
Rebuttal

Dear editor and referees,

thank you for the time and effort you put into reviewing our manuscript. In the following, we 
provide point-by-point replies (in blue) to the comments (in italic). While line numbers in the 
comments refer to the previous manuscript version, mentioned lines in the response relate to the 
revised manuscript. Attached to the response is a marked-up manuscript version with tracked 
changes. 

With kind regards,

Alraune Zech
on behalf of the author-team.

Editor comment: 

Dear Authors:
Your revised documents, together with your rebuttal, were evaluated by four reviewers, three of 
them had already participated in the discussion step of the journal. Three out of the present 
reviewers evaluated fairly well the scientific quality of your revised paper and the presentation of 
the relevant results. Instead, the scientific significance of your study received contrasting 
comments, and one reviewer was quite critical with respect to both the scientific significance and 
quality of your study.

After having read again all the documents pertaining to your submission, I recognize that you put a 
great effort into improving the original paper, by providing also satisfactory responses to all of the 
comments and concerns raised during the discussion step. However, I also concur with the present 
reviewers that even this revised version is still not in a shape to be published in HESS and should 
require some additional revisions.

By sharing the comment from one reviewer, I do believe that the present contribution is definitely 
not the only example of a hierarchical approach to transport in heterogeneous porous materials 
and soils, and it will not be an isolated case, I guess (to the benefit of Science). Anyhow, I do 
suggest the Authors should carefully consider revising their paper according to the concerns and 
points now raised by Ref's. #2 and #3. Moreover, due attention should be given to all of the 
comments received by Ref. #4.

Therefore, you are invited to upload new revised documents, together with point-by-point replies to 
all of the comments received by the reviewers. Should you disagree with some comments, please 
explain why clearly.

We followed the advice of the editor and revised the manuscript accordingly to the comments raised
by the referees, particularly those of Ref. #3. While we adapted the manuscript to the criticism 
raised by Ref. #4, we see a significant discrepancy in the referee’s and our perception of the work, 
including its purpose and scientific methods. We provide detailed responses to all points raised by 
Ref. #4 within this rebuttal. 



Referee #1 Evaluation: For final publication, the manuscript should be accepted as is.

Referee #2 (X. Sanchez-Vila) Evaluation: For final publication, the manuscript should be 
accepted as is.

Referee #3 Evaluation: For final publication, the manuscript should be accepted subject to minor 
revisions.

This is an interesting paper trying to prove that stochastic groundwater modelling is possible. The 
authors discuss a modular approach to incorporate heterogeneity into groundwater flow modelling.
Then they apply to one of the experiments in the well-known MADE site. I recommend publication 
after some "minor" corrections, in the sense that they will take little time to implement, but "major,"
in the sense that they lower the author's claims. I like the paper because it shows that stochastic 
modelling is possible. I do not like some of the claims and discussions. I do not like that the model 
is two-dimensional, either.

We want to thank the referee for his positive evaluation of our work. We appreciate the time and 
effort he put into reviewing our manuscript. The paper will benefit from revising it according to his 
constructive comments. We toned down the claim on originality with respect to hierarchical aquifer 
modelling and specified the purpose of the study alongside: we aim to provide an easy-applicable 
conceptualization for integrating heterogeneity quantitatively into models in line with the referee’s 
statement “that stochastic modelling is possible“. To underline that, we also made the numerical 
code for generating random binary inclusion structures public with reference provided in code 
availability section.

MAJOR CORRECTIONS

1) There is nothing new in this modular approach to incorporating heterogeneity into aquifer 
modelling. Any claim of originality in this respect should be toned down, and references to 
similar approaches in groundwater modelling or reservoir engineering included. (A few 
references implementing this concept could be Damsleth et al., 1992, Huysmans and 
Dassargues, 2009, Neto et al., 1994, Proce et al., 2004, to cite a few dating back to the past 
century). Please, rewrite lines 64-65 with proper referencing.

We reformulated the abstract and other parts of the manuscript (particularly regarding the 
use of “novel”) and specified the advantage of the modular approach we present. 

We reformulated (previous) lines 64-65 and integrated (provided and additional) references. 

2) Already in the abstract, the authors claim that their model is constructed with as minimal 
data as possible. This is clearly not so in the description of the application. The amount of 
data used is substantial and hardly available in most sites. Even if some of the data are not 
used as conditioning data, they are needed to infer the different parameters of the nested 
heterogeneous models. 

In the course of the manuscript, we introduce several conceptual models for heterogeneity 
structure, with different levels of observation data requirements:

1) deterministic (module A): piezometric surface map, pumping tests

2) deterministic + binary (modules A+B): piezometric surface map, pumping tests, few 
flowmeter logs



3) deterministic + binary + random log-normal (modules A+B +C): piezometric surface 
map, pumping tests, multiple flowmeter logs (for geostatistical analysis)

While we agree with the referee on the aspect of available data for the third conceptual 
model (modules A+B +C), we think that the first two are based on a decent amount of field 
data which is often available at field site. Head observations and a few pumping tests are 
rather standard. While flowmeter logs might not always be available, there is often some 
geological information on contrasting layering of sand and clay. Nowadays, few depth 
profiles are easy to achieve from direct-push injection logging (DPIL)/hydraulic profiling 
(HPT) or cone-penetration tests (CPT).

However, we see that this was not outlined properly. For clarification, we specified that the 
level of data requirement is indeed high for the concepts including module C. Also, we agree
that the word “minimal” is misleading in this context. It was thus eliminated in the text and 
sentences were rephrased. E.g. we reformulated the abstract: “The conductivity model is 
constructed step-wise following field evidence from observations; seeking a balance 
between model complexity and available field data.” 

3) In the introduction, some statements should be toned down, and a few historical references 
are missing. 

The corresponding part of the introduction was revised considerably. 

1)  In line 40, it says that huge amounts of data are needed for kriging. Certainly, you need 
data to infer the variograms, but not as many as the one you need in the latter 
application, where you claim that hardly any data are used.

The passages on Kriging were reformulated. We specified the aspect of required data 
alongside those of Gaussian models. See also the previous comment. 

2) In line 42, it says that stochastic methods, on the other hand, need a limited amount of 
data. Kriging is a stochastic method, which apparently needs a huge amount of data. In 
any case, the statement is not true, stochastic methods need data, large amounts, as it is 
shown later. 

We rephrased this inconsistent paragraphs profoundly.

3) When listing the common methods, some historical references are missing, such as 
Gómez-Hernández and Gorelick, 1989, for Gaussian random fields; Journel and 
Gómez-Hernández, 1990, for indicator simulation; and Strebelle for multiple-point 
statistics. (By the way, Freeze, 1975 is not the best example of the use of Gaussian 
random fields, since he used uncorrelated values.)

We rephrased and modified the references accordingly.

4) Line 76, it seems that the number of data used is not minimal. Previous works have 
shown that properly accounting for hydraulic conductivity heterogeneity at the MADE 
site is sufficient to reproduce the mass transport behaviour at the MADE site (i.e., 
Salamon et al. (2006), or Li et al. (2011))

The paragraph was rephrased, missing references were added.



4) For the paper to really serve its purpose of enticing practitioners to use stochastic 
modelling, the model would have had to be three-dimensional. But it is not! How much does
the dimensionality reduction influence the results? This must be discussed. 

We extended the discussion on the impact of dimensionality reduction and clarified the 
difference between heterogeneity conceptualizations dominated by the binary structure and a
log-normal distribution: When it comes to a predominantly log-normal heterogeneity 
structure, we agree that dimensionality makes a difference. When module C is the main 
component representing heterogeneity, models should actually be in 3D to not underestimate
flow velocity and connectivity. For conductivity conceptualizations dominated by the binary
structure (module B), the differences between model results for 2D and 3D are marginal. As 
the case for your application to the MADE site. This is the results of the binary layer 
structure, which does not increase connectivity in the third (y-)dimension when considering 
horizontal isotropy. In this sense, the 2D character of binary fields can even be more 
enticing for practitioners to use stochastic modelling at this reduced computational effort. 
However, we stressed, that when applying the proposed heterogeneity conceptualization for 
modelling flow in transport in other application, a 3D model setup should be considered first
and a complexity reduction to 2D models should only be taken when warranted by the 
conductivity conceptualizations. 

We revised the paragraph in section 3.3 Numerical Model Setting, adapted the supporting 
information and added a paragraph in the discussion section 4. 
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Referee #4 (J. Herweijer) Evaluation: For final publication, the manuscript should be rejected.

Summary

Below are the three main issues that I identified with respect to this paper:

1- The conceptualization is poor, it does not take into account available geological information. 
The modelling process does not adhere to well-published standard practices for this type of 
hierarchical modelling. Some key features of the data which underpin the conceptualization are not 
addressed, most critically, inconsistencies regarding the basic data (K values).
2- The analysis is conducted in a single 2D-vertical cross-section assuming symmetry in one of the 
horizontal directions. This is not in accordance to observed piezometric level and tracer test data 
showing flow and transport in both horizontal directions. The results of the 2D model cannot be 
used for quantitative analysis.
3- The paper incompletely references geological issues very relevant to conceptualization of 
heterogeneous aquifers. Especially when it comes to options for geological analysis and modelling, 
some statements in the paper are not well documented and potentially misleading.

Based on point 1 and point 2, I reject this manuscript.

The MADE data set is the result of significant efforts to collect a 3D dataset of hydraulic 
conductivity and tracer transport observations. Many papers have been published addressing 
various aspects of the data and the geological concepts, showing significant variability in 3D of 
hydraulic conductivity and tracer transport. Creating models in 3D that take into account these 
data is well within the realm of what is technically possible. No scientific rationale is presented to 
explain why the model has been restricted to only 2D.

Given the preceding discussion and the harsh critique of the referee, we are afraid that nothing we 
modify within the manuscript will lead to a different general evaluation of the referee. However, we
tried our best to address all points raised and adapt the manuscript.

First, we like to address two key points, which we feel are the major source for misunderstandings 
and disagreement between the referee and us: 

• purpose of the manuscript: we aim to provide an easy-applicable conceptualization for 
integrating heterogeneity quantitatively into flow and transport models which naturally 
differs from previously presented hierarchical approaches. We did not aim to provide a 
detailed heterogeneity conceptualization for MADE, e.g. reconstruction of 3D structure, 
which produces the actual 3D tracer plume of the transport experiment at that side. We 
follow a different path of heterogeneity conceptualization by generating random 
conductivity structures (in combination with Monte Carlo simulations) which capture the 
main feature of transport observed at the site which a decent amount of field data. By 
construction, these structures do not necessarily represent the actual aquifer structure at 
MADE.

• Data availability in (hydrogeological) field sites is well known to be much more reduced 
(given budget limitation) than in petroleum industry related research. In this line, we 
purposely did not use all (hydro-)geological data available for MADE. We rather tried to 
rely on a decent amount of data which is accessible through standard and/or (cost-efficient) 
novel monitoring methods at usual hydrogeological sites.



