
Editor 
 
Your manuscript "Improving Soil Moisture Prediction of a High-Resolution Land Surface Model by 
Parameterising Pedotransfer Functions through Assimilation of SMAP Satellite Data" has been 
subjected now to review by three reviewers. All of them recommend major revision. Given the many 
and different comments by the reviewers, the manuscript is borderline to rejection. Please consider 
whether it is possible to handle all reviewer comments in due time. The main points to be handled 
are: (i) the introduction should be strengthened with references; (ii) the manuscript lacks details in 
many places, for example regarding the data assimilation setup, measurement operator, handling of 
the vertical scale mismatch (SMAP vs model); (iii) time series of estimated soil parameters should be 
presented, and an evaluation for filter inbreeding (underestimation of variance); (iv) the handling of 
bias should at least be discussed, and additional simulations may be necessary; (v) the results and 
discussion sections should be improved with more scientific interpretation and discussion. 
 
In summary, I suggest major revision and additional review of the paper. Please consider whether 
such a revision is feasible in the available time framework. 
In your answer to the main points and detailed comments, please indicate how comments have been 
handled exactly, indicating also whether text has been deleted and what the position of newly 
included text blocks is. I am looking forward to the new version of the paper. 
 
Dear Professor Hendricks-Franssen, 
 
We thank you for providing a decision on our manuscript and the clarification of points which need 
addressing. We have made substantial changes to the manuscript in line with the reviewers 
comments and have conducted additional model and experiment runs to provide additional output 
variables and address issues of the SMAP vs model depth mismatch. We have increased the level of 
detail throughout the manuscript. In relation to point (iii) we are unable to provide time-series of soil 
parameter values since we use a smoother with a single assimilation window. This means that we 
consider all the available observations over the spatial domain in a time window of a given length. In 
our case, we chose this length to be the entire experiment time frame. This can be done since we are 
searching for parameters which are static in time. In retrospect we think we had not adequately 
described the DA technique so have strengthened this as requested and included a diagram. For point 
(iii) we have instead included maps of how the soil parameters change and also a plot of time-series 
RMSE and ensemble spread. We have discussed the handling of bias and strengthened both the 
results and discussions section, including additional figures and reference to other scientific literature. 
Thank you again for considering our manuscript and please find our detailed responses and updates 
below along with a marked-up version of the new manuscript. 
 
Kind Regards, 
Ewan Pinnington 
 
 
 
 
 
 
 
 
 
 



 
 
 
Reviewer 1 (R#1) 
 
The study describes results of a data assimilation experiment, assimilating soil moisture data of the 
Soil Moisture Active Passive mission into the UK land surface model JULES. The assimilation updates 
states and parameters. Resulting soil moisture is compared to SMAP data and data of an independent 
network of cosmic ray neutron probes. 
The title and general content of the manuscript are promising, while the manuscript itself exhibits 
lack of detail which would be required for following the study and reproducing the results. Below, my 
concerns, starting with the general ones, and followed by detailed comments. 
We thank the reviewer for their comments which will undoubtedly help to strengthen this 
manuscript. We outline below our responses and updates to the paper.  
 
1. Well known bias in the SMAP satellite product and impact on pedotransfer functions is not 
discussed (e.g. Reichle et al. https://doi.org/10.1029/2019MS001729 or Colliander et al 2017 
https://doi.org/10.1016/j.rse.2017.01.021 ). This would be a key asset of the paper. 
2. Which SMAP level data was used. It will help the reader in understanding the results. Please point 
this out in the introduction and methods sections. What are the implications? 
This is a good point. As per the paper mentioned, if the Level-4 SMAP product was used that is biased 
high there could possibly be an impact on the retrieved pedotransfer function (PTF) parameters. This 
would likely exhibit itself in PTF parameters that would artificially increase the values of the saturated 
soil moisture and possibly decrease saturated conductivity given the underlying soil textural 
information. We have included discussion of this at line 387: 
“For SMAP any bias contained in the observations could cause us to retrieve PTF parameters that 
result in erroneous soil hydraulic conductivity’s and ultimately degrade the performance of other 
model components. It has been shown that the Level-3 9 km SMAP observations used here do not 
have a significant bias (Colliander et al., 2017) especially in temperate regions (Zhang et al., 2019). 
The fact that after assimilation of the SMAP data we not only reduce the RMSE of JULES compared to 
SMAP but also reduce the RMSE of JULES compared to independent COSMOS estimates also gives us 
confidence that the bias in the assimilated SMAP data is relatively low.” 
 
We used the L3 SMAP v3 9-km radiometer-radar combined product. We have included this in the 
introduction at line 84: 
“[…]high quality SMAP data (here we use Level-3 SMAP soil moisture observations) and a high 
distribution of COSMOS probes [..]” 
 
We have also included more information in the methods section on the Level-3 data and bias as 
requested at line 146: 
“For the work in this paper we use the 9 km Level-3 soil moisture product (version 3) this product has 
a relatively low bias (Colliander et al., 2017, Zhang et al., 2019). However, it has been shown there is a 
wet bias present in the Level-4 SMAP product (Reichle et al., 2017). As part of the retrieval procedure 
SMAP relies on some ancillary information, one example of this is soil texture where the Harmonized 
World Soil Database (HWSD) (Fischer et al., 2008) is used to calculate the soil dielectric constant for 
use within the retrieval algorithm. The use of such ancillary data in the retrieval could introduce 
additional biases into the SMAP soil moisture estimates that are not consistent with estimates from 
the land surface model we are comparing to. However, as the HWSD is also used to create the JULES 
soil parameter ancillary files this effect should be minimised.” 
 



3. Discussion is not based on literature but merely on own postulations. A good guide is located here: 
https://www.biosciencewriters.com/How-to-Write-a-Strong-Discussionin-Scientific-Manuscripts.aspx 
We agree the discussion could be strengthened and have endeavoured to do so by restructuring and 
including more literature. See also later related points. 
 
4. Please add conceptual details on how the 4DEnVar (an optimization method) is combined with 
EnKF (optimization) (see page 7 lines 159-164). I imagine this can be done by text or together with a 
figure. Also address why are both optimization methods combined at all? 
5. Please add how is the state vector in Appendix A is composed in the present case (variables, 
parameters, IenKS posterior?) and which units do the variables in Appendix A have. 
6. Please clarify, what are prior and posterior with respect to two data assimilation methods? How 
can posteriors be worse then priors considering that the results are optimized using the evaluation 
data? Please plot as well the data assimilation performance over time with regard to RMSE and 
parameter convergence as for example in Poterjoy et al. 2017 https://doi.org/10.1175/MWR-D-16-
0298.1, Botto et al. 2018 https://doi.org/10.5194/hess-22-4251-2018 and Baatz et al. 
https://doi.org/10.5194/hess-21-2509-2017 . 
7. Please add results after the 4DEnVar assimilation in order to demonstrate what an additional 
assimilation yields in terms of skill. 
We have grouped together points 4-7 here as we believe these all stem from us not adequately 
describing the data assimilation technique used in the current manuscript. We have referenced a 
previous paper centred around the development of the technique and have not supplied enough 
information here for readers to properly understand what we have done.  
 
4. 4DEnVar is not combined with the EnKF, 4DEnVar is a hybrid technique combining elements of both 
ensemble and variational data assimilation methods. On reflection the way we have described this in 
the manuscript is not clear and we believe this has caused a misunderstanding of the results. The 
method we have used is closer to that of the Iterative Ensemble Kalman Smoother (IEnKS). We have 
removed references to 4DEnVar to avoid confusion and have strengthened the description of the DA 
method at line 181. We agree that the use of a diagram will be beneficial to illustrate the technique 
(see diagram below). 
“ In  order  to  estimate  the  identified  pedotransfer  function  parameters  we  use  the  
LAVENDAR  data  assimilation  framework (Pinnington et al., 2020). This framework utilises a hybrid 
DA technique similar to that of the Iterative Ensemble KalmanSmoother (IEnKS) (Bocquet and Sakov, 
2013). A smoother is different than a filter (e.g. the Ensemble Kalman Filter (Evensen,2003))  in  that  
it  uses  batches  of  observations  which  are  taken  over  a  time  window  of  given  length  and  the  
whole  spatial domain, as opposed to just in a time instant. These observations are combined with the 
model evolution over this window and a minimization process is performed to obtain initial conditions 
for the state/parameter values. It is possible to run a sequence of smoother steps for successive 
windows, but our study only uses one year long assimilation window as the parameters we are 
optimising do not vary in time.  

Using a smoother instead of a filter has advantages (Lorenc and Rawlins, 2005) in that (a) 
more observations can be used to constrain the problem solution, and (b) information from the 
model evolution is implicitly used in the search process. However, using a smoother requires 
computing the Jacobian of the model, the so–called tangent linear model (TLM) and the related 
adjoint model (AM). The TLM/AM (Courtier et al., 1994). Computing and maintaining the TLM/AM is 
not a trivial task, and in fact we do not have this for JULES. The IEnKS solves this problem by replacing 
the role of the TLM/AM by 4–dimensional covariances, i.e. covariances defined over time and space. 
These covariances are computed as sample estimators of a given ensemble. The iterative nature of 
the method means that it finds the solution to the minimization problems using inner iterations 
rather than a single step (hence the variational nature), and this helps when the distributions of the 
variables/parameters of interest are not Gaussian. We provide details of the method in Appendix A. 



Furthermore, to understand the variants of the ensemble Kalman Smoother and its position within 
the hybrid DA methods, the reader is referred to Evensen (2018).  

We show a schematic of how this system works in Figure 3, […]” 
 
We have also updated text in the introduction to make this more clear at line 71: 
“Many previous studies optimising model soil parameters have taken a filtering DA approach 
(Moradkhani et al., 2005; Montzka et al., 2011;Han et al., 2014; Baatz et al., 2017; Botto et al., 2018) 
leading to the recovery of a time-series of parameter values as additional data is assimilated through 
time. In this study we use a smoother method, i.e. one that uses all observations in the spatial do-
main within a time window of a given length. Then, the static parameters are obtained by a single 
minimization process (which can contain iterative steps). Smoothers can be used in a sequence of 
‘analysis windows’ (as it is done in operational numerical weather prediction), but in this study we 
only use one of these windows since the parameters we search for do not vary in time.” 

 
 
5. In Appendix A the state vector is the vector of 15 PTF parameters as defined in section 2.2 Table1 
We have included this in the Appendix at line 460:  
“In the case of this paper the variables and parameters correspond to the 15 PTF parameters in Table 
1. […] In our experiments each xi

b corresponds to a unique set of 15 PTF parameters and Ne = 50. […] 
where y are the observations for the whole time-window and spatial domain (here 2016 SMAP 
observations over the East of England, with units m3 m−3), H and h are the linearised and non-linear 
observation operator respectively (here the JULES model, which includes both a time integration and 
conversion into observation space to match the SMAP observations) and R is the observation error 
covariance matrix (here containing the error estimates for the assimilated SMAP observations).” 
 
6. There is only a single assimilation step being used, we have aimed to make this clearer (see point 4 
response). Using only one assimilation window is feasible because the parameters we are looking for 
are static in time. In Figures 4 to 7 the prior is just the mean and standard deviation of the 50 prior 
JULES ensemble members before DA and the posterior is the mean and standard deviation of the 50 
posterior JULES ensemble members after DA. We have expanded the description of prior and 
posterior in the results section at line 240: 
“The input to the data assimilation routine is an ensemble of 50 unique Tóth et al. (2015) PTF 
parameter sets drawn from a prior distribution (representing our best a priori guess to the true PTF 
parameters), the corresponding JULES runs (2016-2017) for each PTF parameter set and all the SMAP 



observations for the year 2016 over the experiment domain. The output of the data assimilation is an 
ensemble of 50 optimised (posterior) PTF parameter sets, valid for the whole experiment domain and 
time, this allows us to calculate the posterior JULES soil ancillary files for each optimized parameter 
set and the corresponding posterior JULES model runs for 2016-2017.” 
 
We are optimizing 15 PTF parameters for the whole time window (<28000 observations) and the 
whole spatial domain (<30000 gridcells) in a single assimilation step by minimising a cost function. 
This is unlike sequential methods such as the EnKF or ETKF which step through time updating 
estimates at each step with available observations. We retrieve a single set of 15 PTF parameters valid 
over the whole domain and for the whole time period. This means that the optimisation may have to 
degrade the fit at certain locations to allow the 15 PTF parameters to improve the picture as a whole. 
This could be due to errors at these locations in driving data, the underlaying soil property map or 
indeed in the model structure (as is the case over urban areas in our results). We have included text 
to this effect at line 276: 
“As we are minimising a cost function to find optimised values of PTF parameters valid for the whole 
spatial and temporal domain it is possible the optimisation may have to degrade the fit of the model 
estimates to the SMAP observations at certain locations in order to improve the picture as a whole. 
This could be due to errors at these locations in driving data, the underlying soil property map or 
indeed in the model structure.” 
 
As the DA method here is fundamentally different from the techniques in the papers mentioned, we 
are not able to reproduce the requested plots for parameter convergence as we retrieve just one set 
of parameters valid for the whole time window. However, we can plot the RMSE over time for both 
the prior and posterior ensemble members (see plot below). We have also aimed to increase the 
distinction between previous filtering DA methods and the variational smoother method we have 
used for this paper (see also response to point 4). We have included relevant text at line 296: 
“In Figure 10 we show the RMSE averaged in space for the JULES model prior and posterior mean 
estimate, when compared to SMAP, alongside the JULES model prior and posterior ensemble spread. 
At all times the posterior JULES RMSE is lower than that of the prior, showing that the DA system has 
found a set of PTF parameters that improve the fit to the SMAP observations through time, this 
continues into the hindcast period (2017) when judged against observations that were not included in 
the DA cost function. We find slight peaks in the RMSE values throughout the time period 
corresponding to wetter conditions, this could be due to slight errors in the precipitation driving data 
used to force the model. It is optimal to have an ensemble spread that matches the magnitude of the 
ensemble mean RMSE and this relationship should hold given a large enough ensemble size 
(Houtekamer and Mitchell, 1998). We can see that this relationship holds for our prior estimates. 
However, after DA the posterior ensemble spread is slightly lower than that of the ensemble mean 
RMSE. This is perhaps unsurprising as we are conducting just a single assimilation step using all 
observations (over 28000) at once in space and time with a relatively small ensemble size (50). This 
can lead to some of the posterior parameter distributions becoming narrow, as with increasing 
observations we increase the confidence in our posterior, thus tightening the retrieved distributions 
and reducing the model ensemble spread. This result suggests that ensemble inflation (Anderson and 
Anderson, 1999) may be necessary if this ensemble was to be used in subsequent assimilation 
experiments.” 
 



 
 
7. We believe this is already shown and hopefully with the strengthened description of the DA 
algorithm this has become more clear (see response to point 4). 
 
8. Please expand on why to add another 1% SWC error to SMAP (from 0.04 to 0.05 cm3/cm3, page 6 
line 123) and multiply by four (20cm3/cm3 error?) for observation inflation, a rather seldomly used 
method. Inflation is rather used for covariance inflation during the run time of the data assimilation 
experiment (e.g. Jamal and Linker 2020, https://doi.org/10.1002/vzj2.20000 or Whitaker et al. 2011 
DOI: 10.1175/MWR-D-11-00276.1). Please cite more studies were observation inflation is directly 
used and discuss why a bias aware data assimilation method was not used (e.g. Ridler et al. 
2018 https://doi.org/10.2166/nh.2017.117) 
 
Although the baseline aim for SMAP is 0.04 cm3/cm3 other studies have found higher values; 0.043 
(Colliander et al 2017 https://doi.org/10.1016/j.rse.2017.01.021), 0.054 (Zhang et al. 
https://doi.org/10.1016/j.rse.2019.01.015), 0.057 (Li et al. https://doi.org/10.3390/rs10040535). We 
have included extra text at line 153: 
“We prescribe an error of 0.05 m3 m−3 for SMAP observations in the assimilation algorithm. Although 
the SMAP baseline aim for error is 0.04 m3 m−3 other studies have found slightly higher values for 
the error in Level-3 SMAP observations (0.043 m3 m−3 (Colliander et al., 2017), 0.057 m3 m−3 (Li et 
al., 2018) and 0.054 m3 m−3 (Zhang et al., 2019)), we therefore chose a value between these 
studies.” 
 
Although observation error inflation is seldom used in sequential filtering data assimilation it is quite 
common place in variational methods and smoothers (such as the one in this paper), especially in 
numerical weather prediction (for example, Wang et al. http://dx.doi.org/10.1029/2019JD031029, 
Bormann et al. http://dx.doi.org/10.21957/gq8j2gjp7, Fowler et al. https://doi.org/10.1002/qj.3183, 
Hilton et al. https://www.ecmwf.int/node/15331). Observation error inflation is required due to the 
fact that all observations are used at once in the assimilation whereby we minimise a cost function 
containing a prior term and an observational term. The greater the number of observations in the 
observational cost function term, the higher the weight they have in the optimization. This can lead to 
the prior term being completely negated and hence the retrieval of unphysical parameters. 
Observation error inflation would not be required if the correct specification for the observation error 
correlations (in space and time) and model error was included. These, however, are hard to diagnose 
and it has been shown that in the absence of such information inflation is required for an optimal DA 



system (Stewart et al. https://doi.org/10.1002/qj.2211). It has also been shown that for variational DA 
model errors can be included in the observational cost function term by inflating the diagonal 
variances, (Howes et al. https://doi.org/10.1002/qj.2996). We hope the improved description of the 
DA technique will also help here and the distinction between sequential and variational DA. Although 
we agree a bias aware data assimilation could be more optimal, the one proposed is in relation to a 
sequential technique (the ETKF) and we are using a variational method. We have added text around 
this at line 207: 
“It has been shown that, for variational methods such as the one used in this paper, these additional 
sources of error (model error, representativity error, etc.) can be included in the observational term 
of the cost function by inflating the diagonal observation error variance (Howes et al., 2017). 
Although observation error inflation is rare in relation to sequential DA methods it is commonly used 
with variational methods and especially in numerical weather prediction (Hilton et al., 2009; Bormann 
et al., 2015; Minamide and Zhang, 2017; Fowler et al., 2018; Wang et al., 2019). Observation error 
inflation is required due to the fact that all observations are used at once in the assimilation whereby 
we minimise a cost function containing a prior term and an observational term. The greater the 
number of observations in the  observational  cost  function  term,  the  higher  the  weight  they  
have  in  the  optimization.  This  can  lead  to  the  prior  term being completely negated and hence 
the retrieval of nonphysical parameters. Observation error inflation would not be required if the 
correct specification for the observation error correlations (in space and time), model error and 
representativity error were included. These, however, are hard to diagnose and it has been shown 
that in the absence of such information observation error inflation is required for an optimal DA 
system (Stewart et al., 2014). For this reason and due to the large number of observations assimilated 
in our one year assimilation window (28698) we inflate the specified observational error by a factor of 
four. If a filtering DA system were being used utilising a bias aware DA system such as that presented 
by Ridler et al. (2017) could help represent some of the additional sources of error discussed here.” 
 
9. Please add legend to the graphs (Figure 6, 7 etc.). 
Legends have been added to plots as requested. 
 
10. Please discuss cross-correlation among the parameters of pedotransfer functions. From Equation 
1 in the author’s paper, it is clear that many parameters cross-correlate. Take for example Phi a and 
Phi c crosscorrelate strongly. What is the impact on saturated soil hydraulic conductivity? 
We agree added discussion on this would be beneficial. We have added discussion at line 369:  
“The correlated nature of the PTF parameters in equation (1) presents a potential source of 
equifinality (e.g. both φa and φc both act to increase the magnitude of θsat in the presence of clay 
soils), this means that we could achieve the same soil hydraulic conductivity with multiple realisations 
of PTF parameters at any individual grid cell. The effect of this is greatly reduced as we are performing 
the optimization over the whole domain and not on a grid cell by grid cell basis. In effect this means 
the unique soil properties at each of the 30614 model grid cells act as orthogonal constraints within 
the DA algorithm and reduce the issue of equifinailty for the optimized PTF parameters as the DA 
algorithm is having to fit the assimilated soil moisture observations for many different soil textures at 
once. It may also be possible to improve results further by including information on such correlations 
within our prior. Such estimates have been included in a variational DA framework for the carbon 
cycle and shown to improve posterior estimates (Pinnington et al., 2016).” 
 
11. Please expand on the JULES hydrologic water components (ET, ground water, surface water flow, 
overland flow, infiltration, snow). How exactly was the 4 year spin up done? Was it done in ensemble 
mode? How were parameters perturbed? Please provide groundwater and soil moisture 
development over time at four cosmic ray neutron probe locations during the spinup period to 
elucidate the reader about the spinup performance. 



