
A Field Evidence Model: How to Predict Transport in a
Heterogeneous Aquifers at Low Investigation Level?
Alraune Zech1 2, Peter Dietrich1 3, Sabine Attinger1 4, and Georg Teutsch1

1Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
2Utrecht University, Department of Earth Science, Utrecht, The Netherlands
3Eberhard Karls University Tübingen, Germany
4University of Potsdam, Germany

Correspondence: Alraune Zech (a.zech@uu.nl)

Abstract. Aquifer heterogeneity in combination with data scarcity is a major challenge for reliable solute transport predic-

tion. Velocity fluctuations cause non-regular plume shapes with potentially long tailing and/or fast travelling mass fractions.

High monitoring cost and presumably missing simple concepts have limited the incorporation of heterogeneity to many field

transport models up to now.

We present a hierarchical aquifer model which combines large-scale deterministic structures and simple stochastic ap-5

proaches. Such a heterogeneous conductivity can easily be integrated into a numerical models. Depending on the modelling

aim, the required structural complexity can be adapted. The same holds for the amount of available field data. The conductivity

model is constructed step-wise following field evidence from observations; though relying on as minimal data as possible.

Starting point are deterministic blocks, derived from head profiles and pumping tests. Then, sub-scale heterogeneity in form of

random binary inclusions are introduced to each block. Structural parameters can be determined e.g. from flowmeter measure-10

ments.

As proof of concept, we implemented a predictive transport model for the heterogeneous MADE site. The proposed hier-

archical aquifer structure reproduces the plume development of the MADE-1 transport experiment without calibration. Thus,

classical ADE models are able to describe highly skewed tracer plumes by incorporating deterministic contrasts and effects

of connectivity in a stochastic way even without using uni-modal heterogeneity models with high variances. The reliance of15

the conceptual model on few observations makes it appealing for a goal-oriented site specific transport analysis of less well

investigated heterogeneous sites.
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1 Introduction

Groundwater is extensively used worldwide as the major drinking water resource and consequently needs to be protected20

with respect to quantity and quality. Increasing pressure on the quality originates from the intensification of agriculture using

agrochemicals (non-point sources), an increased urbanization with the resulting solid and liquid wastes and contaminant spills

from industrial applications (point sources).

Essential for groundwater protection is the quantitative analysis of the fate and transport of various contaminants in the

groundwater body. This can be either for a provisional risk assessment or for the clean-up of an already existing groundwater25

contamination. Numerical models are common tools to quantify the flow and transport, where partial differential equations are

solved using initial and boundary conditions (Bear, 1972; Fetter, 2000).

For simplicity, we restrict ourselves to saturated flow and transport of a dissolved, non-reactive contaminant. The governing

equation for its concentration C(x,t) is the advection-dispersion equation (ADE) (Bear, 1972):

∂C(x,t)
∂t

=−u(x,t) · ∂C(x,t)
∂x

+
∂

∂x

(
D · ∂C(x,t)

∂x

)
(1)30

given here in one spatial dimension x and time t. D is the macro-dispersion coefficient and u(x,t) is the Darcy velocity. The

latter is a function of the hydraulic gradient J and the heterogeneous hydraulic conductivity K(x) through Darcy’s Law. A

proper description of the velocity field u(x,t) is crucial for predicting the concentration distribution C(x,t).

The adequate parametrization of the heterogeneous conductivity K(x) poses a significant challenge in practical model

development due to the lack of data. Numerous deterministic and stochastic approaches have been developed to incorporate35

the effects of spatial heterogeneity of conductivity on flow and transport, particularly in the context of stochastic subsurface

hydrology (Dagan, 1989; Gelhar, 1993; Koltermann and Gorelick, 1996). On one hand, fully deterministic approaches use

either uniform (effective) conductivities in large domains or maps of heterogeneity, created by interpolation, e.g. Kriging

(Kitanidis, 2008). The former approach requires only few data to the price of neglecting local effects of heterogeneity. The

latter requires a huge amount of observation data which is hardly ever available in practical cases. Furthermore, conductivity40

fields from interpolation result in smooth structures lacking geological realism. On the other hand, stochastic methods allow

to resolve heterogeneity based on a limited amount of data. Thus, they are able to capture the uncertainty in flow and transport

predictions caused by heterogeneity. Common methods as (i) Gaussian random fields (Freeze, 1975; Dagan, 1989; Gelhar,

1993; Zinn and Harvey, 2003); (ii) indicator/hydrofacies models (Carle and Fogg, 1996; Fogg et al., 2000); or (iii) multi-point

statistics/training images (Renard et al., 2011; Linde et al., 2015) allow to create spatially distributed conductivity fields of45

higher geological realism. Modelling flow and transport in ensembles of heterogeneous fields (Monte Carlo approach) do not

only provide mean behavior but also uncertainty ranges.