We see that these points might not have been clearly enough addressed in the manuscript. We thus, 
emphasized them in the revised manuscript version.

Detailed response:

1 – Conceptualization is incomplete, inadequate and not novel

We want to stress the point, that a model is always a simplification of the reality. We address the 
question: How simple can it be to still represent the relevant processes and to make reasonable 
predictions (given the aim of the study)? As addressed in the manuscript in l 256: “We thereby aim 
to identify the "most simple" of our concepts which still provides a reasonable prediction of the 
complex observed mass distribution.” We will refer to the aim of a “most simple” model 
conceptualization repeatedly.

We agree with the referee that (at an arbitrary site) a detailed site conceptualization is best when 
considering all available (geological) data. We are aware that several detailed conceptualizations of 
the heterogeneous structure for the MADE site exist including the work of the referee (Herweijer, 
1997) or Dogan et al., (2011, 2014). However, a detailed model of the MADE site was not the 
purpose of our work. On the contrary, we aimed to present a simple approach for flow and transport 
modelling taking heterogeneity into account to reproduce non-uniform transport plumes with a 
decent level of field observation data. We chose the MADE site since it provides ample references 
data and studies to compare to.

This is explicitly stated in the manuscript several times: l.9, l. 90ff, l. 305ff (to just state a few).

The paper promises a 'novel' conceptualization. However, the paper falls short of an adequate 
conceptualization. As discussed in 1a below, very adequate conceptualizations have been provided 
for the MADE aquifer (e.g. Herweijer, 1997) and the MADE site in particular (e.g. Julian et al., 
2001), and these should be referenced and compared with the proposed approach. Also, as 
discussed in 1d below, the 'nested' scale' approach chosen by the authors is not novel.

We rectified the formulation “novel”. We are aware that the conceptualization of heterogeneity into 
zones and binary structures is conceptually not new. Also its application to MADE is known to us.
The novel aspect in our approach is the quantitative use of these components for a predictive 
model (without calibration) and giving guidance to use this conceptualization for transport models 
also at other sites, including software tools. 

A comparison of your approach to the detailed aquifer conceptualizations, such as presented by 
Herweijer, 1997 is neither meaningful nor feasible: 

• representation of aquifer heterogeneity differs conceptually: while Herweijer, 1997 aims to 
provide a reconstruction of the actual heterogeneity pattern, we do not, but make use of 
ensembles of random structures which do not directly represent the actual structures.

• quantitative transport model: our target is to quantitatively model the transport in a 
predictive manner (without calibration), while Herweijer, 1997 does not provide a 
quantitative transport model: „It should be noted that the data are only used in a qualitative 
manner; in other words, no analysis method is attempted that aims at a direct quantitative 
duplication of field data“.,  p. 98 of the thesis. 

Similarly, the work of Julian et al., 2001 does not target at predictive modelling either but on 
structure reconstruction: “Inverse analysis was conducted to estimate optimal K values”, p. 543. 



However, we provide direct reference to both publications.

1a) Creating K zones based on the change in piezometric surface was earlier discussed for the 
MADE site by Rehfeldt (1992) and Herweijer (1997). These K zones are related to the main 
geological feature at the site that has been reported about in several papers (e.g. Herweijer and 
Young, 1991; Young 1995; Herweijer, 1996, 1997; Julian 2001; Bowling et al., 2005). The single 
vertical K zone model presented in the paper is incorrect. Herweijer (1997) established that the 
MADE aquifer consists of a two layer system where a high K channel deposit incised in somewhat 
older lower K deposits (see figure below).

Bowling et al. (2005) shows via GPR data a similar two layer system with a unit of coarser sand 
and high energy depositional bed-forms overlaying a more stratified lower sand unit. The same 
two-layer system can also be seen in figure 2 of the paper under review, as the borehole flowmeter 
K data of wells F20 and F40 show a sharp increase of K above the 56-67 m depth level.

The two-layer system is also clearly reflected in the Tritium plume of the MADE2 experiments (see 
figure below from Boggs et al., 1993).

In order to obtain a much more realistic conceptual model, the authors should use the above 
references on the geological background of the high K contrast. The conceptual model should 
also include the vertical K contrast at ~ the 57‐58 m depth level as indicated by figure 2 in their 
paper and shown by various references cited above. The paper should also present a cross-
section of the modelled vertical tracer distribution to compare with the observed vertical tracer 
distribution.

The two zone model is a simplification of the complex geological structure at the MADE site which
represents the large scale zonation indicated by head observations to conductivity 
conceptualizations,  but of course not the actual complex pattern. We added the reference to 
Rehfeldt et al., 1992 explicitly for zonation based on changes in the piezometric surface. 

Again, we refrain from using (and referring) to detailed investigations on geological structure for 
the conceptual conductivity setup to remain exemplarily for concept use at other (less intensively 
investigated) sites. We do not aim to construct a more realistic conceptual model, particularly not by
calibrating to transport experiment results. We seek the “most simple” concept which still provides 
a reasonable prediction of the complex observed mass distribution. A comparison of modelled 
plume cross-sections does not make sense to us. At the level of only Module A it is a deterministic 
Gaussian plume (following the analytical solutions of ADE). For the conductivity 
conceptualizations including random components (Module B and/or C), plume simulation results 
from individual realizations do not reproduce the observed tracer distribution, as a result of the 
random conceptualization. We further refrain from including comparison to cross-section 
observations since we do not aim to reproduce the actual tracer plume, but focus on predicting the 
average longitudinal mass distribution. 

1b) At the scale below the main zonation scale referred to in 1a above, the authors then insert 
binary K contrast 'inclusions' representing a medium scale of heterogeneity. This binary (Boolean) 
technique has been commonly used (e.g. Haldorsen and Lake, 1984, Desbarats 1987) to create a 
heterogeneous architecture at various scales. The dimensions of these ‘inclusions’ assumed by the  
authors, seem not to be based on any field evidence or analogue systems. Rehfeldt (1992) shows a  
section of a nearby quarry with potential dimensions of these inclusions. Herweijer and Young 
(1991) show how pumping test data reveal some insights regarding the hydraulic continuity of these



inclusions. Herweijer (1997) specifically mentions some scenarios for dimensions based on 
sedimentary analogues for the same aquifer. Bowling (2005) shows detailed data for the same site, 
where GPR sections show some of the sedimentary structures controlling heterogeneity on this 
scale.

In order to improve the conceptual model, the authors should elaborate on the nature of these 
inclusions and use the dimensional information for the inclusions contained in the above 
references.

We agree that the use of binary techniques is not new. We provided reference to import statistical 
results, such as Rubin, 1995. We added further references in line with the suggestions by the 
referee.

Following our paradigm of constructing a simple structure based on a decent amount of field data, 
we consider the dimension of the inclusion to be unknown. Having no knowledge on horizontal 
correlation length or connectivity of longitudinal structures is a typical situation at sites. To cope 
with that we provide a strategy to come up with a reasonable range of values from those few 
measurements available and follow a parametric uncertainty approach: we suggest to include all of 
these length and determine their impact then. In this sense, the referee is right that “The dimensions 
of these ‘inclusions’ [...] seem not to be based on any field evidence or analogue systems.” This is 
done on purpose and clearly outlined in the manuscript. Consequently, we do not aim to refine the 
conceptual model by adding information from more observational data. Again, at most field sites 
this amount of data (as available for MADE) is not given. 
Our results further show that the precise inclusion length is not crucial for a reasonable prediction 
given the studies goal. The critical point is that preferential flow path are represented at all, in our 
case by the inclusion structure.

A clear statement on the role of field data for outlining the inclusion topology is given in the 
manuscript (l.191-195): “The inclusion topology is a matter of choice and data availability. [...] 
More complex layering structures can be adapted if additional topological information is available.
However, the specific topology often plays a subordinate role. When not having any information on 
spatial correlation of heterogeneity, it is beneficial to assume some instead of sticking to a 
homogeneous model.”

We further specified the aspect with regard to application at MADE in the manuscript (l. 303-305): 
“We represent these structures making use of the binary inclusion structured described in section 
2.2. We assume little to no information on horizontal structures and connectivity to mimic typical 
field situations – thereby deliberately ignoring the large amount of data at MADE. We make use of 
solely four flowmeter logs (Figure 2a).“

1c) At the next lower scale level, the authors use randomized K values from the borehole flow meter
data. Figure 4 shows several datasets for K distribution, and there is a significant discrepancy 
between the mean and the range of borehole flowmeter data and the K datasets. For the borehole 
flowmeter the log-normal mean is a factor 5 lower than the pumping test value that represents the 
bulk of these BHF data (the pumping test in the high K zone – the channel deposit). The mean of the
K derived from grain-size is a factor 2 higher than the pumping test value, which could indicate 
that the K values derived from grainsize would be more reliable to represent the high end of K 
values. This type of differences between hydraulic conductivity data is not uncommon. Apart from 
data acquisition issues, the differences between differently measured K values can often be traced 



back to scale effects, which are of utmost relevance to conceptualization, and should be addressed 
in the paper. The authors should also review for example Rehfeldt ea. (1989) and Young (1998) 
regarding some issues with the borehole flowmeter data specific to the MADE aquifer. Young 
(1995) and Herweijer (1997) show at the neighbouring MADE-1HA test site borehole flowmeter K-
values for the same sediments. They publish values with a higher log-normal mean and maximum, 
which corroborate the grain-size K values for the MADE site as shown in figure 4 of the paper 
under review. This extreme end of the K distribution has at the MADE-1HA site a significant effect 
forming high-K pathways (Young, 1995; Herweijer, 1997) 

In order to support the conceptual model, the authors should review the meaning of the different 
hydraulic conductivity values as measured for the MADE site and how that impacts the 
conceptual model. They also should explain specifically why the borehole flowmeter data were 
selected, why the deviation between the mean of the borehole flowmeter data and the relevant 
pumping test is acceptable and, why the borehole flowmeter data are preferred to the grainsize K 
data (which seem to better represent this pumping test and the high end K values).

We fully agree with the referee on the discussion on differences between hydraulic conductivity 
data of various monitoring methods and their relation to acquisition and scale effects. That is one 
reason why we included Figure 4, although not using all of the mentioned data sets. We expended 
the discussion on Figure 4 accordingly (l. 222ff).

The referee is mistaken in the perception that we use borehole flow meter data for the sub-scale log-
normal distribution. The only parameter we deduce from field data for module C, additional to 
those used for module A+B, is a log-conductivity variance. Here, we refer to the most recent DPIL 
data of Bohling et al., 2016 (l. 343).