The spin up is done for each prior and posterior ensemble member, with the parameters either being 
sampled from the defined prior distribution or as outputs from the DA system in the case of the 
posterior. The model is run from an initial value (defined by the saturated soil moisture model 
parameter) over the same year of forcing data to reach an equilibrium soil moisture state for any 
given set of parameters. The plot below shows this for three distinct ensemble members which are all 
defined by unique sets of PTF parameters. We can see how these unique realisations of PTF 
parameters define unique soil moisture trajectories. The JULES model does not contain a 
groundwater component in the current configuration but we have added a plot of the spin-up for soil 
moisture to the supplementary material along with increased description of the spinup technique at 
line 111: 
“It is necessary to find an appropriate initial state before running a land surface model such as JULES 
and it has been shown that without a suitable spin-up period forecast skill can be impacted (Maurer 
and Lettenmaier, 2004). We include a 4 year spin up period at the start of each JULES run to allow the 
soil moisture state to reach a point of equilibrium after parameter values are changed. For the JULES 
spin-up the model is run from an initial value (defined by the saturated soil moisture model 
parameter) over the same year of forcing data, here 2015, to reach an equilibrium soil moisture state 
for any given set of soil hydraulic parameters. We show this model spin-up for 3 unique soil 
parameter sets at the same location in Figure S4.” 
 

 
We have rerun the JULES experiments outputting additional water budget variables and have 
included maps of how these variables change before/after data assimilation along with relevant text 
at line 258: 
“In Figure 6 we show the difference between mean water budget variable estimates (soil moisture, 
evapotranspiration and runoff) in 2016 for the prior and posterior JULES model ensemble. The grid 
cells that are darker blue correspond to the posterior ensemble estimate being higher after 
assimilation and grid cells that are darker red correspond to the posterior estimate being lower. We 
can see that after calibration of the pedotransfer function parameters the domain has not had a 
uniform increment to the value of mean soil moisture, evapotranspiration or run off. This is due to 
the fact that soil texture specific parameters have been optimised allowing the different distinct areas 
of soil type defined by the HWSD (see Figure 1) to behave differently rather than having a uniform 
correction across the modelled area. Across the whole domain we find an average increase of 0.03 m3 
m−3 in mean soil moisture estimates after data assimilation. We can see that in order to update PTF 
parameter values to find soil moisture estimates that more closely match the SMAP observations 
both evapotranspiration and run off model estimates have also been modified. In areas of sandy soils 
wetter soil moisture values have been achieved by a decrease in evapotranspiration offsetting a slight 
increase in runoff. In areas of high clay content wetter soil moisture values have been achieved by a 
larger decrease in run off compared to an increase in evapotranspiration. For silty soils we find a drier 
value of soil moisture for the posterior compared to the prior with a less prominent impact on 
evapotranspiration and run off. Figure 6 also allows us to see the high–resolution of the JULES model 
when run with the CHESS data, for this domain we have over 30,000 individual model grid cells.” 
 



 
For each of the COSMOS probe figures we have also included these additional water budget variable 
for the specific location, also including in-situ observations and model estimates to soil temperature 
in the top layer. We have added relevant text around this at line 314: 
“In Figure 11 we show results at the Cardington COSMOS site, here we can see the posterior JULES 
estimate is a large improvement from the prior, although some of the driest values are still not 
captured. From Figure 11 we can also see that there is an increase in evapotranspiration and a 
decrease in runoff, this effect can also be seen from Figure 6. Figure 12 shows results for Morley 
COSMOS site where both prior and posterior JULES estimates perform similarly, we also have less of 
an update to evapotranspiration but a decrease in modelled runoff. There are also some sites where 
even after calibration we still do not capture the COSMOS estimates, Stoughton in Figure 13 is such 
an example where both prior and posterior estimates are too dry. However, here the posterior 
estimate is still much improved from the prior. We also find large increases in evapotranspiration and 
reductions in runoff for Stoughton. Figure 14 is an example where both prior and posterior perform 
equally poorly. The fact that the estimates and updates after DA are so different for Figures 11 - 14 
despite all using the same PTF parameters highlights the effect that the underlying soil properties are 
having on soil hydraulic conductivity.” 

 
12. In this realm, a discussion of main characteristics, limitations and specifics of the study area with 
regard to SMAP data is essential to understand the manuscript. This would include addressing 
topography, land cover, other factors. 
We have added this at line 159: 
“The experiment area of the East of England is predominantly flat arable land which should allow for 
good quality SMAP retrievals, there are also coastal and urban areas where SMAP retrievals will be 
unreliable. This area is also prone to cloud cover which could cause gaps in the SMAP observational 
record.” 
 
13. Equation 1 – please list the units of the parameters in these physical equations. 
These have been added. 
 



14. Page 7 line 145 – why did the authors chose 10% standard deviation when it is well known that 
many van Genuchten parameters and soil hydraulic conductivity is logarithmic scale. What does 10% 
standard devation mean? Does it mean 0.63+/-0.063 for phi a and 0.0003 +/-0.00003 for phi c for 
example? 
The reviewer is correct in their example of a 10% standard deviation, this is used to define a Gaussian 
distribution that 50 unique parameter sets are sampled from. It is true that van Genuchten and soil 
hydraulic conductivity parameters can be described by logarithmic distributions, but it is less clear 
what the best distributions are for the PTF parameters that are used to calculate the van Genuchten 
and soil hydraulic conductivity parameters. We therefore made a naïve assumption of a 10% standard 
deviation for our prior distribution and did not look further at this as we achieve good results when 
compared to in-situ COSMOS probe data. It is an important point that this is an area that could be 
investigated further in future studies. We have added text to this effect at line 200: 
“Each ensemble members ancillary file is created by sampling from the normal distribution defined by 
mean xb and variance (0.1 x xb)2, where xb = (φa,φb,...,φo) with φa,...,φo taking the values given in 
table 1, then using each unique set of sampled parameters within equations (1) applied to the HWSD 
maps of soil properties (see Figure 1) for the whole domain. Although van Genuchten and hydraulic 
conductivity parameters can be described by logarithmic distributions it is less clear what distribution 
is best for the PTF parameters optimized here. We therefore made the naive assumption of a normal 
distribution in the first instance as this gave us good results.” 
 
15. Why did the authors not use a known weighting function for JULES soil moisture to compare with 
cosmic ray neutron sensors. Köhli et al. 2014 https://doi.org/10.1002/2015WR017169 Baatz et al. 
https://doi.org/10.5194/hess-21-2509-2017 or Shuttleworth et al. 2014 doi:10.5194/hess-17-3205-
2013 provide already well tested methods. How does the author’s method compare with these 
results? 
Apologies we did not make this clear. The method of Baatz et al., 2014 is used by COSMOS-UK. The 
JULES operator was developed as part of the Hydro-JULES project (this paper also falls under this 
project) by colleagues at UKCEH (Cooper et al.  https://doi.org/10.5194/hess-2020-359).  We have 
strengthened the description of this at line 167: 
“There are many studies translating the cosmic–ray neutron intensity measured at COSMOS probe 
sites to soil moisture (Baatz et al., 2014; Bogena et al., 2015; Köhli et al., 2015). There have also been 
efforts to relate modelled soil moisture to cosmic–ray neutron intensity, such as the COsmic-ray Soil 
Moisture Interaction Code (COSMIC) (Shuttleworth et al., 2013;Rosolem et al., 2014). The COSMOS–
UK network use the N0–method described by Baatz et al. (2014) to diagnose values for the soil 
moisture and then the method of Köhli et al. (2015) to calculate the representative depth for each 
COSMOS probe measurement. To make a fair comparison between the COSMOS–UK and JULES soil 
moisture estimates we have constructed a simple variable depth algorithm for JULES which takes a 
weighted average of the different soil layers of the model given the relative depth of the COSMOS–UK 
observation. This is defined as […] where θD is the JULES modelled soil moisture at the COSMOS-UK 
representative depth (D) and θ10, θ25 and θ65 are the top, second and third layer soil moisture 
estimates from the JULES model.” 
 
16. Aside, Desilets and Zreda, 2013 doi:10.1002/wrcr.20187, 2013 consider the diameter being 600 
meter, not the radius. 
Updated. 
 
17. Figure 2: please add a map of soil textures. Please discuss the sharp light blue – dark red gradient 
at 0.9E. Is this an artifact from data assimilation? 
The adding of soil texture maps is a useful suggestion and will help with interpretation of the results 
(we include these below also). We can see that the dark red gradient at 0.9E in Figure 2 is a result of a 



distinct area of soil texture in the HWSD and how this is responding to the pedotransfer functions. 
Extra text has been added to the manuscript (see response to point 11). 

 
 
18. Page 9 line 196 – adding London in all maps for the non UK citizens would be a great asset. 
Noted, see above. 
 
19. Page 10 line 206 – please define observation operator and outline the details on how this 
operator was developed, calibrated and validated. There are existing operators already (see point 15). 
We agree we did not provide sufficient detail in the initial paper here, please see response to point 15 
where we have now included these details.  
 
20. Page 13: Please separate discussion and outlook clearly. The authors use repeatedly phrases on 
future work e.g. ‘work is being undertaken’ (line 238), ‘we will’ (line 241), ‘is possible’ (line 244) ‘could 
be’ (line 245) ‘it may’ (line 247) and so on. . . Also references to e.g. GRACE are missing. 
We have restructured the discussion and moved such statements into the final 2 paragraphs. 
 
21. Also, a discussion on literature with previous published assimilation experiments on soil hydraulic 
parameters will be useful. Here, the paper can give a valuable contribution to existing literature. 
Especially considering the authors going the extra step to assimilate often cross correlated 
parameters of pedotransfer functions. 
We have included more literature within the discussion and expanded comment on how optimising 
the PTF parameters differs from previous studies focusing on soil model parameters. Please see line 
343 onwards.  
 
22. Figure 11: Symbols with a center point are more precise and clearer than circles. Please use 
smaller dots, or even better symbols with a center point such as +,*, x and use different symbols for 
Cosmic Ray Calibration data and SMAP data points. Also please add SMAP soil moisture to the plots 
with cosmic ray neutron probe data, although these are not the equivalent depths as cosmic ray 
neutron probe soil moisture. 
Plots have been updated in accordance with the Reviewers comments. 
 
 
 
 
 
 
 



Reviewer 2 (R#2) 
 
Accurate soil moisture simulation has always been a tough issue due to various sources of errors, 
including biased forcing, unrealistic model parameters, defect model structure and/or 
parameterizations. Focusing on uncertainties in pedotransfer functions, this study calibrates some of 
the key pedotransfer parameters through the assimilation of SMAP soil moisture product, and have 
obtained lower RMSD and higher correlation coefficients in posteriors. Independent evaluation 
against COSMOS observations also suggests promising results. 
In general, this work presents a good example of utilizing satellite data to improve land surface 
models. The current layout and interpretation within the manuscript are mostly valid to me, except 
some remained concerns on the detailed DA implementations and soil moisture evaluations, as 
depicted below. 
We thank the reviewer for their comments which will help us to improve this manuscript. We outline 
our responses and the changes we have made below. 
 
1. My biggest concern is on the comparison of modelled soil moisture from a relatively ‘thick’ layer of 
0-0.1 m with SMAP retrievals, which in most conditions corresponds to only a few centimeters of the 
topsoil (_2.5 cm, according to Zheng et al. 2019). Under some circumstances, soil moisture may vary a 
lot with depth. Is soil moisture mostly consistent and exhibits less vertical gradient within the 0-0.1m 
layer across the study domain? Otherwise the evaluation and the subsequent conclusions presented 
in this study maybe questioned. Please elaborate. Reference: Zheng, D., Li, X., Wang, X.,Wang, Z., 
Wen, J., van der Velde, R., Schwank, M., & Su, Z. (2019). Sampling depth of L-band radiometer 
measurements of soil moisture and freeze-thaw dynamics on the Tibetan Plateau. Remote Sensing of 
Environment, 226, 16-25 
We agree the comparison between SMAP and the model top 10cm could present issues due to the 
representative depths. However, as stated in your comment the model soil moisture variability does 
not change a great deal across the top 10cm as shown in the below plot where we have run JULES 
with a 5cm soil depth. We made the choice to use 10cm as this is the default JULES top layer soil 
depth and we wanted the optimized soil parameter ancillary files to be useful to the wider JULES 
community. To ensure the effects of this choice were minimal on the results we have re-run the 
experiments using a 5cm top layer in JULES. We attach plots for the retrieved parameters in both 
cases and can see that the optimised distributions are very similar whether a 10cm or 5cm top layer is 
used. We have added text on this at line 104: 
“The soil scheme is made up of 4 separate layers with depths of 0.1 m, 0.25 m, 0.65 m and 2 m 
respectively. We have chosen to keep JULES in its default soil-layer setup so that our optimised 
parameters are relevant to the wider JULES modelling community. This is despite the fact that SMAP 
satellite observations are typically sensitive to the top ∼5cm of soil (Entekhabiet al., 2010), with some 
studies suggesting L-band radiometer measurements may only be sensitive to the top ∼2.5cm 
(Zhenget al., 2019). This could introduce an additional source of error into our DA system. To ensure 
that the effect of this is not too great we show that there is only small difference in soil moisture 
between depths of 10cm and 5 cm in the JULES model in Figure S1. We have also re-run the entire 
data assimilation experiment with a 5 cm top soil layer in JULES and show that the recovered 
parameter distributions are similar to those recovered with a 10 cm top soil layer in Figure S2.” 



 
 

 

 
 

2. Looks typo in the third equation of Eq(1): should â´LEˇ _e f_clay be â´LEˇ _f f_clay ? 
Corrected. 
 
3. For the pedotransfer parameters shown in Table 1, are they independently calibrated grid by grid, 
or they share the same values across the whole domain? 
These share the same values across the whole domain. We have clarifed this within the text at line 
137, we have also strengthen description around the data assimilation technique (see Reviewer #1 
point 4). 
“The DA system used here optimises values for the parameters in table 1 across the whole domain 
rather than on a grid-by-grid basis. In this way the varied soil properties across the domain give us a 
form of orthogonal constraint within the assimilation and allow us to recover a single set of 
pedotransfer functions that are valid in space and time.” 
 
4. L138-140: it is interesting to know to which depth each COSMOS monitors soil wetness. Together 
with results shown in section 3, it can help understand to what extend the innovation introduced into 
the surface layer can propagate into deep soils. That being said, I also expect the authors to spend a 
short paragraph to discuss this issue. 
We have added this information at line 172: 
“The COSMOS sites in our experiment domain have a representative depth of between 14 cm and 40 
cm dependent on conditions when measurements are made.” 
We have also added discussion on this in the results section at line 329: 
“The COSMOS-UK observations we have used for independent validation of the results are 
representative of depths from 14 cm up to around 40 cm. The SMAP satellite observations, used 
within the assimilation algorithm to find a new set of pedotransfer functions for the experiment 
domain, are representative of soil moisture for the top 2.5 - 5 cm of soil. Therefore the fact that after 
assimilation we find such a distinct improvement at in-situ COSMOS probe locations indicates that 
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although the SMAP observations are only sensitive to shallow depths, by combining these with the 
JULES model we are also improving estimates at deeper levels.” 
 
5. L149-150: how is the observation operator like? Do you simply spatially average estimates from all 
the 1 km grids, and how do you project increments from the 9 km grid back to the 1 km grids? Please 
clarify. In addition, which variables are exactly included in the joint state-parameters? 
Yes, we spatially average the 1km model estimates to the 9km SMAP grid. The variables included in 
the joint state-parameter vector are just the 15 pedotransfer function (PTF) parameters, with 50 
realisations of these making up the ensemble. Each realisation will also uniquely define a model 
trajectory of soil moisture. Unlike sequential DA techniques we solve the problem for all observations 
over the whole domain at once by minimising a cost function. For this method it is not necessary to 
project any increments back to the 1km grid as the increments we find correspond to which 
parameter sets allow us to best fit the data given all relevant uncertainties. We have clarified this in 
the text at line 208: 
“In order to compare the 1 km estimates of soil moisture from JULES to the 9 km SMAP estimates we 
create an observation operator which aggregates the JULES grid cells within each SMAP pixel by 
taking a spatial average of all JULES estimates which fall in the bounds of the SMAP grid cell. There is 
no need to project increments from the spatially averaged 9 km model estimates back to the 1 km 
model grid as the assimilation is only optimising the 15 PTF parameters (φa, φb, ..., φo) for the whole 
domain and the update to soil moisture will be implicit.” 
 
6. L153: “: : :by a factor a four: : :”–not sure how this is done, may need to provide more details on 
the implementation of inflation. 
This is also noted by Reviewer 1 (comment number 8). We have included additional text on this at line 
214: 
“It has been shown that, for variational methods such as the one used in this paper, these additional 
sources of error (model error, representativity error, etc.) can be included in the observational term 
of the cost function by inflating the diagonal observation error variance (Howes et al., 2017). 
Although observation error inflation is rare in relation to sequential DA methods it is commonly used 
with variational methods and especially in numerical weather prediction (Hilton et al., 2009; Bormann 
et al., 2015; Minamide and Zhang, 2017; Fowler et al., 2018; Wang et al., 2019). Observation error 
inflation is required due to the fact that all observations are used at once in the assimilation whereby 
we minimise a cost function containing a prior term and an observational term. The greater the 
number of observations in the  observational  cost  function  term,  the  higher  the  weight  they  
have  in  the  optimization.  This  can  lead  to  the  prior  term being completely negated and hence 
the retrieval of nonphysical parameters. Observation error inflation would not be required if the 
correct specification for the observation error correlations (in space and time), model error and 
representativity error were included. These, however, are hard to diagnose and it has been shown 
that in the absence of such information observation error inflation is required for an optimal DA 
system (Stewart et al., 2014). For this reason and due to the large number of observations assimilated 
in our one year assimilation window (28698) we inflate the specified observational error by a factor of 
four. If a filtering DA system were being used utilising a bias aware DA system such as that presented 
by Ridler et al. (2017) could help represent some of the additional sources of error discussed here.” 
 
7. Fig. 3: if possible, better to show prior and posterior distributions of some of the soil hydraulic 
parameters (e.g. _sat,Ksat) in Eq(1) as well, as they directly regulate soil water within the land model. 
It will be difficult to show probability distributions of the hydraulic parameters as they vary across the 
domain dependent on the underlaying soil texture map. Instead we have included maps of the 
resultant soil hydraulic parameters and how these have changed after DA (see below). Text also 
added at line 251: 



“This can be seen in Figure 5 where we show the updated PTF parameters effect on the mean 
estimate to the JULES model soil parameters when applied to the spatial maps of soil properties from 
the HWSD. We can see how different areas of distinct soil texture (see Figure 1) behave differently 
based on the PTF parameter updates after DA. For some parameters we see the majority of gridcell 
parameter values increase or decrease, θsat and 1/(N−1) respectively. Whereas for 1/α and θcrit we 
see an increase or decrease in grid cell parameter values dependent on the underlying soil properties 
(sandier soils lead to an increase, less sand more clay correspond to a decrease).” 

 
 
8. L192: urban areas are known to have problems in both remote sensing and land surface modeled 
soil moisture. I would suggest excluding urban areas in all the plots in Figs.(2, 4-5). Meanwhile, the 
authors may want to show some of the COSMOS sites in these plots to help better interpret results in 
Figs. 8-11. 
We agree including the COSMOS stations on the plots may help interpretation and will do so (see 
above). We have left urban areas just as a point of discussion on current limitations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Reviewer 3 (R#3) 
 
The paper explores the use of SMAP soil moisture products with the JULES land surface model with a 
data assimilation framework. The framework is applied in a region of the UK where soil properties 
from pedotransfer functions are constrained with data assimilation. The topic has potential and the 
paper started very well with its Introduction and Methods sections. However, I found the Results and 
Discussion very weakly presented, without in-depth analyses and implications. It is not clear what is 
the lessons learned and how it can benefit the wider community. In addition, these two sections read 
much more like a technical report. There are many additional tests that can be made to improve this 
study (I’ve made some suggestions). For that reason, I believe this paper manuscript requires 
considerable changes, hence I recommend major revisions before making my decision on its 
acceptance.  
We thank the reviewer for their comments and have aimed to strengthen the paper in line with their 
specifications. Below we present our responses to comments and outline the changes we have made. 
 
List of comments:  
L63-64: Notice there are several approaches that constrain model parameters that do account for 
uncertainties, please refer to works by Keith Beven, Jim Freer, Jasper Vrugt, Grey Nearing, Hamid 
Moradkhani, Martyn Clark; to name a few.  
We agree that it is beneficial to mention such studies and have included the following at line 63: 
“Unlike traditional calibration procedures data assimilation and other associated Bayesian 
optimisation methods always take into account the relative uncertainties given to both model and 
observed estimates to find a maximum-a-posteriori estimate (Beven and Binley, 1992; Thiemann et 
al., 2001; Vrugt et al., Moradkhani et al., 2005; Nearing et al., 2010; Mizukami et al., 2017).” 
 
