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Abstract: Revealing the error components for satellite-only precipitation products 

(SPPs) can help algorithm developers and end-users substantially understand their error 

features and meanwhile is fundamental to customize retrieval algorithms and error 15 

adjustment models. Two error decomposition schemes were employed to explore the 

error components for five SPPs (i.e., MERG-Late, IMERG-Early, GSMaP-MVK, 

GSMaP-NRT, and PERSIANN-CCS) over different seasons, rainfall intensities, and 

topography classes. Firstly, this study depicted global maps of the total bias (total mean 

squared error) and its three (two) independent components for these five SPPs over four 20 

seasons for the first time. We found that the evaluation results between similar regions 

could not be extended to one another. Hit and/or false biases are major components of 
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the total bias in most regions of the global land areas. In addition, the proportions of the 

systematic error are less than 20% of total errors in most areas. One should note that 

each SPP has larger systematic errors in several regions (i.e., Russia, China, and 25 

Conterminous United States) for all four seasons, these larger systematic errors from 

retrieval algorithms are primarily due to the missed precipitation. Furthermore, IMERG 

suite and GSMaP-NRT display less systematic error in the rain rates with intensity less 

than 40 mm/day, while the systematic errors of GSMaP-MVK and PERSIANN-CCS 

increase with increasing rainfall intensity. Given that mean elevation cannot reflect the 30 

complex degree of terrain, we introduced the standard deviation of elevation (SDE) to 

replace mean elevation to better describe topographic complexity. Compared with other 

SPPs, GSMaP suite shows a stronger topographic dependency in the four bias scores. 

A novel metric namely normalized error component (NEC) was proposed to fairly 

evaluate the impact of the solely topographic factor on systematic (random) error. It is 35 

found that these products show different topographic dependency patterns in systematic 

(random) error. Meanwhile, the pattern of the impact of the solely topographic factor 

on systematic (random) error is similar to the relationship between systematic (random) 

error and topography because the average precipitations of all topography categories 

are very close. Finally, the potential directions of the improvement in satellite 40 

precipitation retrieval algorithms and error adjustment models were identified in this 

study. 

Keywords: Satellite precipitation; Error component; Systematic error; Rainfall 

intensity; Topography 
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1. Introduction 45 

Precipitation is one of crucial inputs for hydrological cycle system and therefore 

obtaining the accurate precipitation data is of great significances for the study of global 

water cycle (Hou et al., 2014; Kidd et al., 2017; Chen et al., 2019a). Traditional methods 

depend on rain gauges to obtain the precise point-scale precipitation observations (Kidd 

and Huffman, 2011b). In addition, ground-based radars can provide the accurate 50 

precipitation estimates over a range of approximately 250 km (Chen et al., 2019b). 

However, these two methods of measurement precipitation are affected by local 

environment, economy and other factors, and it is difficult to obtain the continuous 

spatiotemporal precipitation estimates over many regions of the world, especially over 

complex mountainous and developing countries (Baez-Villanueva et al., 2020). 55 

 

The satellite-based instruments have the ability to overcome the limitations of rain 

gauges and ground-based radars to provide the precipitation estimates with high 

spatiotemporal resolution and even covering the globe (Kidd et al., 2011a). However, 

satellite precipitation products contain a large number of random errors, systematic 60 

errors and large uncertainties, especially over complex mountains (Tian et al., 2010a; 

Maggioni et al., 2016a; Chen et al., 2020). Therefore, it is necessary to comprehensively 

analyze the errors of satellite precipitation products, especially for their satellite-only 

versions. Over the past 20 years, there are many literatures to investigate the error 

features of satellite precipitation products at global scale (e.g., Yong et al., 2015; Liu et 65 

al., 2016; Beck et al., 2017; Chen et al., 2020) and region scale (e.g., AghaKouchak et 
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al., 2011; Yong et al., 2010, 2013, 2016; Takido et al., 2016; Tan et al., 2017; Prakash 

et al., 2018; Gebregiorgis et al., 2018; Beck et al., 2019; Chen et al., 2019b). These 

studies provided a great deal of valuable information for algorithm developers and end-

users. However, most studies used relative bias/mean error to analyze the error features 70 

of SPPs, which could be misleading due to the error average from different error 

components. In some cases, relative bias/mean error is smaller even though the absolute 

values of its error components are larger (Chen et al., 2019b). 

