
Rebuttal

Dear editor, referees and discussant,

thank you for your constructive comments and interest in our work. We revised the manuscript 
accordingly. In the following, we provide point-by-point replies (in blue) to the comments (in 
italic). While line numbers in the comments refer to the previous manuscript version, mentioned 
lines in the response relate to the revised manuscript. Attached to the response is a marked-up 
manuscript version with tracked changes. 

With kind regards,

Alraune Zech
on behalf of the author-team.

Editor comment: 

I would suggest the authors should try to improve a bit the overall scientific significance of their 
study by highlighting some novel aspects and advances of the present study with respect to the 
existing literature on the subject.

We followed the advice of the editor along the comments of the discussant and the referees. We 
updated the abstract as well as passages of the introduction (l 64 ff) and conclusion section (422ff) 
accordingly.

Response to Referee #1: (Received and published: 9 March 2020)

The manuscript presents a hierarchical approach for modeling flow and transport in heterogeneous
aquifer. The approach is applied to the now classic MADE macrodispersion experiment, and it is 
focused on the modeling of longitudinal mass distribution, as observed during the course of the 
experiment. The paper is very well written and the method is clearly illustrated. The topic is 
relevant, and I do believe that approaches like the one envisioned here are very important to reduce
the complexity of natural ground-water systems. I think that the work deserves publication. A few 
minor comments follow.

We want to thank the referee for his positive evaluation of our work. We appreciate the referee’s 
time and effort he put into reviewing our manuscript. The paper will benefit from revising it 
according to his comments. Along the lines of the author comments published before, we here 
address all raised in combination with text modification in the manuscript.

• Abstract: I find unusual to start new paragraphs within an abstract.
We decided for a structuring of the abstracts into paragraphs to improve readability.

• Eq.1: why the ADE is presented in one spatial dimension? This may be misleading, also 
considering that hydraulic conductivity K(x) is variable in x only under such conditions 
(line 32)
Eq. 1 and related quantities are adapted to 3D.



• Figure 1. The position of the boundary between orange and green is not clear: where does it
derive?
The position of the boundary between blocks: Studying Figure 1 (left) shows that 20m down
stream of the source (black dot) the head pattern changes abruptly. Along the orange line in 
the left figure there are 4 head isolines whereas along the green line of 40m length only one. 
This is a strong indication for a change of mean hydraulic conductivity. Thus, we chose this 
position as location for the interface of distinct material blocks. Figure 1 (right) indicates the
vertical cross section where the choice of the coordinate system is along the one outline in 
the left figure. 

We added a comment in the caption of Figure 1. We expanded the explanation of Figure 1 in
the text (section 2.1.1, L.130)

• Line 155: is there any evidence of such large differences in hydraulic conductivity among 
zones (several orders of magnitude, line 157)?
This section focus on the general setup of Module A. It is designed to represent deterministic
areas of high conductivity contrast in the conceptual model for sites with field evidence. We 
added an explanatory sentence to the paragraph (L. 163). 
For the MADE site, there is evidence of such large differences in hydraulic conductivity 
(Figure 1 and the explanation on that). Thus, the use of Module A in a conductivity 
conceptual setup is warranted.

• Line 164: “reproduce” instead of “reprocude”. Corrected.

• Line 175: why the choice of Ih and Iv?
We corrected the misleading formulation (L. 182ff): Figure 2 provides a visual example. The
choice of Ih and Iv is thus arbitrary here. The specific parameters are transferred to the figure 
caption.

• Line 181: please elaborate more on the “expert knowledge” for assessing the range of 
reasonable Ih values estimated.
We revised the paragraphs on the inclusion topology elaborating on how to determine 
reasonable estimates for horizontal inclusion length scales in the context of expert 
knowledge (L.184ff).

• Line 189: please define ergodicity, and briefly explain (possibly with references) why it is 
assumed when the plume has travelled 10-100 characteristics lengths.
Intuitively speaking, the ergodic hypothesis for a system implies that all states of the 
ensemble are available in each realization [Dagan, 1989]. A figurative description in the 
context of transport is, that the plume sampled sufficient heterogeneity over its travel 
distance to be representative for the average behavior of the heterogeneous material 
structure. The value of 10-100 characteristics lengths follows from stochastic arguments of 
the sample size [Dagan, 1988,1989].

We revised the paragraph adding a definition of ergodicity and we gave references to the 
relation to travel distance. (L. 198ff)

• Line 248: I don’t see a clear transition at x=20 from Fig.1
The point was emphasized in Figure 1 and section 2.1.1 (see also comment above).



• Line 250: I don’t recall the contrast described here in Boggs et al (1992), please elaborate 
more.
A statement on the conductivity contrast is repeatedly mentioned in the Boggs et al, 1992 
paper, starting in the abstract: “This asymmetry was produced by accelerating groundwater 
flow along the plume travel path that, in turn, resulted from an approximate 2-order-of-
magnitude increase in the mean hydraulic conductivity between the near-field and far-field 
regions of the site.”
In the manuscript’s paragraph we state all relevant information and refer to the supporting 
information for further explanations. We do not know what additional information to 
provide here. 

• Line 257: “designed” instead of “design”. Corrected.

• Line 272: please explain the heuristic approach with some more detail. Line 275: why 600 
realizations?
The parameter Ih is the most difficult to extract from data, generally due to the very limited 
amount of information on horizontal structures and connectivity. Thus, a pragmatic, but also 
stochastic meaningful approach is necessary. We decided to combine estimates from the data
(the range of Ih  [5m, 20m] deduced from vertical inclusion length and the anisotropy rate),∈ [5m, 20m] deduced from vertical inclusion length and the anisotropy rate),
with the approach of parametric uncertainty: instead of using only one value out of the 
range, we allow for 3 different: 5m, 10m and 20m. The different inclusion length produce 
distinct effects on connected pathways and thus on the mass distribution. In the combined 
ensemble the character of each inclusion length is thus integrated. The ensemble thus 
consists of 3* 200 realization of each inclusion length. 
We used 600 realizations to assure that the number is sufficiently large to ensure ensemble 
convergence. As stated in the manuscript, we found in preliminary convergence tests, that 
200 realizations are sufficient to reproduce ensembles averages. Given the combination of 
different inclusion length (previous comment), we combined 3*200 realizations for the 
general ensemble representing model structure A+B.

We reworked and expanded the paragraphs on the inclusion structure and the number of 
realizations accordingly. (L. 298ff) In this line, we modified the formulation heuristic 
approach which is misleading. 

• Line 294: so the model is 2d? why not working with the more realistic 3d setup? Do you 
expect differences in the results? I guess that the additional degree of freedom brought by 3d
could make a difference.
Dimensionality of the model: We provided a detailed discussion in the (previous) author 
comment to the referee. A paragraph on that is added to the manuscript and we provide a 
detailed discussion along these lines in the Supporting information. 

• Line 296: how is the solute injected? Does the local injection rate depend on local 
hydraulic conductivity?
Solute injection follows the experimental description in Boggs et al., 1992. It is a flux 
related injection being the realistic representation of natural conditions. Thus the local 
distribution of tracer depends o the local heterogeneity. 

We added the explanation (“It is a flux related injection being the realistic representation of 
natural conditions.”) to the manuscript.



• Figure 6. Please introduce a legend.
We modified the text (A, A+b, A+B+C) to a legend and introduced a legend in Figure 7 as 
well.

• Conclusions: the first item of the list (line 396) is a rather well known and general 
statement, I would not add it as one of the conclusive statements of the work.
We removed the sentence from the conclusive statements. 

Response to Referee #2:

(Received and published: 23 March 2020)

The manuscript presents a hierarchical approach for modeling flow and transport in heterogeneous
aquifer. The key idea is combining large-scale deterministic structures and simple stochastic 
approaches. While the inclusion of a hierarchical structure to deal with heterogeneous structure is 
not new (some modelers have used similar ideas, yet not as structured as in this case), the authors 
introduce a formalism to make it understandable and efficient, I think is the main value of the 
manuscript. A significant point in the manuscript is the n-th try to model the data from the MADE 
side (here n isa very, very large number).

We’d like to thank the referee for taking his time to review our manuscript and appreciate his 
positive evaluation and constructive criticism. We revised the manuscript accordingly. Here we 
outline the changes following the discussion in the final author comments. 

The aspect of novelty and that this model is yet another try to model the MADE side tracer test was 
also raised the a discussant and the editor. We addressed these issues by revising the abstract as well
as introduction and conclusion section. 

So, maybe the main comment I have is the issue of dimensionality. First, the very simple thing is 
that eq. (1) should be 3D, as this is a general idea, and no need to simplify the problem at this point
(you can do that later).
Eq. 1 was adapted to 3D.

But, most importantly, your application is 1D. 
We want to specify that the conceptual and numerical models are 2D. We post-process the 
calculated mass distributions to allow a comparison with the 1D reference data of the MADE 1 
experiment: As outline in the manuscript, averaged over the directions perpendicular to the flow and
aggregated over intervals of 10m. (L. 341).

I have seen many models trying to fit the 1D data of MADE; but after all these years, I have not yet 
seen the spatial distribution of values.  - We neither.
Everybody reports the correspondence with transects (your figures 6 and 7). Transects are OK, but 
do not reflect the real picture at all. From l.235, “Concentrations were observed within a spatially 
dense monitoring network at several times after injection”. Is this data available? Why nobody uses
it in their models? 
Unfortunately, no other mass data than the 1D transects is available to us. In correspondence with 
many colleagues, we figured that the raw data is not public. We regret this situation, but are not in 
the position to change it. So, I can just agree to the referee.
We added a comment on the data situation to section 3 (L. 245)



You start with Figure 1. Why such a simple concept, if we know that it is slightly more complicated. 
That is actually one of the paper’s targets: make use of the “simple concepts” and data which is 
often available such as piezometric surface maps to construct a reasonable heterogeneous hydraulic 
conductivity structure. In the application of the concept to MADE we wanted to show that by 
integrating and combining “basic” data, it is possible to reproduce apparently complex mass 
distribution patterns at least at the level of spatially integrated longitudinal mass distributions. 
We added a comment on that to section 3 (L. 243).