L64-65: First, can the authors please point out the references for the ’Previous studies’ mentioned in 
the sentence?  
Apologies, these were missed here. We have added these on line 66: 
“Previous studies have used data assimilation to update the soil parameters of land surface models 
(Rasmy et al., 2011; Sawada and Koike, 2014; Yang et al., 2016; Han et al.,2014)” 
 
L65-66: Note that usually, the term data assimilation has been used in different ways by the 
atmospheric sciences and land surface modeling community in relation to the hydrological modeling 
community. ’Data assimilation’ in general refers to using/fusing observed quantities to better 
constrain model components (i.e., parameter, states, etc...). Typically, the use of ’parameter 
estimation’, ’state estimation’, or ’dual parameter-state estimation’ would be more clear. The reason 
I am mentioning this is because, although not technically a classic data assimilation application, the 
group by Luis Samaniego in UFZ Germany has explored similar approaches to this one using their 
mHM with their MPR framework. Additional work ’assimilating’ both state and parameters include 
groups from Harrie-Jan Hendricks-Franssen, for example.  
We agree. We are coming at this problem from a different background and so accept it may be 
helpful to update the wording here to make things more clear for the reader. We have updated the 
wording to include “state estimation” and “parameter estimation” line 60: 
“These techniques can either be used for state estimation to update soil moisture values of the model 
in real-time as new observations are available […] or for model parameter estimation to find 
improved calibrations which better represent the observations […].” 
We have also discussed work by Luis Samaniego in the discussion section at line 370. 
 
L79-81: This seems to be related to Results, not sure why it is included at the end of the Introduction 
section.  
We have removed the relevant text. 



 
L94-95: The direct information obtained from SMAP is typically for the first few centimeters of soil; 
yet your JULES model is configured with a relatively thick initial soil layer and only 4 layers in general. 
Have the authors considered revising their soil layers in JULES? Have they done any simple sensitivity 
study to check how influential the choice of soil layer discretization is when assimilating SMAP data. If 
I recall correctly, CLM (which is similar to JULES) is run with a much finer soil layer discretization.  
Reviewer #2 had a similar concern (see R#2 comment number 1). We chose to keep JULES in its 
default soil layer configuration so that the optimized soil ancillaries would be useful to the wider 
JULES community. We have run JULES with a 5cm top layer to confirm that the vertical variability at 
this depth in the model is not too great (see below). We have also re-run the entire experiment using 
this soil layer to confirm that we retrieve very similar parameter distributions from the DA procedure 
for both the 5cm and 10cm soil depth JULES models. Relevant text has been added at line 104: 
“The soil scheme is made up of 4 separate layers with depths of 0.1 m, 0.25 m, 0.65 m and 2 m 
respectively. We have chosen to keep JULES in its default soil-layer setup so that our optimised 
parameters are relevant to the wider JULES modelling community. This is despite the fact that SMAP 
satellite observations are typically sensitive to the top ∼5cm of soil (Entekhabiet al., 2010), with some 
studies suggesting L-band radiometer measurements may only be sensitive to the top ∼2.5cm 
(Zhenget al., 2019). This could introduce an additional source of error into our DA system. To ensure 
that the effect of this is not too great we show that there is only small difference in soil moisture 
between depths of 10 cm and 5 cm in the JULES model in Figure S1. We have also re-run the entire 
data assimilation experiment with a 5 cm top soil layer in JULES and show that the recovered 
parameter distributions are similar to those recovered with a 10 cm top soil layer in Figure S2.” 

 
 
 

 
 
L113-115 and Table 1: It is unclear to me how the prior is used. Don’t you need an emsemble (i.e., 
range) for each prior factor shown in this Table? How is a single prior applied in this case?  
For our prior we have 50 realisations of the parameters in Table 1. Each realisation is drawn from a 
normal distribution defined by the mean (shown in Table 1) and standard deviation (taken as 10% of 
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the mean). This gives us the light grey distributions shown in the plots above. We have expanded the 
text to this effect at line 200: 
“Each ensemble members ancillary file is created by sampling from the normal distribution defined by 
mean xb and variance (0.1 × xb)2, where xb = (φa,φb,...,φo) with φa,...,φo taking the values given in 
table 1, then using each unique set of sampled parameters within equations (1) applied to the HWSD 
maps of soil properties (see Figure 1) for the whole domain. Although van Genuchten and hydraulic 
conductivity parameters can be described by logarithmic distributions it is less clear what distribution 
is best for the PTF parameters optimized here. We therefore made the naive assumption of a normal 
distribution in the first instance as this gave us good results.” 
 
L138-140: Can the authors be more specific about this? There are many studies that have used the 
COSMIC operator which is available (refer to works by Jim Shuttleworth, Rafael Rosolem, Harrie-Jan 
Hendricks-Franssen, as examples). Have the authors consider implementing this operator?  
Section 2.6: Needs to be expanded as it is very vague and general.  
Apologies, we should have added more here and also referenced the works noted above. We have 
included this additional information at line 167: 
“There are many studies translating the cosmic–ray neutron intensity measured at COSMOS probe 
sites to soil moisture (Baatz et al., 2014; Bogena et al., 2015; Köhli et al., 2015). There have also been 
efforts to relate modelled soil moisture to cosmic–ray neutron intensity, such as the COsmic-ray Soil 
Moisture Interaction Code (COSMIC) (Shuttleworth et al., 2013;Rosolem et al., 2014). The COSMOS–
UK network use the N0–method described by Baatz et al. (2014) to diagnose values for the soil 
moisture and then the method of Köhli et al. (2015) to calculate the representative depth for each 
COSMOS probe measurement. To make a fair comparison between the COSMOS–UK and JULES soil 
moisture estimates we have constructed a simple variable depth algorithm for JULES which takes a 
weighted average of the different soil layers of the model given the relative depth of the COSMOS–UK 
observation. This is defined as […] where θD is the JULES modelled soil moisture at the COSMOS-UK 
representative depth (D) and θ10, θ25 and θ65 are the top, second and third layer soil moisture 
estimates from the JULES model.” 
 
Figure 3: Typically, DA are justified as an operational tool for models (in the case of state estimation). 
This figure here shows the Bayesian optimization approach (prior –> likelihood –> posterior) which is 
fine. However, I’d be interested to see the time-series of the final soil parameters (produced with the 
updated pedotransfer function) to check for any inconsistencies in the way a particular parameter 
change from time to time. I’d expect soil properties to be fairly constant (relatively to the fluxes and 
states in the JULES model). Also, the authors should consider checking which of the PDFs shown in the 
figure are expected to be significantly different. One way to do this is for example by checking 
whether two samples come (or not) from the same probability distribution. This can be easily done 
with a two-sample Kolmogorov-Smirnov test.  
This is indeed an interesting comment and Reviewer #1 had a similar query (point #6), it is important 
to make the following distinction. Data assimilation can be used to determine the value of state 
variables and parameters. In our case we are interested in determining the value of the 15 PTF 
parameters which are fixed in time. We use an implementation of the Iterative Ensemble Smoother. 
Being a smoother, this method performs data assimilation over a time window (labelled assimilation 
window). The method uses all observations over the spatial domain and during the time window 
(here the year 2016) in a single minimisation process. This minimisation is done via an iterative 
routine. Hence, a single set of estimated PTF parameters are obtained. A smoother usually requires 
the Jacobian of the evolution model, the so-called tangent linear model (TML) and adjoint model 
(AM) in the 4D-variational literature. We do not have such a model for JULES. The Ensemble nature of 
the method allows to replace the role of the TLM/AM by operations involving 4D sample covariances, 
i.e. covariances defined over space and time and computed from the ensemble.  
 



It is also important to mention that we chose the length of the assimilation window to be the whole 
length of the experiment. This is of course, only a choice, but we justify it given that the parameters 
we are looking for do not vary in time, or if they do, this is in time-scales which are considerably 
longer than the duration of the experiment. In numerical weather prediction, for instance, the 
situation is different. In such a scenario one is more interested in the actual values of the time-
evolving state variables. For instance, operational centres like Met Office and ECMWF use 12-hour 
windows to perform data assimilation (e.g with a 4D-variational technique), and then cycle this 
process for subsequent windows. We have included plots of how the soil parameters change after DA 
when produced with the prior or posterior PTF parameters (see below). We have also included 
additional description of the DA method at line 181: 
“ In  order  to  estimate  the  identified  pedotransfer  function  parameters  we  use  the  
LAVENDAR  data  assimilation  framework (Pinnington et al., 2020). This framework utilises a hybrid 
DA technique similar to that of the Iterative Ensemble KalmanSmoother (IEnKS) (Bocquet and Sakov, 
2013). A smoother is different than a filter (e.g. the Ensemble Kalman Filter (Evensen,2003))  in  that  
it  uses  batches  of  observations  which  are  taken  over  a  time  window  of  given  length  and  the  
whole  spatial domain, as opposed to just in a time instant. These observations are combined with the 
model evolution over this window and a minimization process is performed to obtain initial conditions 
for the state/parameter values. It is possible to run a sequence of smoother steps for successive 
windows, but our study only uses one year long assimilation window as the parameters we are 
optimising do not vary in time.  

Using a smoother instead of a filter has advantages (Lorenc and Rawlins, 2005) in that (a) 
more observations can be used to constrain the problem solution, and (b) information from the 
model evolution is implicitly used in the search process. However, using a smoother requires 
computing the Jacobian of the model, the so–called tangent linear model (TLM) and the related 
adjoint model (AM). The TLM/AM (Courtier et al., 1994). Computing and maintaining the TLM/AM is 
not a trivial task, and in fact we do not have this for JULES. The IEnKS solves this problem by replacing 
the role of the TLM/AM by 4–dimensional covariances, i.e. covariances defined over time and space. 
These covariances are computed as sample estimators of a given ensemble. The iterative nature of 
the method means that it finds the solution to the minimization problems using inner iterations 
rather than a single step (hence the variational nature), and this helps when the distributions of the 
variables/parameters of interest are not Gaussian. We provide details of the method in Appendix A. 
Furthermore, to understand the variants of the ensemble Kalman Smoother and its position within 
the hybrid DA methods, the reader is referred to Evensen (2018).  

We show a schematic of how this system works in Figure 3, […]” 



 

 
 
Figure 6: It is important to show how the prior and posterior spread compare with the actual RMSE 
calculated against the actual observation to check for consistencies with the DA setup. Without this 
analysis shown (for some points and maybe regionally), it is hard to diagnose the DA results. The goal 
is for the spread to have the same magnitude of the RMSE (not too large, nor too small)  
We agree this is a useful check to make. We have added plots of the prior and posterior spread in the 
model predictions of soil moisture averaged in space to compare to the model RMSE averaged in 
space (see below, Reviewer #1 also had similar comments at point #6). We can see from this plot that 
for the prior we have the desired relationship with the ensemble spread being around the same 
magnitude as the prior RMSE. However, for the posterior we do find an ensemble spread with a 
slightly lower magnitude than the posterior RMSE. This is perhaps unsurprising as we are conducting 
just a single assimilation step but using all <28000 observations at once in space and time, so we may 
find that some of the posterior parameter distributions become too narrow, as with increasing 
observations we increase the confidence in our posterior, thus tightening the retrieved distributions. 
If we were to use our posterior optimized parameters in onward experiments we would require some 
form of ensemble inflation. We have added additional discussion on this in the results section at line 
296: 
“In Figure 10 we show the RMSE averaged in space for the JULES model prior and posterior mean 
estimate, when compared to SMAP, alongside the JULES model prior and posterior ensemble spread. 
At all times the posterior JULES RMSE is lower than that of the prior, showing that the DA system has 



found a set of PTF parameters that improve the fit to the SMAP observations through time, this 
continues into the hindcast period (2017) when judged against observations that were not included in 
the DA cost function. We find slight peaks in the RMSE values throughout the time period 
corresponding to wetter conditions, this could be due to slight errors in the precipitation driving data 
used to force the model. It is optimal to have an ensemble spread that matches the magnitude of the 
ensemble mean RMSE and this relationship should hold given a large enough ensemble size 
(Houtekamer and Mitchell, 1998). We can see that this relationship holds for our prior estimates. 
However, after DA our posterior ensemble spread is slightly lower than that of the ensemble mean 
RMSE. This is perhaps unsurprising as we are conducting just a single assimilation step using all 
observations (over 28000) at once in space and time with a relatively small ensemble size (50). This 
can lead to some of the posterior parameter distributions becoming narrow, as with increasing 
observations we increase the confidence in our posterior, thus tightening the retrieved distributions 
and reducing the model ensemble spread. This result suggests that ensemble inflation (Anderson and 
Anderson, 1999) may be necessary if this ensemble was to be used in subsequent assimilation 
experiments.”

 
 
Figure 4: It is not clear to me how RMSE is calculated in percentage. Maybe I missed something. Can 
the authors made this clear in the captions.  
For the spatial plots of error reduction we have just calculated the percentage change between the 
prior JULES prediction RMSE (compared to SMAP) and the posterior JULES prediction RMSE, both 
averaged in time. We have defined this as an equation in the manuscript at line 274. 
 
Results section: I found the results section to be presented in a very weak way. It seems to be rushed 
with the same regional map shown only for different metrics. The section is written almost like a 
technical report just going from figure to figure with very little in-depth analysis. How does the soil 
moisture in the region change from time to time (the metrics are only aggregated for the period)? Are 
the soil properties and consequently soil moisture profiles realistic? What are the impacts on other 
components of the model? Does ’improving’ soil moisture improves other fluxes in JULES? My 
understanding is that COSMOS-UK also has flux data that can be used (H, LE, G???). The simple 
exercise of assimilating soil moisture to constrain parameters and/or states and evaluate the impact 
on soil moisture only does not seem to be particularly novel in my opinion (the DA frameowrk and the 
use of COSMOS-UK do, but should be explored further). This item is a major issue I have with the 
current manuscript.  



We agree that the results section could be expanded to add more detail on the impact of the DA to 
other model components. We have had similar comments from other reviewers. We have added 
plots of soil texture and how the resultant soil parameters change after DA. Also we agree looking at 
the performance of the models through time would be useful and have included a plot of RMSE 
through time over the modelled domain (see plot above). Unfortunately flux observations are not 
routinely available from COSMOS-UK, we do have access to soil temperature observations which we 
have included to judge the performance of another model component. We have also included other 
water budget variables (ET, Run off) for the domain and at each of the current 4 COSMOS sites shown 
so that we can judge the impact of the DA on these variables (please see below for the included 
plots). We believe that the ability to calibrate pedotransfer functions at a large scale using a 
considerable amount of satellite data (<28000 observations) in an innovative data assimilation system 
does present novelty. Especially when it is shown that from this very large scale we are able to 
improve independent in-situ estimates from the model. However, we do agree that including extra 
variables will strengthen the paper and have included those stated above along with a strengthening 
of the analysis text in the Results section (see line 240 for start of results section). 
 
Soil properties: 

 
Impact on water budget variables: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



COSMOS-UK site example (Cardington): 

 
 
Figure 10: There seems to be some systematic biases in the model that suggests non-optimal DA 
setup (DA requires errors to be around a zero mean). How much that impacts the results? Are there 
other sites with similar issues (can you expand the discussion)? Have you tried some initial pre-
calibration prior to running the DA to reduce/remove the biases?  
We have added text addressing this at line 334: 
“The large errors in our prior JULES estimates for the COSMOS sites in Figure 13 and 14 could point 
towards some systematic bias within the model. However, it is important to note that the COSMOS-
UK observations are independent of the data assimilation. For the assimilated SMAP observations it 
may be optimal to have errors centred around zero but for the independent in-situ validation data 
there will be many competing errors that may make this impossible. There will be errors in the forcing 
meteorology (here we are using CHESS 1 km forcing data and not observed in-situ meteorology), 
errors in the model grid and its representativity to the in-situ location, structural model errors (we 
currently have no ground water model in JULES and some in-situ sites may be more ground water 
dominated), errors in the vegetation fractions, and many more. At the larger SMAP scale many of 
these effects will be minimised when looking at the 9 km spatial scale that is more representative of 
modelled estimates.” 
 
Discussion section: I also found the discussion a bit weak. Very little is further discussed and explored. 
Sometimes the discussion is mainly focused on aspects that can be done in the future. I’d suggest the 
authors to define 2-5 clear objectives –> questions –> hypotheses that can be presented in more 
detail in the Results section, and discussed more in-depth in this current section.  
We agree the discussion section could be improved and had similar comments from R#1. We have 
expanded the discussion section and included more literature (see line 343 onwards for discussion 
section).  
At the end of the introduction we have also included the 2 main objectives of this study, line 86: 
“The objectives of our study are as follow: 

–To examine the ability of 9 km Level-3 SMAP data to update pedotransfer parameters in a    
1 km land surface model. 
–To assess the resulting prediction of modelled soil moisture against (a) SMAP data from a 
different time period and (b) independent in-situ data from the COSMOS-UK network. 
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Abstract. Pedotransfer functions are used to relate gridded databases of soil texture information to the soil hydraulic and

thermal parameters of land surface models. The parameters within these pedotransfer functions are uncertain and calibrated

through analyses of point soil samples. How these calibrations relate to the soil parameters at the spatial scale of modern land

surface models is unclear, because gridded databases of soil texture represent an area average. We present a novel approach for

calibrating such pedotransfer functions to improve land surface model soil moisture prediction by using observations from the5

Soil Moisture Active Passive (SMAP) satellite mission within a data assimilation framework. Unlike traditional calibration

procedures data assimilation always takes into account the relative uncertainties given to both model and observed estimates to

find a maximum likelihood estimate. After performing the calibration procedure we find improved estimates of soil moisture

for the JULES land surface model (run at a 1 km resolution) when compared to estimates from a cosmic-ray soil moisture

monitoring network (COSMOS–UK). The spatial resolution of these COSMOS probes is much more representative of the 1 km10

model grid than traditional point based soil moisture sensors. For 11 cosmic–ray neutron soil moisture probes located across

the modelled domain we find an average 22% reduction in root-mean squared error, a 16% reduction in unbiased root-mean

squared error and a 16% increase in correlation after using data assimilation techniques to retrieve new pedotransfer function

parameters.

Copyright statement. TEXT15

1 Introduction

Land surface models are important tools for translating meteorological forecasts and reanalyses into real-world impacts by

providing schemes for how energy, water and other matter will interact with the Earth’s surface, outputting relevant diagnostics

and variables and understanding the role of variability in the terrestrial hydrological cycle in the Earth system. As the spatial

resolution of available meteorological information has become increasingly fine (Clark et al., 2016) it is necessary to ensure20

1



land surface models can utilise this information at its native resolution in order to provide outputs that are as accurate as possible

for local populations. In this paper our focus is on soil moisture which plays an essential role in agriculture (Asfaw et al.,

2018), weather and climate prediction (Hauser et al., 2017) and land surface energy partitioning (Beljaars et al., 1996; Bateni

and Entekhabi, 2012). The modelling of soil moisture is highly sensitive to driving precipitation and model parameterisations

(Pitman et al., 1999). Typically, models of soil moisture will determine parameters based on spatial datasets of soil texture25

information using pedotransfer functions such as those defined by Cosby et al. (1984) for the Brooks and Corey (1964) soil

model. The majority of pedotransfer relationships are calibrated for point samples of soil for a specific geographic location

(Cosby et al., 1984; Wösten et al., 1999; Schaap et al., 2004; Tóth et al., 2015). Selecting the appropriate set of pedotransfer

functions for the modelled area will allow for more representative results. It is unclear how these calibrations of pedotransfer

functions and their resulting soil model parameters relate to the varying spatial scales of modern land surface models, and indeed30

the use of additional streams of information from remote sensing and in-situ observations is seen as increasingly important

for calibration and validation (Van Looy et al., 2017). Pedotransfer functions can be continuous or discrete (setting predefined

model parameters for different ranges of soil texture). Discrete examples of pedotransfer functions can be found in Wösten et al.

(1999) for the van Genuchten (1980) soil model. Continuous versions of these functions may be preferential as they provide

greater heterogeneity for resulting soil model parameter maps which may be more realistic. Tóth et al. (2015) provide more35

recent examples of continuous pedotransfer functions for the van Genuchten (1980) model. For this paper continuous functions

will also allow us to seek updated parameter values that improve the prediction of a land surface model at a given spatial scale

and properly account for uncertainty in both the soils information and resulting model predictions.