 

Tian et al. (2009) proposed an error decomposition scheme to separate the total bias 75 

into three independent components (i.e., hit bias, miss bias and false bias). This scheme 

effectively avoided above-mentioned questions and is a fairer method to analyze errors. 

To date there are several evaluation studies investigating major components of the total 

bias for satellite precipitation products at several regions, such as mainland China (Yong 

et al., 2016; Xu et al., 2016; Su et al., 2018; Chen et al., 2020), the contiguous United 80 

States (Tian et al., 2009), central Asia (Guo et al., 2017). In terms of systematic error, 

AghaKouchak et al. (2012) used an error decomposition technique proposed by 

Willmott, (1981) to separate total mean squared error into systematic and random errors, 

and analyzed systematic and random errors of the three satellite precipitation products 

(i.e., CMORPH, PERSIANN, and real-time TMPA) over the entire conterminous 85 

United States (COUNS). Maggioni et al. (2016b) further investigated the systematic 

errors for TMPA products over COUNS. However, these studies were only concentrated 

in limited regions and lacked the investigations at global scale. Meanwhile, the 
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transferability of the regional evaluation results to other similar areas still needs to be 

investigated, which has always plagued algorithm developers and users. Besides, it 90 

needs to figure out which component of total bias tends to produce larger systematic 

errors. 

 

Topography is a crucial factor that impacts the satellite precipitation retrievals (Tapiador 

et al., 2012; Xu et al., 2017; Chen et al., 2019b). Several studies strive to investigate the 95 

total bias of satellite precipitation retrievals under different terrains (e.g., Takido et al., 

2016; Guo et al., 2017; Xu et al., 2017; Chen et al., 2019b). Nevertheless, the analysis 

of error components for satellite precipitation estimates under different topography 

categories is lacking in previous studies. In particular, there is no literature to investigate 

the potential link between systematic (random) error and terrain. Meanwhile, the impact 100 

of the solely topographic factor on systematic and random errors is not clear due to 

lacking relevant investigations in previous studies. These limitations inherent in 

previous studies block the characterization of satellite precipitation error. Furthermore, 

previous literatures used mean elevation to describe the terrain of the grid cell, yet the 

mean elevation of each pixel often cannot objectively represent the complexity of the 105 

topography. A more reasonable metric is needed to be introduced to describe the 

topography of the grid cell. 

 

Precipitation intensity is also an important factor associated with the errors of satellite 

precipitation estimates (Chen et al., 2020). Previous efforts found that satellite 110 
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precipitation products overestimated the precipitation in the light rainfall events and 

underestimated the precipitation in the heavy rainfall events (Tian et al., 2009; Kirstetter 

et al., 2013; Chen et al., 2013). Tian et al. (2009) investigated the major components of 

the total bias for different rainfall intensities, and Maggioni et al. (2016b) revealed the 

relationship between the systematic (random) error and rainfall intensity for TMPA 115 

products. Nevertheless, the potential link between the systematic (random) error 

components of five evaluated SPPs and precipitation intensity is still absent. 