Log-normal random fields require a number of parameters like geometric mean, log-variance and spatial correlation lengths

in horizontal and vertical directions. They result from geostatistical analysis of spatially distributed observations, e.g. from

flowmeter, permeameter or injection logging, as DPIL (Dietrich et al., 2008). Despite increased efficiency in exploration meth-50

ods, the cost and effort related to gather sufficient data hampers the application in practice. Alternatively, hydrofacies models

use indicator geostatistics with transition probability to generate geological heterogeneity structures. Although conceptually
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different, the general amount of input data is similarly high. Training images are known for their geological realism, but depend

strongly on the high resolution input data, e.g. reconstructed images from outcrop studies. Not only the availability of a training

image limits their application, but particularly the question if it is representative for the larger aquifer domain where transport55

is modeled (Koltermann and Gorelick, 1996).

A recent debates series (Rajaram, 2016; Fiori et al., 2016; Fogg and Zhang, 2016; Cirpka and Valocchi, 2016; Sanchez-

Vila and Fernàndez-Garcia, 2016) outlined the gap between the advanced research in stochastic subsurface hydrology and

its application in the practice of groundwater flow and transport modeling. We see a significant reason in the lack of data for

complex stochastic models. Thus, we propose a novel approach which focuses on optimizing the available field data adaptive to60

the simulation target. Thereby, we aim to provide a tool making aquifer heterogeneity more accessible for practical applications.

Our approach is based on the fact that subsurface heterogeneity can be generally classified into

a) larger scale dominant features which primarily determine the general flow direction together with the average ground-

water flow velocity; and

b) smaller scale features which are responsible for the dispersion, respectively the spatial spreading of a contaminant or65

solute.

We create a deliberate connection between the model parameterization requirements and the field characterization methods

employed for measurement. Pumping tests, for example, are a recommended characterization method to determine the spatially

averaged transmissivity respectively hydraulic conductivity, even in a heterogeneous aquifer environment (Zech et al., 2016).

Together with the averaged gradient estimated from piezometric levels this yields good estimates of the mean groundwater70

flow velocities. On the other hand, high resolution, small-scale borehole logs of hydraulic conductivity (e.g. from flowmeter or

DPIL) can provide the data needed to estimate the variability of the hydraulic conductivity field and consequently the dispersion

parameters needed.

We demonstrate the methodology using field characterization data from MADE, a heterogeneous, well investigated research

field site (e.g. Boggs et al. (1990); Zheng et al. (2011); Gomez-Hernandez et al. (2017)). Following our adaptive approach,75

we use a minimum of field data on aquifer properties to construct a numerical transport model and to predict tracer plume

behavior following a Monte Carlo approach. Predictions are independently evaluated using field tracer data from the MADE-1

experiment (Boggs et al., 1992). They shows good agreement also compared to other complex predictive transport models for

MADE (e.g. Fiori et al. (2013, 2017)).

The course of the paper is the following: section 2 features the approach in light of different modeling aims. Section 3 is80

dedicated to the application of the methodology for the MADE aquifer. We close with a summary and conclusions in section 4.

2 Approach

Large scale hydraulic structures of hundreds or more meters determine the groundwater flow direction and magnitude in

combination with groundwater catchment boundaries. Subsequently, they set the mean transport velocity. This is the key

3

https://doi.org/10.5194/hess-2020-30
Preprint. Discussion started: 10 February 2020
c© Author(s) 2020. CC BY 4.0 License.



parameter to predict the location of the bulk mass of substances dissolved in the groundwater when input conditions are85

known.

Variations of hydraulic properties on intermediate scale, in the range of tens of meters, generate spatially variable flow fields.

They also render transport velocities variable at these scales resulting in a larger spreading of plumes. This is particularly

important for modeling tailing or leading mass fronts. Fluctuations on scales smaller than these intermediate scales have a

blending effect, generally increasing local mixing and macro-dispersion (Werth et al., 2006).90

Following this conceptual view, we generate hydraulic conductivity fields composed of three components: Module (A), (B)

and (C) which capture the effects at large, intermediate and small scale heterogeneity, respectively. Each component is selected

according to the model aim and the data at hand to parametrize the hydraulic conductivity for this component.

The procedure is exemplified for the MADE site. This significantly heterogeneous site was intensively investigated with

various measurement devices providing many different data sets, as pumping tests, flowmeter and DPIL measurements (Boggs95

et al., 1990; Bohling et al., 2016). Detailed information on MADE can be found in section 3 and the Supporting Information.

In the approach, we considers several steps:

1. Specifying the aim of the model: What do we want to predict?

2. Selecting processes and process components which need to be accounted for in the model: What does this imply for the

conceptualization of hydraulic conductivity?100

3. Selecting suitable measurement methods: Which method can deliver the data needed for parameterizing hydraulic con-

ductivity with minimal effort?

4. Conceptualizing hydraulic conductivity.

5. Calculating flow and transport.

Before specifying the hydraulic conductivity component Modules (A), (B) and (C), we illustrate our concept discussing two105

exemplary model aims.

2.1 Exemplary Model Aims

Model Aim "Mean Arrival"

1. Aim: Prediction of mean arrival of a contaminant from a point source.

2. Processes: Estimation of regional groundwater movement, direction and magnitude of flow making use of the ground-110

water flow equation and Darcy’s law. Transport is modelled by advection. For sake of simplicity we do not consider

reactivity.