There now exists a large amount of information from different satellite missions relating to the spatial and temporal variability

of soil moisture. These can be based on either active (e.g. The Advanced Scatterometer (ASCAT) (Wagner et al., 2013)) or40

passive (e.g. The Soil Moisture Ocean Salinity (SMOS) mission (Kerr et al., 2001)) observing instruments with good results

found when combining both (e.g. the Soil Moisture Active Passive (SMAP) mission (Entekhabi et al., 2010)). The NASA SMAP

mission was originally designed with both an active and passive sensor on board, soon after launch in January 2015 the active

sensor malfunctioned. Sentinel 1 is now used as the active component in the SMAP soil moisture retrieval. Recent validation

studies have shown SMAP to perform well in comparison with other satellite estimates (Montzka et al., 2017; Chen et al., 2018;45

Peng et al., 2020). These remotely sensed products are available at scales comparable to current land surface models from

50
:
km down to 9 km. Traditional in-situ observations of soil moisture are made at a single point using a variety of different

methods (Walker et al., 2004). These in-situ measurements provide accurate estimates to the true state of the amount of water

contained within the soil. However, the scale of such measurements can be unrepresentative to the scales of the model, even

when land surface models are run at a high resolution (⇠1 km). The recent developments of cosmic–ray neutron sensing soil50

moisture probes (Zreda et al., 2008) somewhat alleviates this issue. Cosmic–ray neutron probe observations have a variable

spatial footprint dependent on atmospheric air density (130 m - 240 m (Köhli et al., 2015) with some studies quoting a
:::::::
diameter

of ⇠600 m Desilets and Zreda (2013)) that is much more representative of land surface model estimates than that of traditional

soil moisture probes. There are now good networks of cosmic–ray probes within several countries (Zreda et al., 2012). This

is true in the UK where the
:::::::
COsmic–ray Soil Moisture Observing System United Kingdom (COSMOS-UK) network (Evans55
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et al., 2016) has been established by The UK Center for Ecology and Hydrology (UKCEH) and returning observations since

2013 (Stanley et al., 2019). These observations can act as valuable validation data of both satellite and land surface model soil

moisture estimates (Duygu and Akyürek, 2019).

Data assimilation provides methods for combining new observations with land surface models in order to improve

predictions. These techniques can either be used
:::
for

:::::::::::::
state-estimation

:::
to

::::::
update

::::
soil

::::::::
moisture

::::::
values

:
of the model in60

real-time as new observations are available (Liu et al., 2011; Draper et al., 2012; De Lannoy and Reichle, 2016;

Kolassa et al., 2017) or
::
for

::::::
model

:::::::::::::::::::
parameter-estimation

::
to

:
find improved calibrations which better represent the

observations (Rasmy et al., 2011; Sawada and Koike, 2014; Yang et al., 2016; Pinnington et al., 2018). Unlike tra-

ditional calibration procedures data assimilation
:::
and

:::::
other

:::::::::
associated

::::::::
Bayesian

:::::::::::
optimisation

::::::::
methods

::::::
always

:::::
take

:
into

account the relative uncertainties given to both model and observed estimates to find a maximum-a-posteriori estimate65

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Beven and Binley, 1992; Thiemann et al., 2001; Vrugt et al., 2003; Moradkhani et al., 2005; Nearing et al., 2010; Mizukami et al., 2017) .

Previous studies have used data assimilation to update the
::
soil

:::
parameters of land surface models

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Rasmy et al., 2011; Sawada and Koike, 2014; Yang et al., 2016; Han et al., 2014) . However, we are unaware of

any studies using data assimilation to update the parameters of pedotransfer functions to improve land surface

model predictions. Updating the parameters of these pedotransfer functions by combining them with observa-70

tions from satellites addresses a key uncertainty within their calibration with respect to land surface models,

adding additional information about spatial heterogeneity and the larger scales of both satellite and land sur-

face model estimates.
:::::
Many

:::::::
previous

:::::::
studies

::::::::::
optimising

::::::
model

::::
soil

::::::::::
parameters

:::::
have

:::::
taken

::
a
:::::::

filtering
::::

DA
:::::::::

approach

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Moradkhani et al., 2005; Montzka et al., 2011; Han et al., 2014; Baatz et al., 2017; Botto et al., 2018) leading

::
to

:::
the

::::::::
recovery

::
of

:
a
::::::::::
time-series

::
of

:::::::::
parameter

:::::
values

::
as
:::::::::

additional
::::
data

::
is

::::::::::
assimilated

:::::::
through

::::
time.

:::
In

:::
this

:::::
study

:::
we

:::
use

::
a
::::::::
smoother

:::::::
method,75

::
i.e.

::::
one

::::
that

::::
uses

::
all

:::::::::::
observations

::
in

:::
the

::::::
spatial

:::::::
domain

:::::
within

::
a
::::
time

:::::::
window

:::
of

:
a
:::::
given

::::::
length.

:::::
Then,

:::
the

:::::
static

::::::::::
parameters

::
are

::::::::
obtained

:::
by

:
a
::::::
single

:::::::::::
minimization

:::::::
process

::::::
(which

:::
can

:::::::
contain

:::::::
iterative

::::::
steps).

:::::::::
Smoothers

::::
can

::
be

:::::
used

::
in

:
a
::::::::

sequence
:::

of

:::::::
‘analysis

:::::::::
windows’

:::
(as

::
it

::
is

::::
done

:::
in

:::::::::
operational

:::::::::
numerical

:::::::
weather

::::::::::
prediction),

:::
but

:::
in

:::
this

:::::
study

:::
we

:::::
only

:::
use

::::
one

::
of

:::::
these

:::::::
windows

:::::
since

:::
the

:::::::::
parameters

:::
we

:::::
search

:::
for

:::
do

:::
not

::::
vary

::
in

::::
time.

:

We have used the Land Variational Ensemble Data Assimilation Framework (LAVENDAR) (Pinnington et al., 2020) to80

combine soil moisture estimates from the NASA SMAP mission with the Joint UK Land Environment Simulator (JULES)

model run at a high-resolution (1 km) and update the parameters of the Tóth et al. (2015) pedotransfer functions for the van

Genuchten (1980) soil model. In our experiments we assimilated 2016 SMAP data and then ran a hindcast for the year 2017.

The experiments were conducted over a sub-domain of the UK due to considerations of computational expense. We selected

the region of East Anglia due to it being equally susceptible to flooding and drought and therefore displaying a good dynamic85

range of soil moisture values. This region also had a good availability of high quality SMAP data
::::
(here

:::
we

:::
use

:::::::
Level-3

::::::
SMAP

:::
soil

:::::::
moisture

::::::::::::
observations) and a high distribution of COSMOS probes to allow for thorough validation of any results. While

reducing the spatial domain in our experiments eased the computational load we were still modelling over 30,000 grid points

due to the high-resolution of the JULES model.
::::
The

::::::::
objectives

::
of

:::
our

:::::
study

:::
are

::
as

:::::::
follow:

–
::
To

:::::::
examine

:::
the

::::::
ability

::
of

::
9

:::
km

::::::
SMAP

:::
data

::
to
::::::
update

:::::::::::
pedotransfer

:::::::::
parameters

::
in

:
a
::
1
:::
km

::::
land

::::::
surface

::::::
model.

:
90
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–
::
To

:::::
asses

:::
the

:::::::
resulting

:::::::::
prediction

::
of

::::::::
modelled

::::
soil

:::::::
moisture

:::::::
against

::
(a)

::::::
SMAP

::::
data

:::::
from

:
a
::::::::
different

::::
time

:::::
period

::::
and

:::
(b)

::::::::::
independent

:::::
in-situ

::::
data

:::::
from

:::
the

::::::::::::
COSMOS-UK

:::::::
network.

:

2 Method

2.1 JULES land surface model

The Joint UK Land Environment Simulator (JULES) is a community developed process based land surface model and forms the95

land surface component in the next generation UK Earth System Model (UKESM). A description of the energy and water fluxes

is given in Best et al. (2011), with carbon fluxes and vegetation dynamics described in Clark et al. (2011). We drive the JULES

model with the Climate Hydrology and Ecology research Support System meteorology (CHESS) dataset (Robinson et al., 2017)

which is a 1 km daily dataset of meteorological variables, an example implementation of JULES with the CHESS-met dataset

can be found in Martínez-de la Torre et al. (2019). In our experiments we have used JULES version 5.3, the code and model100

settings are available through the MetOffice JULES repository (https://code.metoffice.gov.uk/trac/jules), with Rose suite number

u-bq357. This model setup is based on the Rose suite u-au394 used to create the CHESS-land dataset (Martinez-de la Torre et al.,

2018). The JULES model utilises the Harmonized World Soil Database (HWSD) (Fischer et al., 2008) as the underlying soil

texture map for the creation of its soil parameter ancillaries using a pedotransfer function,
:::
see

::::::
Figure

::
1. The HWSD has been

gap-filled in urban areas where no information is available as we ran JULES without urban tiles switched on. The soil scheme105

is made up of 4 separate layers with depths of 0.1 m, 0.25 m, 0.65 m and 2 m respectively. We
::::
have

::::::
chosen

::
to

::::
keep

:::::::
JULES

::
in

::
its

::::::
default

::::::::
soil-layer

:::::
setup

::
so

::::
that

:::
our

::::::::
optimised

::::::::::
parameters

:::
are

:::::::
relevant

::
to

:::
the

:::::
wider

::::::
JULES

:::::::::
modelling

::::::::::
community.

::::
This

::
is

::::::
despite

:::
the

:::
fact

::::
that

:::::
SMAP

:::::::
satellite

:::::::::::
observations

:::
are

:::::::
typically

:::::::
sensitive

:::
to

::
the

:::
top

::::
⇠ 5

:::
cm

::
of

:::
soil

:::::::::::::::::::::
(Entekhabi et al., 2010) ,

::::
with

::::
some

::::::
studies

::::::::
suggsting

:::::::
L-band

:::::::::
radiometer

::::::::::::
measurements

::::
may

::::
only

::
be

::::::::
sensitive

::
to

:::
the

:::
top

:::::::
⇠ 2.5cm

::::::::::::::::::
(Zheng et al., 2019) .

::::
This

::::
could

::::::::
introduce

:::
an

::::::::
additional

::::::
source

::
of

:::::
error

:::
into

:::
our

::::
DA

::::::
system.

:::
To

:::::
ensure

::::
that

:::
the

:::::
effect

::
of

:::
this

::
is
:::
not

:::
too

:::::
great

:::
we

::::
show

::::
that110

::::
there

::
is

::::
only

:
a
:::::
small

:::::::::
difference

::
in

:::
soil

::::::::
moisture

:::::::
between

::::::
depths

::
of

:::::
10cm

:::
and

::
5

:::
cm

::
in

:::
the

::::::
JULES

:::::
model

:::
in

:::::
Figure

:::
S1.

::::
We

::::
have

:::
also

::::::
re-run

:::
the

:::::
entire

:::
data

:::::::::::
assimilation

:::::::::
experiment

::::
with

::
a

:
5
:::
cm

:::
top

::::
soil

::::
layer

::
in

::::::
JULES

::::
and

::::
show

::::
that

:::
the

::::::::
recovered

:::::::::
parameter

::::::::::
distributions

:::
are

::::::
similar

::
to

::::
those

:::::::::
recovered

::::
with

:
a
::
10

:::
cm

:::
top

::::
soil

::::
layer

::
in

::::::
Figure

::
S2

::::
and

:::
S3.

:
It
::
is

::::::::
necessary

::
to

::::
find

::
an

::::::::::
appropriate

:::::
initial

::::
state

::::::
before

::::::
running

::
a
::::
land

::::::
surface

::::::
model

::::
such

::
as

:::::::
JULES

:::
and

::
it

:::
has

::::
been

::::::
shown

::::
that

::::::
without

::
a
::::::
suitable

:::::::
spin-up

::::::
period

::::::
forecast

::::
skill

::::
can

::
be

::::::::
impacted

:::::::::::::::::::::::::::
(Maurer and Lettenmaier, 2004) .

:::
We

:
include a 4 year spin up period at the start of each JULES115

run to allow the soil moisture state to reach a point of equilibrium after parameter values are changed.
:::
For

:::
the

::::::
JULES

:::::::
spin-up

::
the

::::::
model

::
is

:::
run

:::::
from

::
an

:::::
initial

:::::
value

:::::::
(defined

:::
by

:::
the

::::::::
saturated

:::
soil

::::::::
moisture

:::::
model

:::::::::
parameter)

::::
over

:::
the

:::::
same

::::
year

::
of

:::::::
forcing

::::
data,

::::
here

:::::
2015,

::
to

:::::
reach

::
an

::::::::::
equilibrium

:::
soil

::::::::
moisture

::::
state

:::
for

:::
any

:::::
given

:::
set

::
of

:::
soil

::::::::
hydraulic

::::::::::
parameters.

:::
We

:::::
show

:::
this

::::::
model

::::::
spin–up

:::
for

::
3

::::::
unique

:::
soil

::::::::
parameter

::::
sets

::
at

:::
the

::::
same

:::::::
location

::
in
::::::
Figure

:::
S4.

:
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Figure 1.
::::
Maps

::
of
:::
soil

::::::::
properties

::::
from

::
the

:::::::::
Harmonized

:::::
World

:::
Soil

:::::::
Database

:::::::
(HWSD)

:::::::::::::::::::
(Fischer et al., 2008) used

::
in

:::
the

::::::
creation

::
of

::
the

::::::
JULES

:::
soil

:::::::
parameter

::::::::
ancillaries

::::
with

:::
the

:::::::::::::::::::::::
Tóth et al. (2015) pedotransfer

:::::::
functions.

::::
Blue

::::
dots

::::
show

:::::::
locations

::
of
::::::::::::

COSMOS-UK
:::::
probes,

:::::
black

:::
dot

::::
shows

:::::::
location

::
of

::::::
London,

::::
UK.

2.2 Pedotransfer functions120

The JULES model implements both the Brooks and Corey (1964) and the van Genuchten (1980) soil models. The JULES

implementation of these models can be found in Clark et al. (2011). In this paper we have used the van Genuchten (1980) soil

model and have selected a set of pedotransfer functions from Tóth et al. (2015). The Tóth et al. (2015) pedotransfer functions

have been calibrated across a large range of European soils and should be representative of the study area. The mathematical

formulation of these pedotransfer functions is:125

✓res =

8
<

:
0.041 fsand > 2

0.179 fsand < 2

✓sat = �a ��b⇢
2 +�cfclay +apH2

log10(↵) =��d ��e⇢
2 ��f

:
fclay ��gfsilt +

b

(Corganic +1)
+cpH2 +dtopsoil

log10(N � 1) =��h ��i⇢
2 ��jfclay ��kfsilt +

e

(Corganic +1)

log10(Ksat) = �l ��mfclay ��nfsilt ��oCEC+fpH2 +gtopsoil,

(1)

where ✓res is the residual soil moisture
::::
(m3

::::
m�3), ✓sat the saturated soil moisture

:::
(m3

:::::
m�3), ↵ and (N � 1) parameters of the

van Genuchten (1980) soil model
::
(-), Ksat the saturated hydraulic conductivity

:::
(kg

::::
m�2

::::
s�1), �a, . . . ,�o are model parameters

to be optimised (values given in table 1) and a, . . . ,g are static model parameters (values given in table 2). We optimise
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the parameters controlling the impact of
::
the

::::
bulk

:::::::
density ⇢

:
(g

:::::
cm�3), fraction of clay and silt (fclay, fsilt) :::

(%) and the cation130

exchange capacity (CEC)
::::
(meq

::::::::
100g�1) as these terms have a first order impact on the outputted van Genuchten (1980) soil

parameters. The organic carbon content (Corganic)
:::
(%), soil pH value and topsoil flag have a less pronounced effect on the van

Genuchten (1980) soil parameters. We treat the top two soil layers of JULES as topsoil (topsoil = 1) and the bottom two as

subsoil (topsoil = 0). From equations (1) we can see that defining a soil as topsoil will act to increase the saturated hydraulic

conductivity and the value of ↵, which will both allow water to flow more freely through the soil. The prior values for the135

parameters (�a, . . . ,�o) are shown in table 1. We used the values given by Tóth et al. (2015) for the prior except for �o for which

we found better results (experiments not shown) when the magnitude of this parameter was increased. To create the JULES soil

parameter ancillary files these pedotransfer functions are applied to soil texture information from the HWSD (Fischer et al., 2008)

at a 1 km resolution.
:::
The

::::
DA

::::::
system

::::
used

::::
here

::::::::
optimises

::::::
values

:::
for

:::
the

:::::::::
parameters

::
in

:::::
table

:
1
::::::
across

:::
the

:::::
whole

:::::::
domain

:::::
rather

:::
than

:::
on

::
a

::::::::::
grid-by-grid

:::::
basis.

::
In

::::
this

::::
way

:::
the

:::::
varied

::::
soil

::::::::
properties

::::::
across

:::
the

::::::
domain

::::
give

:::
us

:
a
:::::
form

::
of

:::::::::
orthogonal

:::::::::
constraint140

:::::
within

:::
the

::::::::::
assimilation

::::
and

:::::
allow

::
us

::
to

::::::
recover

::
a

:::::
single

:::
set

::
of

::::::::::
pedotransfer

::::::::
functions

::::
that

:::
are

::::
valid

::
in

:::::
space

::::
and

::::
time.

:

Parameter Prior value

�a 0.63052

�b 0.10262

�c 0.0003335

�d 1.16518

�e 0.16063

�f 0.008372

�g 0.01300

�h 0.25929

�i 0.10590

�j 0.009004

�k 0.001223

�l 0.40220

�m 0.02329

�n 0.01265

�o 0.10380

Table 1. Prior values for parameters of the Tóth et al. (2015) pedotransfer functions used in experiments.

2.3 SMAP Observations

The NASA Soil Moisture Active Passive (SMAP) satellite mission provides estimates of soil moisture every 2-3 days (Entekhabi

et al., 2010). The mission is an orbiting observatory with a passive radiometer and an active radar instrument. SMAP was de-
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Parameter Value

a 0.0002904

b 0.40515

c 0.002166

d 0.08233

e 0.2568

f 0.26122

g 0.44565

Table 2. Static parameter values for the Tóth et al. (2015) pedotransfer functions used in experiments.

signed to deliver a 36 km spatial resolution estimate of soil moisture from the passive instrument alongside a 9 km estimate from145

a retrieval using both the passive and active sensors. After its launch in January 2015 the radar instrument malfunctioned. Subse-

quently ESA’s Sentinel 1 mission has been used as a replacement for the active sensor. For the work in this paper we use the 9 km

::::::
Level-3

:
soil moisture product

:::::::
(version

::
3)

:::
this

:::::::
product

::::
has

:
a
::::::::
relatively

::::
low

::::
bias

::::::::::::::::::::::::::::::::::::
(Colliander et al., 2017; Zhang et al., 2019) .

::::::::
However,

:
it
::::

has
::::
been

::::::
shown

:::::
there

::
is

:
a
::::
wet

::::
bias

::::::
present

::
in

:::
the

:::::::
Level-4

::::::
SMAP

:::::::
product

::::::::::::::::::
(Reichle et al., 2017) .

:
As part of the

retrieval procedure SMAP relies on some ancillary information, one example of this is soil texture where the Harmonized World150

Soil Database (HWSD) (Fischer et al., 2008) is used to calculate the soil dielectric constant for use within the retrieval algorithm.

The use of such ancillary data in the retrieval could introduce
::::::::
additional biases into the SMAP soil moisture estimates that are

not consistent with estimates from the land surface model we are comparing to. However, as the HWSD is also used to create

the JULES soil parameter ancillary files this effect should be minimised. We
:::::::
prescribe

:::
an

::::
error

::
of

::::::::::::
0.05 m3 m�3

:::
for

::::::
SMAP

::::::::::
observations

::
in

:::
the

::::::::::
assimilation

:::::::::
algorithm.

::::::::
Although

:::
the

::::::
SMAP

::::::
baseline

::::
aim

:::
for

::::
error

::
is

:::::::::::
0.04 m3 m�3

::::
other

::::::
studies

:::::
have

:::::
found155

::::::
slightly

::::::
higher

::::::
values

:::
for

:::
the

::::
error

::
in
:::::::

Level-3
::::::

SMAP
:::::::::::

observations
::::::
(0.043

:::::::
m3 m�3

:::::::::::::::::::::
(Colliander et al., 2017) ,

:::::
0.057

::::::::
m3 m�3

::::::::::::::::
(Li et al., 2018) and

:::::
0.054

:::::::
m3 m�3

::::::::::::::::::
(Zhang et al., 2019) ),

:::
we

:::::::
therefore

:::::
chose

::
a

::::
value

:::::::
between

:::::
these

:::::::
studies.