Furthermore, we do not use the flowmeter data for determining the mean conductivities but both 
pumping tests (and other data) instead (module A). We only make use of 4 flowmeter logs to deduce
structural information on layering and the binary character for module B. Also note, the similarities 
on the two-point statistics between the different methods (Figure 4), indicating that the observation 
methods well agree in the structural characteristics at MADE, although differing considerably in the
mean. 

We clarified the relation of our model to the different mean values reported for MADE (l. 304ff): 
“When fixing regional conductivities from pumping tests, model scale coincides with measurement 
scale. This way, our structures are independent from upscaling of method (and location) specific 
geometric means reported for MADE (Figure 4).”

1d) The hierarchical/nested scale approach using deterministic zonation with various levels of 
binary and continuous stochastic infill is not 'novel'. It has been widely used before, and the authors
should reference some earlier work applying this approach (see e.g.: Damsleth et al, 1990; 
Herweijer, 1997 section 6.6, specific to the MADE aquifer – see also first figure of this review; 
Smith et al., 2001; Yupeng & Shenhe, 2013) 

The authors should quote above references as examples of the hierarchical method they employ, 
and not refer to their approach as novel, neither in general nor specific to the MADE aquifer.

We toned down the claim on originality with respect to hierarchical aquifer modelling and clarified 
the purpose of the study alongside: providing an easy-applicable conceptualization for integrating 
heterogeneity quantitatively into models.  



We reformulated the abstracts and several text passages accordingly. We further integrated 
additional and listed references. [Note that we could not find the reference of Yupeng & Shenhe, 
2013.]

2 – Use of 2D model for a 3D plume

The paper presents a 2D cross-sectional model along the main axis of flow. The field data show a 
major component of flow transversal to the main flow. The tritium plume picture below from Boggs 
et al., 1993) shows that initially the tracer released at the 5 injection wells converges and 
subsequently diverges. An elongated finger of the plume shows further downstream, but probably 
already developed closer to the source area. This finger is probably related to some very high K 
pathways related to sedimentary structures that are highly anisotropic and directionally variable 
(Young, 1995; Herweijer, 1997).

The Bromide plume shows similar transversal movement (including a sharp sideways movement 
close to the source) and downstream patchiness (see e.g. Julian et al., 2001, fig 5 &13) flow lines at
the boundary of two zones with very different K values and which occurs at an angle to the regional
flow direction (Freeze and Cheery, 1979).

Given a clear horizontally anisotropic flow and transport pattern, a 2D analysis/model is very 
limited and unrepresentative. A 3D model should be used. The results of the 2D model cannot be 
used for quantitative analysis.

Again, we need to outline that we do NOT consider results of transport experiments to constrain the
hydraulic conductivity distribution in order to keep our model predictive and free of calibration. 

The referee nicely outlined how the results of the transport experiments revealed information on 
preferential flow and non-uniform flow in transverse horizontally direction. BUT this could not 
have been foreseen in the hydraulic observation data. This is confirmed by the setup of the 
monitoring network for the first transport experiment which relied on hydraulic data only.

We assume symmetry in the horizontal direction because hydraulic heads and hydraulic 
conductivity do not indicate anisotropy in horizontal direction. The observed piezometric levels 
(Figure 1, left) show a slight non-uniformaty in the horizontal flow pattern, but in general there is a 
clear main flow direction perpendicular to the head isolines. Thus, a complexity reduction from 3D 
to 2D in terms of flow is warranted. 

The impact of a 2D instead of 3D model with regard to transport was studies. In short, we found 
that a 2D model is sufficient to resolve the binary structure we propose. We extended the discussion 
of that aspect further in the manuscript (sections 3.3 & 4) and in the supporting information: We 
specified details in on the 3D tests and clarified the difference between heterogeneity 
conceptualizations dominated by the binary structure and a log-normal distribution: When it comes 
to a predominantly log-normal heterogeneity structure dimensionality makes a difference. When 
module C is the main component representing heterogeneity, models should actually be in 3D to not
underestimate flow velocity and connectivity. For conductivity conceptualizations dominated by the
binary structure (module B), the differences between model results for 2D and 3D are marginal. As 
it is the case for your application to the MADE site. This is the results of the binary layer structure, 
which does not increase connectivity in the third (y-)dimension when considering horizontal 
isotropy. In this sense, the 2D character of binary fields can even be more enticing for practitioners 
to use stochastic modelling at this reduced computational effort. However, we stressed, that when 



applying the proposed heterogeneity conceptualization for modelling flow in transport in other 
application, a 3D model setup should be considered first and a complexity reduction to 2D models 
should only be taken when warranted by the conductivity conceptualizations. 

Given the well fit of the predictive model results to observation data, we think that our model can in
fact be used for a quantitative analysis. It stands in line with other transport models, explaining the 
complex flow patterns by an alternative conceptualizations and field data at MADE. At no point we 
wish to diminish the worth of any other model for the MADE site (including the work of the 
referee). We provide an alternative approach for predictive transport modelling at a significantly 
heterogeneous site with a simple conceptualization and decent observation effort.

3 – Potentially misleading remarks regarding use of geological data and geological models

The paper makes (line 53-57, 64) statements regarding the use of geological data (training images) 
and geological models referring papers that are 20+ years old (Koltermann and Gorelick, 1996; 
Herweijer, 1997). 

In line 54, the authors dismiss training images as limited available and unrepresentative. This 
statement is incorrect: training images are quite widely available sourced from satellite images 
(Google Earth) and extensive literature on geology, sedimentology and paleogeography. This holds 
especially for relative recent shallow deposits which form the MADE aquifer, and which are often 
the subject of groundwater modelling efforts.

We reformulated these paragraph profoundly, also according to the comments of the referee. We 
want to stress that we do not dismiss training images as unrepresentative. We actually consider them
as very useful tools for complex structure construction, when data (particularly vertical profiles) are
available. We see that this was misleadingly formulated beforehand.

Herweijer (1997) provides a number of references to the sedimentology and paleogeography of the 
MADE site, which would provide a very good start with respect to representative training images. 
Ronayne et al. (2008) give a good example of a model based on training images to model a 
hydrogeological test site.

Again, we do not aim to construct a more realistic conceptual model on the costs of including 
observation data which is often not available at typical hydrogeological field sites. 

The paper also states that geological models as used in the petroleum industry have not found their 
way into applied hydrogeology (line 64), a statement which is quite strong, and in my view 
incorrect. Alloisio, (2011), Dowling et al. (2013) and Peereboom (2018) are examples of 
applications for a variety of shallow to deep aquifers. Even if it is the case that this type of 
modelling has not ‘found its way’ into widespread use in hydrogeology, this is not a reason to 
simply to set it aside from a research point of view. The authors should explain why their approach 
is ‘better’ than the standard geological modelling methods used in the petroleum industry and the 
hydrogeological applications of these methods referenced earlier in this paragraph.

The authors should re-assess the literature on the above matter and correct their statements 
about the use of geological data and models.

We are happy when the referee could provide us references to papers in journals frequently read by 
hydrogeologists in science and practice. Given that all stated articles are conference proceeding or 



theses, this somehow confirms our statement. Anyway, the corresponding paragraph was 
reformulated. 

In this regard, we aim to clarify that we do not wish to set the work done in petroleum industry 
aside. Our approach is not ‘better’ than the standard geological modelling methods used in the 
petroleum industry but has a different purpose (as mentioned repeatedly and stated in the 
manuscript). It is well known that financial limitations are much different in (purely) 
hydrogeological studies. Thus, we focus on aquifer heterogeneity construction for a level of 
available field data usual at hydrogeological sites.

Some further issues in need of clarification:

Line 335 and last section of supplement: As earlier discussed, the MADE plumes are variable in 3D 
and should really be modelled in 3D. The sections explaining the 3D modelling effort to confirm the
validity of the 2D model are confusing. It is unclear if the 2D model was simply copied in the 3 rd 
dimension, ie. is completely symmetric in the 3 rd dimension, or if some sort of heterogeneity in the
3 rd dimension was included. The supplement also states that the extension in the 3 rd dimensions 
has no impact because of the binary nature of the ‘inclusions’ vs. K values that change gradually. If 
transport being restricted to a 2D cross-section of a 3D model is a significant impact of the binary 
conceptualization, than the binary conceptualization should not be used, as gradual changes of K are
the norm for non fractured/fissured aquifers such as the MADE aquifer It would also be informative
if the authors would present a visualization (map or x-section slices) of the 3D model and the 
modelled plume. It should also be looked at if a small level of transversal dispersion (representing 
very small scale heterogeneity) would have a significant impact on the 3D version of the 2D model.

Data on the observed transport plumes (3d) at the 8 times of the MADE1 experiment are not 
available to us since they are generally not public. We therefore focused on the averaged 
longitudinal mass distribution (1D transects) which is available to us. We already added a comment 
on the data situation to section 3 (L. 245) in the previous revision.

We rewrote the paragraph concerning the model dimensionality in the manuscript and the section in 
the supporting information (see also comment above). We follow the referees advice, and specified 
the settings of the 3D inclusion model: specifically the y-direction was extended in a range of -15 to
15 m (with the source located at y=0). For an inclusion length of Iy = 10m, three blocks of different 
random inclusion structure is present in the transverse horizontal direction. We further added a 
figure of one realization of the 3D inclusion structure to the SM.

Since we follow a Monte Carlo approach with an ensemble of realizations, there is not a single 
simulated tracer plume, but a large variety which all look different depending on the binary 
inclusion structure realization. Our results are based on the ensemble average. To clarify that point 
we add here some simulated plume distributions of several realizations (of the 2D model). Note that
a display of the 3D plume is hardly feasible and displaying the plume of the 3D model along the xz-
cross section looks similar to those of the 2D realizations. 



Mass distribution contours (cross sectional view, color levels of 5%) for two realizations R2 & 
R3 at two times T=126 and 503 days after injection. 



We agree with the referee’s statement on “gradual changes of K” in real aquifers. This is clearly not 
represented by a binary structure. We can just again repeat that we seek for a simple heterogeneity 
conceptualization which reproduces transport pattern sufficiently well given the defined study 
purpose. This does not imply that the conductivity structure actually looks realistic, which is a core 
characteristic of upscaling. If the purpose would have been the reconstruction of the aquifer 
heterogeneity in 3D and the reproduction of the 3D tracer plume, than we fully agree, that the 
model would need to be in 3D and that the heterogeneity would need a clearly more sophisticated 
conceptualization as we present. For such a study the referee is refereed to Dogan et al., 2014.

When modelling in 3D, clearly transverse horizontal dispersion takes place. Given that we resolve 
heterogeneity, we applied a small value for transverse horizontal dispersivity representing 
hydrodynamic dispersion effects solely (see also Zech et al., 2019). As expected it lead to a slight 
spreading of solutes in transverse horizontal direction. However, this effect is averaged out by post-
processing the mass distribution to longitudinal mass transects. Again, we like to emphasize that we
do not aim to provide a model which is able to give a proper plume reproduction, but an approach to
reproduce main transport features. 