3. Field characterization: Regionalized groundwater level measurements provide direction and magnitude of hydraulic

gradient. It is critical to outline areas of different gradients (zones) indicating regional hydraulic conductivity trends and
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Figure 1. Left: Potentiometric surface map of head measurements according to Boggs et al. (1990). Orange-Green line indicates location of

cross section displayed right: Concept (Module A) for large conductivity structure with deterministic zones of low (orange) and high (green)

conductivity. Arrow indicates flow direction.

large scale heterogeneity. Pumping tests can provide independent values of effective transmissivity within each zone115

(Kruseman and de Ridder, 2000).

4. Conceptualization of hydraulic conductivity: Conductivity is considered homogeneous within each large scale zone.

Effects of heterogeneity are captured in effective parameters representing average flow behavior, e.g. determined from

pumping tests.

5. Solving flow and transport: Flow is solved either analytically, e.g. for one or two zones of different effective hydraulic120

conductivity, or numerically in case of a more complex spatial distribution of zones. Transport can be determined making

use of analytical or numerically solutions of the ADE according to initial and boundary conditions.

2.1.1 Example MADE

The piezometric surface map of MADE (Boggs et al., 1992, Fig. 3) shows a significant non-uniform hydraulic head pattern.

The reproduced head contours in Figure 1a allow to delineate two major zones: an area of low conductivity upstream (left)125

and high conductivity downstream (right). Two large scale pumping tests confirm the contrast in mean conductivity of about

two orders of magnitude (Boggs et al., 1992). Consequently, flow should be modelled with distinct mean conductivity in two

vertical zones (Figure 1b) when aiming to model mean arrival times for the MADE site.

Model Aim "Risk Assessment"

1. Aim: Prediction of early or late arrival of contaminants commonly used in risk assessments.130

2. Processes: Flow and transport equations; it is particularly relevant to capture variability in transport velocity to estimate

spreading behavior of plumes.
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Figure 2. Left: Four flowmeter logs of hydraulic conductivityK(z) versus depth z; the logs F-09 and F-18 are close to the tracer test injection

location; F-20 and F-40 are several tenth of meters downstream (see Figure 3). Right: Concept of binary inclusion structure (Module B) with

15% high conductivity inclusions (green) embedded in the bulk of low conductivity (orange).

3. Field characterization: Detecting and delineating high and low conductivity subsurface structures with a characteristic

horizontal length scale of several meters. Typical examples are channels formed in braided river systems. Typical in-

vestigation methods giving field evidence of such heterogeneity structures are small scale slug tests, borehole flowmeter135

logs or permeameter tests detecting strongly vertically varying conductivity.

4. Conceptualization of hydraulic conductivity: Spatially structured non-uniform conductivity.

5. Solving flow and transport: Small variations in conductivity allow to apply analytical solutions with effective measures,

e.g. from first order theory (Dagan, 1989). Spatially resolved heterogeneity requires numerical solution of flow and

transport with numerical tools (Monte Carlo approach).140

2.1.2 Example MADE

Borehole flowmeter logs at MADE (Rehfeldt et al., 1989; Boggs et al., 1990) reveal horizontal layers with conductivity differ-

ences over 2 – 3 orders of magnitude. For instance, the flowmeter log F-40 shown in Figure 2a has a bulk of high conductivity

values with about 15% of values being two orders of magnitude smaller. Logs at other locations (F-09 and F-18 ) show the

inverse behavior: a bulk of low conductivity values with embeddings of high conductivity.145

Such strong vertical variation indicate the presence of high conductivity channels acting as preferential flow path and low

conductivity zones with stagnant flow which both impact strongly on plume spreading behavior. Consequently, when aiming

to model early and late plume arrival these feature need to be accounted for in a flow and transport model for the MADE site.
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2.2 Scale-dependent Conductivity Modules

Given the scale-dependency of hydraulic conductivity features and their distinct relevance for flow and transport predictions,150

we propose three components: Module (A), (B) and (C) which capture large, intermediate and small scale heterogeneity effects,

respectively. Given a certain model aim, components are selected (or not) with regard to the available field data. We shortly

discuss the Modules and motivate their use based on the data of the MADE site example for different aims.

Module A

The aquifer domain of interest is divided into deterministic zones of significantly different mean conductivity (i.e. more155

than one order of magnitude). The structure can comprise horizontal or vertical layering simply in blocks or complex zone

geometries depending on information available.

The zones represent large scale geological structures exhibiting conductivity differences potentially over several orders of

magnitude as a results of changes in deposition history or changes in the material’s composition (Bear, 1972; Gelhar, 1993).

Zones can be delineated using geologic maps, piezometric surface maps and geophysical methods providing information on160

aquifer structure, sedimentology and genesis. Pumping tests are suitable for identifying mean conductivities for each zone due

to their large detection scale. Flow simulations on the deterministic zone structure should reproduce the observed head pattern.

The MADE site is an example where the concept of two zones of different mean hydraulic conducitivity (Figure 1b) can

reprocude conceptually the hydraulic head pattern. Details will be discussed in section 3.