 

Consequently, the objectives of this study include five-fold: (1) to investigate the major 

components of errors (including total bias and total mean squared error) for five SPPs 120 

including IMERG Late run (IMERG-Late), IMERG Early run (IMERG-Early), GSMaP 

Microwave-IR Combined Product (GSMaP-MVK), GSMaP in Near-Real-Time 

(GSMaP-NRT), and PERSIANN Cloud Classification System (PERSIANN-CCS) for 

four seasons across global land areas; (2) to investigate the potential for the 

transferability of the regional assessment results to other similar regions; (3) to analyze 125 

the major components of the total bias and total mean squared error for five SPPs under 

different rainfall intensities; (4) to analyze the major components of the total error for 

five SPPs under different terrains and study the impact of the solely topographic factor 

on systematic and random errors; (5) to answer the question which component of the 

total bias tends to produce larger systematic errors. 130 
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2. Study area, datasets and methodology 

2.1 Study area 

Our study areas cover the global land areas (60°N/S). Fig.1a shows the topographic 

relief across the global land areas, the standard deviation of elevation (SDE) (more 

information on this concept see methodology section) was introduced to better describe 135 

the terrain of the grid cell. The complex degree of the topography increases with 

increasing color depth, the areas with a rather complex terrain mainly include western 

COUNS, Andean mountains, southern Europe, Turkey, Iran, Afghanistan, Tibetan 

Plateau (TP), most humid regions in mainland China, Japan, and so on. Furthermore, 

the global land areas can be divided into four climate regions namely humid regions 140 

(average annual precipitation (AAP) > 800mm/yr), semi-humid regions (AAP between 

400 – 800 mm/yr), semi-arid regions (AAP between 200 – 400 mm/yr), and arid regions 

(AAP < 200 mm/yr) (see Fig. 1b). The detail information about the climate region can 

be found in Fig.1c. 

2.2 Datasets 145 

2.1.1 Reference products 

To achieve the objectives of this study, three high-accuracy rain gauge data sets are 

employed as the references. Climate Precipitation Center unified (CPCU) data was used 

as the benchmark over the global land areas except for mainland China. CPCU produces 

continuous daily precipitation at 0.5º spatial resolution using optimal interpolation (OI) 150 

based on > 17,000 gauges (Xie et al., 2007; Chen et al., 2008). For the benchmark over 
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mainland China, China Gauge-based Daily Precipitation Analysis (CGDPA) data was 

employed as one of the references. This dataset, with 0.25º spatial and daily temporal 

resolution, was developed from ~ 2400 rain gauges, using OI method. The assessment 

results indicated that this ground-based precipitation dataset outperforms CPCU data 155 

and East Asia gauge analysis (EA_Gauge; Xie et al., 2007) over mainland China (Shen 

and Xiong, 2016). Regarding the component analysis of errors for five SPPs in different 

topographies, high-accuracy and high spatiotemporal resolution (hourly temporal and 

0.1° spatial resolution) ground observations from 26326 rain gauges were used as the 

benchmark. The spatial distribution of the rain gauge can be found in our published 160 

paper (i.e., Chen et al., 2019b; Chen et al., 2020). However, this product has large 

uncertainties in cold seasons due to freezing weather. The analysis is executed at a finer   

spatial resolution (0.1°), which avoids the smoothing of topography relief as much as 

possible. In this study, only the pixels with at least one rain gauge are considered, the 

spatial distribution of rain gauges (including CPCU and CGDPA) is shown in Fig. 1d. 165 

2.1.2 Satellite-only precipitation products 

The main focus of this study is to analyze the components of error for five SPPs 

including IMERG-Late V6, IMERG-Early V6, GSMaP-MVK V7, GSMaP-NRT 

V6/V7, PERSIANN-CCS over global land areas. Given that the gauge-adjusted satellite 

precipitation products (e.g., IMERG Final run, gauge-adjusted GSMaP, and 170 

PERSIANN Climate Data Record) merge the ground-based rain gauge observations, 

these gauge-adjusted products did not employ in this study. It is because the overlaps 

between gauge-adjusted products and benchmark result in some potential evaluation 
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uncertainties, especially for gauge-adjusted GSMaP that fuses CPCU data. Additionally, 

purely satellite-derived version of CMORPH and real-time TMPA are excluded because 175 

the long-term satellite-only version of CMORPH was no longer released to the public 

and the real-time TMPA had stopped update on December 31, 2019 

(https://gpm.nasa.gov/). Finally, the 5-year (2015-2019) period data of these five SPPs 

is chosen to investigate their error components across global land areas. The detailed 

information about the production processes of these five SPPs can be found in our 180 

previous paper (i.e., Chen et al., 2020).  