Line 330-334 and section ‘details on flow and transport’ section in supplement: The injection rate 
modelled is Qin = 1.166e-5 m3/sec. The injection rate quoted by Boggs et. al. is 10.07 m3/48.5 hr 
which converts to 5.57e-5 m3/sec. If any adjustment has been made to the injection rate (perhaps to 
adapt for the 2D model setting?) this has to be clarified. The paper states: We use a flux related 
injection representing natural conditions. For technical details, the reader is referred to the 
Supporting Information. This is unclear and there seems to be no further specific discussion on ‘flux
related injection’ in the supporting documentation. 

The injection rate quoted by Boggs was 10.07 m3/48.5hr (=5.57e-5 m3/sec.) distributed over 5 
wells (p.3285). Thus, when modelling the transport along the main flow transect, the actual 
injection rate in the source well is a fifth of  5.57e-5 m3/sec, thus Qin = 1.166e-5 m3/sec. 

We thought the reader familiar with typical injection modes (initial conditions) of transport models, 
which are typically in resident or flux proportional mode [Kreft and Zuber, 1978]: for a resident 
mode the initial mass is constant (e.g. along the well) while for a flux proportional mode it is 
distributed according to the local conductivity (e.g. along the well). When dealing with transport in  
heterogeneous media, it is particularly important to distinguished according to the given field 
conditions. 

We specified both information in the SM, which were indeed missing so far.

Section 3.4: calibration and predictive capacity of model: The model matches data in a line 
downstream of the injection, but as discussed earlier in the review (point 2) does not represent any 
3D movement of the plume close to the injection point and further downstream. The paper also does
not show a vertical cross-section of the observed vs the modelled tracer distribution. Hence any 
calibration is quite limited and potentially has limited predictive value As discussed in the paper 
(line 270) there is significant uncertainty due to the mass balance issues with the bromide tracer 
(~50% in snapshots past 300 days). The calibration could be (should be?) tested using the MADE‐



2 tritium tracer test (Boggs et al., 1993), which seems to have resulted in a better mass balance 
(77% in final snapshot at 328 days). 

We agree that our model does not provide information on mass distribution at point resolution level.
Again, we did not aim to reproduce the actual plume distribution. The model matches the data in a 
line downstream of the injection, which is the perpendicularly averaged mass distribution along the 
main flow path. Thus, it should be considered as the average of observed values along a observation
transect located at the distance x from the injection. When aiming to predict major plume properties
such as leading mass and location of the bulk mass, this is highly useful information. In this line, we
also see no point in comparing vertical cross-sections of modelled and observed data, which is 
anyway not possible for us since the concentration distribution data is not public available for all 
time snapshots of the MADE1 tracer experiment. 

Again, we do NOT calibrate the model. We refrain from calibration to keep the model predictive 
mimicking field situation where no preliminary information on transport behaviour is available. We 
also refrain from repeating the study focusing on MADE-2 experimental results, which show in 
general the same pattern, although having a slightly better mass recovery. As the referee might be 
aware of, there are other issues with the MADE-2 experimental data, such as transient flow 
conditions due to significant seasonal water table fluctuations during the experiment. However, we 
are sure when running flow simulation adapted to the MADE-2 experimental settings for an 
ensemble of random conductivity with the binary inclusion structure, the observed longitudinal 
mass distribution would show the same characteristics as observed in the MADE-2 experiment, 
which are generally similar to those of the MADE-1 experiment.

Title: There is a grammar error in the title (the part which reads ‘in a Heterogeneous Aquifers’). It 
should be either ‘in a Heterogeneous Aquifer’ or ‘in Heterogeneous Aquifers’

We thank the reviewer for pointing out this flaw. We corrected it.
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Abstract. Aquifer heterogeneity in combination with data scarcity is a major challenge for reliable solute transport prediction.

Velocity fluctuations cause non-regular plume shapes with potentially long tailing and/or fast travelling mass fractions. High

monitoring cost and presumably missing a shortage of simple concepts have limited the incorporation of heterogeneity to many

field transport models up to now.

We present a novel an easy-applicable hierarchical conceptualization strategy for aquifer heterogeneity. The hierarchical5

hydraulic conductivity to integrate aquifer heterogeneity into quantitative flow and transport modelling. The modular approach

combines large-scale deterministic structures and simple stochastic methods. Such a heterogeneous conductivity can easily be

integrated into numerical modelsintermediate scale random structures. Depending on the modelling aim, the required structural

complexity can be adapted. The same holds for the amount of available field monitoring data. The conductivity model is

constructed step-wise following field evidence from observations; though relying on as minimal dataas possibleseeking a10

balance between model complexity and available field data. Starting point are deterministic blocks, derived from head profiles

and pumping tests. Then, sub-scale heterogeneity in form of random binary inclusions are introduced to each block. Structural

parameters can be determined e.g. from flowmeter measurements or hydraulic profiling.

As proof of concept, we implemented a predictive transport model for the heterogeneous MADE site. The proposed hier-

archical aquifer structure reproduces the plume development of the MADE-1 transport experiment without calibration. Thus,15

classical ADE models are able to describe highly skewed tracer plumes by incorporating deterministic contrasts and effects

of connectivity in a stochastic way even without using uni-modal heterogeneity models with high variances. The reliance of

the conceptual model on few observations makes it appealing for a goal-oriented site specific transport analysis of less well

investigated heterogeneous sites.

Copyright statement.20
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1 Introduction

Groundwater is extensively used worldwide as the major drinking water resource and consequently needs to be protected

with respect to quantity and quality. Increasing pressure on the quality originates from the intensification of agriculture using

agrochemicals (non-point sources), an increased urbanization with the resulting solid and liquid wastes and contaminant spills

from industrial applications (point sources).25

Essential for groundwater protection is the quantitative analysis of the fate and transport of various contaminants in the

groundwater body. This can be either for a provisional risk assessment or for the clean-up of an already existing groundwater

contamination. Numerical models are common tools to quantify the flow and transport, where partial differential equations are

solved using initial and boundary conditions (Bear, 1972; Fetter, 2000).

For simplicity, we restrict ourselves to saturated flow and transport of a dissolved, non-reactive contaminant. The governing30

equation for its concentration C(x, t) is the advection-dispersion equation (ADE) (Bear, 1972):

∂C(x, t)

∂t
=−u(x, t) · ∇C(x, t) +∇(D · ∇C(x, t)) (1)

given in space x = (x,y,z) and time t. D is the dispersion coefficient tensor and u(x, t) is the Darcy velocity vector. The

latter is a function of the hydraulic gradient J and the heterogeneous hydraulic conductivity K(x) through Darcy’s Law. A

proper description of the velocity field u(x, t), thus aquifer heterogeneity, is crucial for predicting the concentration distribution35

C(x, t).

The adequate parametrization of the heterogeneous conductivity K(x) poses a significant challenge in practical model

development due to the lack of data setup due to data scarcity. Numerous deterministic and stochastic approaches have been

developed to incorporate the effects of spatial heterogeneity of conductivity on flow and transport, particularly in the context

of stochastic subsurface hydrology (Dagan, 1989; Gelhar, 1993; Koltermann and Gorelick, 1996). Representing conductivity40

by an effective uniform value is convenient for aquifers of low heterogeneity since it can be inferred from pumping tests with

decent monitoring effort. But predicting transport in aquifers of significant variability fails when neglecting local effects of

heterogeneity and preferential flow.

On one hand, fully deterministic approaches use either uniform (effective) conductivities in large domains or maps of

heterogeneity, created by interpolation, e.g. Kriging (Kitanidis, 2008). The former approach requires only few data to the45

price of neglecting local effects of heterogeneity. The latter requires a huge amount of observation data which is hardly ever

available in practical cases. Furthermore, conductivity fields from interpolation result in smooth structures lacking geological

realism. On the other hand, stochastic methods allow to resolve heterogeneity based on a limited amount of data. Thus,

they are able to capture the uncertainty in flow and transport predictions caused by heterogeneity. Common methods as (i)

Gaussian random fields (Freeze, 1975; Dagan, 1989; Gelhar, 1993; Zinn and Harvey, 2003); (ii) indicator/hydrofacies models50

(Carle and Fogg, 1996; Fogg et al., 2000); or (iii) multi-point statistics/training images (Renard et al., 2011; Linde et al., 2015)

allow to create spatially distributed conductivity fields of higher geological realism. Modelling flow and transport in ensembles

of heterogeneous fields (Monte Carlo approach) do not only provide mean behavior but also uncertainty ranges.

2



Stochastic methods allow resolving heterogeneity and thus capture the induced uncertainty in flow and transport predic-

tions. However, the amount of observation data required is usually high, depending on the method’s complexity. Common55

methods are (i) Kriging (Kitanidis, 2008). (ii) Gaussian random fields (Dagan, 1989; Gómez-Hernández and Gorelick, 1989),

(Zinn and Harvey, 2003), potentially combined with Kriging for conditioning to observations; (iii) indicator/hydrofacies mod-

els (Journel and Gómez-Hernández, 1993; Carle and Fogg, 1996; Fogg et al., 2000); or (iv) multi-point statistics/training im-

ages (Strebelle, 2002; Renard et al., 2011; Linde et al., 2015).

Log-normal random fields require a number of parameters like geometric mean, log-variance and spatial correlation lengths60

in horizontal and vertical directions. They result from geostatistical analysis of spatially distributed observations, e.g. from

flowmeter, permeameter or injection logging, as DPIL (Dietrich et al., 2008). Despite increased efficiency in exploration

methods, the cost and effort related to gather sufficient data hampers the application in practice. Alternatively, hydrofacies

models use indicator geostatistics with transition probability to generate geological heterogeneity structures. Although conceptually

different, the general amount of input data is similarly high. Training images are known for their geological realism, but depend65

strongly on the high resolution input data, e.g. reconstructed images from outcrop studies. Not only the availability of a training

image limits their application, but particularly the question if it is representative for the larger aquifer domain where transport

is modeled (Koltermann and Gorelick, 1996).

For many unconsolidated sediments, field observations showed that conductivity is approximately log-normal (Delhomme, 1979),

(Gelhar, 1993; Rubin, 2003); characterized by the geometric meanKG and the log-conductivity variance σ2
Y . Variogram analy-70

sis provides structural parameters such as correlation length ` and anisotropy ratio e based on spatially distributed observations,

e.g. from flowmeter, permeameter or injection logging. Despite increased efficiency in exploration methods, data is not even

sufficient for variogram analysis in most practical cases thus hampering the practical application of Kriging and Gaussian

random fields. Alternatively, hydrofacies models use indicator geostatistics with transition probability to generate geological

heterogeneity structures. Although conceptually different, the required amount of input data is similarly high. Multi-point75

statistical methods provide heterogeneity structures of high geological realism, when training images are available. Although

satellite data might provide areal training images, vertical structures rely on extensive literature on geology or outcrop studies.