:::
We

::::
have only used

SMAP observations corresponding to best retrieval quality flag and surface flag in experiments. The effect that removing poor

quality observations has on the total number of observations assimilated can be seen in Figure 2.
:::
The

::::::::::
experiment

::::
area

::
of

:::
the

:::
East

:::
of

:::::::
England

::
is

::::::::::::
predominantly

:::
flat

:::::
arable

::::
land

::::::
which

::::::
should

:::::
allow

::
for

:::::
good

::::::
quality

::::::
SMAP

::::::::
retrievals,

:::::
there

:::
are

::::
also

::::::
coastal160

:::
and

:::::
urban

::::
areas

::::::
where

::::::
SMAP

::::::::
retrievals

:::
will

::
be

:::::::::
unreliable.

::::
This

::::
area

::
is

::::
also

:::::
prone

::
to

:::::
cloud

:::::
cover

:::::
which

:::::
could

:::::
cause

::::
gaps

::
in

:::
the

:::::
SMAP

::::::::::::
observational

::::::
record.

2.4 COSMOS–UK Observations

The COSMOS–UK network has been producing observations of soil moisture and other meteorological variables at an

expanding number of stations (currently 52) since 2013 (Stanley et al., 2019). For the area of interest in this paper165

we have 11 stations available to us with data for the relevant time period, see Figure 2. Some of these stations may

not be representative of JULES model estimates due to the current setup of JULES not considering some processes

7



Figure 2. Location of COSMOS probes and number of SMAP observations assimilated in experiment period (2016). No colour corresponds

to no observations being assimilated in that location due to low quality retrieval or surface flag.

(ground water, organic soils, urban tiles). Cosmic–ray sensing soil moisture probes have a variable depth as well as

horizontal sensitivity (Zreda et al., 2008).
:::::
There

:::
are

:::::
many

::::::
studies

::::::::::
translating

:::
the

::::::::::
cosmic–ray

:::::::
neutron

:::::::
intensity

:::::::::
measured

:
at
:::::::::

COSMOS
::::::

probe
::::
sites

::
to

::::
soil

::::::::
moisture

::::::::::::::::::::::::::::::::::::::::::::::::
(Baatz et al., 2014; Bogena et al., 2015; Köhli et al., 2015) .

::::::
There

::::
have

::::
also

:::::
been170

:::::
efforts

::
to
::::::

relate
::::::::
modelled

:::
soil

::::::::
moisture

::
to

::::::::::
cosmic–ray

:::::::
neutron

::::::::
intensity,

::::
such

:::
as

:::
the

::::::::::
COsmic-ray

::::
Soil

::::::::
Moisture

::::::::::
Interaction

::::
Code

::::::::::
(COSMIC)

::::::::::::::::::::::::::::::::::::::::
(Shuttleworth et al., 2013; Rosolem et al., 2014) . The COSMOS–UK network

:::
use

:::
the

::::::::::
N0–method

::::::::
described

::
by

::::::::::::::::::
Baatz et al. (2014) to

::::::::
diagnose

::::::
values

::::
for

:::
the

::::
soil

::::::::
moisture

::::
and

::::
then

::::
the

:::::::
method

:::
of

::::::::::::::::::
Köhli et al. (2015) to

::::::::
calculate

::
the

::::::::::::
representative

::::::
depth

:::
for

:::::
each

:::::::::
COSMOS

:::::
probe

::::::::::::
measurement.

::::
The

:::::::::
COSMOS

:::::
sites

::
in

::::
our

:::::::::
experiment

:::::::
domain

:::::
have

::
a

:::::::::::
representative

:::::
depth

:::
of

:::::::
between

:::
14

:::
cm

:::
and

:::
40

:::
cm

:::::::::
dependent

:::
on

:::::::::
conditions

:::::
when

::::::::::::
measurements

:::
are

::::::
made. To make a fair175

comparison between the COSMOS–UK and JULES soil moisture estimates we have constructed a
:::::
simple

:
variable depth

algorithm for JULES which takes a weighted average of the different soil layers of the model given the relative depth of the

COSMOS–UK observation.
:::
This

::
is
:::::::
defined

::
as

✓D =

8
>>>><

>>>>:

✓10, if D  10 cm

10
D ✓10 +

(D�10)
D✓25,

if 10 cm <D  25 cm

10
D ✓10 +

25

D✓25+
(D�35)

D ✓65,
if 35 cm <D  65 cm

, (2)

:::::
where

:::
✓D ::

is
:::
the

::::::
JULES

::::::::
modelled

:::
soil

::::::::
moisture

::
at

:::
the

::::::::::::
COSMOS-UK

::::::::::::
representative

::::
depth

::::
(D)

:::
and

:::::::
✓10,✓25:::

and
::::
✓65 ::

are
:::
the

::::
top,180

::::::
second

:::
and

::::
third

:::::
layer

:::
soil

::::::::
moisture

::::::::
estimates

::::
from

:::
the

::::::
JULES

::::::
model.

:
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2.5 Data Assimilation Framework

In order to estimate the identified pedotransfer function parameters we use the LAVENDAR data assimilation framework (Pin-

nington et al., 2020). This
::::::::
framework

::::::
utilises

::
a
:::::
hybrid

::::
DA

::::::::
technique

::::::
similar

::
to

:::
that

::
of
:::
the

:::::::
Iterative

:::::::::
Ensemble

:::::::
Kalman

::::::::
Smoother

:::::::
(IEnKS)

:::::::::::::::::::::::
(Bocquet and Sakov, 2013) .

::
A

::::::::
smoother

::
is

:::::::
different

::::
than

::
a

::::
filter

::::
(e.g.

:::
the

::::::::
Ensemble

:::::::
Kalman

:::::
Filter

:::::::::::::::
(Evensen, 2003) )185

::
in

:::
that

::
it
::::
uses

:::::::
batches

::
of

:::::::::::
observations

::::::
which

:::
are

:::::
taken

::::
over

::
a
::::
time

:::::::
window

:::
of

:::::
given

:::::
length

::::
and

:::
the

::::::
whole

::::::
spatial

:::::::
domain,

::
as

:::::::
opposed

::
to
::::

just
:::
in

:
a
:::::
time

::::::
instant.

::::::
These

:::::::::::
observations

:::
are

:::::::::
combined

::::
with

:::
the

::::::
model

::::::::
evolution

::::
over

::::
this

:::::::
window

::::
and

::
a

:::::::::::
minimization

::::::
process

::
is

:::::::::
performed

::
to

:::::
obtain

:::::
initial

:::::::::
conditions

:::
for

:::
the

:::::::::::::
state/parameter

::::::
values.

:
It
::
is
:::::::
possible

::
to

:::
run

::
a
::::::::
sequence

::
of

:::::::
smoother

:::::
steps

:::
for

:::::::::
successive

::::::::
windows,

:::
but

:::
our

:::::
study

::::
only

::::
uses

::::
one

::::
year

::::
long

::::::::::
assimilation

:::::::
window

::
as

:::
the

::::::::::
parameters

:::
we

:::
are

:::::::::
optimising

::
do

:::
not

::::
vary

::
in

:::::
time.190

:::::
Using

:
a
::::::::
smoother

::::::
instead

::
of

::
a
::::
filter

:::
has

::::::::::
advantages

:::::::::::::::::::::::::
(Lorenc and Rawlins, 2005) in

:::
that

:::
(a)

::::
more

:::::::::::
observations

:::
can

:::
be

::::
used

::
to

:::::::
constrain

:::
the

:::::::
problem

::::::::
solution,

:::
and

:::
(b)

::::::::::
information

::::
from

:::
the

:::::
model

::::::::
evolution

::
is
::::::::
implicitly

::::
used

::
in
:::
the

::::::
search

:::::::
process.

::::::::
However,

::::
using

::
a
::::::::
smoother

:::::::
requires

:::::::::
computing

::::
the

:::::::
Jacobian

:::
of

:::
the

::::::
model,

:::
the

::::::::
so–called

:::::::
tangent

:::::
linear

::::::
model

::::::
(TLM)

:::
and

::::
the

::::::
related

::::::
adjoint

:::::
model

::::::
(AM).

:::
The

:::::::::
TLM/AM

::::::::::::::::::
(Courtier et al., 1994) .

::::::::::
Computing

:::
and

::::::::::
maintaining

:::
the

:::::::::
TLM/AM

::
is

:::
not

:
a
:::::
trivial

::::
task,

::::
and

::
in

:::
fact

:::
we

::
do

:::
not

::::
have

::::
this

:::
for

::::::
JULES.

::::
The

::::::
IEnKS

:::::
solves

::::
this

:::::::
problem

::
by

::::::::
replacing

:::
the

::::
role

::
of

:::
the

::::::::
TLM/AM

::
by

:::::::::::::
4–dimensional195

::::::::::
covariances,

:::
i.e.

::::::::::
covariances

:::::::
defined

::::
over

::::
time

:::
and

::::::
space.

::::::
These

::::::::::
covariances

:::
are

::::::::
computed

:::
as

::::::
sample

:::::::::
estimators

::
of

::
a
:::::
given

::::::::
ensemble.

::::
The

::::::
iterative

::::::
nature

::
of

:::
the

::::::
method

::::::
means

:::
that

::
it

::::
finds

:::
the

:::::::
solution

::
to

:::
the

:::::::::::
minimization

::::::::
problems

::::
using

:::::
inner

::::::::
iterations

:::::
rather

::::
than

:
a
::::::

single
::::
step

::::::
(hence

:::
the

:::::::::
variational

:::::::
nature),

:::
and

::::
this

:::::
helps

:::::
when

:::
the

:::::::::::
distributions

::
of

:::
the

:::::::::::::::::
variables/parameters

:::
of

::::::
interest

:::
are

:::
not

:::::::::
Gaussian.

:::
We

:::::::
provide

::::::
details

::
of

:::
the

:::::::
method

::
in

:::::::::
Appendix

::
A.

:::::::::::
Furthermore,

:::
to

:::::::::
understand

:::
the

:::::::
variants

:::
of

:::
the

::::::::
ensemble

::::::
Kalman

:::::::::
Smoother

:::
and

::
its

:::::::
position

::::::
within

:::
the

::::::
hybrid

:::
DA

::::::::
methods,

:::
the

:::::
reader

::
is

:::::::
referred

::
to

::::::::::::::
Evensen (2018) .200

:::
We

::::
show

::
a

::::::::
schematic

::
of

::::
how

::::
this

::::::
system

:::::
works

::
in

::::::
Figure

::
3,

:::
this

:
involves running an ensemble of JULES models, with each

model in the ensemble utilising a distinct soil ancillary data–set. Each
::::::::
ensemble

::::::::
members ancillary file is created by sampling

from the normal distribution defined by
::::
mean

::
xb::::

and
:::::::
variance

::::::::::
(0.1⇥ xb)2,

:::::
where

::::::::::::::::::
xb = (�a,�b, . . . ,�o) ::::

with
::::::::
�a, . . . ,�o::::::

taking

::
the

::::::
values

:::::
given

:
in table 1,

::::
then

:::::
using

:::::
each

:
unique set of sampled parameters within equations (1) applied to the HWSD

::::
maps

::
of

::::
soil

::::::::
properties

::::
(see

::::::
Figure

::
1)

:::
for

:::
the

::::::
whole

:::::::
domain.

::::::::
Although

:::
van

:::::::::
Genuchten

::::
and

::::::::
hydraulic

::::::::::
conductivity

::::::::::
parameters205

:::
can

::
be

:::::::::
described

::
by

::::::::::
logarithmic

:::::::::::
distributions

:
it
::
is
::::
less

::::
clear

:::::
what

::::::::::
distribution

::
is

:::
best

:::
for

:::
the

:::::
PTF

:::::::::
parameters

:::::::::
optimized

::::
here.

:::
We

::::::::
therefore

:::::
made

:::
the

:::::
naive

::::::::::
assumption

::
of

::
a

::::::
normal

::::::::::
distribution

::
in

:::
the

::::
first

::::::::
instance

::
as

::::
this

::::
gave

::
us

:::::
good

:::::::
results. In this

type of experiment the number of ensemble members will control the quality of the results, with a larger ensemble more

likely to identify the optimum parameters. However, running a land surface model at a 1 km spatial resolution over the

specified domain is computationally expensive, we therefore use an ensemble size of 50 in our experiments. In order to210

compare the 1 km estimates of soil moisture from JULES to the 9 km SMAP estimates we create an observation operator

which aggregates the JULES grid cells within each SMAP pixel
::
by

::::::
taking

:
a
::::::
spatial

:::::::
average

::
of

:::
all

::::::
JULES

::::::::
estimates

::::::
which

:::
fall

::
in

:::
the

:::::::
bounds

::
of

:::
the

::::::
SMAP

::::
grid

::::
cell.

::::::
There

::
is

::
no

:::::
need

::
to

::::::
project

::::::::::
increments

:::::
from

:::
the

:::::::
spatially

::::::::
averaged

::
9

:::
km

::::::
model

:::::::
estimates

:::::
back

::
to

:::
the

::
1

:::
km

::::::
model

:::
grid

:::
as

:::
the

::::::::::
assimilation

::
is

::::
only

:::::::::
optimising

::::
the

::
15

::::
PTF

::::::::::
parameters

:::::::::::::
(�a,�b, . . . ,�o) :::

for
:::
the

:::::
whole

:::::::
domain

:::
and

:::
the

::::::
update

:::
to

:::
soil

::::::::
moisture

::::
will

::
be

::::::::
implicit.

::::
The

:::::::::
aggregated

::::::
spatial

::::::::::
observation

:::::::
operator

::::
will

:
introduce215
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an additional source of representativity error alongside the observational error of SMAP and the inherent model error

within JULES.
:
It
:::
has

:::::
been

::::::
shown

::::
that,

:::
for

:::::::::
variational

::::::::
methods

::::
such

::
as

:::
the

::::
one

::::
used

::
in
::::

this
::::::
paper,

::::
these

:::::::::
additional

:::::::
sources

::
of

::::
error

:::::::
(model

::::
error,

::::::::::::::
representativity

::::
error,

:::::
etc.)

:::
can

:::
be

:::::::
included

::
in

:::
the

::::::::::::
observational

::::
term

::
of

::::
the

:::
cost

::::::::
function

::
by

::::::::
inflating

::
the

::::::::
diagonal

:::::::::::
observation

::::
error

::::::::
variance

::::::::::::::::::
(Howes et al., 2017) .

:::::::::
Although

::::::::::
observation

:::::
error

:::::::
inflation

:::
is

::::
rare

::
in

:::::::
relation

:::
to

::::::
filtering

::::
DA

:::::::
methods

:
it
::
is
:::::::::
commonly

::::
used

:::::
with

::::::::
variational

::::::::
methods

:::
and

:::::::::
smoothers,

:::::::::
especially

::
in

::::::::
numerical

:::::::
weather

:::::::::
prediction220

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Hilton et al., 2009; Bormann et al., 2015; Minamide and Zhang, 2017; Fowler et al., 2018; Wang et al., 2019) .

::::::::::::
Observation

::::
error

:::::::
inflation

::
is

:::::::
required

:::
due

:::
to the fact that

::
all

:::::::::::
observations

:::
are

::::
used

::
at

::::
once

::
in

:::
the

::::::::::
assimilation

::::::::
whereby

:::
we

::::::::
minimise

:
a
::::
cost

:::::::
function

:::::::::
containing

:
a
:::::
prior

::::
term

:::
and

:::
an

:::::::::::
observational

:::::
term.

::::
The

::::::
greater

:::
the

:::::::
number

::
of

::::::::::
observations

:::
in

:::
the

:::::::::::
observational

::::
cost

:::::::
function

::::
term,

:::
the

::::::
higher

:::
the

::::::
weight

::::
they

:::::
have

::
in

:::
the

:::::::::::
optimization.

::::
This

::::
can

:::
lead

:::
to

:::
the

::::
prior

::::
term

:::::
being

::::::::::
completely

:::::::
negated

:::
and

:::::
hence

:::
the

:::::::
retrieval

::
of

::::::::::
nonphysical

::::::::::
parameters.

::::::::::
Observation

::::
error

::::::::
inflation

:::::
would

:::
not

::
be

::::::::
required

:
if
:::
the

::::::
correct

:::::::::::
specification225

::
for

:::
the

::::::::::
observation

::::
error

::::::::::
correlations

:::
(in

:::::
space

:::
and

:::::
time),

::::::
model

::::
error

:::
and

:::::::::::::
representativity

::::
error

:::::
were

::::::::
included.

:::::
These,

::::::::
however,

::
are

:::::
hard

::
to

:::::::
diagnose

::::
and

::
it

:::
has

::::
been

::::::
shown

::::
that

::
in

:::
the

:::::::
absence

::
of

::::
such

::::::::::
information

::::::::::
observation

::::
error

::::::::
inflation

::
is

:::::::
required

:::
for

::
an

:::::::
optimal

:::
DA

::::::
system

:::::::::::::::::::
(Stewart et al., 2014) .

:::
For

:::
this

::::::
reason

::::
and

:::
due

::
to
:::

the
:::::

large
:::::::
number

::
of

:::::::::::
observations

:::::::::
assimilated

::
in
::::

our

:::
one

::::
year

::::::::::
assimilation

:::::::
window

:::::::
(28698)

:::
we

:::::
inflate

:::
the

::::::::
specified

:::::::::::
observational

:::::
error

::
by

::
a

:::::
factor

::
of

::::
four.

::
If

:
a
:::::::
filtering

::::
DA

::::::
system

::::
were

:::::
being

::::
used

:::::::
utilising

::
a

:::
bias

::::::
aware

::::::
method

:::::
such

::
as

:::
that

:::::::::
presented

::
by

:::::::::::::::::::::
Ridler et al. (2017) could

::::
help

::::::::
represent

::::
some

:::
of

:::
the230

::::::::
additional

::::::
sources

:::
of

::::
error

::::::::
discussed

:::::
here.

2.6 Experiment Formulation

We conducted our pedotransfer function parameter estimation for the year of 2016 using all SMAP observations in this period.

We also ran the prior and posterior JULES ensembles into 2017 so that we could judge the results against independent SMAP

observations in a ‘hindcast’ experiment. Allowing us to judge if any skill added by the assimilation persisted into the future.235

For the 2016-2017 period we then used the available COSMOS probe observations for validation comparing both prior and

posterior JULES soil moisture estimates to these observations. Using the COSMOS–UK observations in this way gives us

a better understanding of whether information added by the assimilation of SMAP observations can help to improve model

estimates at in–situ scales.

3 Results240

3.1 Assimilation Output

:::
The

:::::
input

::
to

:::
the

::::
data

:::::::::::
assimilation

::::::
routine

::
is

:::
an

::::::::
ensemble

::
of

:::
50

::::::
unique

:::::::::::::::::::
Tóth et al. (2015) PTF

::::::::
parameter

::::
sets

::::::
drawn

::::
from

::
a

::::
prior

::::::::::
distribution

:::::::::::
(representing

:::
our

:::
best

::
a
:::::
priori

:::::
guess

::
to

:::
the

:::
true

::::
PTF

::::::::::
parameters),

:::
the

::::::::::::
corresponding

::::::
JULES

::::
runs

:::::::::::
(2016-2017)

::
for

:::::
each

::::
PTF

::::::::
parameter

:::
set

:::
and

:::
all

:::
the

::::::
SMAP

:::::::::::
observations

:::
for

:::
the

::::
year

::::
2016

::::
over

:::
the

::::::::::
experiment

:::::::
domain.

::::
The

:::::
output

:::
of

:::
the

:::
data

:::::::::::
assimilation

::
is

::
an

::::::::
ensemble

::
of

:::
50

::::::::
optimised

:::::::::
(posterior)

::::
PTF

:::::::::
parameter

::::
sets,

:::::
valid

:::
for

:::
the

:::::
whole

::::::::::
experiment

::::::
domain

::::
and245

::::
time,

:::
this

::::::
allows

::
us

::
to

::::::::
calculate

:::
the

:::::::
posterior

:::::::
JULES

:::
soil

:::::::
ancillary

::::
files

:::
for

::::
each

::::::::
optimized

:::::::::
parameter

:::
set

:::
and

:::
the

::::::::::::
corresponding

10



Identify observations for time window and spatial domainFor each distinct soil ancillary file run model forward 
for whole assimilation window and spatial domain

Use LAVENDAR algorithm to 
combine prior trajectories with 

observations instantaneously over 
whole time window and spatial 

domain to find 50 optimized PTF 
parameter sets

Run posterior model forward for every optimized PTF 
parameter set

Run prior and posterior ensemble into the next Year to 
judge improvement vs. independent observations

Sample 50 unique PTF parameter sets
& use these to create 50 corresponding

JULES soil hydraulic parameter ancillaries

Figure 3.
::::::::
Schematic

::
of

::
the

::::::::::
LAVENDAR

::::
data

:::::::::
assimilation

:::::::::
framework,

::::::
showing

:::
the

:::::::
workflow

:::
for

::
the

:::::::::
experiment.