But, in general I like the work, and I feel it is very well written. I loved in particular the section 
“Exemplary Model Aims”. This is written in a very didactic way.

This is a tough one and I do not expect an answer. The model developed in Section 3.2 involves 
quite a number of decisions and parameters. Then you get a reasonable fit. Now, can you really 
calibrate this model with so many parameters at very different scales (variances, integral distances,
p values, anisotropy ratios, directions of anisotropy,...)? I can see that being done manually for 
one-two parameters (e.g.,your line 276), but more? You would need a supercomputer and plenty of 
staff or students working on it, but this would be a waste. So, is there any automatic calibration 
approach that you envision in the future?
In section 3.2, we outlined how to derive the required parameters from hydraulic observations. We 
emphasize that the model is set up as a predictive model. There is no calibration involved. 
We saw the need to emphasized this point (predictive and calibration-free model) in the revised 
manuscript: as e.g. in L. 83, 238, 404.

The choice of several values of inclusion length is not a calibration but an integration of parametric 
uncertainty. We did not calibrate the model to one of the values, but included random realization 
with all of these values to the ensemble.
The paragraph on the derivation of the inclusions structure and choice of horizontal inclusion length
Ih, was reworked and expanded accordingly (L. 302ff).

Minor issues:

The problem inherent to hierarchy of scales is how do you assign variability to one scale or the 
other one. I mean, you can always claim that some general trends are nothing but randomness if we
look at a larger scale. Some discussion about how to distinguish Modules (A), (B) and (C) in a 
general case could benefit the paper. I mean,should (B) always related to the transport features as 
suggested in l.166?
We fully agree with the referee that categorizing spatial variability observed at a specific site to 
scales is subject of discussion and uncertainty. Addressing the point “I mean, should (B) always 
related to the transport features as suggested in l.166?” (L 166: heterogeneous features at the same 
length scale as the plume transport itself”) - Not per se. Generally, we relate the Modules to the 
typical length scale of material feature, also related to specific observation methods. However, 
Module (B) represents heterogeneity of a few meters length (up to some tenth of meters), which 
coincides with the typical length scale of a contaminant plumes. In this sense, Module (B) is prone 
to be representing the relevant heterogeneity.

We added a section (L. 227ff) discussing the hierarchy of scales and how to distinguish modules.

You could comment a bit on recharge, because probably recharge and transmissivity (in a 2D 
scenario) might be correlated. How does your hierarchy approach deal with this parameter? 



Similarly, you could also comment a bit on the impact of porosity, if you think it is relevant (maybe 
it is not); it appears in the transport equation.
We add a notice on recharge and porosity in L. 259. 
As a site note: In our model, we do not work with transmissivity since there are variations in 
conductivity and flow velocities in the vertical direction. 

L79. In my opinion the models of Fiori (2013, 2017) are completely non-predictive (actually, they 
are based on wrong assumptions, as you show in your paper); outperforming those methods should 
not even be cited.
We refrain from removing the reference to Fiori et al. (2013, 2017). They offer an alternative model 
for the MADE site, which we consider as valuable contribution to the scientific discussion.

L90. Again, the use of word “macro-dispersion”; maybe you refer to “enhanced dispersion”. The 
concept of “macro” refers to a specific quantity (since the original derivation of Gelhar and 
Axness, to all those by Dagan and so) that are never, ever, attained in real field conditions.
In the context here, we agree that macrodispersion is not the proper choice of words. We corrected 
accordingly ( L. 96). 

L116. Is this reference really needed here? I mean, the relevance of pumping testscomes from the 
1930’s if not earlier. And we teach them in class…- We removed the reference.

L 254. “Arrival” is misspelled. - Corrected. 

L 312. This is equivalent only if a Gaussian distribution of concentrations is invoked. You could add
this warning. - We added the warning (L. 353). 

Response to Discussant:

(Received and published: 27 February 2020)

This article presents an approach re ’A hierarchical aquifer model which combines large-scale 
deterministic structures and simple stochastic approaches’ in order to ‘Predict Transport in a 
Heterogeneous Aquifers’. 
As it is a research paper we may expect this to be a novel approach. If the paper is extending 
similar earlier work then references should be made. If it is routine application of existing methods 
the paper should be called a case history. 
The paper presented here shows neither a novel nor an original approach. The approach presented 
was also earlier applied to the same site where the MADE project was conducted (Columbus Air 
Force Base, MS, USA).
The type of hierarchical deterministic/stochastic modelling of geological features and permeability 
distribution discussed in the paper, has been extensively used in the oil and gas industry since the 
mid 1980s. There is a vast body of literature on the methodology and applications. All this is 
completely ignored, ie. not referenced, in this paper. Plenty basic references (up to 1996) can be 
found in chapter 2 of ref 1 below.
This type of model is also not new for the Columbus Air Force Base area where the MADE 
experiment was conducted. I have personally published a PhD thesis and an article on a 
hierarchical deterministic/stochastic approach applied to tracer tests at Columbus Air Force Base 
(the site where the MADE experiment was conducted). The 4th listed author is well aware of all 
this, as he personally communicated with me, was reviewer of my PhD thesis (Ref 1 below), and 



attended conferences where papers were presented (eg. ref 2).
Given this, the authors should thoroughly re-study existing literature and reference some key papers
out of the oil and gas industry. They also should make very clear that this is not a novel/original 
approach but simply a standard application of what has done before and is routine in oil and gas 
reservoir modelling. The authors should also make clear reference to similar work already 
conducted 25 years ago at the same site (Columbus Air Force Base test site where the MADE ∼25 years ago at the same site (Columbus Air Force Base test site where the MADE 
experiment was conducted), eg. ref 2.
The only reason why the material could be published, is that it finally may point out the scientific 
confusion and structural research mis-management around the MADE experiment and stochastic 
hydrology. The MADE experiment has led to numerous publications in journals, which all ignored 
to account for geological heterogeneity in an appropriate manner and ignored other work that 
would not fit the premises of stochastic hydrology (macro dispersion theory).

Ref 1 – Herweijer, J.C.,1997.Sedimentary heterogeneity and flow towards a well. Ph.D. 
dissertation, Free University, Amsterdam 
(https://www.hydrology.nl/images/docs/dutch/1997.01.07_Herweijer.pdf)

Ref 2 – Herweijer, J.C, 1996.Use of sedimentology and geostatistical modeling to estimate 
uncertainty of groundwater models. Proc. International Conferenceon Calibration and Reliability 
in Groundwater modeling (ModelCARE96), Golden (CO,USA), September, 1996 
(https://pdfs.semanticscholar.org/a5a5/25d8da8091bb59a59795262d932f0b4a6333.pdf)

Please also note the supplement to this comment: 
https://www.hydrol-earth-syst-sci-discuss.net/hess-2020-30/hess-2020-30-SC1-supplement.pdf

We want to thank Joost Herweijer for his interest in our work. We acknowledge the initiation of the 
scientific discussion on the subject matter of integrating aquifer heterogeneity to hydrogeological 
transport models as this was one of the goals of  the work. As stated in the manuscripst’s last 
paragraph, we aim to contribute to bridging the gap between the advanced research in stochastic 
hydrogeology and its limited use by practitioners. In this line, we agree that hierarchical 
deterministic/stochastic modeling permeability is used in the oil and gas industry, but hardly found 
it’s way into applied hydrogeology. We acknowledge his effort in providing us publications on 
MADE which have not been available to us or of which we were not aware, respectively. 

The points he raised are now addressed in the manuscript:
• it was specified that the presented work is an application of the hierarchical approach. 

Reformulated e.g. as “novel conceptualization strategy of aquifer heterogeneity in a 
hierarchical deterministic/stochastic framework”

• missing references are integrated: Herweijer, 1996, 1997, Bryant & Flint, 2009, Bianchi & 
Zheng, 2016

• We are aware that this study is not the first approach to model transport at the MADE site. 
However, it is one of the few predictive models (no calibration) for the MADE 1 experiment
and conceptually very different from the other predictive approaches [e.g. Fiori et al. 2013, 
2017, Bianchi & Zheng, 2016]. Where the Monte Carlo procedure is related to 
computational effort, the amount of required field data is limited making the approach 
attractive to less investigated sites. 

https://www.hydrology.nl/images/docs/dutch/1997.01.07_Herweijer.pdf
https://www.hydrol-earth-syst-sci-discuss.net/hess-2020-30/hess-2020-30-SC1-supplement.pdf
https://pdfs.semanticscholar.org/a5a5/25d8da8091bb59a59795262d932f0b4a6333.pdf


• The mentioned work on “A hierarchical deterministic/stochastic approach applied to tracer 
tests at Columbus Air Force Base” was integrated and provides a valuable reference. The 
application of hierarchical approaches in the context of pumping test interpretation is 
perfectly in line with the suggestions in our study to make use of distinct interpretation 
methods for aquifer heterogeneity characterization. It is a great example to make use of 
pumping tests to determine connected areas of high conductivity. The application to the 
MADE experiment however relates to another tracer test setup, with forced flow between 
wells, again focusing on fast flow channels.  

(Received and published: 9 March 2020)

2D vs 3D has been looked extensively, see e.g.