Both are hardly available at the scale representative for plume transport impeding the method’s use at hydrogeological sites.

A recent debates series (Rajaram, 2016; Fiori et al., 2016; Fogg and Zhang, 2016; Cirpka and Valocchi, 2016; Sanchez-Vila

and Fernàndez-Garcia, 2016) outlined the gap between the advanced research in stochastic subsurface hydrology and its appli-80

cation in the practice of groundwater flow and transport modeling. We see a significant reason in the lack of data for complex

stochastic models. Thus, we advocate the use of hierarchical approaches, combining deterministic and stochastic hydraulic

conductivity conceptualization. In contrast to many application in the oil and gas industry (Bryant and Flint, 2009), they hardly

found their way into applied hydrogeology (Herweijer, 1997). Hierarchical approaches are regularly used in reservoir mod-

elling (Damsleth et al., 1992; Smith et al., 2001; Bryant and Flint, 2009), particularly for consolidated sediments. Aside from85

qualitative approaches for multi-scale heterogeneity representation e.g. Neton et al. (1994); Herweijer (1997), or Koltermann and Gorelick (1996)

(and references therein), only few quantitative approaches were proposed, such as: generating sequences of facies assemblages

using indicator geostatistics and transition probability at various scales (Weissmann and Fogg, 1999; Proce et al., 2004), or
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combining training images for large-scale facies realizations with variogram-based geostatistical methods for random intrafa-

cies permeability (Huysmans and Dassargues, 2009). Both approaches show a high level of model complexity and required90

(hydro-)geological input data.

Here, we present a novel conceptualization strategy of aquifer heterogeneity in a hierarchical parsimonious hierarchical

aquifer heterogeneity conceptualization which is easy to apply in quantitative models for predicting flow and solute trans-

port. The deterministic/stochastic framework combines descriptive zonation with statistical methods, following the lines of

Gómez-Hernández and Gorelick (1989). Goal is to optimize the aquifer structure setup given the simulation target constrained95

by the available field data. Thereby, we aim to provide a tool tools making aquifer heterogeneity more accessible for practi-

cal applications. Our , including hands-on software. The approach is based on the fact that subsurface heterogeneity can be

generally classified into (a) larger scale dominant features which primarily determine the general flow direction together with

the average groundwater flow velocity; and (b) smaller scale features which are responsible for the dispersion, respectively the

spatial spreading of a contaminant or solute.100

We create a deliberate connection between the model parameterization requirements and the field characterization methods

employed for measurement beyond a single method. Pumping tests, for example, are a recommended characterization method

to determine the spatially averaged transmissivity respectively hydraulic conductivity, even in a heterogeneous aquifer environ-

ment (Herweijer, 1996; Zech et al., 2016). Together with the averaged gradient estimated from piezometric levels this yields

good estimates of the mean groundwater flow velocities. On the other hand, high High resolution, small-scale borehole logs of105

hydraulic conductivity (e.g. from flowmeter or DPIL) can direct push methods) provide the data needed to estimate the vari-

ability of the hydraulic conductivity field and consequently the dispersion parameters needed. Here, we consider two stochastic

methods representing spatial variability: Gaussian random field which requires sufficient data for variogram analysis and a

simplistic binary structure which relies only on a few (e.g. 2-4) well-logs, but takes parametric uncertainty into account. The

latter is developed as option for less investigated sites only requiring a decent amount of field data from standard monitoring110

methods for heterogeneous aquifer modelling.

We demonstrate the methodology using field characterization data from MADE, a heterogeneous, well investigated research

field site (e.g. Boggs et al. (1990); Zheng et al. (2011); Gómez-Hernández et al. (2017)). Following our adaptive approach,

we use a minimum of field data on aquifer properties to construct a numerical transport modelvarious amounts and types

of hydraulic observation data for heterogeneity conceptualization to construct numerical transport models. Predictions are115

independently evaluated using against field tracer data from the MADE-1 experiment (Boggs et al., 1992). In contrast to most

other MADEtransport models, we We do not reconstruct the actual conductivity structure at MADE, but predict tracer plume

behavior following a Monte Carlo approach devoid of calibration. Model results shows show good agreement with observed

plume data, also compared to other complex predictive transport models for MADE (i.e.e.g. Salamon et al. (2007), Fiori et al.

(2013, 2017); Bianchi and Zheng (2016)). In this line, we provide an alternative approach for predictive transport modelling at120

a significantly heterogeneous site with a simple conceptualization and decent observation effort.

The course of the paper is the following: section 2 features the approach in light of different modeling aims. Section 3 is

dedicated to the application of the methodology for the MADE aquifer. We close with a summary and conclusions in section 4.
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2 Approach

Large scale hydraulic structures of hundreds or more meters determine the groundwater flow direction and magnitude in125

combination with groundwater catchment boundaries. Subsequently, they set the mean transport velocity. This is the key

parameter to predict the location of the bulk mass of substances dissolved in the groundwater when input conditions are

known.

Variations of hydraulic properties on intermediate scale, in the range of tens of meters, generate spatially variable flow fields.

They also render transport velocities variable at these scales resulting in a larger spreading of plumes. This is particularly130

important for modeling tailing or leading mass fronts. Fluctuations on scales smaller than these intermediate scales have a

blending effect, generally increasing local mixing and enhancing dispersion (Werth et al., 2006).

Following this conceptual view, we generate hydraulic conductivity fields composed of three components: Module (A), (B)

and (C) which capture the effects at large, intermediate and small scale heterogeneity, respectively. Each component is selected

according to the model aim and the data at hand to parametrize the hydraulic conductivity for this component.135

The procedure is exemplified for the MADE site. This significantly heterogeneous site was intensively investigated with

various measurement devices providing many different data sets, as pumping tests, flowmeter and DPIL measurements (Boggs

et al., 1990; Bohling et al., 2016). Detailed information on MADE can be found in section 3 and the Supporting Information.

In the approach, we considers several steps:

1. Specifying the aim of the model: What do we want to predict?140

2. Selecting processes and process components which need to be accounted for in the model: What does this imply for the

conceptualization of hydraulic conductivity?

3. Selecting suitable measurement methods: Which method can deliver the data needed for parameterizing hydraulic con-

ductivity with minimal affordable effort?

4. Conceptualizing hydraulic conductivity.145

5. Calculating flow and transport.

Before specifying the hydraulic conductivity component Modules (A), (B) and (C), we illustrate our concept discussing two

exemplary model aims.

2.1 Exemplary Model Aims

Model Aim "Mean Arrival"150

1. Aim: Prediction of mean arrival of a contaminant from a point source.
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Figure 1. Left: Potentiometric surface map of head measurements according to Boggs et al. (1990). Orange-Green line indicates location of

cross section displayed right: Concept (Module A) for large conductivity structure with deterministic zones of low (orange) and high (green)

conductivity. Arrow indicates flow direction. Location of the interface between structures corresponds to change in hydraulic head pattern

at 20mx= 20m.

2. Processes: Estimation of regional groundwater movement, direction and magnitude of flow making use of the ground-

water flow equation and Darcy’s law. Transport is modelled by advection. For sake of simplicity we do not consider

reactivity.

3. Field characterization: Regionalized groundwater level measurements provide direction and magnitude of hydraulic155

gradient. It is critical to outline areas of different gradients (zones) indicating regional hydraulic conductivity trends and

large scale heterogeneity. Pumping tests can provide independent values of effective transmissivity within each zone.

4. Conceptualization of hydraulic conductivity: Conductivity is considered homogeneous within each large scale zone.

Effects of heterogeneity are captured in effective parameters representing average flow behavior, e.g. determined from

pumping tests.160

5. Solving flow and transport: Flow is solved either analytically, e.g. for one or two zones of different effective hydraulic

conductivity, or numerically in case of a more complex spatial distribution of zones. Transport can be determined making

use of analytical or numerically solutions of the ADE according to initial and boundary conditions.

2.1.1 Example MADE

The piezometric surface map of MADE (Boggs et al., 1992, Fig. 3) shows a significant non-uniform hydraulic head pattern.165

At 20 m downstream of the injection location, head isolines reduce abruptly. The reproduced head contours in Figure 1a allow

to delineate these two major zones: an area of low conductivity upstream (left) and high conductivity downstream (right). Two

large scale pumping tests confirm the contrast in mean conductivity of about two orders of magnitude (Boggs et al., 1992).
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Figure 2. Left: Four flowmeter logs of hydraulic conductivityK(z) versus depth z; the logs F-09 and F-18 are close to the tracer test injection

location; F-20 and F-40 are several tenth of meters downstream (see Figure 3). Right: Concept of binary inclusion structure (Module B)

with 15% high conductivity inclusions (green) embedded in the bulk of low conductivity (orange). Inclusion length are arbitrarily chosen as

Ih = 5m and Iv = 0.5− 1m.

Consequently, flow should be modelled with distinct mean conductivity in two vertical zones (Figure 1b) when aiming to model

mean arrival times for the MADE site.170

Model Aim "Risk Assessment"

1. Aim: Prediction of early or late arrival of contaminants commonly used in risk assessments.

2. Processes: Flow and transport equations; it is particularly relevant to capture variability in transport velocity to estimate

spreading behavior of plumes.

3. Field characterization: Detecting and delineating high and low conductivity subsurface structures with a characteristic175

horizontal length scale of several meters. Typical examples are channels formed in braided river systems. Typical in-

vestigation methods giving field evidence of such heterogeneity structures are small scale slug tests, borehole flowmeter

logs or permeameter tests detecting strongly vertically varying conductivity.

4. Conceptualization of hydraulic conductivity: Spatially structured non-uniform conductivity.

5. Solving flow and transport: Small variations in conductivity allow to apply analytical solutions with effective measures,180

e.g. from first order theory (Dagan, 1989). Spatially resolved heterogeneity requires numerical solution of flow and

transport with numerical tools (Monte Carlo approach).

2.1.2 Example MADE

Borehole flowmeter logs at MADE (Rehfeldt et al., 1989; Boggs et al., 1990) reveal horizontal layers with conductivity differ-

ences over 2 – 3 orders of magnitude. For instance, the flowmeter log F-40 shown in Figure 2a has a bulk of high conductivity185
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values with about 15% of values being two orders of magnitude smaller. Logs at other locations (F-09 and F-18 ) show the

inverse behavior: a bulk of low conductivity values with embeddings of high conductivity.