:::::::
posterior

::::::
JULES

::::::
model

::::
runs

::
for

::::::::::
2016-2017.

::::::
Figure

:
4
:::::
shows

:::
the

:::::
prior

:::
and

:::::::
posterior

:::::::::
parameter

::::::::::
distributions

:::
for

:::
the

::
15

:::::::::
optimized

:::::::::
parameters

::
of

:::
the

:::::::::::::::::::::::::
Tóth et al. (2015) pedotransfer

::::::::
functions.

:::::
Prior

::::::::::
distributions

:::
for

:::
the

::
50

::::::
JULES

::::::::
ensemble

::::::::
members

:::
are

::::::
shown

::
in

::::
light

::::
grey

::::
with

::::::::
posterior

::::::::::
distributions

::::::
shown

::
as

:::::
dark

::::
grey.

:::
We

::::
can

:::
see

:::
that

:::::
while

:::
the

::::
DA

::::::::
procedure

:::::
made

:::::
large

:::::::
updates

::
to

::::
some

::::::::::
parameters

::::::::
compared

::
to
:::::

their
::::
prior

::::::
values

:::::
others

:::::
have

:::
not

::::::::
changed,

::::
with

::::
their

:::::
mean

:::::::::
appearing

::
to

:::
be

::
in

:
a
:::::

very
::::::
similar250

:::::
place.

::::
One

::
of

:::
the

::::::::::
parameters

::::
with

:
a
::::::

strong
::::::
change

::
is
:::
�a::::::

which
::
is

::::::::
decreased

:::::::::
compared

::
to

:::
the

:::::
prior,

::::
this

:::::::::
parameter

:::::::
controls

::
the

::::::::
absolute

:::::::::
magnitude

::
of

:::
the

:::::::
saturated

::::
soil

:::::::
moisture

::::::
(✓sat).:::::::::

Decreasing
::
it
::::
will

::::::
reduce

:::
the

:::::::
absolute

:::::::
saturated

::::
soil

:::::::
moisture

::::
and

::::
allow

:::
the

::::
soil

::::::
texture

::::::::::
information

::
to

::::
have

:::::
more

::::::
impact

::
on

:::
the

:::::::::
diagnosed

::::::::::::::::::::::::
van Genuchten (1980) model

:::::::::
parameter.

::::
This

:::
can

:::
be

::::
seen

::
in

:::::
Figure

::
5
:::::
where

:::
we

:::::
show

:::
the

:::::::
updated

:::
PTF

::::::::::
parameters

:::::
effect

::
on

:::
the

:::::
mean

:::::::
estimate

::
to

:::
the

:::::::
JULES

:::::
model

:::
soil

::::::::::
parameters

::::
when

:::::::
applied

::
to

:::
the

:::::
spatial

:::::
maps

::
of

::::
soil

::::::::
properties

::::
from

:::
the

:::::::
HWSD.

:::
We

:::
can

:::
see

::::
how

::::::::
different

::::
areas

::
of

:::::::
distinct

:::
soil

::::::
texture

::::
(see255

:::::
Figure

::
1)
:::::::

behave
:::::::::
differently

:::::
based

::
on

:::
the

::::
PTF

:::::::::
parameter

:::::::
updates

::::
after

::::
DA.

:::
For

:::::
some

:::::::::
parameters

:::
we

:::
see

:::
the

::::::::
majority

::
of

::::
grid

:::
cell

::::::::
parameter

::::::
values

:::::::
increase

::
or

::::::::
decrease,

::::
✓sat :::

and
:::::

1
N�1 ::::::::::

respectively.
:::::::
Whereas

:::
for

::

1
↵::::

and
::::
✓crit:::

we
:::
see

::
an

:::::::
increase

::
or

::::::::
decrease

::
in

:::
grid

::::
cell

::::::::
parameter

::::::
values

::::::::
dependent

:::
on

:::
the

:::::::::
underlying

:::
soil

:::::::::
properties

:::::::
(sandier

::::
soils

::::
lead

::
to

::
an

::::::::
increase,

:::
less

::::
sand

:::::
more

::::
clay

:::::::::
correspond

::
to

:
a
:::::::::
decrease).

In Figure 6 we show the difference between
::::
mean

:::::
water

::::::
budget

:::::::
variable

::::::::
estimates

::::
(soil

::::::::
moisture,

:::::::::::::::
evapotranspiration

::::
and

:::
run260

:::
off) in 2016 for the prior and posterior JULES

:::::
model ensemble. The grid cells that are darker blue correspond to the posterior

11



Figure 4.
::::::::::
Distributions

::
of

::::
prior

:::
and

:::::::
posterior

:::::::::
pedotransfer

:::::::
function

::::::::
parameters

:::::::
grouped

::
by

:::
the

::::
term

::
in

::
the

::::::::
equations (1)

:::
that

:::
they

:::::
relate

::
to

:::
(see

:::
row

::::::
labels).

::::
Light

::::
grey:

::::::::
parameter

:::::::::
distribution

::
for

:::
the

::::
prior

:::::::
ensemble,

::::
dark

::::
grey:

::::::::
parameter

:::::::::
distribution

::
for

:::
the

:::::::
posterior

:::::::
ensemble.

ensemble
:::::::
estimate

:::::
being

:::::
higher

:
after assimilation and grid cells that are darker red correspond to the posterior

:::::::
estimate

:::::
being

:::::
lower. We can see that after calibration of the pedotransfer function parameters the domain has not had a uniform increment to

the value of mean soil moisture
:
,
:::::::::::::::
evapotranspiration

::
or

:::
run

:::
off. This is due to the fact that soil texture specific parameters have

been optimised allowing the different distinct areas of soil type defined by the HWSD
:::
(see

::::::
Figure

::
1) to behave differently rather265

than having a uniform correction across the modelled area. Across the whole domain we find an average increase of 0.03 m3

m�3 in mean soil moisture estimates after data assimilation.
:::
We

:::
can

:::
see

::::
that

::
in

::::
order

::
to

::::::
update

::::
PTF

::::::::
parameter

::::::
values

::
to

:::
find

::::
soil

:::::::
moisture

::::::::
estimates

:::
that

:::::
more

::::::
closely

::::::
match

:::
the

::::::
SMAP

::::::::::
observations

::::
both

::::::::::::::::
evapotranspiration

:::
and

:::
run

:::
off

::::::
model

:::::::
estimates

:::::
have

:::
also

:::::
been

::::::::
modified.

::
In

::::
areas

:::
of

:::::
sandy

::::
soils

:::::
wetter

::::
soil

:::::::
moisture

::::::
values

::::
have

::::
been

::::::::
achieved

:::
by

:
a
:::::::
decrease

::
in
::::::::::::::::
evapotranspiration

::::::::
offsetting

:
a
:::::
slight

:::::::
increase

::
in

::::::
runoff.

:::
In

::::
areas

:::
of

::::
high

::::
clay

::::::
content

::::::
wetter

:::
soil

::::::::
moisture

:::::
values

:::::
have

::::
been

::::::::
achieved

::
by

::
a

:::::
larger270

:::::::
decrease

::
in

:::
run

:::
off

::::::::
compared

:::
to

::
an

:::::::
increase

::
in

::::::::::::::::
evapotranspiration.

:::
For

::::
silty

:::::
soils

::
we

::::
find

::
a

::::
drier

:::::
value

::
of

:::
soil

::::::::
moisture

:::
for

:::
the

:::::::
posterior

:::::::::
compared

::
to

:::
the

::::
prior

::::
with

:
a
::::
less

:::::::::
prominent

::::::
impact

::
on

:::::::::::::::
evapotranspiration

::::
and

:::
run

:::
off.

:
Figure 6 also allows us to see

the high–resolution of the JULES model when run with the CHESS data, for this domain we have over 30,000 individual model

grid cells.

Figure275
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Figure 5.
::::
Maps

:::::::
showing

:::
the

::::::::
difference

::::::
between

:::
the

:::::
prior

:::
and

:::::::
posterior

:::::
mean

::::::
JULES

:::::
model

:::
soil

:::::::::
parameters,

::::::
created

:::
by

:::::::
applying

:::
the

::::::::::
prior/posterior

:::::
PTF’s

::
to
:::
the

::::::
HWSD

::::
maps

::
of

:::
soil

:::::::::
properties.

:::::
Brown

:::::::::
corresponds

::
to

::
a

::::::
decrease

::
in
:::
the

:::
soil

::::::::
parameter

::::
after

:::
data

::::::::::
assimilation,

::::
green

::
to

::
an

:::::::
increase.

Figure 6. Map showing the difference between yearly mean soil moisture for the prior and posterior ensemble of JULES model runs in 2016.

Blue corresponds to the posterior ensemble estimate being wetter, red corresponds to the posterior being drier.

:
7
::::::
shows

:::
the

::::
error

:::::::::
reduction

::::
after

::::::::::
performing

::::
data

::::::::::
assimilation

:::::
when

:::::::::
comparing

:::::::
JULES

:::::::
spatially

:::::::::
aggregated

::::::::
estimates

:::
to

:::::
SMAP

::::::::::::
observations.

::::
This

::
is

::::::::
computed

:::
as

::::::::::::::::::::::::::
100⇥ (RMSEprior�RMSEpost)

RMSEprior
,
:::::
where

:::::::::::
RMSEprior::

is
:::

the
:::::::

JULES
::::
prior

:::::::::
ensemble

::::
mean

::::::
RMSE

::::::
when

::::::::
compared

::
to

:::::
2016

::::::
SMAP

:::::::::::
observations

::::
and

::::::::::
RMSEpost::

is
:::
the

::::::
JULES

::::::::
posterior

:::::::::
ensemble

:::::
mean

::::::
RMSE

::::
when

:::::::::
compared

::
to

::::
2016

::::::
SMAP

:::::::::::
observations.

:::
As

::
we

:::
are

::::::::::
minimising

:
a
::::
cost

:::::::
function

::
to

::::
find

::::::::
optimised

:::::
values

:::
of

:::
PTF

::::::::::
parameters

::::
valid

:::
for

:::
the

:::::
whole

:::::
spatial

::::
and

:::::::
temporal

:::::::
domain

:
it
::
is

:::::::
possible

:::
the

::::::::::
optimisation

::::
may

::::
have

::
to

:::::::
degrade

:::
the

::
fit

::
of

::
the

::::::
model

::::::::
estimates280

::
to

:::
the

::::::
SMAP

::::::::::
observations

::
at

::::::
certain

::::::::
locations

::
in

:::::
order

::
to

:::::::
improve

:::
the

::::::
picture

::
as

::
a
::::::
whole.

::::
This

:::::
could

::
be

::::
due

::
to

:::::
errors

::
at

:::::
these

:::::::
locations

::
in

:::::::
driving

::::
data,

:::
the

:::::::::
underlying

:::
soil

::::::::
property

::::
map

::
or

::::::
indeed

::
in

:::
the

:::::
model

::::::::
structure.

:
For the majority of the domain we

find a reduction in error after assimilation, with a mean error reduction of 20% in 2016 and 21% in
:::::
2017. The exception to this

13



being the area corresponding to the city of London. There are two reasons for this, firstly we have not assimilated SMAP soil

moisture estimates over this area due to the surface flag corresponding to poor quality observations (poor quality SMAP grid285

cells are shown in Figure
::
7 with stippling). Secondly the setup of JULES we have used in our experiments does not have the

urban tile turned on, instead we have had to gap-fill the HWSD over London with the surrounding grid cells soil type. This

means that soil moisture estimates for this location will not be realistic. To visualise what the time-series of results looks like we

plot SMAP observations and JULES model predictions for different pixels in Figure 8 & 9.
::::
From

:::::
these

::::::
figures

::
we

::::
can

:::
see

:::
the

::::::
distinct

:::::::
seasonal

::::::::
dynamics

:::
of

:::
soil

::::::::
moisture

::
in

:::
this

::::::
region,

::::
with

:::
the

:::::::
highest

:::::::
moisture

:::::
being

::
in

:::
the

::::::
winter

::::::
months

::::
and

:
a
:::::::
distinct290

:::
dry

:::::
down

::::
from

:::::
April

::::
into

:::
the

:::::::
summer

:::::::
months.

::::
This

:::::::
seasonal

:::::
cycle

::
is
::::
seen

:::
for

::::
both

::::
the

::::::
JULES

::::::
model

:::
and

::::::
SMAP

:::::::::
obsereved

::::::::
estimates. For Figure 8 we can clearly see the improvement in the posterior JULES ensemble estimate when compared to the

prior. This improvement continues into the 2017 hindcast period when judged against observations that have not been used in the

:::
cost

:::::::
function

:::
of

:::
the data assimilation framework.

:::
We

:::
can

:::
see

::::
that

:::::::
although

:::
the

::::::::
dynamics

:::
in

::::
2017

:::
are

::::::
distinct

:::::
from

:::::
those

::::
used

::
for

:::::::::
calibration

::
in
:::::
2016

:::
we

:::
still

:::::
match

:::
the

::::::
SMAP

::::::::
estimates

:::
for

::::::::
dry-down

:::
and

:::::::::
re-wetting

::
of

:::
the

::::
soil

::
in

:::
this

::::::
period. From Figure 8295

we can also see the spread in our model estimates with the JULES ensemble standard deviation displayed as shading. This spread

is decreased from the prior to posterior estimates. In Figure 9 we plot the results for a SMAP pixel over London where the

posterior error increases compared to the prior. However, we can see that the SMAP observations do not appear reliable here with

many observations hitting the lower bound of soil moisture in the SMAP retrieval.
:
In

::::::
Figure

:::
10

:::
we

::::
show

:::
the

::::::
RMSE

::::::::
averaged

::
in

:::::
space

::
for

:::
the

:::::::
JULES

:::::
model

::::
prior

::::
and

:::::::
posterior

:::::
mean

::::::::
estimate,

:::::
when

::::::::
compared

::
to

::::::
SMAP,

:::::::::
alongside

:::
the

::::::
JULES

:::::
model

:::::
prior300

:::
and

::::::::
posterior

::::::::
ensemble

::::::
spread.

:::
At

::
all

:::::
times

:::
the

::::::::
posterior

::::::
JULES

::::::
RMSE

::
is
:::::
lower

:::::
than

:::
that

::
of

:::
the

:::::
prior,

::::::::
showing

:::
that

:::
the

::::
DA

::::::
system

:::
has

:::::
found

:
a
:::
set

::
of

::::
PTF

::::::::::
parameters

:::
that

:::::::
improve

:::
the

::
fit
:::

to
:::
the

::::::
SMAP

::::::::::
observations

:::::::
through

::::
time,

::::
this

::::::::
continues

::::
into

:::
the

:::::::
hindcast

:::::
period

::::::
(2017)

:::::
when

::::::
judged

::::::
against

:::::::::::
observations

:::
that

:::::
were

:::
not

:::::::
included

::
in

:::
the

:::
DA

::::
cost

::::::::
function.

:::
We

::::
find

:::::
slight

:::::
peaks

::
in

:::
the

::::::
RMSE

:::::
values

::::::::::
throughout

:::
the

::::
time

::::::
period

::::::::::::
corresponding

::
to

::::::
wetter

:::::::::
conditions,

::::
this

:::::
could

::
be

::::
due

::
to

:::::
slight

:::::
errors

:::
in

:::
the

::::::::::
precipitation

::::::
driving

::::
data

::::
used

:::
to

::::
force

:::
the

::::::
model.

::
It

::
is

::::::
optimal

:::
to

::::
have

::
an

::::::::
ensemble

::::::
spread

::::
that

:::::::
matches

:::
the

:::::::::
magnitude

::
of

:::
the305

::::::::
ensemble

::::
mean

::::::
RMSE

::::
and

:::
this

::::::::::
relationship

:::::
should

::::
hold

:::::
given

::
a

::::
large

::::::
enough

::::::::
ensemble

::::
size

::::::::::::::::::::::::::::
(Houtekamer and Mitchell, 1998) .

:::
We

:::
can

:::
see

:::
that

:::
this

::::::::::
relationship

:::::
holds

:::
for

:::
our

::::
prior

::::::::
estimates.

::::::::
However,

:::::
after

:::
DA

:::
the

:::::::
posterior

::::::::
ensemble

::::::
spread

:
is
:::::::
slightly

:::::
lower

:::
than

::::
that

::
of

:::
the

::::::::
ensemble

:::::
mean

::::::
RMSE.

::::
This

::
is
:::::::
perhaps

:::::::::::
unsurprising

::
as

:::
we

:::
are

:::::::::
conducting

:::
just

::
a
:::::
single

::::::::::
assimilation

::::
step

:::::
using

::
all

:::::::::::
observations

::::
(over

::::::
28000)

::
at

::::
once

::
in
:::::
space

::::
and

::::
time

::::
with

:
a
::::::::
relatively

:::::
small

::::::::
ensemble

::::
size

::::
(50).

::::
This

:::
can

::::
lead

::
to

:::::
some

::
of

:::
the

:::::::
posterior

:::::::::
parameter

::::::::::
distributions

::::::::
becoming

:::::::
narrow,

::
as

::::
with

:::::::::
increasing

::::::::::
observations

:::
we

:::::::
increase

:::
the

:::::::::
confidence

::
in

:::
our

::::::::
posterior,310

:::
thus

:::::::::
tightening

:::
the

:::::::
retrieved

:::::::::::
distributions

:::
and

:::::::
reducing

:::
the

::::::
model

::::::::
ensemble

::::::
spread.

::::
This

:::::
result

:::::::
suggests

::::
that

::::::::
ensemble

:::::::
inflation

::::::::::::::::::::::::::::::
(Anderson and Anderson, 1999) may

::
be

::::::::
necessary

::
if
:::
this

:::::::::
ensemble

:::
was

::
to

:::
be

::::
used

::
in

:::::::::
subsequent

::::::::::
assimilation

:::::::::::
experiments.

:

3.2 Comparison to COSMOS–UK

After performing the data assimilation procedure we use the observation operator described in section 2.4 to compare the prior

and posterior JULES 4–layer soil moisture estimates to the 11 COSMOS probes located in our experiment domain. For each315

COSMOS site we select the nearest JULES grid–cell to the given site longitude and latitude. In Figure 11 we show results at the

Cardington COSMOS
:::
site, here we can see the posterior JULES estimate is a large improvement from the prior, although some of
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Figure 7. Map showing the difference between Root-Mean Squared Error (RMSE) when JULES spatially aggregated estimates are compared

to SMAP observations for
::::
2016 and 21% for

::::
2017.

the driest values are still not captured.
:::::
From

:::::
Figure

:::
11

:::
we

:::
can

::::
also

:::
see

::::
there

::
is

::
an

:::::::
increase

::
in

::::::::::::::::
evapotranspiration

:::
and

:
a
::::::::
decrease

::
in

::::::
runoff,

:::
this

:::::
effect

:::
can

::::
also

::
be

:::::
seen

::::
from

::::::
Figure

::
6.

:::::
Figure

:
12 shows results for Morley COSMOS site where both prior and

posterior JULES estimates perform similarly
:
,
:::
we

::::
also

::::
have

:::
less

::
of

:::
an

::::::
update

::
to

:::::::::::::::
evapotranspiration

:::
but

:
a
::::::::
decrease

::
in

::::::::
modelled320

:::::
runoff. There are also some sites where even after calibration we still do not capture the COSMOS estimates, Stoughton in

Figure 13 is such an example where both prior and posterior estimates are too dry. However, here the posterior estimate is

still much improved from the prior.
:::
We

::::
also

:::
find

:::::
large

::::::::
increases

::
in

:::::::::::::::
evapotranspiration

::::
and

::::::::
reductions

::
in
::::::

runoff
:::
for

:::::::::
Stoughton.

Figure 14 is an example where both prior and posterior perform equally poorly.
::::
The

:::
fact

::::
that

:::
the

::::::::
estimates

:::
and

:::::::
updates

::::
after

:::
DA

:::
are

::
so

:::::::
different

:::
for

:::::::
Figures

::
11

:
-
:::
14

::::::
despite

:::
all

::::
using

:::
the

:::::
same

::::
PTF

:::::::::
parameters

:::::::::
highlights

:::
the

:::::
effect

:::
that

:::
the

:::::::::
underlying

::::
soil325

::::::::
properties

:::
are

::::::
having

::
on

:::
soil

::::::::
hydraulic

:::::::::::
conductivity.