Module B165

When hydraulic conductivity shows heterogeneous features at the same length scale as the plume transport itself, they require

proper resolution. A contaminant plume typically passes several of these intermediate scale features but not enough to ensure

ergodic transport behavior. Thus, using effective parameters is not warranted. Since limited data availability precludes from a

deterministic representation of these features, stochastic approaches suit best.

Binary stochastic models are the simplest way to capture the effects of intermediate scale features. Figure 2b shows an170

example how to conceptualize a medium with twoK values: inclusions (K2) are embedded in the bulk conductivity (K1), with

p characterizing the percentage ofK2. Inclusions of high conductivity may represent preferential flow paths whereas inclusions

of low conductivity can be obstacles like clay lenses.

The inclusion topology is a matter of choice and data availability. A simple design is a distribution of non-overlapping

blocks with horizontal length Ih and thickness Iv as in Figure 2b with p= 15%, Ih = 5 m and Iv = 0.5− 1 m. More complex175

layering structures can be adapted if additional topological information is available. However, the specific topology often plays

a subordinate role. When not having any information on spatial correlation of heterogeneity, it is beneficial to assume some

instead of sticking to a homogeneous model.

Characteristic length scales in vertical direction Iv are detectable with low effort from a few borehole logs (Figure 2a).

Characteristic horizontal length as Ih are critical since they require spatially distributed observations. A parametric uncertainty180

7

https://doi.org/10.5194/hess-2020-30
Preprint. Discussion started: 10 February 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure 3. Left: Locations of measurements and tracer test observation network according to Boggs et al. (1990); Bohling et al. (2016). Right:

Gaussian random field with exponential co-variance structure as conceptual module for small scale conductivity (Module C).

approach can keep the effort low. A range of reasonable Ih values is estimated (e.g. using expert knowledge) and applied in the

random inclusion model. A sensitivity analysis reveals the impact of the parametric uncertainty of Ih on transport results.

The binary structure as in Figure 2b is beneficial in its plain stochastic concept relying on few input data, simple implemen-

tation and low computational requirement. It can be combined with Module (A) by implementing it within every deterministic

zone preserving the mean conductivities. As for MADE, the inclusions represent the contrasting vertical layers as observed in185

flowmeter logs (Figure 2a), from which the inclusion parameters can be deduced for every deterministic zone (section 3).

Module C

Variations in grain size and soil texture form small scale heterogeneities of characteristic length scales up to one meter. Their rel-

evance for transport predictions depends on ergodicity and thus, on the degree of heterogeneity. Ergodicity is usually assumed

when the plume has traveled 10− 100 characteristic lengths. Then, effective parameters can capture effects of heterogeneity.190

Otherwise, the use of a spatial random representation is warranted.

If required, small scale features can be conceptualized with a log-normal conductivity distribution K(x)∝ LN (KG,σ
2
Y )

with geometric mean KG and log-variance σ2
Y . Including a spatial correlation structure depends on the acquired complexity

and the availability of two-point statistical data as correlation length and anisotropy. Figure 3b gives an example.

Geostatistical parameters can be inferred from spatially distributed observations (Figure 3a), e.g. permeameters, borehole195

flowmeter, or injection logging (Figure 4). This is related to high effort and costs. Novel techniques like DPIL (Dietrich et al.,

2008; Bohling et al., 2016) can provide a large amount of data at acceptable costs and time, but they are only accessible for

shallow sites. Alternatives can be approaches which derive geostatistical parameters directly from pumping tests (Zech and

Attinger, 2015; Zech et al., 2016) or dipole tracer test (Zech et al., 2018).

When combining with larger heterogeneity structures, small scale fluctuations are subordinate. In case of field evidence,200

Module (C) can be combined with Modules (A) and (B) by adding zero-mean fluctuations. According to Lu and Zhang (2002),

the variances of heterogeneous sub-structures is additive. Thus, the log-normal variance relates to a ’variance gap’ between

the total variance, e.g. from a geostatistical analysis of the entire domain, and the binary model’s variance (Module B). It can
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Figure 4. Geostatistical measures for MADE from DPIL (direct push injection logging) (Bohling et al., 2016), flowmeter, grain size analysis,

slug tests (Rehfeldt et al., 1992) and effective mean values (Keff) of two large scale pumping tests (Boggs et al., 1990): log-conductivity

variance σ2
lnK , horizontal and vertical correlation length `h and `v , respectively. Visualization of range of observed values from minimal

(Kmin) to maximal (Kmax), variance range and geometric mean KG.

be interpreted as the system’s variance which is not captured by intermediate and large scale heterogeneity. The length scales

for a correlation structure should be significantly smaller than the inclusion lengths of Module (B). Including small-scale205

heterogeneity enhances the realism of conductivity structure – however, on the expanse of increasing investigation costs.

The MADE site is a rare example with geostatistics from multiple observation methods (Figures 3a and 4). Methods well

suited for small scale heterogeneity show large variances from 4.5 up to 5.9. Given the high variance and the low mean

conductivity, ergodic conditions cannot be assumed for transport within the range of a few hundred meters.