Such strong vertical variation indicate the presence of high conductivity channels acting as preferential flow path and low

conductivity zones with stagnant flow which both impact strongly on plume spreading behavior. Consequently, when aiming

to model early and late plume arrival these feature need to be accounted for in a flow and transport model for the MADE site.190

2.2 Scale-dependent Conductivity Modules

Given the scale-dependency of hydraulic conductivity features and their distinct relevance for flow and transport predictions,

we propose three components: Module (A), (B) and (C) which capture large, intermediate and small scale heterogeneity effects,

respectively. Given a certain model aim, components are selected (or not) with regard to the available field data. We shortly

discuss the Modules and motivate their use based on the data of the MADE site example for different aims.195

Module A

The aquifer domain of interest is divided into deterministic zones of significantly different mean conductivity (i.e. more than

one order of magnitude). The structure can comprise horizontal or vertical layering simply in blocks or complex zone geome-

tries depending on information available. The use of Module A is warranted when observation data indicates significant areal

conductivity contrasts.200

The zones represent large scale geological structures exhibiting conductivity differences potentially over several orders of

magnitude as a results of changes in deposition history or changes in the material’s composition (Bear, 1972; Gelhar, 1993).

Zones can be delineated using geologic maps, piezometric surface maps and geophysical methods providing information on

aquifer structure, sedimentology and genesis. Pumping tests are suitable for identifying mean conductivities for each zone due

to their large detection scale. Flow simulations on the deterministic zone structure should reproduce the observed head pattern.205

The MADE site is an example where the concept of two zones of different mean hydraulic conductivity (Figure 1b) can

reproduce conceptually the hydraulic head pattern. Details will be discussed in section 3.

Module B

When hydraulic conductivity shows heterogeneous features at the same length scale as the plume transport itself, they require

proper resolution. A contaminant plume typically passes several of these intermediate scale features but not enough to ensure210

ergodic transport behavior. Thus, using effective parameters is not warranted. Since limited data availability precludes from a

deterministic representation of these features, stochastic approaches suit best.

Binary stochastic models are the simplest a simple way to capture the effects of intermediate scale features (Haldorsen and Lake, 1984),

(Dagan, 1986; Rubin, 1995). Figure 2b shows an example how to conceptualize a medium with two K values: inclusions (K2)

are embedded in the bulk conductivity (K1), with p characterizing the percentage of K2. Inclusions of high conductivity may215

represent preferential flow paths whereas inclusions of low conductivity can be obstacles like clay lenses.
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The inclusion topology is a matter of choice and data availability. A simple design is a distribution of non-overlapping

blocks with horizontal length Ih and thickness Iv . Figure 2b provides an impression with arbitrary choice of parameters. More

complex layering structures can be adapted if additional topological information is available. However, the specific topology

often plays a subordinate role. When not having any information on spatial correlation of heterogeneity, it is beneficial to220

assume some instead of sticking to a homogeneous model.

Characteristic length scales in vertical direction Iv are detectable with low effort from a few borehole logs (Figure 2a).

Characteristic horizontal length as Ih are critical since they require spatially distributed observations. A parametric uncertainty

approach can keep the effort low. A range of reasonable Ih values is estimated and applied in the random inclusion model. A

sensitivity analysis reveals the impact of the parametric uncertainty of Ih on transport results. The estimates of Ih could results225

from auxiliary data such as vertical length scale in combination with anisotropy ratios. Another option is expert knowledge

based on geological structures and similarities to outcrop studies. Methods such as diffusivity tests (Somogyvari et al., 2016)

or novel approaches for pumping test interpretation (Zech et al., 2016) also offer options to gain estimates for Ih.

The binary structure as in Figure 2b is beneficial in its plain stochastic concept relying on few input data, simple implemen-

tation and low computational requirement. It can be combined with Module (A) by implementing it within every deterministic230

zone preserving the mean conductivities. As for MADE, the inclusions represent the contrasting vertical layers as observed in

flowmeter logs (Figure 2a), from which the inclusion parameters can be deduced for every deterministic zone (section 3).

Module C

Variations in grain size and soil texture form small scale heterogeneities of characteristic length scales up to one meter. Their

relevance for transport predictions depends on the degree of heterogeneity and ergodicity. A plume is considered ergodic when235

the behaviour within one realization is statistically representative, i.e. exchangeable with ensemble behaviour. Figuratively

speaking, an ergodic plume has travelled long enough to sufficiently sample heterogeneity. This is usually assumed for transport

distances of 10− 100 characteristic lengths (Dagan, 1989), which increasing value with higher values for increasing degree of

heterogeneity. When ergodic, effective parameters can capture effects of heterogeneity. Otherwise, the use of a spatial random

representation is warranted.240

If required, small scale features can be conceptualized with a log-normal conductivity distribution K(x)∝ LN (KG,σ
2
Y )

with geometric mean KG and log-variance σ2
Y . Including a spatial correlation structure depends on the acquired complexity

and the availability of two-point statistical data as correlation length and anisotropy. Figure 3b gives an example.

Geostatistical parameters can be inferred from spatially distributed observations (Figure 3a), e.g. permeameters, borehole

flowmeter, or injection logging (Figure 4). This is related to high effort and costs. Novel techniques like DPIL (Dietrich et al.,245

2008; Bohling et al., 2016) can provide a large amount of data at acceptable costs and time, but they are only accessible for

shallow sites. Alternatives can be approaches which derive geostatistical parameters directly from pumping tests (Zech and

Attinger, 2016; Zech et al., 2016) or dipole tracer test (Zech et al., 2018). Note the discrepancy in geostatistical estimates

among observation methods (Figure 4), which is not uncommon for heterogeneous sites. Differences are attributed to scale
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Figure 3. Left: Locations of measurements and tracer test observation network according to Boggs et al. (1990); Bohling et al. (2016). Right:

Gaussian random field with exponential co-variance structure as conceptual module for small scale conductivity (Module C).

effects as a results of different method characteristics, such as support volume and resolution. Thus, caution has to be given to250

the appropriate use of observation data in conductivity conceptualization.

When combining with larger heterogeneity structures, small scale fluctuations are subordinate. In case of field evidence,

Module (C) can be combined with Modules (A) and (B) by adding zero-mean fluctuations. According to Lu and Zhang (2002),

the variances of heterogeneous sub-structures is additive. Thus, the log-normal variance relates to a ’variance gap’ between

the total variance, e.g. from a geostatistical analysis of the entire domain, and the binary model’s variance (Module B). It can255

be interpreted as the system’s variance which is not captured by intermediate and large scale heterogeneity. The length scales

for a correlation structure should be significantly smaller than the inclusion lengths of Module (B). Including small-scale

heterogeneity enhances the realism of conductivity structure – however, on the expanse of increasing investigation costs.

The MADE site is a rare example with geostatistics from multiple observation methods (Figures 3a and 4). Methods well

suited for small scale heterogeneity show large variances from 4.5 up to 5.9. Given the high variance and the low mean260

conductivity, ergodic conditions cannot be assumed for transport within the range of a few hundred meters.

The large value in variance, as determined for MADE, can likely be the result of preferential flow and/or trends in mean

conductivity. Thus, explicitly representing deterministic zones (Module A) and preferential flow paths (Module B) might render

the representation of small scale features (Module C) redundant. Modeling hydraulic conductivity as log-normal fields solely

based on Module (C) seems warranted when there is no indication for deterministic zones or preferential pathways.265

Hierarchy of Scales

The hierarchy of scales poses an inherent problem for each groundwater model based on heterogeneous field data. Data inter-

pretation often does not allow to clearly distinguish general trends from randomness.

The three modules provide a simple classification of transport relevant heterogeneity scales: (A) – beyond plume scale,

i.e. above 100m; (B) – range of plume scale (about 10-100m); and (C) – sub-scale (<1m). It will not be appropriate This270

classification might not hold for every field and transport situation, but provides an orientation for developing site-specific

heterogeneous conductivity structures.
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Figure 4. Geostatistical measures for MADE from DPIL (direct push injection logging) (Bohling et al., 2016), flowmeter, grain size analysis,

slug tests (Rehfeldt et al., 1992) and effective mean values (Keff) of two large scale pumping tests (Boggs et al., 1990): log-conductivity

variance σ2
lnK , horizontal and vertical correlation length `h and `v , respectively. Visualization of range of observed values from minimal

(Kmin) to maximal (Kmax), variance range and geometric mean KG.

Which module to integrate at a specific site depends on multiple aspects: (i) Is there field data evidence for a heterogeneity

structure of a certain length scale?; (ii) Is there sufficient data to parameterize a conceptual heterogeneity representation? And

(iii) is it necessary to present the heterogeneity given the travel distance of the plume (ergodicity)? Having a positive answer to275

each of the question for a certain module warrants its consideration in the conductivity conceptual model

.

3 Predictive Transport Model for MADE

We validate our approach by performing flow and transport calculation for the MADE setting without parameter calibration.

Although, many approaches to model the transport at the MADE site exist(Zheng et al., 2011), including detailed aquifer280

conceptualizations (e.g. Herweijer (1997); Julian et al. (2001), for a detailed review see (Zheng et al., 2011)), only few of them

have a predictive character, i.e. devoid of calibration to transport results (Fiori et al., 2013, 2017; Dogan et al., 2014; Bianchi

and Zheng, 2016).

Based on the scale-dependent conductivity modules (section 2.2), we develop different conductivity structures according to

the field evidence given the structural data at MADE. We thereby aim to identify the "most simple" of our concepts which still285

provides a reasonable prediction of the complex observed mass distribution. The computed tracer plumes are compared to the

MADE-1 transport experimental results (Boggs et al., 1992; Adams and Gelhar, 1992). Since the observed spatial concentration

distribution is not available, we make use of 1D longitudinal mass transects at specified times.

Following the approach steps outlined in section 2, we define our model aim broader then specified in section 2.1: The target

is predicting the general plume behavior. This might serve different purposes as e.g remediation and includes the mean flow290
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behavior. The fact that there is no break-through curve data available for MADE, inhibits to study the subject of arrival times.

Particularly critical is first arrival as discussed in Adams and Gelhar (1992). Processes involved here are flow and transport

governed by Darcy’s Law and the Advection-Dispersion-Equation (Eq. 1).

3.1 MADE Field Data

The MADE site is located on the Columbus Air Force Base in Mississippi, U.S.A. The aquifer was characterized as shallow,295

unconfined, of about 10− 11 m thickness (Boggs et al., 1992). It consists of alluvial terrace deposits composed of poorly

sorted to well-sorted sandy gravel and gravely sand with significant amounts of silt and clay. The first extensive field campaign

by Boggs et al. (1990) yielded a multitude of hydro-geological information, as e.g. piezometric surface maps and hydraulic

conductivity observations from soil samples, flowmeter and pumping tests (Figure 4). Field campaigns in subsequent years

supplemented observations and data interpretations. For an overview see e.g. Zheng et al. (2011); Bohling et al. (2016) or300

Table 1 in the Supporting Information. We apply a porosity of 0.31. Recharge is assumed uniform and very small (Boggs et al.,

1990). Both quantities are kept constant due to the dominating effect of hydraulic conductivity given the significant variations

and the uncertainty associated with observations (Figure 4).