• Static characterizations of reservoirs: refining the concepts of connectivity and continuity 
Joseph M. Hovadik and David K. Larue Petroleum Geoscience, Vol. 13 2007, pp.195–211
http://citeseerx.ist.psu.edu/viewdoc/download?  d  oi=10.1.1.818.7201&rep=rep1&type=pdf  

• King, P. R., 1990, The connectivity and conductivity of overlapping sand bodies. In, Buller 
Anthony T. et al.,eds, North Sea oil and gas reservoirs; II, Proceedings of theNorth Sea oil 
and gas reservoirs conference. [Book, Conference Document], Pages 353-362.
https://link.springer.com/chapter/10.1007/978-94-009-0791-1_30

• Models in study @ MADE site mentioned in my previous comments were all run in 3D, as is
was concluded that 2D models tend to ’suppress’ connectivity.

The discussion on the model dimensionality (2D vs. 3D) is given along the response to referee #2.

https://link.springer.com/chapter/10.1007/978-94-009-0791-1_30
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.818.7201&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.818.7201&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.818.7201&rep=rep1&type=pdf
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Abstract. Aquifer heterogeneity in combination with data scarcity is a major challenge for reliable solute transport predic-

tion. Velocity fluctuations cause non-regular plume shapes with potentially long tailing and/or fast travelling mass fractions.

High monitoring cost and presumably missing simple concepts have limited the incorporation of heterogeneity to many field

transport models up to now.

We present a hierarchical aquifer model which
:::::
novel

::::::::::::::
conceptualization

:::::::
strategy

:::
for

::::::
aquifer

::::::::::::
heterogeneity.

::::
The

::::::::::
hierarchical5

:::::::
approach

:
combines large-scale deterministic structures and simple stochastic approaches

:::::::
methods. Such a heterogeneous con-

ductivity can easily be integrated into a numerical models. Depending on the modelling aim, the required structural complexity

can be adapted. The same holds for the amount of available field data. The conductivity model is constructed step-wise follow-

ing field evidence from observations; though relying on as minimal data as possible. Starting point are deterministic blocks,

derived from head profiles and pumping tests. Then, sub-scale heterogeneity in form of random binary inclusions are introduced10

to each block. Structural parameters can be determined e.g. from flowmeter measurements.

As proof of concept, we implemented a predictive transport model for the heterogeneous MADE site. The proposed hier-

archical aquifer structure reproduces the plume development of the MADE-1 transport experiment without calibration. Thus,

classical ADE models are able to describe highly skewed tracer plumes by incorporating deterministic contrasts and effects

of connectivity in a stochastic way even without using uni-modal heterogeneity models with high variances. The reliance of15

the conceptual model on few observations makes it appealing for a goal-oriented site specific transport analysis of less well

investigated heterogeneous sites.

Copyright statement.

1 Introduction

Groundwater is extensively used worldwide as the major drinking water resource and consequently needs to be protected20

with respect to quantity and quality. Increasing pressure on the quality originates from the intensification of agriculture using

1



agrochemicals (non-point sources), an increased urbanization with the resulting solid and liquid wastes and contaminant spills

from industrial applications (point sources).

Essential for groundwater protection is the quantitative analysis of the fate and transport of various contaminants in the

groundwater body. This can be either for a provisional risk assessment or for the clean-up of an already existing groundwater25

contamination. Numerical models are common tools to quantify the flow and transport, where partial differential equations are

solved using initial and boundary conditions (Bear, 1972; Fetter, 2000).

For simplicity, we restrict ourselves to saturated flow and transport of a dissolved, non-reactive contaminant. The governing

equation for its concentration C(x,t)
::::::
C(x, t)

:
is the advection-dispersion equation (ADE) (Bear, 1972):

∂C(x,t)

∂t

∂C(x, t)

∂t
:::::::

=−u(x,t) · ∂C(x,t)

∂x
∇C(
::::

x,t) +
∂

∂x
∇
:

(
DD

:
· ∂C(x,t)

∂x
∇C(
::::

x,t)

)
(1)30

given here in one spatial dimension x
::
in

:::::
space

:::::::::::
x = (x,y,z) and time t. D is the macro-dispersion coefficient and u(x,t)

::
D

:
is
:::
the

:::::::::
dispersion

:::::::::
coefficient

::::::
tensor

:::
and

::::::
u(x, t)

:
is the Darcy velocity

:::::
vector. The latter is a function of the hydraulic gradient

J and the heterogeneous hydraulic conductivity K(x)
:::::
K(x)

:
through Darcy’s Law. A proper description of the velocity field

u(x,t)
::::::
u(x, t),

::::
thus

::::::
aquifer

::::::::::::
heterogeneity, is crucial for predicting the concentration distribution C(x,t)

::::::
C(x, t).

The adequate parametrization of the heterogeneous conductivityK(x)
:::::
K(x) poses a significant challenge in practical model35

development due to the lack of data. Numerous deterministic and stochastic approaches have been developed to incorporate

the effects of spatial heterogeneity of conductivity on flow and transport, particularly in the context of stochastic subsurface

hydrology (Dagan, 1989; Gelhar, 1993; Koltermann and Gorelick, 1996).

On one hand, fully deterministic approaches use either uniform (effective) conductivities in large domains or maps of het-

erogeneity, created by interpolation, e.g. Kriging (Kitanidis, 2008). The former approach requires only few data to the price of40

neglecting local effects of heterogeneity. The latter requires a huge amount of observation data which is hardly ever available in

practical cases. Furthermore, conductivity fields from interpolation result in smooth structures lacking geological realism. On

the other hand, stochastic methods allow to resolve heterogeneity based on a limited amount of data. Thus, they are able to cap-

ture the uncertainty in flow and transport predictions caused by heterogeneity. Common methods as (i) Gaussian random fields

(Freeze, 1975; Dagan, 1989; Gelhar, 1993; Zinn and Harvey, 2003); (ii) indicator/hydrofacies models (Carle and Fogg, 1996;45

Fogg et al., 2000); or (iii) multi-point statistics/training images (Renard et al., 2011; Linde et al., 2015) allow to create spatially

distributed conductivity fields of higher geological realism. Modelling flow and transport in ensembles of heterogeneous fields

(Monte Carlo approach) do not only provide mean behavior but also uncertainty ranges.

Log-normal random fields require a number of parameters like geometric mean, log-variance and spatial correlation lengths

in horizontal and vertical directions. They result from geostatistical analysis of spatially distributed observations, e.g. from50

flowmeter, permeameter or injection logging, as DPIL (Dietrich et al., 2008). Despite increased efficiency in exploration meth-

ods, the cost and effort related to gather sufficient data hampers the application in practice. Alternatively, hydrofacies models

use indicator geostatistics with transition probability to generate geological heterogeneity structures. Although conceptually

different, the general amount of input data is similarly high. Training images are known for their geological realism, but depend

strongly on the high resolution input data, e.g. reconstructed images from outcrop studies. Not only the availability of a training55

2



image limits their application, but particularly the question if it is representative for the larger aquifer domain where transport

is modeled (Koltermann and Gorelick, 1996).

A recent debates series (Rajaram, 2016; Fiori et al., 2016; Fogg and Zhang, 2016; Cirpka and Valocchi, 2016; Sanchez-

Vila and Fernàndez-Garcia, 2016) outlined the gap between the advanced research in stochastic subsurface hydrology and

its application in the practice of groundwater flow and transport modeling. We see a significant reason in the lack of data for60

complex stochastic models. Thus, we propose a novel approach which focuses on optimizing the available field data adaptive to

:::::::
advocate

:::
the

:::
use

::
of

::::::::::
hierarchical

::::::::::
approaches,

:::::::::
combining

:::::::::::
deterministic

::::
and

::::::::
stochastic

::::::::
hydraulic

:::::::::::
conductivity

:::::::::::::::
conceptualization.

::
In

:::::::
contrast

::
to

:::::
many

:::::::::
application

::
in

:::
the

:::
oil

::::
and

:::
gas

:::::::
industry

::::::::::::::::::::
(Bryant and Flint, 2009),

::::
they

::::::
hardly

:::::
found

:::::
their

::::
way

:::
into

:::::::
applied

:::::::::::
hydrogeology

:::::::::::::::
(Herweijer, 1997).

:

::::
Here,

:::
we

::::::
present

::
a

::::
novel

:::::::::::::::
conceptualization

::::::
strategy

:::
of

::::::
aquifer

:::::::::::
heterogeneity

::
in

:
a
::::::::::
hierarchical

:::::::::::::::::::
deterministic/stochastic

::::::::::
framework.65

::::
Goal

::
is

::
to

:::::::
optimize

:::
the

:::::::
aquifer

:::::::
structure

:::::
setup

:::::
given the simulation target

::::::::::
constrained

::
by

:::
the

::::::::
available

::::
field

::::
data. Thereby, we

aim to provide a tool making aquifer heterogeneity more accessible for practical applications.

Our approach is based on the fact that subsurface heterogeneity can be generally classified into

a) larger scale dominant features which primarily determine the general flow direction together with the average ground-

water flow velocity; and70

b) smaller scale features which are responsible for the dispersion, respectively the spatial spreading of a contaminant or

solute.

We create a deliberate connection between the model parameterization requirements and the field characterization methods

employed for measurement
::::::
beyond

::
a

:::::
single

::::::
method. Pumping tests, for example, are a recommended characterization method

to determine the spatially averaged transmissivity respectively hydraulic conductivity, even in a heterogeneous aquifer environ-75

ment (Zech et al., 2016)
:::::::::::::::::::::::::::::
(Herweijer, 1996; Zech et al., 2016). Together with the averaged gradient estimated from piezometric

levels this yields good estimates of the mean groundwater flow velocities. On the other hand, high resolution, small-scale bore-

hole logs of hydraulic conductivity (e.g. from flowmeter or DPIL) can provide the data needed to estimate the variability of the

hydraulic conductivity field and consequently the dispersion parameters needed.