:::
At

::
all

::::
sites

:::
the

::::::
JULES

::::::
model

::::::
predicts

:::
top

:::::
layer

:::
soil

::::::::::
temperature

::::
well

:::::
when

::::
both

::::
prior

:::
and

::::::::
posterior

::::::::
estimates

:::
are

::::::::
compared

::
to

::::::
in-situ

:::::::::::
observations. In table 3 we show summary statistics for

:::
soil

::::::::
moisture

:
at
:
the 11 COSMOS sites, we see that when looking over all sites the posterior estimate yields a 16% increase in correlation, 16%

reduction in unbiased Root-Mean-Squared Error (ubRMSE) and a 22% reduction in Root-Mean-Squared Error (RMSE) when

compared to the prior.330

:::
The

::::::::::::
COSMOS-UK

:::::::::::
observations

:::
we

::::
have

:::::
used

:::
for

::::::::::
independent

::::::::
validation

:::
of

:::
the

::::::
results

:::
are

::::::::::::
respresentative

::
of

::::::
depths

:::::
from

::
14

:::
cm

:::
up

::
to

:::::::
around

::
40

::::
cm.

::::
The

::::::
SMAP

:::::::
satellite

:::::::::::
observations,

:::::
used

:::::
within

::::
the

::::::::::
assimilation

:::::::::
algorithm

::
to

::::
find

:
a
::::

new
:::

set
:::

of

::::::::::
pedotransfer

::::::::
functions

:::
for

:::
the

:::::::::
experiment

:::::::
domain,

:::
are

::::::::::::
representative

::
of

::::
soil

:::::::
moisture

:::
for

:::
the

:::
top

:::
2.5

::
-
:
5
:::
cm

::
of

::::
soil.

:::::::::
Therefore

::
the

::::
fact

:::
that

:::::
after

::::::::::
assimilation

:::
we

:::
find

::::
such

::
a

::::::
distinct

:::::::::::
improvement

::
at

::::::
in-situ

::::::::
COSMOS

:::::
probe

::::::::
locations

::::::::
indicates

:::
that

::::::::
although

15



Figure 8. Time–series of soil moisture for 52.96� N 0.40� W.
::::
Black

::::::
crosses: SMAP observations, blue line and shading: prior JULES mean

and ensemble spread, orange line and shading: posterior ensemble mean and spread. Black dotted line represents the end of the assimilation

window and start of the hindcast period.

::
the

::::::
SMAP

:::::::::::
observations

:::
are

::::
only

:::::::
sensitive

::
to

:::::::
shallow

::::::
depths,

::
by

:::::::::
combining

:::::
these

::::
with

:::
the

::::::
JULES

::::::
model

::
we

:::
are

::::
also

:::::::::
improving335

:::::::
estimates

:::
at

::::::
deeper

:::::
levels.

::::
The

:::::
large

:::::
errors

::
in

:::
our

:::::
prior

::::::
JULES

:::::::::
estimates

:::
for

:::
the

::::::::
COSMOS

:::::
sites

::
in

::::::
Figure

::
13

::::
and

:::
14

:::::
could

::::
point

:::::::
towards

:::::
some

:::::::::
systematic

:::
bias

::::::
within

:::
the

::::::
model.

::::::::
However,

:
it
::
is
:::::::::
important

::
to

::::
note

:::
that

:::
the

::::::::::::
COSMOS-UK

:::::::::::
observations

:::
are

::::::::::
independent

::
of

:::
the

::::
data

:::::::::::
assimilation.

:::
For

:::
the

:::::::::
assimilated

::::::
SMAP

:::::::::::
observations

::
it

::::
may

::
be

:::::::
optimal

::
to

::::
have

:::::
errors

:::::::
centred

::::::
around

:::
zero

:::
but

:::
for

:::
the

:::::::::::
independent

:::::
in-situ

:::::::::
validation

::::
data

::::
there

::::
will

::
be

:::::
many

:::::::::
competing

:::::
errors

::::
that

::::
may

::::
make

::::
this

::::::::::
impossible.

:::::
There

:::
will

:::
be

:::::
errors

::
in

:::
the

::::::
forcing

:::::::::::
meteorology

::::
(here

:::
we

:::
are

:::::
using

:::::::
CHESS

::::
1km

::::::
forcing

::::
data

::::
and

:::
not

::::::::
observed

:::::
in-situ

::::::::::::
meteorology),340

:::::
errors

::
in

:::
the

::::::
model

:::
grid

::::
and

::
its

:::::::::::::
representativity

:::
to

:::
the

:::::
in-situ

::::::::
location,

::::::::
structural

::::::
model

:::::
errors

::::
(we

:::::::
currently

:::::
have

::
no

:::::::
ground

::::
water

::::::
model

::
in

:::::::
JULES

:::
and

:::::
some

::::::
in-situ

::::
sites

::::
may

::
be

:::::
more

::::::
ground

:::::
water

:::::::::::
dominated),

:::::
errors

::
in

:::
the

:::::::::
vegetation

::::::::
fractions,

::::
and

::::
many

::::::
more.

::
At

:::
the

:::::
larger

::::::
SMAP

:::::
scale

:::::
many

::
of

:::::
these

::::::
effects

:::
will

:::
be

:::::::::
minimised

:::::
when

::::::
looking

::
at
:::
the

::
9
:::
km

::::::
spatial

::::
scale

::::
that

::
is

::::
more

::::::::::::
representative

::
of

::::::::
modelled

::::::::
estimates.

:

4 Discussion345
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Figure 9. Time–series of soil moisture for 51.81� N 0.17� W.
::::
Black

::::::
crosses: SMAP observations, blue line and shading: prior JULES mean

and ensemble spread, orange line and shading: posterior ensemble mean and spread. Black dotted line represents the end of the assimilation

window and start of the hindcast period.

::::
This

:::::
study

:::::
aimed

:::
to

::::::::
determine

:::
the

:::::::::
suitability

:::
of

:::::::
satellite

::::::::::
observations

:::
to

:::::::
optimise

:::::::::::
pedotransfer

::::::::
functions

::::
and

:::::::
improve

::::
soil

:::::::
moisture

::::::::
estimates

:::
for

::
a
::::
land

:::::::
surface

::::::
model.

::::::::
Currently

::::::::::
pedotranfer

::::::::
functions

::::
are

::::::::
calibrated

:::::::
through

::::::::
analyses

::
of

:::::
point

::::
soil

::::::
samples

::::
and

::
it
::

is
:::::::

unclear
::::
how

:::::
these

:::::::::::
calibrations

:::
and

:::::
their

::::::::
resultant

:::
soil

::::::
model

::::::::::
parameters

:::::
relate

:::
the

::::
the

:::::::
varying

::::::
spatial

:::::::::
resolutions

::
of

:::::::
modern

::::
land

:::::::
surface

:::::::
models.

:::::::
Adding

::::::::
additional

:::::::::::
information

::::
from

:::::::
satellite

::::::::
estimates

::::
into

:::
the

::::::::::
callibration

:::
of

::::::::::
pedotransfer

::::::::
functions

::::::
should

::::::
address

::
a

:::
key

:::::::::
uncertainty

:::::
with

::::::
respect

::
to

:::
the

:::::
larger

:::::
scales

::
of

::::
land

::::::
surface

::::::
model

::::::::
estimates.

:
350

:::
We

::::
used

:::
the

:::::::::::
LAVENDAR

::::::
hybrid

::::
data

:::::::::::
assimilation

:::::::::
framework

::::::::::::::::::::::
(Pinnington et al., 2020) to

::::::::
optimise

:::
the

:::::::::
parameters

:::
of

:::
the

::::::::::::::::::::::::
Tóth et al. (2015) pedotransfer

:::::::::
functions

::
by

:::::::::
combining

:::::
them

::::
with

::::::
SMAP

:::::::
Level-3

:
9
:::
km

:::::::
satellite

:::::::::::
observations

:::
and

:::
the

:::::::
JULES

:::
land

:::::::
surface

:::::
model

::::
run

::
at

:
a
::
1

:::
km

:::::::::
resolution.

::::
This

:::::::::
framework

:::::::
outputs

:
a
::::::

single
:::
set

::
of

::::
PTF

:::::::::
parameters

:::::
valid

::
in

:::::
space

::::
and

::::
time

::
by

:::::::
utilising

:::
all

::::
data

::
at
:::::

once
:::::::
through

:::
the

:::::::::::
minimisation

:::
of

:
a
::::

cost
::::::::

function.
::::
The

:::::::::
optimized

::::::::::
pedotranfer

::::::::
functions

:::::
found

:::::
after

:::
DA

::::
were

::::::
shown

:::
to

:::::::
improve

::::::
model

::::::::
estimates

::
of

::::
soil

::::::::
moisture

:::::
when

::::::::
compared

:::
to

::::::
SMAP

::::
data

::::
from

::
a
::::::::
different

::::
time

::::::
period355

::::
(21%

::::::::
reduction

::
in
:::::::
RMSE)

:::
and

:::::::::::
independent

:::::
in-situ

:::::::::::
observations

::::
from

:::
the

::::::::::::
COSMOS-UK

:::::::
network

:::::
(16%

:::::::
increase

::
in

::::::::::
correlation,

::::
16%

::::::::
reduction

::
in

:::::::::
ubRMSE

:::
and

:::::
22%

::::::::
reduction

::
in

::::::
RMSE

:::::
over

::
11

::::::
sites).

::::
This

::::::::::::
demonstrates

:::
that

:::::::
satellite

:::::::::::
observations

::::
can

::
be

::::
used

:::
to

::::::
update

::::::::::
pedotransfer

::::::::
functions

::::
and

:::::::
improve

::::::::
estimates

:::
of

:::
soil

::::::::
moisture

:::
for

::::
land

:::::::
surface

:::::::
models.

:::::::
Previous

:::::::
studies
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Figure 10.
::::::
Spatially

:::::::
averaged

::::::
RMSE

:::
and

:::::::
ensemble

::::::
spread

::
for

::::::
JULES

::::
prior

::::
and

:::::::
posterior

:::::
model

:::::::
estimate.

::::
Blue

::::
solid

::::
line:

::::
prior

::::::
JULES

:::::
RMSE,

::::
blue

::::::
dashed

::::
line:

::::
prior

::::::
JULES

:::::::
ensemble

::::::
spread,

:::::
orange

::::
solid

::::
line:

:::::::
posterior

::::::
JULES

:::::
rmse,

:::::
orange

::::::
dashed

::::
line:

:::::::
posterior

::::::
JULES

:::::::
ensemble

:::::
spread.

:::::
Black

:::::
dotted

:::
line

::::::::
represents

:::
the

:::
end

::
of

::
the

:::::::::
assimilation

:::::::
window

:::
and

:::
start

::
of

:::
the

::::::
hindcast

::::::
period.

::::
have

::::::
shown

:::
that

:::::::
satellite

:::::::::::
observations

::::
can

::
be

:::::
used

::
to

::::::::
improve

:::::
model

:::::::::
estimates of soil moisture

::
by

:::::::
directly

::::::::
updating

::::
soil

:::::
model

:::::::::
parameters

:::
on

:
a
::::
grid

:::
by

:::
grid

:::::
basis.

:::::::::::::::::::
Han et al. (2014) used

::::::::::
observations

:::::
from

:::
the

:::
Soil

::::::::
Moisture

::::::
Ocean

:::::::
Salinity

:::::::
(SMOS)360

::::::
mission

:::::::::::::::::
(Kerr et al., 2001) to

::::::
update

:::::::::
parameters

::
of

:::
the

::::::::::
Community

::::
Land

::::::
Model

::::::
(CLM)

::
in

:
a
:::::
Local

::::::::
Ensemble

:::::::::
Transform

:::::::
Kalman

::::
Filter

:::::::::
(LETKF)

:::
and

::::::::
improved

::::::
model

:::::::::
estimates.

:::::::::::::::::::
Yang et al. (2016) used

::
a

:::::::::
variational

:::::::
method

::
to

:::::::
combine

:::::::::::
observations

:::::
from

::
the

:::::::::
Advanced

::::::::::
Microwave

::::::::
Scanning

::::::::::
Radiometer

:::
for

::::
Earth

:::::::::
Observing

:::::::
System

:::::::::
(AMSR-E)

::::::::::::::::::::::::
(Kawanishi et al., 2003) with

::
a
::::
land

::::::
surface

:::::
model

::
to

:::::::
improve

::::::::
estimates

::::
over

:::
the

:::::::
Tibetan

:::
and

:::::::::
Mongolian

:::::::
Plateau.

::::::::::::::::::::::
(Nearing et al., 2010) used

:::::::::
calibration

:::::::::
techniques

::
to

:::::
update

:::::::
NOAH

::::
land

::::::
surface

:::::
model

::::::::::
parameters

:::::
using

:::::::
synthetic

:::::::
aperture

:::::
radar

:::::::
imagery

::
at

:
a
::::
site

::
in

:::::::
Arizona,

:::::
USA.

::::
Our

::::::
results365

::::
show

::::::
similar

:::::::::::::
improvements

:::
are

:::::::
achieved

:::
by

::::::::
updating

::::
PTF

:::::::::
parameters

:::::
with

::::::
SMAP

:::::::
satellite

::::
data.

::::
We

::::
also

::::::::::
demonstrate

::::
that

:::::::::
information

:::::
from

::::
such

:::::::
satellite

:::::::::::
observations

:::::
which

::::
are

:::::::::::
representative

:::
of

:
a
::::::
larger

:::::
spatial

::::
area

:::
(9

::::
km)

:::
and

:::::::
shallow

::::
soil

:::::
depth

:::
(2.5

::
-
:
5
::::

cm)
:::::
allow

:::
us

::
to

::::::::
improve

:
1
::::

km
:::::
model

:::::::::
estimates

::
at

::::::::::
independent

:::::::::
COSMOS

::::::
probe

:::::
sites.

:::
The

:::::::::
COSMOS

:::::::
probes

:::
are

:::::::::::
representative

:::
of

:
a
:::::
much

:::::::
smaller

::::::
spatial

::::
scale

::::::
(⇠300

:::
m)

::::
and

:
a
::::::

deeper
::::

soil
:::::
layer

:::
(14

:
-
:::

40
::::
cm),

::::::::
meaning

::::
that

::
by

::::::::::
combining

:::::
SMAP

:::::::::::
observations

::::
with

:::
he

::::::
JULES

::::::
model

:::
we

:::
are

::::
able

::
to

:::
find

::::::
PTF’s

:::
that

:::::
better

::::::::
represent

:::::
finer

:::::
spatial

::::::
scales

:::
and

::::::
deeper

::::
soil370

:::::::::
moisture’s.

:::
The

:::::::::
correlated

:::::
nature

:::
of

:::
the

::::
PTF

::::::::::
parameters

::
in

:::::::
equation

:
(1)

:::::::
presents

:
a
::::::::
potential

::::::
source

::
of

::::::::::
equifinality

::::
(e.g.

::::
both

:::
�a::::

and

::
�c::::

both
:::
act

::
to
::::::::

increase
:::
the

:::::::::
magnitude

::
of

::::
✓sat::

in
:::
the

::::::::
presence

::
of

::::
clay

::::::
soils),

:::
this

::::::
means

::::
that

:::
we

:::::
could

::::::
achieve

:::
the

:::::
same

::::
soil

::::::::
hydraulic

::::::::::
conductivity

::::
with

::::::::
multiple

::::::::::
realisations

::
of

::::
PTF

:::::::::
parameters

:::
at

:::
any

:::::::::
individual

::::
grid

::::
cell.

::::
The

:::::
effect

::
of

::::
this

::
is

::::::
greatly

::::::
reduced

:::
as

::
we

::::
are

:::::::::
performing

:::
the

:::::::::::
optimization

::::
over

:::
the

:::::
whole

:::::::
domain

:::
and

::::
not

::
on

::
a

:::
grid

::::
cell

:::
by

:::
grid

::::
cell

:::::
basis.

::
In

:::::
effect

::::
this375

18



Figure 11. Times–series of
::::
water

::::::
budget

:::::::
variables

:::
and

:
soil

::::::::
temperature

:
at Cardington COSMOS site.

::::
Black

::::
plus

::::
signs:

:::::::::::
COSMOS-UK

observations,
:::
grey

::::::
crosses:

:::::
SMAP

::::::::::
observations

:::
for

:::::
closest

:
9
:::
km

::::
pixel,

:
blue line: prior JULES estimate

::
for

:::::
closest

::
1

::
km

::::
grid

:::
cell, orange line:

posterior JULES estimate
::
for

:::::
closest

::
1
::
km

::::
grid

:::
cell.

:::::
means

:::
the

::::::
unique

::::
soil

::::::::
properties

::
at

::::
each

:::
of

:::
the

:::::
30614

::::::
model

:::
grid

:::::
cells

:::
act

::
as

:::::::::
orthogonal

:::::::::
constraints

:
within the DA

::::::::
algorithm

:::
and

::::::
reduce

:::
the

::::
issue

::
of
::::::::::

equifinailty
:::
for

:::
the

:::::::::
optimized

::::
PTF

:::::::::
parameters

::
as

:::
the

:::
DA

:::::::::
algorithm

::
is

:::::
having

:::
to

::
fit

:::
the

:::::::::
assimilated

::::
soil

:::::::
moisture

:::::::::::
observations

::
for

:::::
many

::::::::
different

:::
soil

:::::::
textures

::
at

:::::
once.

::
It

::::
may

:::
also

:::
be

:::::::
possible

::
to

:::::::
improve

::::::
results

::::::
further

:::
by

::::::::
including

:::::::::
information

:::
on

::::
such

::::::::::
correlations

::::::
within

:::
our

:::::
prior.

:::::
Such

::::::::
estimates

::::
have

:::::
been

:::::::
included

::
in

::
a
:::::::::
variational

:::
DA

::::::::::
framework

:::
for

:::
the

:::::
carbon

:::::
cycle

::::
and

::::::
shown

::
to

::::::::
improve

:::::::
posterior

:::::::::
estimates

:::::::::::::::::::::
(Pinnington et al., 2016) .

:::::::
Previous

:::::::
studies

::::
have

:::::
noted

::::
the

::::
issue

:::
of380

:::::::::
equifinality

:::::
when

:::::::::
optimising

::::
soil

:::::
model

::::::::::
parameters

::
on

::
a

:::
grid

:::
by

::::
grid

::::
basis

:::::::::::::
(Beven, 2001) .

::::::::::::::::::::::::::::
Samaniego et al. (2010) proposed

::
the

:::::::::
multiscale

:::::::::
parameter

::::::::::::
regionalization

:::::::
method

::
to

:::::::
alleviate

:::
this

:::::
issue

::
by

::::::::::
performing

:
a
::::::
spatial

:::::::::
uniforming

:::::::
function

::::
and

::::::
linking

:::::::::
parameters

::
at

::::::
coarser

::::::
scales

::
to

:::::
those

::
at

::::
finer

::::::::::
resolutions.

::::
Our

::::::::
technique

::::
also

::::::
allows

:::
for

:
a
::::::
vastly

::::::
reduced

:::::::::
parameter

:::::
space

:::
by

::::::
moving

:::::
from

:::::::
updating

:::::::
gridded

:::
soil

::::::
model

::::::::::
parameters

::
to

::::::
instead

:::::::::
optimizing

::
a
:::::
single

:::
set

::
of

:::::::::::
pedotransfer

:::::::
function

::::::::::
parameters

::::
valid

::
in

:::::
space

::::
and

::::
time.

:::::
This

:::::
could

::::
also

::::
lead

::
to

:::::
issues

::
as

:::
we

:::
are

::::
not

::::::::::
considering

:::::::::
uncertainty

::
in
::::

the
:::::::::
underlying

:::
soil

::::::::
property385

:::::::
database

::::::::::::::::::
(Fischer et al., 2008) ,

::::::
which

:::::
could

::::
have

::::::
contain

::::::
errors

::::::::::::::::
(Tifafi et al., 2018) .

::
It
::::
may

:::
be

:::::::::
appropriate

:::::
when

::::::::::
performing

::::
such

:
a
:::::::::
technique

::
at

:
a
::::::
larger

::::
scale

::::
that

:::
the

:::::::::::
optimization

::
is

::::
split

:::
up

:::
into

::::::::
different

:::::::::
calibration

:::::
zones

:::
as

:
it
::::

has
::::
been

::::::
shown

::::
that

::::::::::
pedotransfer

::::::::
functions

::
in

::::::
certain

::::::
regions

::::
can

::::
have

:
a
::::::::
different

::::
form

::::
(e.g.

:::::::
tropical

::::
soils

:::::::::::::::::::::
(Marthews et al., 2014) ).

:::::
Within

:::
the

::::
DA

::::::::
procedure

::::
used

::
to

:::::::
optimise

:::
the

::::
PTF

:::::::::
parameters

:::::
there

:::
are

::::::::::
uncertainties

::::
that

::::
have

:::
not

::::
been

::::::::
explicitly

:::::::::
prescribed.