The MADE-1 transport experiment was conducted in the years 1986–1988 (Boggs et al., 1990, 1992; Rehfeldt et al., 1992;

Adams and Gelhar, 1992). A pulse of bromide was injected over a period of 48.5h applying a flow rate of 3.5 l/min. The forced305

input conditions enlarged the tracer body at the source. Transport then took place under ambient flow conditions.

Concentrations were observed within a spatially dense monitoring network at several times after injection. We focus on

the reported longitudinal mass distribution of Adams and Gelhar (1992, Fig.7) at six times: 49, 126, 202, 279, 370, and 503

days after injection. Values are integrated measures over transverse planes and accumulated over slices of 10 m length, given

at the centers of slices at −5 m, 5 m, 15 m, . . .. The reported mass does not display mass recovery except at 126 days with310

recovery rates of 2.06,0.99,0.68,0.62,0.54, and 0.43, for the six times, respectively. We do not normalize the reported mass to

recovered mass, but stick to the actually observed values associating the mass loss to insufficient sampling in the downstream

zone as discussed in details by Fiori (2014).

3.2 Hydraulic Conductivity Structures

Three hydraulic conductivity conceptualizations are designed in line with the specifications for MADE in section 2, which serve315

different model aims. Modules (A), (B) and (C) are combined successively to capture the scale hierarchy of heterogeneity at

the MADE site. Figure 5 illustrated examples for each conceptualization.

3.2.1 Deterministic Zones (A)

As indicted by Following the lines of Rehfeldt et al. (1992), we create conductivity zones based on the changes in the piezo-

metric surface map (Figure 1, section 2.1.1), we ). We chose two vertically arranged deterministic zones (Figure 5): a low320

in average conductivity zone Z1 from upstream of the tracer input location to x= 20 m downstream and zone Z2 as high-
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Figure 5. Realizations of hydraulic conductivity structures: (top) Deterministic zones (Module A), low K1 in black, high K2 in white.

(center) Inclusions in deterministic zones (Modules A+B); amount of inclusions p= 15%, inclusion lengths Ih = 10m, Iv = 0.5m. (bottom)

Inclusions in deterministic zones and sub-scale heterogeneity (Modules A+B+C); correlation lengths λh = 2.5m, λv = 0.125m.

in-the-average conductivity area from 20 m downstream of the source . At x= 20 m is an abrupt change in the head isoline

pattern(section 2.1.1).

We fix average conductivity values of K̄Z1 = 2e−6 m/s and K̄Z2 = 2e−4 m/s with a contrast of two orders of magnitude as

stated by Boggs et al. (1992). The specific values are chosen according to the two large scale pumping test (Boggs et al., 1992)325

and the head level rise during injection which is particularly important for early plume development. Details are given in the

Supporting Information. This

When fixing mean conductivity from pumping tests, measurement scale coincides with model scale. This way, the mean

conductivity in our structures is independent of the method specific averages reported for MADE (Figure 4). The deterministic

conductivity conceptualization is suitable for properly modelling the regional groundwater in line with the model aim "Mean330

Arrival" as specified in section 2.1.

3.2.2 Inclusion Structure in Zones (A+B)

Flowmeter logs from MADE show a significant discontinuous heterogeneity in the layering (Figure 2). We represent these

structures making use of the simple binary inclusion structured described in section 2.2. We assume little to no information on

horizontal structures and connectivity to mimic typical field situations - thereby deliberately ignoring the large amount of field335

data to outline a detailed topology structure for MADE. We make use of solely four flowmeter logs (Figure 2a).
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The binary conductivity distribution is constructed for the entire domain comprising both deterministic zones. The upstream

zone Z1 consists of a bulk of low conductivity K1 with a percentage p of high conductivity K2 inclusions; the downstream

zone Z2 vice versa (Figure 5).

We identify the specific values of K1 and K2 from the statistical relationship for binary structures (Rubin, 1995): lnK̄Z1 =340

(1−p) · lnK1 +p · lnK2 and lnK̄Z2 = p · lnK1 +(1−p) · lnK2 using the mean conductivities of the zones K̄Z1 = 2e−6 m/s

and K̄Z2 = 2e− 4. p is deduced from the flowmeter profiles (Figure 2a). Being from both zones Z1 and Z2, the profiles differ

significantly in their average value. However, all show a tendencies of binary behavior with a significant spread over depth.

The data is grouped into high and low values being at least two orders of magnitude apart. Then, p is the fraction of values in

the minor group, which is 10− 20% for the MADE flowmeter profiles (Figure 2a) leading to p= 15% as default value.345

The inclusions structure in both zones is designed according to the simplified block structure outlined in paragraph 2.2. The

domain is divided into horizontal blocks of length Ih. Each block contains randomly located inclusions of thickness Iv . The

flowmeter logs at MADE indicate a change in vertical layering every 0.25− 1 m (Figure 2a). Thus, we chose Iv = 0.5 m. In

combination with a inclusion percentage of p= 15% and an aquifer thickness of 10 m this gives three inclusions per block.

The parameter Ih is the most difficult to extract from data, due to the limited amount of information on horizontal structures350

and connectivity. We specify Ih through a pragmatic, but stochastic meaningful approach by combining estimates with para-

metric uncertainty to rely on as little data as possible: A first guess results from auxiliary data analysis: An anisotropy ratio of

e= 0.1− 0.025 is given from the large scale pumping tests (Boggs et al., 1990)). Combining it with the inclusion thickness

of Iv = 0.5 m gives a range of Ih ∈ [5m,20m]. To cover parametric uncertainty we use three different values of Ih, namely

5 m, 10 m and 20 m instead of only one. The different inclusion length lengths produce distinct effects on connected pathways355

and thus on the mass distribution. In the combined ensemble A combined ensemble integrates the character of each inclusion

length is thus integrated. lengths. Figure 5b shows an example structure for Ih = 10 m. Note that inclusion can touch, so some

inclusions are thicker (e.g. 2Iv = 1 m) and longer (e.g. 2Ih = 20 m).

For the Monte Carlo Approach, we create ensembles of 600 individual random realizations, with 200 realizations of each

inclusion length Ih, while all other parameters are fixed. Preliminary investigations showed that 200 realizations are sufficient360

to ensure ensembles convergence. Reported flow and transport results for the inclusion structure in zones (A+B) are ensemble

means.

3.2.3 Sub-scale Heterogeneity in Zones (A+B+C)

We combine modules (A), (B), and (C) to an inclusion structure in deterministic zones with small-scale fluctuations (A+B+C),

depicted in Figure 5, bottom. Structural aspects of modules (A) and (B) are the same as described before, including parametric365

uncertainty for the inclusion length Ih ∈ {5,10,20}m. Module C is integrated as log-normal distributed conductivity fluctua-

tions (section 2.2). The characterizing parameters for Module (C) depend on the statistics of the super-ordinate modules (A)

and (B).

The log-normal fluctuations lnY (x) are generated using gstools (Müller and Schüler, 2019) with zero mean, since the over-

all mean conductivity refers to K̄Z1 and K̄Z2 of the deterministic zones. The log-conductivity variance σ2
Y follows from the370
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"variance gap", as difference between the variance of the inclusion structure and the overall variance. The binary inclusions for

the chosen setting have a variance of σ2
Z = 5.52 resulting from σ2

Z = p·(1−p)·(lnK1− lnK2)
2 (Rubin, 1995). With an overall

variance of σ2
F = 5.9 as indicated by (Bohling et al., 2016) (Figure 4), we arrive at a fluctuation variance of σ2

Y ≈ 0.5. We apply

an exponential co-variance function with length scale parameters being a fraction of the inclusion length scales: λh = 1/4Ih

and λv = 1/4Iv . Testing several ratios, we saw that its impact on transport behavior is negligible. Ensembles consist of 600375

realizations.

3.3 Numerical Model Settings

Flow and transport are calculated making use of the finite element solver OpenGeoSys (Kolditz et al., 2012) in the ogs5py

python framework (Müller et al., 2020). The simulation domain is a 2D cross section within x ∈ [−20,200] m and z ∈ [52,62] m

generously comprising the area of the MADE-1 tracer experiment (Boggs et al., 1992). We applied constant head boundary380

conditions at the left and right margin with a mean had gradient of J = 0.003. Tracer is injected at a well located at x= 0 with

a central screen of 0.6 m depth. Injection takes place over a period of 48.5 h with an injection rate of Qin = 1.166e− 5 m3/s

according to the initial conditions reported by Boggs et al. (1992). It is We use a flux related injection being the realistic

representation of representing natural conditions. For technical details, the reader is referred to the Supporting Information.

We checked the impact of dimensionality(2D instead of 3D) and . A detailed discussion is provided in the Supporting385

Information. We found almost no differences between 2D and 3D simulation setups . This is in contrast to known results

for log-normal distributed fields, but can be explained by the conceptualization of the heterogeneous binary structure where

the binary structure (Module B) dominates. Extending the binary structure in the horizontal direction perpendicular to main

flow does not provide additional degrees of freedom for the flow. Thus, extending the model hardly impacts the flow and thus

transport pattern. A detailed discussion is provided in the Supporting Information, while significantly increasing computational390

effort. However, dimensionality effects hold for conductivity conceptualization with prevailing log-normal distribution, i.e.

dominated by Module C. The option of complexity reduction by using 2D instead of 3D models is warranted for this application

by the fact that conductivity conceptualizations is dominated by the binary structure (module B).

Simulation results are processed like the MADE-1 experimental data. Longitudinal mass distributions are vertical averages

and accumulated horizontally over 10 m slices. Note that the simulated distributions show a full mass recovery. Besides spatial395

mass distributions for the six times where experimental data is available, we present the break through curves (BTCs) as

temporal mass evolution at critical distances, although no BTCs data is reported for the MADE-1 experiment.

3.4 Simulation Results

Figure 6 shows the simulated longitudinal mass distributions M(x)/M0 of the specified conductivity conceptualizations (sec-

tion 3.2) at T = 126 days after injection. They are compared to the MADE-1 experiment data, which had a mass recovery of400

99% at that time.

The mass distribution for the deterministic structure (concept A, yellow) shows a sharp peak close to the injection location

and no mass downstream. The conductivity structures with inclusions in deterministic zones (A+B, blue) and with sub-scale
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Figure 6. Longitudinal mass distribution at T = 126 days for conductivity concepts: (A) deterministic zones, (A+B) inclusions in zones,

(A+B+C) inclusion in zones with sub-scale heterogeneity (Figure 5). Shaded areas (light blue and green) indicate parametric uncertainty

bands. Mass distribution observed at MADE experiment in red. Linear scale and log-scale in subplot.

heterogeneity (A+B+C, green) result in skewed mass distributions with a peak close to the injection area and a small amount

of mass ahead of the bulk. Shaded areas indicate parametric uncertainty due to the variable inclusion length Ih. The shade area405

margins refer to ±3 ensemble standard deviations, which is similar to the 99% confidence intervals, considering a Gaussian

distribution of variations.