We demonstrate the methodology using field characterization data from MADE, a heterogeneous, well investigated research80

field site (e.g. Boggs et al. (1990); Zheng et al. (2011); Gomez-Hernandez et al. (2017)). Following our adaptive approach, we

use a minimum of field data on aquifer properties to construct a numerical transport modeland to predict tracer plume behavior

following a Monte Carlo approach. Predictions are independently evaluated using field tracer data from the MADE-1 experi-

ment (Boggs et al., 1992). They
:
In

:::::::
contrast

::
to

:::::
most

::::
other

::::::
MADE

::::::::
transport

:::::::
models,

:::
we

::::::
predict

:::::
tracer

:::::
plume

::::::::
behavior

::::::::
following

:
a
::::::
Monte

::::
Carlo

::::::::
approach

::::::
devoid

::
of

::::::::::
calibration.

:::::
Model

::::::
results shows good agreement

::::
with

::::
data, also compared to other complex85

predictive transport models for MADE (
:
i.e. g. Fiori et al. (2013, 2017)

:::::::::::::::::::::::::::::::::::::::::
Fiori et al. (2013, 2017); Bianchi and Zheng (2016)).

The course of the paper is the following: section 2 features the approach in light of different modeling aims. Section 3 is

dedicated to the application of the methodology for the MADE aquifer. We close with a summary and conclusions in section 4.
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2 Approach

Large scale hydraulic structures of hundreds or more meters determine the groundwater flow direction and magnitude in90

combination with groundwater catchment boundaries. Subsequently, they set the mean transport velocity. This is the key

parameter to predict the location of the bulk mass of substances dissolved in the groundwater when input conditions are

known.

Variations of hydraulic properties on intermediate scale, in the range of tens of meters, generate spatially variable flow fields.

They also render transport velocities variable at these scales resulting in a larger spreading of plumes. This is particularly95

important for modeling tailing or leading mass fronts. Fluctuations on scales smaller than these intermediate scales have a

blending effect, generally increasing local mixing and macro-dispersion
::::::::
enhancing

:::::::::
dispersion (Werth et al., 2006).

Following this conceptual view, we generate hydraulic conductivity fields composed of three components: Module (A), (B)

and (C) which capture the effects at large, intermediate and small scale heterogeneity, respectively. Each component is selected

according to the model aim and the data at hand to parametrize the hydraulic conductivity for this component.100

The procedure is exemplified for the MADE site. This significantly heterogeneous site was intensively investigated with

various measurement devices providing many different data sets, as pumping tests, flowmeter and DPIL measurements (Boggs

et al., 1990; Bohling et al., 2016). Detailed information on MADE can be found in section 3 and the Supporting Information.

In the approach, we considers several steps:

1. Specifying the aim of the model: What do we want to predict?105

2. Selecting processes and process components which need to be accounted for in the model: What does this imply for the

conceptualization of hydraulic conductivity?

3. Selecting suitable measurement methods: Which method can deliver the data needed for parameterizing hydraulic con-

ductivity with minimal effort?

4. Conceptualizing hydraulic conductivity.110

5. Calculating flow and transport.

Before specifying the hydraulic conductivity component Modules (A), (B) and (C), we illustrate our concept discussing two

exemplary model aims.

2.1 Exemplary Model Aims

Model Aim "Mean Arrival"115

1. Aim: Prediction of mean arrival of a contaminant from a point source.
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Figure 1. Left: Potentiometric surface map of head measurements according to Boggs et al. (1990). Orange-Green line indicates location of

cross section displayed right: Concept (Module A) for large conductivity structure with deterministic zones of low (orange) and high (green)

conductivity. Arrow indicates flow direction.
::::::
Location

::
of
:::

the
:::::::
interface

:::::::
between

:::::::
structures

:::::::::
corresponds

::
to
::::::
change

::
in

:::::::
hydraulic

::::
head

::::::
pattern

:
at
:::::
20m.

2. Processes: Estimation of regional groundwater movement, direction and magnitude of flow making use of the ground-

water flow equation and Darcy’s law. Transport is modelled by advection. For sake of simplicity we do not consider

reactivity.

3. Field characterization: Regionalized groundwater level measurements provide direction and magnitude of hydraulic120

gradient. It is critical to outline areas of different gradients (zones) indicating regional hydraulic conductivity trends

and large scale heterogeneity. Pumping tests can provide independent values of effective transmissivity within each

zone(Kruseman and de Ridder, 2000).

4. Conceptualization of hydraulic conductivity: Conductivity is considered homogeneous within each large scale zone.

Effects of heterogeneity are captured in effective parameters representing average flow behavior, e.g. determined from125

pumping tests.

5. Solving flow and transport: Flow is solved either analytically, e.g. for one or two zones of different effective hydraulic

conductivity, or numerically in case of a more complex spatial distribution of zones. Transport can be determined making

use of analytical or numerically solutions of the ADE according to initial and boundary conditions.

2.1.1 Example MADE130

The piezometric surface map of MADE (Boggs et al., 1992, Fig. 3) shows a significant non-uniform hydraulic head pattern.

::
At

::::
20 m

:::::::::::
downstream

::
of

:::
the

:::::::
injection

::::::::
location,

::::
head

:::::::
isolines

:::::
reduce

::::::::
abruptly. The reproduced head contours in Figure 1a allow

to delineate
::::
these two major zones: an area of low conductivity upstream (left) and high conductivity downstream (right). Two

large scale pumping tests confirm the contrast in mean conductivity of about two orders of magnitude (Boggs et al., 1992).
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Figure 2. Left: Four flowmeter logs of hydraulic conductivityK(z) versus depth z; the logs F-09 and F-18 are close to the tracer test injection

location; F-20 and F-40 are several tenth of meters downstream (see Figure 3). Right: Concept of binary inclusion structure (Module B)

with 15% high conductivity inclusions (green) embedded in the bulk of low conductivity (orange).
:::::::
Inclusion

:::::
length

:::
are

:::::::
arbitrarily

::::::
chosen

::
as

:::::::
Ih = 5m

:::
and

::::::::::::
Iv = 0.5− 1m.

Consequently, flow should be modelled with distinct mean conductivity in two vertical zones (Figure 1b) when aiming to model135

mean arrival times for the MADE site.

Model Aim "Risk Assessment"

1. Aim: Prediction of early or late arrival of contaminants commonly used in risk assessments.

2. Processes: Flow and transport equations; it is particularly relevant to capture variability in transport velocity to estimate

spreading behavior of plumes.140

3. Field characterization: Detecting and delineating high and low conductivity subsurface structures with a characteristic

horizontal length scale of several meters. Typical examples are channels formed in braided river systems. Typical in-

vestigation methods giving field evidence of such heterogeneity structures are small scale slug tests, borehole flowmeter

logs or permeameter tests detecting strongly vertically varying conductivity.

4. Conceptualization of hydraulic conductivity: Spatially structured non-uniform conductivity.145

5. Solving flow and transport: Small variations in conductivity allow to apply analytical solutions with effective measures,

e.g. from first order theory (Dagan, 1989). Spatially resolved heterogeneity requires numerical solution of flow and

transport with numerical tools (Monte Carlo approach).
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2.1.2 Example MADE

Borehole flowmeter logs at MADE (Rehfeldt et al., 1989; Boggs et al., 1990) reveal horizontal layers with conductivity differ-150

ences over 2 – 3 orders of magnitude. For instance, the flowmeter log F-40 shown in Figure 2a has a bulk of high conductivity

values with about 15% of values being two orders of magnitude smaller. Logs at other locations (F-09 and F-18 ) show the

inverse behavior: a bulk of low conductivity values with embeddings of high conductivity.

Such strong vertical variation indicate the presence of high conductivity channels acting as preferential flow path and low

conductivity zones with stagnant flow which both impact strongly on plume spreading behavior. Consequently, when aiming155

to model early and late plume arrival these feature need to be accounted for in a flow and transport model for the MADE site.

2.2 Scale-dependent Conductivity Modules

Given the scale-dependency of hydraulic conductivity features and their distinct relevance for flow and transport predictions,

we propose three components: Module (A), (B) and (C) which capture large, intermediate and small scale heterogeneity effects,

respectively. Given a certain model aim, components are selected (or not) with regard to the available field data. We shortly160

discuss the Modules and motivate their use based on the data of the MADE site example for different aims.

Module A

The aquifer domain of interest is divided into deterministic zones of significantly different mean conductivity (i.e. more than

one order of magnitude). The structure can comprise horizontal or vertical layering simply in blocks or complex zone geome-

tries depending on information available.
:::
The

:::
use

::
of

:::::::
Module

::
A

::
is

::::::::
warranted

:::::
when

::::::::::
observation

::::
data

:::::::
indicates

:::::::::
significant

:::::
areal165

::::::::::
conductivity

::::::::
contrasts.

:

The zones represent large scale geological structures exhibiting conductivity differences potentially over several orders of

magnitude as a results of changes in deposition history or changes in the material’s composition (Bear, 1972; Gelhar, 1993).

Zones can be delineated using geologic maps, piezometric surface maps and geophysical methods providing information on

aquifer structure, sedimentology and genesis. Pumping tests are suitable for identifying mean conductivities for each zone due170

to their large detection scale. Flow simulations on the deterministic zone structure should reproduce the observed head pattern.