 

In global analysis, all SPPs need to be resampled to the 0.5º spatial resolution and 

aggregated to daily temporal resolution. This is for consistency with CPCU data (0.5º, 

daily). The information of these five SPPs is listed in Table 1. 185 

2.3 Methodology 

2.3.1 Error decomposition technique 

Tian et al. (2009) proposed an error decomposition scheme to separate the total bias 

(TB) into hit bias (HB), miss bias (MB), and false bias (FB). This technique is more 

effective in identifying the major error components of the total bias, which can provide 190 

valuable information to customize retrieval algorithms and remove errors. The four bias 

scores can be defined as follows (Tian et al., 2009): 

�� =
∑(���)

∑ �
× 100%                         (1) 

�� =
∑(�����)

∑ �
× 100%                        (2) 

�� =
� ∑ ��

∑ �
× 100%                         (3) 195 
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�� =
∑ ��

∑ �
× 100%                          (4) 

�� = �� + �� + ��                         (5) 

where �  and �  are the precipitation measured by satellite and rain gauge, 

respectively; �� and �� are the precipitation estimates of hit events for satellite and 

rain gauge, respectively; ��  denotes the precipitation missed by satellite in miss 200 

rainfall events; ��  indicates the precipitation measured by satellite in false rainfall 

events. 

 

Another error decomposition technique is to decompose the total mean squared error 

into systematic and random error components. This strategy was used to separate 205 

numerical weather prediction models into systematic and random errors by Willmott, 

(1981). Subsequently, AghaKouchark et al. (2012) employed this technique to 

investigate the systematic and random errors of the three satellite precipitation products 

(i.e., CMORPH, PERSIANN, and real-time TMPA) over CONUS. This error 

decomposition method can be defined as follows (Willmott, 1981; AghaKouchark et al., 210 

2012): 

�

�
(∑ (� − �)��

��� ) =
�

�
�∑ ��� − ��

��
��� � +

�

�
�∑ �� − ���

��
��� �      (6) 

�� = 100% × �∑ ��� − ��
��

��� � /(∑ (� − �)��
��� )             (7) 

�� = 100% × �∑ �� − ���
��

��� � /(∑ (� − �)��
��� )              (8) 

�� = � × � + �                           (9) 215 

where ��  and ��  represent the systematic and random components of error, 

respectively; � and � are slope and intercept, respectively, and they can be computed 

by using least square method. Note that the systematic error component (�� ) plus 
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random error component (��) is 100%. 

2.3.2 Normalized error component 220 

The systematic and random errors of SPPs are impacted by several crucial factors, such 

as season and rainfall intensity (AghaKouchark et al., 2012; Maggioni et al., 2016b). 

The differences in precipitation intensity may be inevitable between various 

topographies, which hinders the study of influence of the solely topographic factor on 

systematic (random) error. Thus, a novel metric called normalized error component 225 

(NEC) was proposed to strictly explore the impact of the solely topographic factor on 

systematic and random errors. This metric can be defined as follows: 

��� = �∑ ��� − ��
��

��� � /�(∑ (� − �)��
��� ) × �̅�             (10) 

where �̅ indicates the mean value of ground-based observations. 