:::::
There

:::
will

:
be inherent bias and errors in both the observations and model. For

::::::
SMAP

:::
any

::::
bias

::::::::
contained

::
in

:::
the

:::::::::::
observations390

::::
could

::::::
cause

::
us

::
to

:::::::
retrieve

::::
PTF

::::::::::
parameters

:::
that

::::::
result

::
in

::::::::
erroneous

::::
soil

::::::::
hydraulic

::::::::::::
conductivity’s

::::
and

:::::::::
ultimately

:::::::
degrade

:::
the
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Figure 12. Times–series of
::::
water

:::::
budget

:::::::
variables

:::
and

:
soil

::::::::
temperature

:
at Morley COSMOS site.

:::::
Black

:::
plus

::::
signs:

:::::::::::
COSMOS-UK obser-

vations,
:::
grey

:::::::
crosses:

:::::
SMAP

::::::::::
observations

::
for

::::::
closest

:
9
:::

km
:::::
pixel, blue line: prior JULES estimate

::
for

:::::
closest

::
1

::
km

::::
grid

:::
cell, orange line:

posterior JULES estimate
::
for

:::::
closest

::
1
::
km

::::
grid

:::
cell.

::::::::::
performance

::
of

:::::
other

:::::
model

:::::::::::
components.

::
It

:::
has

::::
been

::::::
shown

:::
that

:::
the

:::::::
Level-3

:
9
:::
km

::::::
SMAP

:::::::::::
observations

::::
used

::::
here

::
do

:::
not

::::
have

::
a

::::::::
significant

::::
bias

::::::::::::::::::::::::::::
(Colliander et al., 2017) especially

::
in

::::::::
temperate

:::::::
regions

:::::::::::::::::
(Zhang et al., 2019) .

::::
The

:::
fact

:::
that

:::::
after

::::::::::
assimilation

::
of

::
the

::::::
SMAP

::::
data

:::
we

:::
not

::::
only

::::::
reduce

:::
the

:::::
RMSE

:::
of

::::::
JULES

::::::::
compared

::
to

::::::
SMAP

:::
but

::::
also

:::::
reduce

:::
the

::::::
RMSE

::
of

::::::
JULES

:::::::::
compared

::
to

::::::::::
independent

::::::::
COSMOS

::::::::
estimates

::::
also

:::::
gives

::
us

:::::::::
confidence

:::
that

:::
the

::::
bias

::
in

:::
the

:::::::::
assimilated

::::::
SMAP

::::
data

::
is

::::::::
relatively

::::
low.

:::
We have395

dealt with
:::
the

:::::
many

:::::
errors

::::::::
contained

:::::
within

::::
our

:::
DA

:::
cost

::::::::
function by inflating the observation uncertainty within the

::::::::::
observation

::::
error

:::::::::
covariance

::::::
matrix,

:::
as

::::::::
described

::
in

::::::
section

:::
2.5. However, specifying the errors arising from structural uncertainties and

missing processes within the JULES model is difficult. We can see these errors manifesting themselves in our comparisons to

COSMOS–UK observations in Figures 11 to 14. Figure 11 displays results for the Cardington cosmic–ray probe, this site is a

level well–managed grassland with a typical mineral soil and is therefore well modelled by JULES which has the ability to400

represent the processes of such a site. Both the Morley and Stoughton sensors (Figure 12 and 13 respectively) are positioned on

arable land with typical mineral soils and while we model Morley well we struggle to match the magnitude of the Stoughton

observations. It is possible that different management practices at the respective sites are impacting on the ability of JULES

to predict the observations. In this paper we have not run JULES with its in–built crop model turned on, so that the model

will struggle to represent heavily managed crops that behave distinctly from a grassland. The site at which both prior and405

posterior perform worst is Redmere (Figure 14), this cosmic-ray probe is again on arable land but with a soil type of peat. In its

current configuration JULES does not model organic soils and estimates of soil moisture from microwave satellite sensors over
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Figure 13. Times–series of
::::
water

::::::
budget

:::::::
variables

:::
and

:
soil

:::::::::
temperature

:
at Stoughton COSMOS site.

::::
Black

::::
plus

::::
signs:

:::::::::::
COSMOS-UK

observations,
:::
grey

::::::
crosses:

:::::
SMAP

::::::::::
observations

:::
for

:::::
closest

:
9
:::
km

::::
pixel,

:
blue line: prior JULES estimate

::
for

:::::
closest

::
1

::
km

::::
grid

:::
cell, orange line:

posterior JULES estimate
::
for

:::::
closest

::
1
::
km

::::
grid

:::
cell.

peatland are problematic
:::::::::::::::::
(Zhang et al., 2019) , so it is understandable that we are unable to match the much wetter conditions

observed at this site. The accuracy of JULES posterior estimates is also contingent on the assimilated SMAP observations, so if

SMAP estimates have large errors compared to cosmic-ray probe observations JULES will be unable to improve from its prior410

predictions.

::
In

:::
the

:::::
initial

:::::::::
application

::
of

:::
this

:::::::::
technique

::
we

::::
have

:::::::
focused

::
on

::
a
::::::
specific

::::::
region

::
at

:
a
::::
high

:::::::::
resolution.

::::
Here

:::
we

::::
have

::::::
utilised

::::
256

::::::::
processors

:::
to

:::
run

:::
the

::::::
JULES

::::::
model

::::::::
ensemble,

:::::
with

::::
each

::::::
JULES

::::
run

:::::::
utilising

:::::::
message

:::::::
parsing

::::::::
interfaces

::
to

:::::::::::
disaggregate

:::
the

:::::
spatial

:::::::
domain

::
of

::
the

::::::
model

:::
and

::::
split

:::
the

::::::::::::
computational

:::
load

::::::
across

:::::::
multiple

:::::::::
processors.

::
In

::::
this

::
set

:::
up

:
it
:::
has

:::::
taken

::::::::::::
approximately

:::
1.5

::::
days

::
to

:::::::
complete

::::
100

::::::
JULES

:::::
model

:::::
runs,

::::
with

::::
each

:::::
model

:::::
being

:::
for

:::::
30614

::::
grid

::::
cells

:::
and

::::
over

::
6

::::
years

::::::
(2016 to

::::
2017,

::::
with

::
a415

:
4
::::
year

:::::::
spin-up).

:::
In

::::
order

::
to

::::
find

:
a
:::
set

::
of pedotransfer function parameters

::::
valid

:
at
:::
the

::::::
global

:::::
scale,

:::::
using

::
the

:::::::::
technique

::::::::
presented

::::
here,

:::
we

:::::
would

::::
need

::
to

::::::::
decrease

::
the

::::::
spatial

:::::::::
resolution.

:::::::
Working

::
at
:::
the

:::::
scale

::
of

:::
0.5

::::::
degrees

:::
we

:::::
would

::::
have

::::::::::::
approximately

::::::
67000

:::
land

::::
grid

::::
cells

::::::::
globally.

:::::
Using

:::
our

:::::
fairly

::::::
modest

:::::::::::
experimental

:::::
setup

:::
and

::::::::
assuming

::
a
:::::
linear

::::::
scaling

::::::::
repeating

::
at

:::
the

:::::
global

:::::
scale

:::::
would

::::
still

::::
only

::::
take

:
a
:::::
little

::::
over

:
3
:::::

days.
::::::::
However,

::
it
::::
may

:::
be

::::::::
beneficial

::
to
:::::

focus
:::

on
:::::::
regional

::::::
efforts

::
to

::::::
ensure

:::
the

:::::::::
optimised

::::::::::
pedotransfer

::::::::
functions

::::
best

:::::
reflect

:::
the

:::::::::
behaviour

::
of

::::
local

:::::
soils.

:::
The

::::::
global

::::::
domain

:::::
could

::::
then

:::
be

::::::::::
decomposed

::::
into

::::::::::
sub-regions420

::::
with

::::::
specific

:::::::::
parameters

:::::
being

::::::
found

::
for

:::::
each

::::::
distinct

::::::
region.

:

Both SMAP and COSMOS–UK observations represent a valuable resource for validation and improvement of land surface

models and could be further utilised still. It is possible that our formation of a spatially aggregated observation operator to compare
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Figure 14. Times–series of
::::
water

::::::
budget

:::::::
variables

:::
and soil

:::::::::
temperature at Redmere COSMOS site.

::::
Black

:::
plus

::::
signs:

:::::::::::
COSMOS-UK obser-

vations,
:::
grey

:::::::
crosses:

:::::
SMAP

::::::::::
observations

::
for

::::::
closest

:
9
:::

km
:::::
pixel, blue line: prior JULES estimate

::
for

:::::
closest

::
1

::
km

::::
grid

:::
cell, orange line:

posterior JULES estimate
::
for

:::::
closest

::
1
::
km

::::
grid

:::
cell.

SMAP 9 km estimates to JULES 1 km estimates could be improved upon and that more signal may be coming from the centre

of the satellite pixel, so that we could weight these JULES model pixels more highly within the observation operator. In future425

work it may also be beneficial to build towards a full radiative transfer scheme on top of JULES to assimilate the raw brightness

temperature observations from the SMAP satellite to increase the representativty between the observations and the model and

reduce sources of bias that may be introduced by the use of ancillary data in the soil moisture retrieval.
:::::
Other

::::::
studies

:::::::
utilising

:::::::
different

::::
land

::::::
surface

:::::::
models

::::
have

::::
have

::::::
shown

::::
this

:::::
works

::::
well

:::::::::::::::::::::::::::::::::::::::::::::::
(Han et al., 2014; Yang et al., 2016; Lievens et al., 2017) The

COSMOS–UK observations could also be used within the data assimilation algorithm, rather than just acting as validation, to430

capture information on another spatial scale. Much work would be needed here to process and organise site level driving data

and understand the different characteristics of each site before combining these observations with the JULES land surface model.

In

:::
this paper we have focused on the optimisation of pedotransfer function parameters to improve estimates of water balance

from land surface models. In other regions across the globe where underlying soil texture maps are highly uncertain it may435

be necessary to also consider optimising estimates of soil properties per-grid cell, given satellite and in-situ observations

(Pinnington et al., 2018). This could further increase the skill of estimates in problematic areas. There is also the opportunity to

incorporate other streams of observations into the data assimilation procedure. For example the use of stream flow data could

give
::
us a powerful integrated constraint on land surface model estimates of water balance and run-off

:::::::::::::::::::::
(Abbaszadeh et al., 2020) .
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Correlation ubRMSE RMSE

Site Prior Posterior Prior Posterior Prior Posterior

Bunny Park 0.86 0.89 0.02 0.02 0.07 0.04

Cardington 0.85 0.91 0.05 0.03 0.06 0.03

Elmsett 0.81 0.82 0.04 0.04 0.16 0.17

Euston 0.90 0.92 0.04 0.04 0.05 0.04

Fincham 0.83 0.85 0.02 0.02 0.19 0.13

Loddington 0.45 0.79 0.06 0.04 0.39 0.31

Morley 0.86 0.89 0.03 0.03 0.03 0.03

Redmere 0.33 0.35 0.08 0.08 0.43 0.43

Rothamsted 0.85 0.89 0.03 0.03 0.05 0.07

Stoughton 0.30 0.76 0.05 0.04 0.24 0.13

Waddesdon 0.63 0.87 0.07 0.05 0.27 0.19

All Sites 0.70 0.81 0.045 0.038 0.18 0.14

Table 3. Summary statistics for comparison of JULES-CHESS soil moisture estimates to COSMOS probe observations over the experiment

period. Over all sites we find a 16% increase in correlation, 16% reduction in ubRMSE and 22% reduction in RMSE after performing the

calibration using LAVENDAR.

::::
Flux

:::::
tower

::::::::::
observations

:::
of

:::::
latent

:::
and

:::::::
sensible

::::
heat

:::::
could

::::
also

:::::::
provide

:::::
useful

::::::::::
constraints

::
on

:::::::::::
assimilation

:::::::
outputs.

::::::
Within

:::
the440

::::::::::::
Hydro–JULES

::::::
project

:::::
work

::
is

:::::
being

:::::::::
undertaken

:::
to

:::::::
improve

:::
the

::::::::::::
representation

::
of

:::::::::::
hydrological

::::::::
processes

:::
at

:::::::
different

::::::
scales,

::::::::
especially

:::::
lateral

::::
soil

:::::
water

::::
flow

:::
and

:::::::::::
groundwater.

:
The development of the new JULES groundwater component will allow for

the use of observations from the Gravity Recovery and Climate Experiment (GRACE) satellites
:::::::::::::::::
(Tapley et al., 2004) which

have the ability to monitor changes in the Earth’s underground water storage.
:
It
::::
will

::
be

::::::::::
informative

::
to

::::::
re–run

:::
this

:::::::::
parameter

::::::::
estimation

::::::::::
experiment

:::::
again

::
as

::::
new

::::::::
processes

::::
are

:::::
added

::
to

:::
the

::::::
model

::
to

:::::::::
understand

::::
the

:::::
effect

::
on

:::
the

::::::::
retrieved

:::::::::::
pedotransfer445

:::::::
function

::::::::::
parameters.

:::
We

::::
will

::::
then

:::
be

::::
able

::
to

::::
see

:::::
where

:::
we

::::::
might

::
be

::::::::::
over–fitting

:::::
these

::::::::::
parameters

::
to

:::::::
account

:::
for

:::::::
current

::::::::
structural

:::::::::
deficiencies

::::::
within

:::
the

::::::
model

::::
(such

:::
as

::
the

:::::::
current

:::
lack

:::
of

:
a
:::::::::::
groundwater

::::::
model).

:

5 Conclusions

We have presented novel methods for calibrating pedotranfer functions used to create the soil parameter ancillaries of a land

surface model by using satellite data from the NASA SMAP mission. After the retrieval of an optimized parameter set, using
:::
new450

:::::
hybrid

:
data assimilation techniques, we find an average 20% reduction in error for JULES model estimates of soil moisture when

compared to SMAP satellite estimates. There are still areas which remain problematic such as working over urban
:::::::
locations

:
and

peatlands. These will require additional modelling efforts and new model components. The resultant posterior pedotransfer

functions also improve the prediction of soil moisture for the JULES land surface model when compared to independent in-situ
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estimates from the COSMOS–UK network. At 11 COSMOS–UK research sites distributed across the experiment domain455

we find an average 16% increase in correlation, 16% reduction in ubRMSE and a 22% reduction in RMSE for the posterior

pedotransfer functions compared to the prior.

Code availability. The code used in experiments is available from the MetOffice JULES repository (https://code.metoffice.gov.uk/trac/jules)

under Rose suite number u-bq357. The LAVENDAR data assimilation first release is available here: https://github.com/pyearthsci/lavendar

(last access: 20 February 2019).460

Appendix A: Computing the posterior ensemble

In this appendix we summarise the process to get the analysis (or posterior) ensemble of extended state variables (variables

and parameters)
:
In

:::
the

:::::
case

::
of

:::
this

:::::
paper

:::
the

::::::::
variables

::::
and

:::::::::
parameters

:::::::::
correspond

:::
to

:::
the

::
15

::::
PTF

::::::::::
parameters

::
in

:::::
Table

:
1. The

following steps are a recapitulation and continuation of the equations in Pinnington et al. (2018).

Let us start with a background ensemble of Ne joint state-parameter vectors:465

Xb =
h
x1b ,x2b , . . . ,x

Ne
b

i
. (A1)

::
In

:::
our

::::::::::
experiments

:::::
each

::
xib::::::::::

corresponds
:::

to
:
a
::::::
unique

:::
set

::
of
:::

15
::::
PTF

::::::::::
parameters

::::::::::::::::::
(xib = (�i

a,�
i
b, . . . ,�

i
o))::::

and
::::::::
Ne = 50.

:
We can

define the sample background (or prior) mean as:

x̄b =
1

Ne

NeX

n=1

xn
b (A2)

and sample background perturbation matrix as470

X0
b =

1p
Ne � 1

h
x1b � xb,x2

b � xb, . . . ,xNe
b � xb

i
. (A3)

The ensemble background error covariance matrix defined by

Pb = X0
bX0T

b . (A4)

To reduce the difficulty in finding the ensemble analysis mean, we use an incremental and pre-conditioned algorithm.

Incremental means that we express the analysis mean which is a perturbation from the background mean, i.e.:475

x̄a = x̄b + �x. (A5)

The pre-conditioned part means that the departure �x can be written by a control variable pre-multiplied by a conditioning

matrix. In particular we choose the departure vector to be written as a linear combination of the background ensemble of

perturbations, i.e.

x̄a = x̄b +X0
bwa, (A6)480
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where wa is a vector of weights, which becomes the object we are solving for in the estimation process. This formulation has

been used in several formulations, starting with Bishop et al (2001) and Wang et al (2004). We do not use localisation in this

work, but in the presence of localisation it would be applied in the manner of Hunt et al (2007). This vector of weights is the

minimiser of a cost function which can be written in ensemble space as:

J(w) =
1

2
wT w+

1

2
(ĤX0

bw+ ĥ(x̄b)� ŷ)T R̂�1(ĤX0
bw+ ĥ(x̄b)� ŷ) (A7)485

with gradient

rJ(w) = w+(ĤX0
b)

T R̂�1(ĤX0
bw+ ĥ(xb)� ŷ), (A8)

where
::̂
y

:::
are

:::
the

::::::::::
observations

:::
for

:::
the

::::::
whole

:::::::::::
time-window

:::
and

::::::
spatial

:::::::
domain

::::
(here

:::::
2016

::::::
SMAP

::::::::::
observations

:::::
over

:::
the

::::
East

::
of

:::::::
England,

::::
with

:::::
units

::::::::
m3 m�3),

:
Ĥ and ĥ are the linearised and non-linear observation operator respectively (here the JULES

model, which includes both a time integration and conversion into observation space
::
to

:::::
match

:::
the

::::::
SMAP

::::::::::
observations) and R̂490

is the observation error covariance matrix
::::
(here

:::::::::
containing

:::
the

::::
error

::::::::
estimates

:::
for

:::
the

:::::::::
assimilated

::::::
SMAP

::::::::::::
observations).

In practice we do not compute the linearised version of JULES. Instead one can define statistics in the observation space

in the following manner. The background ensemble of Ne joint state-parameter vectors in observation space is obtained by

applying the observation operator to each ensemble member:

Yb =
h
y1b = ĥ

�
x1b
�
,y2

b = ĥ
�
x2b
�
, . . . ,yNe

b = ĥ

⇣
xNe
b

⌘i
(A9)495

The sample background mean in observation space is:

ȳb =
1

Ne

NeX

n=1

yn
b (A10)

and the sample background perturbation matrix in observation space is:

Y0
b =

1p
Ne � 1

h
y1b � yb,y2

b � yb, . . . ,y
Ne
b � yb

i
(A11)

Using these considerations, (A7) and (A8) become (approximately):500

J(w) =
1

2
wT w+

1

2
(Y0

bw+ ȳb � ŷ)T R̂�1(Y0
bw+ ȳb � ŷ) (A12)

and

rJ(w) = w+(Y0
b)

T R̂�1(Y0
bw+ ȳb � ŷ). (A13)

Computing the minimum of the cost function (A12) using gradient (A13) yields the maximum-a-posteriori estimate wa which

inserting into equation (A6) gives us the maximum-a-posteriori estimate to the parameter and/or state variables xa. The analysis505

error covariance matrix (Pa) is given by (Evensen, 2003):

A = (I�KĤ)Pb =) X0
aX0T

a = (I�KĤ)X0
bX0T

b (A14)
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where K is the Kalman gain matrix and

(I�KĤ) = (I+ ĤXb
0T
:

R̂�1
ĤXb)

0�1
::

⇡ (I+Yb
0T
:

R̂�1Y0
b)

�1. (A15)

Then510

X0
aX

0T
: a = X0

b(I�KĤ)X
0T
: b =) X0

a = X0
b(I+Yb

0T
:

R̂�1Y0
b)

� 1
2 (A16)

i.e. the analysis ensemble of perturbations can be obtained by a right multiplication of the background ensemble of perturbations

times a matrix of weights defined as:

Wa = (I+Yb
0T
:

R̂�1Y0
b)

� 1
2 . (A17)

In our case the matrix square root is computed via Cholesky decomposition. Finally the posterior ensemble of Ne parame-515

ter/state vectors (Xa) is constructed as

Xa =
⇥
xa +X0

a,1,xa +X0
a,2, . . . ,xa +X0

a,Ne

⇤
. (A18)

::::
This

:::::::
posterior

:::::::::
parameter

::::::::
ensemble

:::
and

::::::::::::
corresponding

:::
set

::
of

::::::
JULES

::::
runs

::::
can

::::
then

::
be

::::
used

::
to

:::::::
provide

:::::::::
uncertainty

::::::::
estimates

:::
on

:::
our

:::::::
posterior

::::::
model

:::::::::
predictions

:::
and

:::
can

::::
also

::
be

:::::
used

::
in

:::::
future

:::::::::
calibration

::::::
studies

::
or

::
as

::
an

::::::::
ensemble

:::::::
forecast

:::
for

::::
state

:::::::::
estimation.
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