The MADE site is an example where the concept of two zones of different mean hydraulic conducitivity
::::::::::
conductivity

(Figure 1b) can reprocude
::::::::
reproduce

:
conceptually the hydraulic head pattern. Details will be discussed in section 3.

Module B

When hydraulic conductivity shows heterogeneous features at the same length scale as the plume transport itself, they require175

proper resolution. A contaminant plume typically passes several of these intermediate scale features but not enough to ensure

ergodic transport behavior. Thus, using effective parameters is not warranted. Since limited data availability precludes from a

deterministic representation of these features, stochastic approaches suit best.

7



Binary stochastic models are the simplest way to capture the effects of intermediate scale features. Figure 2b shows an

example how to conceptualize a medium with twoK values: inclusions (K2) are embedded in the bulk conductivity (K1), with180

p characterizing the percentage ofK2. Inclusions of high conductivity may represent preferential flow paths whereas inclusions

of low conductivity can be obstacles like clay lenses.

The inclusion topology is a matter of choice and data availability. A simple design is a distribution of non-overlapping

blocks with horizontal length Ih and thickness Ivas in
:
.
:
Figure 2b with p= 15%, Ih = 5 m and Iv = 0.5− 1 m

:::::::
provides

:::
an

:::::::::
impression

::::
with

::::::::
arbitrary

::::::
choice

::
of

:::::::::
parameters. More complex layering structures can be adapted if additional topological185

information is available. However, the specific topology often plays a subordinate role. When not having any information on

spatial correlation of heterogeneity, it is beneficial to assume some instead of sticking to a homogeneous model.

Characteristic length scales in vertical direction Iv are detectable with low effort from a few borehole logs (Figure 2a).

Characteristic horizontal length as Ih are critical since they require spatially distributed observations. A parametric uncertainty

approach can keep the effort low. A range of reasonable Ih values is estimated (e.g. using expert knowledge) and applied in the190

random inclusion model. A sensitivity analysis reveals the impact of the parametric uncertainty of Ih on transport results.
:::
The

:::::::
estimates

:::
of

::
Ih:::::

could
::::::
results

::::
from

::::::::
auxiliary

::::
data

::::
such

:::
as

::::::
vertical

::::::
length

::::
scale

::
in
:::::::::::
combination

::::
with

:::::::::
anisotropy

::::::
ratios.

:::::::
Another

:::::
option

::
is
::::::
expert

:::::::::
knowledge

::::::
based

::
on

:::::::::
geological

:::::::::
structures

::::
and

:::::::::
similarities

:::
to

::::::
outcrop

:::::::
studies.

::::::::
Methods

::::
such

:::
as

:::::::::
diffusivity

::::
tests

::::::::::::::::::::
Somogyvari et al. (2016)

::
or

:::::
novel

:::::::::
approaches

:::
for

::::::::
pumping

:::
test

:::::::::::
interpretation

::::::::::::::::
(Zech et al., 2016)

:::
also

::::
offer

:::::::
options

::
to

::::
gain

:::::::
estimates

:::
for

:::
Ih.

:
195

The binary structure as in Figure 2b is beneficial in its plain stochastic concept relying on few input data, simple implemen-

tation and low computational requirement. It can be combined with Module (A) by implementing it within every deterministic

zone preserving the mean conductivities. As for MADE, the inclusions represent the contrasting vertical layers as observed in

flowmeter logs (Figure 2a), from which the inclusion parameters can be deduced for every deterministic zone (section 3).

Module C200

Variations in grain size and soil texture form small scale heterogeneities of characteristic length scales up to one meter. Their

relevance for transport predictions depends on ergodicity and thus, on the degree of heterogeneity . Ergodicity is usually

assumed when the plume has traveled
:::
and

:::::::::
ergodicity.

::
A

::::::
plume

:
is
:::::::::
considered

:::::::
ergodic

:::::
when

:::
the

::::::::
behaviour

:::::
within

::::
one

:::::::::
realization

:
is
::::::::::
statistically

::::::::::::
representative,

:::
i.e.

:::::::::::
exchangeable

::::
with

::::::::
ensemble

:::::::::
behaviour.

::::::::::
Figuratively

::::::::
speaking,

::
an

:::::::
ergodic

:::::
plume

:::
has

::::::::
travelled

::::
long

::::::
enough

::
to

::::::::::
sufficiently

::::::
sample

::::::::::::
heterogeneity.

::::
This

::
is
:::::::

usually
:::::::
assumed

:::
for

::::::::
transport

::::::::
distances

:::
of 10− 100 characteristic205

lengths . Then
::::::::::::
(Dagan, 1989),

::::::
which

:::::::::
increasing

::::
value

:::
for

:::::::::
increasing

::::::
degree

::
of

::::::::::::
heterogeneity.

:::::
When

:::::::
ergodic, effective parame-

ters can capture effects of heterogeneity. Otherwise, the use of a spatial random representation is warranted.

If required, small scale features can be conceptualized with a log-normal conductivity distribution K(x)∝ LN (KG,σ
2
Y )

with geometric mean KG and log-variance σ2
Y . Including a spatial correlation structure depends on the acquired complexity

and the availability of two-point statistical data as correlation length and anisotropy. Figure 3b gives an example.210

Geostatistical parameters can be inferred from spatially distributed observations (Figure 3a), e.g. permeameters, borehole

flowmeter, or injection logging (Figure 4). This is related to high effort and costs. Novel techniques like DPIL (Dietrich et al.,

8



Figure 3. Left: Locations of measurements and tracer test observation network according to Boggs et al. (1990); Bohling et al. (2016). Right:

Gaussian random field with exponential co-variance structure as conceptual module for small scale conductivity (Module C).

2008; Bohling et al., 2016) can provide a large amount of data at acceptable costs and time, but they are only accessible for

shallow sites. Alternatives can be approaches which derive geostatistical parameters directly from pumping tests (Zech and

Attinger, 2016; Zech et al., 2016) or dipole tracer test (Zech et al., 2018).215

When combining with larger heterogeneity structures, small scale fluctuations are subordinate. In case of field evidence,

Module (C) can be combined with Modules (A) and (B) by adding zero-mean fluctuations. According to Lu and Zhang (2002),

the variances of heterogeneous sub-structures is additive. Thus, the log-normal variance relates to a ’variance gap’ between

the total variance, e.g. from a geostatistical analysis of the entire domain, and the binary model’s variance (Module B). It can

be interpreted as the system’s variance which is not captured by intermediate and large scale heterogeneity. The length scales220

for a correlation structure should be significantly smaller than the inclusion lengths of Module (B). Including small-scale

heterogeneity enhances the realism of conductivity structure – however, on the expanse of increasing investigation costs.

The MADE site is a rare example with geostatistics from multiple observation methods (Figures 3a and 4). Methods well

suited for small scale heterogeneity show large variances from 4.5 up to 5.9. Given the high variance and the low mean

conductivity, ergodic conditions cannot be assumed for transport within the range of a few hundred meters.225

The large value in variance, as determined for MADE, can likely be the result of preferential flow and/or trends in mean

conductivity. Thus, explicitly representing deterministic zones (Module A) and preferential flow paths (Module B) might render

the representation of small scale features (Module C) redundant. Modeling hydraulic conductivity as log-normal fields solely

based on Module (C) seems warranted when there is no indication for deterministic zones or preferential pathways.

:::::::::
Hierarchy

::
of

::::::
Scales230

:::
The

::::::::
hierarchy

:::
of

::::::
scales

:::::
poses

::
an

::::::::
inherent

:::::::
problem

:::
for

:::::
each

:::::::::::
groundwater

::::::
model

:::::
based

:::
on

::::::::::::
heterogeneous

:::::
field

::::
data.

:::::
Data

:::::::::::
interpretation

::::
often

:::::
does

:::
not

:::::
allow

::
to

:::::
clearly

::::::::::
distinguish

::::::
general

::::::
trends

::::
from

::::::::::
randomness.

:

:::
The

:::::
three

:::::::
modules

:::::::
provide

:
a
::::::
simple

:::::::::::
classification

::
of

::::::::
transport

:::::::
relevant

:::::::::::
heterogeneity

::::::
scales:

:::
(A)

::
–

::::::
beyond

::::::
plume

:::::
scale,

:::
i.e.

:::::
above

:::::
100m;

:::
(B)

::
–
:::::
range

::
of

::::::
plume

::::
scale

::::::
(about

:::::::::
10-100m);

:::
and

:::
(C)

::
–

::::::::
sub-scale

::::::
(<1m).

:
It
::::
will

:::
not

::
be

::::::::::
appropriate

:::
for

:::::
every

::::
field

:::
and

:::::::
transport

::::::::
situation,

:::
but

::::::::
provides

::
an

:::::::::
orientation

:::
for

:::::::::
developing

:::::::::::
site-specific

::::::::::::
heterogeneous

::::::::::
conductivity

:::::::::
structures.235
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Figure 4. Geostatistical measures for MADE from DPIL (direct push injection logging) (Bohling et al., 2016), flowmeter, grain size analysis,

slug tests (Rehfeldt et al., 1992) and effective mean values (Keff) of two large scale pumping tests (Boggs et al., 1990): log-conductivity

variance σ2
lnK , horizontal and vertical correlation length `h and `v , respectively. Visualization of range of observed values from minimal

(Kmin) to maximal (Kmax), variance range and geometric mean KG.

:::::
Which

:::::::
module

::
to

:::::::
integrate

::
at
::
a
:::::::
specific

:::
site

:::::::
depends

::
on

::::::::
multiple

:::::::
aspects:

::
(i)

::
Is

::::
there

:::::
field

:::
data

::::::::
evidence

:::
for

:
a
::::::::::::
heterogeneity

:::::::
structure

::
of

::
a

::::::
certain

:::::
length

::::::
scale?;

:::
(ii)

::
Is

::::
there

::::::::
sufficient

::::
data

::
to

:::::::::::
parameterize

:
a
::::::::::
conceptual

:::::::::::
heterogeneity

:::::::::::::
representation?