The large value in variance, as determined for MADE, can likely be the result of preferential flow and/or trends in mean210

conductivity. Thus, explicitly representing deterministic zones (Module A) and preferential flow paths (Module B) might render

the representation of small scale features (Module C) redundant. Modeling hydraulic conductivity as log-normal fields solely

based on Module (C) seems warranted when there is no indication for deterministic zones or preferential pathways.

3 Predictive Transport Model for MADE

We validate our approach by performing flow and transport calculation for the MADE setting. Based on the scale-dependent215

conductivity modules (section 2.2), we derive different conductivity structures according to the field evidence given the struc-

tural data at MADE. The computed tracer plume is compared to the MADE-1 transport experiment (Boggs et al., 1992; Adams

and Gelhar, 1992).

Following the approach steps outlined in section 2, we define our model aim broader then specified in section 2.1: The target

is predicting the general plume behavior. This might serve different purposes as e.g remediation and includes the mean flow220

behavior. The fact that there is no break-through curve data available for MADE, inhibits to study the subject of arrival times.
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Particularly critical is first arrival as discussed in Adams and Gelhar (1992). Processes involved here are flow and transport

governed by Darcy’s Law and the Advection-Dispersion-Equation (Eq. 1).

3.1 MADE Field Data

The MADE site is located on the Columbus Air Force Base in Mississippi, U.S.A. The aquifer was characterized as shallow,225

unconfined, about 10−11 m thick with a porosity of 0.32 (Boggs et al., 1992). It consists of alluvial terrace deposits composed

of poorly sorted to well-sorted sandy gravel and gravely sand with significant amounts of silt and clay. The first extensive field

campaign by Boggs et al. (1990) yielded a multitude of hydro-geological information, as e.g. piezometric surface maps and

hydraulic conductivity observations from soil samples, flowmeter and pumping tests (Figure 4). Field campaigns in subsequent

years supplemented observations and data interpretations. For an overview see e.g. Zheng et al. (2011); Bohling et al. (2016)230

or Table 1 in the Supporting Information.

The MADE-1 transport experiment was conducted in the years 1986–1988 (Boggs et al., 1990, 1992; Rehfeldt et al., 1992;

Adams and Gelhar, 1992). A pulse of bromide was injected over a period of 48.5h applying a flow rate of 3.5 l/min. The forced

input conditions enlarged the tracer body at the source. Transport then took place under ambient flow conditions.

Concentrations were observed within a spatially dense monitoring network at several times after injection. We focus on235

the reported longitudinal mass distribution of Adams and Gelhar (1992, Fig.7) at six times: 49, 126, 202, 279, 370, and 503

days after injection. Values are integrated measures over transverse planes and accumulated over slices of 10 m length, given

at the centers of slices at −5 m, 5 m, 15 m, . . .. The reported mass does not display mass recovery except at 126 days with

recovery rates of 2.06,0.99,0.68,0.62,0.54, and 0.43, for the six times, respectively. We do not normalize the reported mass to

recovered mass, but stick to the actually observed values associating the mass loss to insufficient sampling in the downstream240

zone as discussed in details by Fiori (2014).

3.2 Hydraulic Conductivity Structures

Three hydraulic conductivity conceptualizations are designed in line with the specifications for MADE in section 2, which serve

different model aims. Modules (A), (B) and (C) are combined successively to capture the scale hierarchy of heterogeneity at

the MADE site. Figure 5 illustrated examples for each conceptualization.245

3.2.1 Deterministic Zones (A)

As indicted by the piezometric surface map (Figure 1), we chose two vertically arranged deterministic zones (Figure 5): a low

in average conductivity zone Z1 from upstream of the tracer input location to x= 20 m downstream and zone Z2 as high-in-

the-average conductivity area from 20 m downstream of the source. We fix average conductivity values of K̄Z1 = 2e− 6 m/s

and K̄Z2 = 2e− 4 m/s with a contrast of two orders of magnitude as stated by Boggs et al. (1992). The specific values are250

chosen according to the two large scale pumping test (Boggs et al., 1992) and the head level rise during injection which

is particularly important for early plume development. Details are given in the Supporting Information. This deterministic

10

https://doi.org/10.5194/hess-2020-30
Preprint. Discussion started: 10 February 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure 5. Realizations of hydraulic conductivity structures: (top) Deterministic zones (Module A), low K1 in black, high K2 in white.

(center) Inclusions in deterministic zones (Modules A+B); amount of inclusions p= 15%, inclusion lengths Ih = 10 m, Iv = 0.5 m. (bottom)

Inclusions in deterministic zones and sub-scale heterogeneity (Modules A+B+C); correlation lengths λh = 2.5 m, λv = 0.125 m.

conductivity conceptualization is suitable for properly modelling the regional groundwater in line with the model aim "Mean

Arrivel" as specified in section 2.1.

3.2.2 Inclusion Structure in Zones (A+B)255

Flowmeter logs from MADE show a significant discontinuous heterogeneity in the layering (Figure 2). We represent these

structures making use of the simple binary inclusion structured described in section 2.2.