A direct comparison of the mass distributions M(x)/M0 for the structures are depicted in Figure 7 for six temporal snap-

shots, including T = 1000d, where no experimental data is available. The general form of the mass distributions is persistent

in time for all conductivity structures.410

Figure 8 shows simulated breakthrough curves (BTCs) for the deterministic block and inclusion conductivity structure at

three distances to the injection location. The results for concept (A+B+C) are very close to those of concept (A+B), thus not

displayed. Apparent differences to the longitudinal mass distributions as in Figure 7 are due to the spatial data aggregation.

The BTC for Module A has the expected Gaussian shape with a late breakthrough at x= 5 m given the very low conductivity

in the injection area. The stochastic models have an earlier breakthrough and strong tailing at all distances.415

BTCs are not available for the MADE-1 transport experiment. However, we added the aggregated mass values at the three

locations for the six reported times in a subplot to indicate a trend of temporal mass development. Note that mass values of the

btcs and those at MADE are at different scales due to data aggregation and mass recovery.

3.5 Discussion

All conductivity structures were able to reproduce the skewed hydraulic head distribution as observed at MADE (Figure 1a).420

The corresponding mean flow velocity determines the travel time. As a results, all models properly reproduced the spatial

position of the mass peak (Figure 6).
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Figure 7. Mass distributions at times T = 49, 202, 279, 370, 503, and 1000 days (panels): red = MADE-1 experiment; yellow = concept

(A); blue = concept (A+B); green = concept (A+B+C). Shaded areas (light blue and green) indicate parametric uncertainty bands; semi-log

scale in subplot.

The deterministic block structure (A) failed to reproduce the skewed mass distribution observed at MADE. The leading front

mass traveling through fast flow channels could not be predicted (Figure 7) solely using average K values in zones. In line

with model aim "Mean Arrival" (section 2.1), the simple structure allows to estimate the regional groundwater movement and425

to predict the location of the bulk mass. However, in case of aiming at "Risk Assessment", the arrival times of mass would be

significantly underestimated, as clearly be observable comparing BTCs (Figure 8).

Tracer transport in a binary conductivity structure with inclusions (concept A+B) reproduces the observed mass, both for the

peak near the injection site and the leading front. The simulated longitudinal mass distribution shows a second peak downstream

(Figure 7), which increases with time. The position is related to the interface between the low and high conductivity zones430

at 20 m distance to the source. Such a second peak is absent in the observed MADE-plume, however it might be associated

with the mass loss for the later times. The skewed mass distribution is related to significantly smaller first arrival times as

can be seen for the BTCs in Figure 8 compared to the deterministic structure. The BTCs are clearly non-Gaussian with heavy

tailing. It shows the same temporal as the MADE experiment data.
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Figure 8. Breakthrough curves: Total mass M(t)/M0 versus time at selected control plane locations for inclusion structure (A+B), (blue)

at x= 5m (solid), x= 15m (dashed), x= 45m (dotted); and for deterministic structure (A) at x= 5m (solid yellow line). Reported mass

values for MADE at the three locations (red markers) given in subplot. Regard the difference in scale due to the spatial averaging of

experimental data.

The horizontal inclusion length Ih for structure (A+B) was not fixed, but was varied over the range of Ih ∈ {5,10,20}m.435

The uncertainty bands in Figure 6b indicate that Ih mostly influences the height of the mass peak close to the source. Ih

characterized the connectivity of the source area Z1 to the high conductivity zone Z2. Thus, it determines the distance of the

bulk mass being trapped in the low conductivity area. The larger Ih the higher is the amount of mass transported downstream.

The shape of the leading front is less impacted by Ih giving that its value does not influence the effect of the inclusions as

preferential flow per se.440

The predicted plume shape for the conductivity structure with inclusions and subscale heterogeneity (A+B+C) is almost

similar to the one without sub-scale heterogneity (A+B). consequentlyConsequently, the inclusion structure is the one which

determines the shape of the distribution, whereas the impact of sub-scale heterogeneity is minor. Given the model aim of plume

prediction, the additional effort for determining characterising geostatistical parameters for the sub-scale heterogeneity is not

warranted.445

The binary conductivity conceptualization (A+B) was derived for MADE with minimal data from field investigations, thus

with a high few observations from standard methods, as can be expected to be present at many field sites. The price for the

limited amount of data is parametric uncertainty. A sensitivity study revealed that the mass distribution resulting from the

binary conductivity structure is very robust against the choice of parameters. The inclusion length Ih and the choice of the K

contrast between the zones show the highest impact. The latter was expected as the mean conductivity determines the average450

flow velocity and by that the peak location and the general distribution shape. The impact of Ih is represented in the uncertainty

18



bands (Figures 6b, 7). Other parameters as amount of inclusion p and sub-scale heterogeneity parameters as the variance have

minor effects. For details, the reader is referred to the Supporting Information. In this regard, the binary structure is very stable

towards parametric uncertainty.

4 Summary and Conclusions455

When aquifer heterogeneity is at a similar scale as solute transport, predictive transport models need to incorporate spatially

distributed hydraulic conductivity. We introduce a modular concept of heterogeneous hydraulic conductivity for predictive

modeling of field scale subsurface flow and transport. Central idea is to combine deterministic structures with simple stochas-

tic approaches to rely on a minimal amount of few measurements and to forgo calibration. The scale hierarchy of hydraulic

conductivity induces three structure modules which represent: (A) deterministic large scale features like facies; (B) interme-460

diate scale heterogeneity like preferential pathways or low conductivity inclusions; (C) small-scale random fluctuations. Field

evidence of heterogeneity features and module’s input parameters are provided by observation methods with the appropriate de-

tection scale. The specific form of the scale-dependent features depends on the site characteristics and field data. Generally, we

We propose a deterministic model for large-scale features, a simple binary statistical model for intermediate and a geostatistical

log-normal random model for small-scale features. However, the integration of alternative conductivity structures is possible.465

Thereby, the concept is easily adaptable to any field site making aquifer heterogeneity accessible for practical applications.

An illustrative example is given for the heterogeneous MADE site. Three modular conductivity structures are constructed,

based on two observations: (i) the existence of distinct zones of mean flow velocity, and (ii) high conductivity contrasts in

depth profiles suggesting local inclusions acting as fast flow channels. The structures are used in a predictive flow and transport

model which is free of calibration. The comparison of results to the MADE-1 field tracer experiment showed that all concep-470

tualizations can be of value depending on the modelling aim. However, predicting the mass plume behaviour required to take

heterogeneity into account.

The combination of deterministic and simple binary stochastic showed the best result results given the trade-off between

transport prediction and need for measurements. Realizations of hydraulic conductivity composed of binary inclusions in

two blocks with different average conductivity. Details on the topology are thereby secondary, since binary structures show475

robustness towards the choice of specific parameters.

This rather The simple binary structure was able to capture the overall characteristics of the MADE tracer plume with

reasonable accuracy requiring only a small amount of observations. Among the few predictive transport models for the MADE

site, the presented approach shows a higher level of simulation effort due to the Monte Carlo simulations. However, the lower

level of data requirements makes it attractive for application at less investigated sites. Note that when applying the proposed480

heterogeneity conceptualization in other modelling application, a 3D model setup should be considered first, particular when

heterogeneity is conceptualized by a log-normal distribution (modules C). A complexity reduction to 2D models is warranted

when the heterogeneous conductivity conceptualizations does not impact the flow pattern in transverse horizontal direction,
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such as the binary structure. The generality of the binary concept makes it easily transferable to other sites; particularly when

focusing on a few, but scale-related measurements.485

A hierarchical conductivity structure allows to balance between complexity and available data. Large scale structures deter-

mine the mean flow behavior, which is most critical for flow predictions. They can be integrated to a model with reasonable low

effort. Structural complexity increases with decreasing heterogeneity scale where small-scale features have the highest demand

on observation data. However, even with limited information on the conductivity structure, simple stochastic modules can be

used to incorporate the effect of heterogeneity. Considering small scale feature, the conductivity structure can be extended by490

including modules when additional measurements are available.

Distinguishing the effects of the scale-specific features on flow and transport also allows to identify the need for further field

investigations and potential strategies. The adaptive construction based on scale-specific modules allows to create a conductiv-

ity structure model as complex as necessary but as simple as possible.

The use of simple binary models is very powerful when dealing with strongly heterogeneous aquifers. They require less495

observation data compared to uni-modal heterogeneity models, as log-normal conductivity with high variances. Binary models

also allow to incorporate effects of dual-domain transport models without the drawback of having non-measurable input pa-

rameters which require model calibration. Our work shows that highly skewed solute plumes can be reproduced with classical

ADE models by incorporating deterministic contrasts and effects of connectivity stochasticallystatistically. specific transport

analysis of less well investigated heterogeneous sites. In summary, we conclude:500

– Modular concepts of conductivity structure allow to separate the multiple scales of heterogeneity. Scale related inves-

tigation methods provide field evidence and characterizing conductivity model parameters. A hierarchical approach for

conductivity can thus minimize the reduce observation effort by focusing on the model aim.

– Site specific heterogeneous hydraulic conductivity can be easily constructed with simple methods taking the (limited)

amount of data into account. For aquifers with high conductivity contrast, we recommend combining large-scale deter-505

ministic structures and simple binary stochastics stochastic models.

– The application example at MADE showed that complex field structures can be represented appropriately for transport

predictions with an economic use of investigation data.

This work aims to contribute to bridging the gap between the advanced research in stochastic hydrogeology and its limited

use by practitioners, being a subject of recent debate (e.g. Rajaram (2016)). We advocate the use of heterogeneity in transport510

models for successfully predicting solute behavior, particularly in complex aquifers. This can be done with few data and

simple tools: adaptive structures allowing to combine deterministic, simple stochastic random binary and geostatistical models

depending on the available data and the site-specific modelling aim.

Code and data availability. Study related python scripts are public available at https://github.com/GeoStat-Examples/Binary_Inclusions

(Zech and Müller, 2020), including scrips for (i) generating and (ii) visualizing binary inclusion structures as well as (iii) scripts for transport515
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simulations in the random inclusion structure adapted to the MADE-1 site settings. The python API ogs5py Müller (2019) and the geostatis-

tics packages gstools Müller and Schüler (2019) used in this study are both available on https://github.com/GeoStat-Framework. Data on the

MADE aquifer can be accessed via the stated literature sources. Data generated for this study is available upon request to the corresponding

author.
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