::::
And

:::
(iii)

::
is

:
it
:::::::::
necessary

::
to

::::::
present

:::
the

:::::::::::
heterogeneity

:::::
given

:::
the

:::::
travel

:::::::
distance

::
of

:::
the

:::::
plume

:::::::::::
(ergodicity)?

::::::
Having

::
a
:::::::
positive

::::::
answer

::
to

::::
each

::
of

:::
the

:::::::
question

:::
for

:
a
::::::
certain

:::::::
module

:::::::
warrants

::
its

::::::::::::
consideration

::
in

:::
the

::::::::::
conductivity

:::::::::
conceptual

::::::
model

3 Predictive Transport Model for MADE240

We validate our approach by performing flow and transport calculation for the MADE setting .
::::::
without

::::::::
parameter

::::::::::
calibration.

::::::::
Although,

:::::
many

::::::::::
approaches

::
to

::::::
model

:::
the

::::::::
transport

::
at
::::

the
::::::
MADE

::::
site

::::
exist

:::::::::::::::::
(Zheng et al., 2011),

:::::
only

:::
few

:::
of

:::::
them

::::
have

::
a

::::::::
predictive

::::::::
character,

:::
i.e.

::::::
devoid

::
of

:::::::::
calibration

::
to

:::::::
transport

::::::
results

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Fiori et al., 2013, 2017; Dogan et al., 2014; Bianchi and Zheng, 2016)

:
.

Based on the scale-dependent conductivity modules (section 2.2), we derive
::::::
develop

:
different conductivity structures ac-245

cording to the field evidence given the structural data at MADE.
::
We

:::::::
thereby

::::
aim

:::
to

:::::::
identify

:::
the

::::::
"most

:::::::
simple"

::
of

::::
our

:::::::
concepts

:::::
which

::::
still

:::::::
provides

:
a
:::::::::
reasonable

:::::::::
prediction

::
of

:::
the

:::::::
complex

::::::::
observed

::::
mass

:::::::::::
distribution. The computed tracer plume is

::::::
plumes

:::
are compared to the MADE-1 transport experiment (Boggs et al., 1992; Adams and Gelhar, 1992).

::::::::::
experimental

::::::
results

:::::::::::::::::::::::::::::::::::::
(Boggs et al., 1992; Adams and Gelhar, 1992).

:::::
Since

:::
the

::::::::
observed

::::::
spatial

:::::::::::
concentration

::::::::::
distribution

::
is

:::
not

::::::::
available,

:::
we

:::::
make

:::
use

::
of

:::
1D

::::::::::
longitudinal

::::
mass

::::::::
transects

::
at

:::::::
specified

::::::
times.250

Following the approach steps outlined in section 2, we define our model aim broader then specified in section 2.1: The target

is predicting the general plume behavior. This might serve different purposes as e.g remediation and includes the mean flow

behavior. The fact that there is no break-through curve data available for MADE, inhibits to study the subject of arrival times.
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Particularly critical is first arrival as discussed in Adams and Gelhar (1992). Processes involved here are flow and transport

governed by Darcy’s Law and the Advection-Dispersion-Equation (Eq. 1).255

3.1 MADE Field Data

The MADE site is located on the Columbus Air Force Base in Mississippi, U.S.A. The aquifer was characterized as shallow,

unconfined,
:
of

:
about 10−11 m thick with a porosity of 0.32

::::::::
thickness (Boggs et al., 1992). It consists of alluvial terrace deposits

composed of poorly sorted to well-sorted sandy gravel and gravely sand with significant amounts of silt and clay. The first

extensive field campaign by Boggs et al. (1990) yielded a multitude of hydro-geological information, as e.g. piezometric surface260

maps and hydraulic conductivity observations from soil samples, flowmeter and pumping tests (Figure 4). Field campaigns in

subsequent years supplemented observations and data interpretations. For an overview see e.g. Zheng et al. (2011); Bohling

et al. (2016) or Table 1 in the Supporting Information.
:::
We

:::::
apply

:
a
:::::::
porosity

:::
of

::::
0.31.

:::::::::
Recharge

:
is
::::::::

assumed
:::::::
uniform

::::
and

::::
very

::::
small

:::::::::::::::::
(Boggs et al., 1990).

:::::
Both

::::::::
quantities

:::
are

::::
kept

:::::::
constant

::::
due

::
to

:::
the

::::::::::
dominating

:::::
effect

::
of

::::::::
hydraulic

:::::::::::
conductivity

:::::
given

:::
the

::::::::
significant

:::::::::
variations

:::
and

:::
the

::::::::::
uncertainty

::::::::
associated

::::
with

:::::::::::
observations

::::::
(Figure

:::
4).265

The MADE-1 transport experiment was conducted in the years 1986–1988 (Boggs et al., 1990, 1992; Rehfeldt et al., 1992;

Adams and Gelhar, 1992). A pulse of bromide was injected over a period of 48.5h applying a flow rate of 3.5 l/min. The forced

input conditions enlarged the tracer body at the source. Transport then took place under ambient flow conditions.

Concentrations were observed within a spatially dense monitoring network at several times after injection. We focus on

the reported longitudinal mass distribution of Adams and Gelhar (1992, Fig.7) at six times: 49, 126, 202, 279, 370, and 503270

days after injection. Values are integrated measures over transverse planes and accumulated over slices of 10 m length, given

at the centers of slices at −5 m, 5 m, 15 m, . . .. The reported mass does not display mass recovery except at 126 days with

recovery rates of 2.06,0.99,0.68,0.62,0.54, and 0.43, for the six times, respectively. We do not normalize the reported mass to

recovered mass, but stick to the actually observed values associating the mass loss to insufficient sampling in the downstream

zone as discussed in details by Fiori (2014).275

3.2 Hydraulic Conductivity Structures

Three hydraulic conductivity conceptualizations are designed in line with the specifications for MADE in section 2, which serve

different model aims. Modules (A), (B) and (C) are combined successively to capture the scale hierarchy of heterogeneity at

the MADE site. Figure 5 illustrated examples for each conceptualization.

3.2.1 Deterministic Zones (A)280

As indicted by the piezometric surface map (Figure 1,
:::::::

section
::::
2.1.1), we chose two vertically arranged deterministic zones

(Figure 5): a low in average conductivity zone Z1 from upstream of the tracer input location to x= 20 m downstream and zone

Z2 as high-in-the-average conductivity area from 20 m downstream of the source.
::
At

::::::::
x= 20 m

:
is
:::
an

:::::
abrupt

::::::
change

:::
in

::
the

:::::
head

:::::
isoline

:::::::
pattern.
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Figure 5. Realizations of hydraulic conductivity structures: (top) Deterministic zones (Module A), low K1 in black, high K2 in white.

(center) Inclusions in deterministic zones (Modules A+B); amount of inclusions p= 15%, inclusion lengths Ih = 10m, Iv = 0.5m. (bottom)

Inclusions in deterministic zones and sub-scale heterogeneity (Modules A+B+C); correlation lengths λh = 2.5m, λv = 0.125m.

We fix average conductivity values of K̄Z1 = 2e− 6 m/s and K̄Z2 = 2e− 4 m/s with a contrast of two orders of magnitude285

as stated by Boggs et al. (1992). The specific values are chosen according to the two large scale pumping test (Boggs et al.,

1992) and the head level rise during injection which is particularly important for early plume development. Details are given in

the Supporting Information. This deterministic conductivity conceptualization is suitable for properly modelling the regional

groundwater in line with the model aim "Mean Arrivel
:::::
Arrival" as specified in section 2.1.

3.2.2 Inclusion Structure in Zones (A+B)290

Flowmeter logs from MADE show a significant discontinuous heterogeneity in the layering (Figure 2). We represent these

structures making use of the simple binary inclusion structured described in section 2.2.

The binary conductivity distribution is constructed for the entire domain comprising both deterministic zones. The upstream

zone Z1 consists of a bulk of low conductivity K1 with a percentage p of high conductivity K2 inclusions; the downstream

zone Z2 vice versa (Figure 5).295

We identify the specific values of K1 and K2 from the statistical relationship for binary structures (Rubin, 1995): lnK̄Z1 =

(1−p) · lnK1 +p · lnK2 and lnK̄Z2 = p · lnK1 +(1−p) · lnK2 using the mean conductivities of the zones K̄Z1 = 2e−6 m/s

and K̄Z2 = 2e− 4. p is deduced from the flowmeter profiles (Figure 2a). Being from both zones Z1 and Z2, the profiles differ

significantly in their average value. However, all show a tendencies of binary behavior with a significant spread over depth.

The data is grouped into high and low values being at least two orders of magnitude apart. Then, p is the fraction of values in300

the minor group, which is 10− 20% for the MADE flowmeter profiles (Figure 2a) leading to p= 15% as default value.
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The inclusions structure in both zones is design
:::::::
designed

:
according to the simplified block structure outlined in para-

graph 2.2. The domain is divided into horizontal blocks of length Ih. Each block contains randomly located inclusions of

thickness Iv . The flowmeter logs at MADE indicate a change in vertical layering every 0.25−1 m (Figure 2a). Thus, we chose

Iv = 0.5 m. In combination with a inclusion percentage of p= 15% and an aquifer thickness of 10 m this gives three inclusions305

per block.