The binary conductivity distribution is constructed for the entire domain comprising both deterministic zones. The upstream

zone Z1 consists of a bulk of low conductivity K1 with a percentage p of high conductivity K2 inclusions; the downstream

zone Z2 vice versa (Figure 5).260

We identify the specific values of K1 and K2 from the statistical relationship for binary structures (Rubin, 1995): lnK̄Z1 =

(1−p) · lnK1 +p · lnK2 and lnK̄Z2 = p · lnK1 +(1−p) · lnK2 using the mean conductivities of the zones K̄Z1 = 2e−6 m/s

and K̄Z2 = 2e− 4. p is deduced from the flowmeter profiles (Figure 2a). Being from both zones Z1 and Z2, the profiles differ

significantly in their average value. However, all show a tendencies of binary behavior with a significant spread over depth.

The data is grouped into high and low values being at least two orders of magnitude apart. Then, p is the fraction of values in265

the minor group, which is 10− 20% for the MADE flowmeter profiles (Figure 2a) leading to p= 15% as default value.

The inclusions structure in both zones is design according to the simplified block structure outlined in paragraph 2.2. The

domain is divided into horizontal blocks of length Ih. Each block contains randomly located inclusions of thickness Iv . The

flowmeter logs at MADE indicate a change in vertical layering every 0.25− 1 m (Figure 2a). Thus, we chose Iv = 0.5 m. In
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combination with a inclusion percentage of p= 15% and an aquifer thickness of 10 m this gives three inclusions per block. We270

specify Ih through an heuristic approaches in combination with parametric uncertainty to rely on as little data as possible: The

anisotropy ratio from the large scale pumping tests (Boggs et al., 1990)) is e= 0.1− 0.025. Combining it with the inclusion

thickness of Iv = 0.5 m gives a range of Ih ∈ [5m,20m]. Figure 5b shows an example structure for Ih = 10 m. Note that

inclusion can touch, so some inclusions are thicker (e.g. 2Iv = 1 m) and longer (e.g. 2Ih = 20 m).

For our Monte Carlo Approach, we create ensembles of 600 individual random realizations. Allowing for parametric uncer-275

tainty, we consider three possible Ih values of 5 m, 10 m and 20 m when generating random realizations. The other parameters

are fixed to the values outlined above. Reported flow and transport results for the inclusion structure in zones (A+B) are

ensemble means. We checked for ensemble convergence and found that 200 realizations are already sufficient.

3.2.3 Sub-scale Heterogeneity in Zones (A+B+C)

We combine modules (A), (B), and (C) to an inclusion structure in deterministic zones with small-scale fluctuations (A+B+C),280

depicted in Figure 5, bottom. Structural aspects of modules (A) and (B) are the same as described before, including parametric

uncertainty for the inclusion length Ih ∈ {5,10,20}m. Module C is integrated as log-normal distributed conductivity fluctua-

tions (section 2.2). The characterizing parameters for Module (C) depend on the statistics of the super-ordinate modules (A)

and (B).

The log-normal fluctuations lnY (x) are generated with zero mean, since the overall mean conductivity refers to K̄Z1 and285

K̄Z2 of the deterministic zones. The log-conductivity variance σ2
Y follows from the "variance gap", as difference between the

variance of the inclusion structure and the overall variance. The binary inclusions for the chosen setting have a variance of

σ2
Z = 5.52 resulting from σ2

Z = p · (1− p) · (lnK1− lnK2)2 (Rubin, 1995). With an overall variance of σ2
F = 5.9 as indicated

by (Bohling et al., 2016) (Figure 4), we arrive at a fluctuation variance of σ2
Y ≈ 0.5. We apply an exponential co-variance

function with length scale parameters being a fraction of the inclusion length scales: λh = 1/4Ih and λv = 1/4Iv . Testing290

several ratios, we saw that its impact on transport behavior is negligible. Ensembles consist of 600 realizations.

3.3 Numerical Model Settings

Flow and transport are calculated making use of the finite element solver OpenGeoSys (Kolditz et al., 2012) in the ogs5py

python framework (Müller et al., 2020). The simulation domain is a 2D cross section within x ∈ [−20,200] m and z ∈ [52,62] m

generously comprising the area of the MADE-1 tracer experiment (Boggs et al., 1992). We applied constant head boundary295

conditions at the left and right margin with a mean had gradient of J = 0.003. Tracer is injected at a well located at x= 0 with

a central screen of 0.6 m depth. Injection takes place over a period of 48.5 h with an injection rate of Qin = 1.166e− 5 m3/s

according to the initial conditions reported by Boggs et al. (1992). For technical details, the reader is referred to the Supporting

Information.

Simulation results are processed like the MADE-1 experimental data. Longitudinal mass distributions are vertical averages300

and accumulated horizontally over 10 m slices. Note that the simulated distributions show a full mass recovery. Besides spatial
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Figure 6. Longitudinal mass distribution at T = 126 days for conductivity concepts: (A) deterministic zones, (A+B) inclusions in zones,

(A+B+C) inclusion in zones with sub-scale heterogeneity (Figure 5). Shaded areas (light blue and green) indicate parametric uncertainty

bands. Mass distribution observed at MADE experiment in red. Linear scale and log-scale in subplot.

mass distributions for the six times where experimental data is available, we present the break through curves (BTCs) as

temporal mass evolution at critical distances, although no BTCs data is reported for the MADE-1 experiment.

