuation of the equations in Pinnington et al. (2018).

Let us start with a background ensemble of Ne joint state-parameter vectors:

Xb =
[
x1

b ,x
2
b , . . . ,x

Ne

b

]
. (A1)
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Correlation ubRMSE RMSE

Site Prior Posterior Prior Posterior Prior Posterior

Bunny Park 0.86 0.89 0.02 0.02 0.07 0.04

Cardington 0.85 0.91 0.05 0.03 0.06 0.03

Elmsett 0.81 0.82 0.04 0.04 0.16 0.17

Euston 0.90 0.92 0.04 0.04 0.05 0.04

Fincham 0.83 0.85 0.02 0.02 0.19 0.13

Loddington 0.45 0.79 0.06 0.04 0.39 0.31

Morley 0.86 0.89 0.03 0.03 0.03 0.03

Redmere 0.33 0.35 0.08 0.08 0.43 0.43

Rothamsted 0.85 0.89 0.03 0.03 0.05 0.07

Stoughton 0.30 0.76 0.05 0.04 0.24 0.13

Waddesdon 0.63 0.87 0.07 0.05 0.27 0.19

All Sites 0.70 0.81 0.045 0.038 0.18 0.14

Table 3. Summary statistics for comparison of JULES-CHESS soil moisture estimates to COSMOS probe observations over the experiment

period. Over all sites we find a 16% increase in correlation, 16% reduction in ubRMSE and 22% reduction in RMSE after performing the

calibration using LAVENDAR.

We can define the sample background (or prior) mean as:290

x̄b =
1
Ne

Ne∑

n=1

xn
b (A2)

and sample background perturbation matrix as

X′b =
1√

Ne− 1

[
x1

b − xb,x2
b − xb, . . . ,xNe

b − xb

]
. (A3)

The ensemble background error covariance matrix defined by

Pb = X′bX′Tb . (A4)295

To reduce the difficulty in finding the ensemble analysis mean, we use an incremental and pre-conditioned algorithm. Incre-

mental means that we express the analysis mean which is a perturbation from the background mean, i.e.:

x̄a = x̄b + δx. (A5)

The pre-conditioned part means that the departure δx can be written by a control variable pre-multiplied by a conditioning

matrix. In particular we choose the departure vector to be written as a linear combination of the background ensemble of300

perturbations, i.e.

x̄a = x̄b + X′bwa, (A6)

18

https://doi.org/10.5194/hess-2020-303
Preprint. Discussion started: 15 July 2020
c© Author(s) 2020. CC BY 4.0 License.



where wa is a vector of weights, which becomes the object we are solving for in the estimation process. This formulation has

been used in several formulations, starting with Bishop et al (2001) and Wang et al (2004). We do not use localisation in this

work, but in the presence of localisation it would be applied in the manner of Hunt et al (2007). This vector of weights is the305

minimiser of a cost function which can be written in ensemble space as:

J(w) =
1
2

wT w +
1
2

(ĤX′bw + ĥ(x̄b)− ŷ)T R̂−1(ĤX′bw + ĥ(x̄b)− ŷ) (A7)

with gradient

∇J(w) = w + (ĤX′b)
T R̂−1(ĤX′bw + ĥ(xb)− ŷ), (A8)

where Ĥ and ĥ are the linearised and non-linear observation operator respectively (here the JULES model, which includes310

both a time integration and conversion into observation space), ŷ are the observations (here SMAP) and R̂ is the observation

error covariance matrix.

In practice we do not compute the linearised version of JULES. Instead one can define statistics in the observation space

in the following manner. The background ensemble of Ne joint state-parameter vectors in observation space is obtained by

applying the observation operator to each ensemble member:315

Yb =
[
y1

b = ĥ
(
x1

b

)
,y2

b = ĥ
(
x2

b

)
, . . . ,yNe

b = ĥ
(

xNe

b

)]
(A9)

The sample background mean in observation space is:

ȳb =
1
Ne

Ne∑

n=1

yn
b (A10)

and the sample background perturbation matrix in observation space is:

Y′b =
1√

Ne− 1

[
y1

b − yb,y
2
b − yb, . . . ,y

Ne

b − yb

]
(A11)320

Using these considerations, (A7) and (A8) become (approximately):

J(w) =
1
2

wT w +
1
2

(Y′bw + ȳb− ŷ)T R̂−1(Y′bw + ȳb− ŷ) (A12)

and

∇J(w) = w + (Y′b)
T R̂−1(Y′bw + ȳb− ŷ). (A13)

Computing the minimum of the cost function (A12) using gradient (A13) yields the maximum-a-posteriori estimate wa325

which inserting into equation (A6) gives us the maximum-a-posteriori estimate to the parameter and/or state variables xa. The

analysis error covariance matrix (Pa) is given by (Evensen, 2003):

A = (I−KĤ)Pb =⇒ X′aX′Ta = (I−KĤ)X′bX′Tb (A14)
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where K is the Kalman gain matrix and

(I−KĤ) = (I + ĤX′b
T R̂−1ĤX′b)

−1 ≈ (I + Y′b
T R̂−1Y′b)

−1. (A15)330

Then

X′aX′Ta = X′b(I−KĤ)X′Tb =⇒ X′a = X′b(I + Y′b
T R̂−1Y′b)

− 1
2 (A16)

i.e. the analysis ensemble of perturbations can be obtained by a right multiplication of the background ensemble of perturbations

times a matrix of weights defined as:

Wa = (I + Y′b
T R̂−1Y′b)

− 1
2 . (A17)335

In our case the matrix square root is computed via Cholesky decomposition. Finally the posterior ensemble of Ne parame-

ter/state vectors (Xa) is constructed as

Xa =
[
xa + X′a,1,x

a + X′a,2, . . . ,x
a + X′a,Ne

]
. (A18)
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