:::
The

:::::::::
parameter

::
Ih::

is
:::
the

::::
most

:::::::
difficult

::
to

::::::
extract

::::
from

::::
data,

::::
due

::
to

:::
the

::::::
limited

::::::
amount

::
of
::::::::::
information

:::
on

::::::::
horizontal

:::::::::
structures

:::
and

:::::::::::
connectivity.

:
We specify Ih through an heuristic approaches in combination

:
a
::::::::::

pragmatic,
:::
but

:::::::::
stochastic

::::::::::
meaningful

:::::::
approach

:::
by

:::::::::
combining

:::::::::
estimates with parametric uncertainty to rely on as little data as possible: The anisotropy ratio

::
A

:::
first

:::::
guess

::::::
results

:::::
from

::::::::
auxiliary

::::
data

:::::::
analysis:

:::
An

::::::::::
anisotropy

::::
ratio

::
of

::::::::::::::
e= 0.1− 0.025

::
is

:::::
given from the large scale pump-310

ing tests (Boggs et al., 1990))is e= 0.1− 0.025. Combining it with the inclusion thickness of Iv = 0.5 m gives a range of

Ih ∈ [5m,20m].
::
To

:::::
cover

:::::::::
parametric

::::::::::
uncertainty

:::
we

:::
use

:::::
three

:::::::
different

::::::
values

::
of

:::
Ih,

:::::::
namely

::::
5 m,

::::
10 m

::::
and

::::
20 m

::::::
instead

:::
of

::::
only

::::
one.

:::
The

::::::::
different

:::::::
inclusion

::::::
length

:::::::
produce

:::::::
distinct

:::::
effects

:::
on

:::::::::
connected

::::::::
pathways

:::
and

::::
thus

:::
on

:::
the

::::
mass

::::::::::
distribution.

:::
In

::
the

:::::::::
combined

::::::::
ensemble

:::
the

::::::::
character

:::
of

::::
each

::::::::
inclusion

::::::
length

::
is

::::
thus

:::::::::
integrated.

:
Figure 5b shows an example structure for

Ih = 10 m. Note that inclusion can touch, so some inclusions are thicker (e.g. 2Iv = 1 m) and longer (e.g. 2Ih = 20 m).315

For our
::
the

:
Monte Carlo Approach, we create ensembles of 600 individual random realizations. Allowing for parametric

uncertainty, we consider three possible Ih values of 5 m, 10 m and 20 m when generating random realizations. The ,
:::::

with

:::
200

::::::::::
realizations

::
of

:::::
each

::::::::
inclusion

::::::
length

:::
Ih,

:::::
while

:::
all other parameters are fixedto the values outlined above

:
.
::::::::::
Preliminary

:::::::::::
investigations

:::::::
showed

:::
that

:::
200

::::::::::
realizations

:::
are

::::::::
sufficient

::
to

::::::
ensure

::::::::
ensembles

:::::::::::
convergence. Reported flow and transport results

for the inclusion structure in zones (A+B) are ensemble means. We checked for ensemble convergence and found that 200320

realizations are already sufficient.

3.2.3 Sub-scale Heterogeneity in Zones (A+B+C)

We combine modules (A), (B), and (C) to an inclusion structure in deterministic zones with small-scale fluctuations (A+B+C),

depicted in Figure 5, bottom. Structural aspects of modules (A) and (B) are the same as described before, including parametric

uncertainty for the inclusion length Ih ∈ {5,10,20}m. Module C is integrated as log-normal distributed conductivity fluctua-325

tions (section 2.2). The characterizing parameters for Module (C) depend on the statistics of the super-ordinate modules (A)

and (B).

The log-normal fluctuations lnY (x) are generated with zero mean, since the overall mean conductivity refers to K̄Z1 and

K̄Z2 of the deterministic zones. The log-conductivity variance σ2
Y follows from the "variance gap", as difference between the

variance of the inclusion structure and the overall variance. The binary inclusions for the chosen setting have a variance of330

σ2
Z = 5.52 resulting from σ2

Z = p · (1− p) · (lnK1− lnK2)
2 (Rubin, 1995). With an overall variance of σ2

F = 5.9 as indicated

by (Bohling et al., 2016) (Figure 4), we arrive at a fluctuation variance of σ2
Y ≈ 0.5. We apply an exponential co-variance

function with length scale parameters being a fraction of the inclusion length scales: λh = 1/4Ih and λv = 1/4Iv . Testing

several ratios, we saw that its impact on transport behavior is negligible. Ensembles consist of 600 realizations.
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Figure 6. Longitudinal mass distribution at T = 126 days for conductivity concepts: (A) deterministic zones, (A+B) inclusions in zones,

(A+B+C) inclusion in zones with sub-scale heterogeneity (Figure 5). Shaded areas (light blue and green) indicate parametric uncertainty

bands. Mass distribution observed at MADE experiment in red. Linear scale and log-scale in subplot.

3.3 Numerical Model Settings335

Flow and transport are calculated making use of the finite element solver OpenGeoSys (Kolditz et al., 2012) in the ogs5py

python framework (Müller et al., 2020). The simulation domain is a 2D cross section within x ∈ [−20,200] m and z ∈
[52,62] m generously comprising the area of the MADE-1 tracer experiment (Boggs et al., 1992). We applied constant head

boundary conditions at the left and right margin with a mean had gradient of J = 0.003. Tracer is injected at a well lo-

cated at x= 0 with a central screen of 0.6 m depth. Injection takes place over a period of 48.5 h with an injection rate of340

Qin = 1.166e− 5
::::::::::::::
Qin = 1.166e− 5 m3/s according to the initial conditions reported by Boggs et al. (1992).

:
It

::
is

:
a
::::
flux

::::::
related

:::::::
injection

:::::
being

:::
the

:::::::
realistic

::::::::::::
representation

::
of

::::::
natural

:::::::::
conditions.

:
For technical details, the reader is referred to the Supporting

Information.

:::
We

:::::::
checked

::
the

::::::
impact

::
of

:::::::::::::
dimensionality

:::
(2D

::::::
instead

::
of

::::
3D)

:::
and

:::::
found

::::::
almost

::
no

::::::::::
differences

:::::::
between

:::
2D

:::
and

:::
3D

:::::::::
simulation

:::::
setups.

:::::
This

::
is

::
in

:::::::
contrast

::
to

::::::
known

:::::
results

:::
for

::::::::::
log-normal

:::::::::
distributed

:::::
fields,

:::
but

::::
can

::
be

::::::::
explained

:::
by

:::
the

:::::::::::::::
conceptualization

::
of345

::
the

:::::::::::::
heterogeneous

:::::
binary

::::::::
structure.

:::::::::
Extending

:::
the

::::::
binary

:::::::
structure

::
in

:::
the

:::::::::
horizontal

:::::::
direction

::::::::::::
perpendicular

::
to

:::::
main

::::
flow

::::
does

:::
not

::::::
provide

:::::::::
additional

::::::
degrees

:::
of

:::::::
freedom

:::
for

:::
the

::::
flow.

:::::
Thus

::::::::
extending

:::
the

::::::
model

::::::
hardly

:::::::
impacts

:::
the

::::
flow

:::
and

::::
thus

::::::::
transport

::::::
pattern.

::
A

:::::::
detailed

:::::::::
discussion

:
is
::::::::
provided

::
in

:::
the

:::::::::
Supporting

:::::::::::
Information.

:

Simulation results are processed like the MADE-1 experimental data. Longitudinal mass distributions are vertical averages

and accumulated horizontally over 10 m slices. Note that the simulated distributions show a full mass recovery. Besides spatial350

mass distributions for the six times where experimental data is available, we present the break through curves (BTCs) as

temporal mass evolution at critical distances, although no BTCs data is reported for the MADE-1 experiment.
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3.4 Simulation Results

Figure 6 shows the simulated longitudinal mass distributions M(x)/M0 of the specified conductivity conceptualizations (sec-

tion 3.2) at T = 126 days after injection. They are compared to the MADE-1 experiment data, which had a mass recovery of355

99% at that time.

The mass distribution for the deterministic structure (concept A, yellow) shows a sharp peak close to the injection location

and no mass downstream. The conductivity structures with inclusions in deterministic zones (A+B, blue) and with sub-scale

heterogeneity (A+B+C, green) result in skewed mass distributions with a peak close to the injection area and a small amount

of mass ahead of the bulk. Shaded areas indicate parametric uncertainty due to the variable inclusion length Ih. The shade area360

margins refer to ±3 ensemble standard deviations, which is similar to the 99% confidence intervals,
::::::::::
considering

::
a
::::::::
Gaussian

:::::::::
distribution

::
of

:::::::::
variations.

A direct comparison of the mass distributions M(x)/M0 for the structures are depicted in Figure 7 for six temporal snap-

shots, including T = 1000d, where no experimental data is available. The general form of the mass distributions is persistent

in time for all conductivity structures.365

Figure 8 shows simulated breakthrough curves (BTCs) for the deterministic block and inclusion conductivity structure at

three distances to the injection location. The results for concept (A+B+C) are very close to those of concept (A+B), thus not

displayed. Apparent differences to the longitudinal mass distributions as in Figure 7 are due to the spatial data aggregation.

The BTC for Module A has the expected Gaussian shape with a late breakthrough at x= 5 m given the very low conductivity

in the injection area. The stochastic models have an earlier breakthrough and strong tailing at all distances.370

BTCs are not available for the MADE-1 transport experiment. However, we added the aggregated mass values at the three

locations for the six reported times in a subplot to indicate a trend of temporal mass development. Note that mass values of the

btcs and those at MADE are at different scales due to data aggregation and mass recovery.