3.4 Simulation Results

Figure 6 shows the simulated longitudinal mass distributions M(x)/M0 of the specified conductivity conceptualizations (sec-305

tion 3.2) at T = 126 days after injection. They are compared to the MADE-1 experiment data, which had a mass recovery of

99% at that time.

The mass distribution for the deterministic structure (concept A, yellow) shows a sharp peak close to the injection location

and no mass downstream. The conductivity structures with inclusions in deterministic zones (A+B, blue) and with sub-scale

heterogeneity (A+B+C, green) result in skewed mass distributions with a peak close to the injection area and a small amount310

of mass ahead of the bulk. Shaded areas indicate parametric uncertainty due to the variable inclusion length Ih. The shade area

margins refer to ±3 ensemble standard deviations, which is similar to the 99% confidence intervals.

A direct comparison of the mass distributions M(x)/M0 for the structures are depicted in Figure 7 for six temporal snap-

shots, including T = 1000d, where no experimental data is available. The general form of the mass distributions is persistent

in time for all conductivity structures.315

Figure 8 shows simulated breakthrough curves (BTCs) for the deterministic block and inclusion conductivity structure at

three distances to the injection location. The results for concept (A+B+C) are very close to those of concept (A+B), thus not

displayed. Apparent differences to the longitudinal mass distributions as in Figure 7 are due to the spatial data aggregation.

The BTC for Module A has the expected Gaussian shape with a late breakthrough at x= 5 m given the very low conductivity

in the injection area. The stochastic models have an earlier breakthrough and strong tailing at all distances.320
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Figure 7. Mass distributions at times T = 49, 202, 279, 370, 503, and 1000 days (panels): red = MADE-1 experiment; yellow = concept

(A); blue = concept (A+B); green = concept (A+B+C). Shaded areas (light blue and green) indicate parametric uncertainty bands; semi-log

scale in subplot.

BTCs are not available for the MADE-1 transport experiment. However, we added the aggregated mass values at the three

locations for the six reported times in a subplot to indicate a trend of temporal mass development. Note that mass values of the

btcs and those at MADE are at different scales due to data aggregation and mass recovery.

3.5 Discussion

All conductivity structures were able to reproduce the skewed hydraulic head distribution as observed at MADE (Figure 1a).325

The corresponding mean flow velocity determines the travel time. As a results, all models properly reproduced the spatial

position of the mass peak (Figure 6).

The deterministic block structure (A) failed to reproduce the skewed mass distribution observed at MADE. The leading front

mass traveling through fast flow channels could not be predicted (Figure 7) solely using average K values in zones. In line

with model aim "Mean Arrival" (section 2.1), the simple structure allows to estimate the regional groundwater movement and330
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Figure 8. Breakthrough curves: Total mass M(t)/M0 versus time at selected control plane locations for inclusion structure (A+B), (blue)

at x= 5 m (solid), x= 15 m (dashed), x= 45 m (dotted); and for deterministic structure (A) at x= 5 m (solid yellow line). Reported mass

values for MADE at the three locations (red markers) given in subplot. Regard the difference in scale due to the spatial averaging of

experimental data.

to predict the location of the bulk mass. However, in case of aiming at "Risk Assessment", the arrival times of mass would be

significantly underestimated, as clearly be observable comparing BTCs (Figure 8).

Tracer transport in a binary conductivity structure with inclusions (concept A+B) reproduces the observed mass, both for the

peak near the injection site and the leading front. The simulated longitudinal mass distribution shows a second peak downstream

(Figure 7), which increases with time. The position is related to the interface between the low and high conductivity zones335

at 20 m distance to the source. Such a second peak is absent in the observed MADE-plume, however it might be associated

with the mass loss for the later times. The skewed mass distribution is related to significantly smaller first arrival times as

can be seen for the BTCs in Figure 8 compared to the deterministic structure. The BTCs are clearly non-Gaussian with heavy

tailing. It shows the same temporal as the MADE experiment data.

The horizontal inclusion length Ih for structure (A+B) was not fixed, but was varied over the range of Ih ∈ {5,10,20}m.340

The uncertainty bands in Figure 6b indicate that Ih mostly influences the height of the mass peak close to the source. Ih

characterized the connectivity of the source area Z1 to the high conductivity zone Z2. Thus, it determines the distance of the

bulk mass being trapped in the low conductivity area. The larger Ih the higher is the amount of mass transported downstream.

The shape of the leading front is less impacted by Ih giving that its value does not influence the effect of the inclusions as

preferential flow per se.345

The predicted plume shape for the conductivity structure with inclusions and subscale heterogeneity (A+B+C) is almost

similar to the one without sub-scale heterogneity (A+B). consequently, the inclusion structure is the one which determines the

15

https://doi.org/10.5194/hess-2020-30
Preprint. Discussion started: 10 February 2020
c© Author(s) 2020. CC BY 4.0 License.



shape of the distribution, whereas the impact of sub-scale heterogeneity is minor. Given the model aim of plume prediction,

the additional effort for determining characterising geostatistical parameters for the sub-scale heterogeneity is not warranted.