3.5 Discussion

All conductivity structures were able to reproduce the skewed hydraulic head distribution as observed at MADE (Figure 1a).375

The corresponding mean flow velocity determines the travel time. As a results, all models properly reproduced the spatial

position of the mass peak (Figure 6).

The deterministic block structure (A) failed to reproduce the skewed mass distribution observed at MADE. The leading front

mass traveling through fast flow channels could not be predicted (Figure 7) solely using average K values in zones. In line

with model aim "Mean Arrival" (section 2.1), the simple structure allows to estimate the regional groundwater movement and380

to predict the location of the bulk mass. However, in case of aiming at "Risk Assessment", the arrival times of mass would be

significantly underestimated, as clearly be observable comparing BTCs (Figure 8).

Tracer transport in a binary conductivity structure with inclusions (concept A+B) reproduces the observed mass, both for the

peak near the injection site and the leading front. The simulated longitudinal mass distribution shows a second peak downstream

(Figure 7), which increases with time. The position is related to the interface between the low and high conductivity zones385
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Figure 7. Mass distributions at times T = 49, 202, 279, 370, 503, and 1000 days (panels): red = MADE-1 experiment; yellow = concept

(A); blue = concept (A+B); green = concept (A+B+C). Shaded areas (light blue and green) indicate parametric uncertainty bands; semi-log

scale in subplot.

at 20 m distance to the source. Such a second peak is absent in the observed MADE-plume, however it might be associated

with the mass loss for the later times. The skewed mass distribution is related to significantly smaller first arrival times as

can be seen for the BTCs in Figure 8 compared to the deterministic structure. The BTCs are clearly non-Gaussian with heavy

tailing. It shows the same temporal as the MADE experiment data.

The horizontal inclusion length Ih for structure (A+B) was not fixed, but was varied over the range of Ih ∈ {5,10,20}m.390

The uncertainty bands in Figure 6b indicate that Ih mostly influences the height of the mass peak close to the source. Ih

characterized the connectivity of the source area Z1 to the high conductivity zone Z2. Thus, it determines the distance of the

bulk mass being trapped in the low conductivity area. The larger Ih the higher is the amount of mass transported downstream.

The shape of the leading front is less impacted by Ih giving that its value does not influence the effect of the inclusions as

preferential flow per se.395

The predicted plume shape for the conductivity structure with inclusions and subscale heterogeneity (A+B+C) is almost

similar to the one without sub-scale heterogneity (A+B). consequently, the inclusion structure is the one which determines the
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Figure 8. Breakthrough curves: Total mass M(t)/M0 versus time at selected control plane locations for inclusion structure (A+B), (blue)

at x= 5m (solid), x= 15m (dashed), x= 45m (dotted); and for deterministic structure (A) at x= 5m (solid yellow line). Reported mass

values for MADE at the three locations (red markers) given in subplot. Regard the difference in scale due to the spatial averaging of

experimental data.

shape of the distribution, whereas the impact of sub-scale heterogeneity is minor. Given the model aim of plume prediction,

the additional effort for determining characterising geostatistical parameters for the sub-scale heterogeneity is not warranted.

The binary conductivity conceptualization (A+B) was derived for MADE with minimal data from field investigations, thus400

with a high parametric uncertainty. A sensitivity study revealed that the mass distribution resulting from the binary conductivity

structure is very robust against the choice of parameters. The inclusion length Ih and the choice of the K contrast between the

zones show the highest impact. The latter was expected as the mean conductivity determines the average flow velocity and by

that the peak location and the general distribution shape. The impact of Ih is represented in the uncertainty bands (Figures 6b,

7). Other parameters as amount of inclusion p and sub-scale heterogeneity parameters as the variance have minor effects. For405

details, the reader is referred to the Supporting Information. In this regard, the binary structure is very stable towards parametric

uncertainty.

4 Summary and Conclusions

:::::
When

::::::
aquifer

::::::::::::
heterogeneity

:
is
::

at
::

a
::::::
similar

:::::
scale

::
as

:::::
solute

:::::::::
transport,

::::::::
predictive

::::::::
transport

::::::
models

::::
need

:::
to

:::::::::
incorporate

::::::::
spatially

:::::::::
distributed

::::::::
hydraulic

:::::::::::
conductivity.

:
We introduce a modular concept of heterogeneous hydraulic conductivity for predictive410

modeling of field scale subsurface flow and transport. Central idea is to combine deterministic structures with simple stochastic

approaches to rely on a minimal amount of measurements
:::
and

::
to
:::::

forgo
:::::::::
calibration. The scale hierarchy of hydraulic conduc-

tivity induces three structure modules which represent: (A) deterministic large scale features like facies; (B) intermediate scale
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heterogeneity like preferential pathways or low conductivity inclusions; (C) small-scale random fluctuations. Field evidence

of heterogeneity features and module’s input parameters are provided by observation methods with the appropriate detection415

scale. The specific form of the scale-dependent features depends on the site characteristics and field data. Generally, we propose

a deterministic model for large-scale features, a simple binary statistical model for intermediate and a geostatistical model for

small-scale features. However, the integration of alternative conductivity structures is possible.
:::::::
Thereby,

:::
the

:::::::
concept

::
is

:::::
easily

::::::::
adaptable

::
to

:::
any

::::
field

:::
site

:::::::
making

::::::
aquifer

:::::::::::
heterogeneity

:::::::::
accessible

:::
for

:::::::
practical

:::::::::::
applications.

An illustrative example is given for the heterogeneous MADE site. Three modular conductivity structures are constructed,420

based on two observations: (i) the existence of distinct zones of mean flow velocity, and (ii) high conductivity contrasts in

depth profiles suggesting local inclusions acting as fast flow channels. The structures are used in a predictive flow and trans-

port model which is free of calibration. The comparison of results to the MADE-1 field tracer experiment showed that all

conceptualizations can be of values depending on
::::
value

:::::::::
depending

:::
on

:::
the modelling aim. However, predicting the mass plume

behaviour required to take heterogeneity into account.425

The combination of deterministic and simple stochastic showed the best result given the trade-off between transport pre-

diction and need for measurements. Realizations of hydraulic conductivity composed of binary inclusions in two blocks with

different average conductivity. Details on the topology are thereby secondary, since binary structures show robustness towards

the choice of specific parameters. This rather simple structure was able to capture the overall characteristics of the MADE tracer

plume with reasonable accuracy requiring only a small amount of observations.
::::::
Among

:::
the

::::
few

::::::::
predictive

::::::::
transport

::::::
models

:::
for430

::
the

:::::::
MADE

::::
site,

::
the

:::::::::
presented

:::::::
approach

::::::
shows

:
a
::::::
higher

::::
level

::
of

:::::::::
simulation

:::::
effort

:::
due

::
to

:::
the

::::::
Monte

::::
Carlo

:::::::::::
simulations.

::::::::
However,

::
the

:::::
lower

:::::
level

::
of

::::
data

:::::::::::
requirements

::::::
makes

:
it
::::::::
attractive

:::
for

:::::::::
application

::
at
::::
less

::::::::::
investigated

:::::
sites. The generality of the concept

makes it easily transferable to other sites; particularly when focusing on a few, but scale-related measurements.

A hierarchical conductivity structure allows to balance between complexity and available data. Large scale structures deter-

mine the mean flow behavior, which is most critical for flow predictions. They can be integrated to a model with reasonable low435

effort. Structural complexity increases with decreasing heterogeneity scale where small-scale features have the highest demand

on observation data. However, even with limited information on the conductivity structure, simple stochastic modules can be

used to incorporate the effect of heterogeneity. Considering small scale feature, the conductivity structure can be extended by

including modules when additional measurements are available.

Distinguishing the effects of the scale-specific features on flow and transport also allows to identify the need for further field440

investigations and potential strategies. The adaptive construction based on scale-specific modules allows to create a conductiv-

ity structure model as complex as necessary but as simple as possible.

The use of simple binary models is very powerful when dealing with strongly heterogeneous aquifers. They require less

observation data compared to uni-modal heterogeneity models, as log-normal conductivity with high variances. Binary models

also allow to incorporate effects of dual-domain transport models without the drawback of having non-measurable input pa-445

rameters which require model calibration. Our work shows that highly skewed solute plumes can be reproduced with classical

ADE models by incorporating deterministic contrasts and effects of connectivity stochastically. specific transport analysis of

less well investigated heterogeneous sites.
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In summary, we conclude:

– When aquifer heterogeneity is at a similar scale as solute transport, predictive transport models need to incorporate450

spatially distributed hydraulic conductivity.

– Modular concepts of conductivity structure allow to separate the multiple scales of heterogeneity. Scale related inves-

tigation methods provide field evidence and characterizing model parameters. A hierarchical approach for conductivity

can thus minimize the effort by focusing on the model aim.

– Site specific heterogeneous hydraulic conductivity can be easily constructed with simple methods taking the (limited)455

amount of data into account. For aquifers with high conductivity contrast, we recommend combining large-scale deter-

ministic structures and simple binary stochastics models.

– The application example at MADE showed that complex field structures can be represented appropriately for transport

predictions with an economic use of investigation data.

This work aims to contribute to bridging the gap between the advanced research in stochastic hydrogeology and its limited460

use by practitioners, being a subject of recent debate (e.g. Rajaram (2016)). We advocate the use of heterogeneity in transport

models for successfully predicting solute behavior, particularly in complex aquifers. This can be done with few data and

simple tools: adaptive structures allowing to combine deterministic, simple stochastic and geostatistical models depending on

the available data and the site-specific modelling aim.

Code and data availability. Transport simulation and geo-statistical code used in this study is available on https://github.com/GeoStat-465

Framework. Data on the MADE aquifer can be accessed via the stated literature sources. Data generated for this study is available upon

request to the corresponding author.
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