The binary conductivity conceptualization (A+B) was derived for MADE with minimal data from field investigations, thus350

with a high parametric uncertainty. A sensitivity study revealed that the mass distribution resulting from the binary conductivity

structure is very robust against the choice of parameters. The inclusion length Ih and the choice of the K contrast between the

zones show the highest impact. The latter was expected as the mean conductivity determines the average flow velocity and by

that the peak location and the general distribution shape. The impact of Ih is represented in the uncertainty bands (Figures 6b,

7). Other parameters as amount of inclusion p and sub-scale heterogeneity parameters as the variance have minor effects. For355

details, the reader is referred to the Supporting Information. In this regard, the binary structure is very stable towards parametric

uncertainty.

4 Summary and Conclusions

We introduce a modular concept of heterogeneous hydraulic conductivity for predictive modeling of field scale subsurface

flow and transport. Central idea is to combine deterministic structures with simple stochastic approaches to rely on a minimal360

amount of measurements. The scale hierarchy of hydraulic conductivity induces three structure modules which represent: (A)

deterministic large scale features like facies; (B) intermediate scale heterogeneity like preferential pathways or low conduc-

tivity inclusions; (C) small-scale random fluctuations. Field evidence of heterogeneity features and module’s input parameters

are provided by observation methods with the appropriate detection scale. The specific form of the scale-dependent features

depends on the site characteristics and field data. Generally, we propose a deterministic model for large-scale features, a sim-365

ple binary statistical model for intermediate and a geostatistical model for small-scale features. However, the integration of

alternative conductivity structures is possible.

An illustrative example is given for the heterogeneous MADE site. Three modular conductivity structures are constructed,

based on two observations: (i) the existence of distinct zones of mean flow velocity, and (ii) high conductivity contrasts in

depth profiles suggesting local inclusions acting as fast flow channels. The structures are used in a predictive flow and transport370

model which is free of calibration. The comparison of results to the MADE-1 field tracer experiment showed that all concep-

tualizations can be of values depending on modelling aim. However, predicting the mass plume behaviour required to take

heterogeneity into account.

The combination of deterministic and simple stochastic showed the best result given the trade-off between transport pre-

diction and need for measurements. Realizations of hydraulic conductivity composed of binary inclusions in two blocks with375

different average conductivity. Details on the topology are thereby secondary, since binary structures show robustness towards

the choice of specific parameters. This rather simple structure was able to capture the overall characteristics of the MADE

tracer plume with reasonable accuracy requiring only a small amount of observations. The generality of the concept makes it

easily transferable to other sites; particularly when focusing on a few, but scale-related measurements.
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A hierarchical conductivity structure allows to balance between complexity and available data. Large scale structures deter-380

mine the mean flow behavior, which is most critical for flow predictions. They can be integrated to a model with reasonable low

effort. Structural complexity increases with decreasing heterogeneity scale where small-scale features have the highest demand

on observation data. However, even with limited information on the conductivity structure, simple stochastic modules can be

used to incorporate the effect of heterogeneity. Considering small scale feature, the conductivity structure can be extended by

including modules when additional measurements are available.385

Distinguishing the effects of the scale-specific features on flow and transport also allows to identify the need for further field

investigations and potential strategies. The adaptive construction based on scale-specific modules allows to create a conductiv-

ity structure model as complex as necessary but as simple as possible.

The use of simple binary models is very powerful when dealing with strongly heterogeneous aquifers. They require less

observation data compared to uni-modal heterogeneity models, as log-normal conductivity with high variances. Binary models390

also allow to incorporate effects of dual-domain transport models without the drawback of having non-measurable input pa-

rameters which require model calibration. Our work shows that highly skewed solute plumes can be reproduced with classical

ADE models by incorporating deterministic contrasts and effects of connectivity stochastically. specific transport analysis of

less well investigated heterogeneous sites.

In summary, we conclude:395

– When aquifer heterogeneity is at a similar scale as solute transport, predictive transport models need to incorporate

spatially distributed hydraulic conductivity.

– Modular concepts of conductivity structure allow to separate the multiple scales of heterogeneity. Scale related inves-

tigation methods provide field evidence and characterizing model parameters. A hierarchical approach for conductivity

can thus minimize the effort by focusing on the model aim.400

– Site specific heterogeneous hydraulic conductivity can be easily constructed with simple methods taking the (limited)

amount of data into account. For aquifers with high conductivity contrast, we recommend combining large-scale deter-

ministic structures and simple binary stochastics models.

– The application example at MADE showed that complex field structures can be represented appropriately for transport

predictions with an economic use of investigation data.405

This work aims to contribute to bridging the gap between the advanced research in stochastic hydrogeology and its limited

use by practitioners, being a subject of recent debate (e.g. Rajaram (2016)). We advocate the use of heterogeneity in transport

models for successfully predicting solute behavior, particularly in complex aquifers. This can be done with few data and

simple tools: adaptive structures allowing to combine deterministic, simple stochastic and geostatistical models depending on

the available data and the site-specific modelling aim.410
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