2.3.3 Index of topography complexity 230 

Mean elevation cannot reflect the complex degree of the terrain, using the errors of 

SPPs as a function of the mean elevation to study the relationship between errors and 

topography is unreasonable. To better describe the complex degree of the topography 

for each grid cell, we proposed standard deviation of elevation (SDE) instead of average 

elevation to describe topographic complexity. This score effectively reflects the 235 

topography relief. The larger the SDE value, the greater the relief of topography. The 

calculated formula of SDE can be defined as follows:  

�

�� =
�

�
∑ ��

��� = �
�

�
∑(�� − ��)�

                     (11) 

where �� indicates the mean value of elevation for each pixel; �� denotes ith elevation 
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value of each grid cell; n represents sample size of each pixel. The SDE values of the 240 

global land areas are shown in Fig. 1a. The error and its components as a function of 

SDE are used to analyze the major error components for five evaluated SPPs under 

different topographies. Similarly, the relationship between error/its components and 

precipitation intensity is established for revealing the major error components of SPPs 

in different rainfall intensities. 245 

3. Results 

3.1 Global view of error components 

3.1.1 Spatial analysis of error components for the total bias over different seasons 

This is known to all that the errors of SPPs have a strongly seasonal dependency, and 

the analysis associated with the total bias and its major error components is therefore 250 

necessary to perform from different seasons. We implemented the following seasonal 

division scheme: (1) spring (Mar – May, hereafter refer to as MAM); (2) summer (Jun 

– Aug, hereafter refer to as JJA); (3) autumn (Sep – Nov, hereafter refer to as SON); (4) 

winter (Dec – Feb, hereafter refer to as DJF). Note that the results of IMERG-Early and 

GSMaP-NRT are almost the same with those of IMERG-Late and GSMaP-MVK, 255 

respectively. It is attributed to a tiny difference in their algorithms used. Consequently, 

the global maps of the four bias scores (i.e., total bias, hit bias, miss bias, and false bias) 

and the systematic error for IMERG-Early and GSMaP-NRT for four seasons are shown 

in the supplementary materials (see Figs.S1 – S5). 

 260 
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For MAM season (Figs.2 and S1), the majority of SPPs share considerable similarities 

in total bias. IMERG suite (i.e., IMERG-Early and IMERG-Late) and GSMaP suite (i.e., 

GSMaP-NRT and GSMaP-MVK) seriously overestimated the precipitation (total bias > 

100%) over most regions of the globe, such as the humid regions of COUNS, Mexico, 

Europe, India, and the semi-humid areas of China (see Figs. 2a, e). Yet, the total bias 265 

from different areas came from different error components. The total biases of the two 

suites are mainly dominated by hit component in COUNS and Europe, while the hit and 

false errors are major error components in Mexico and India. Additionally, total bias 

was dominated by false errors in China, however, missed precipitation is another major 

component for these two suites. As for PERSIANN-CCS, its larger total biases were 270 

primarily appearing in COUNS (except for its humid regions), Mexico, Brazil, and most 

of land areas in Asia (except for humid regions in China). Correspondingly, these larger 

total biases came from hit and false components over COUNS and Brazil, while they 

were dominated by false errors over Asia and Mexico. 

 275 

Of JJA season (Figs. 3 and S2), over most areas of COUNS, five SPPs exhibit large 

overestimations (total bias > 80%), which primarily owes to the hit error component for 

IMERG suite and GSMaP suite. As for Mexico, the precipitation is evidently 

overestimated by these five SPPs in northwest, and the main error components are hit 

bias. Regarding Europe, the hit error component is the major error components for 280 

IMERG suite and GSMaP suite. However, PERSIANN-CCS underestimated 

precipitation over most regions of Europe. That is due to miss errors and hit errors. In 
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addition, a majority of evaluated SPPs show relatively better performance in mainland 

China during JJA season (summer), with lower total bias of ± 20%. However, it cannot 

be ignored that miss and false biases for these SPPs are relatively larger over mainland 285 

China despite these two error components canceling one another. 

 

For SON season (Figs. 4 and S3), SPPs share considerable differences in the error 

features. Over COUNS, IMERG suite displays relatively low overestimations and 

underestimations over most regions. However, GSMaP suite seriously overestimated 290 

the precipitation due to its larger hit biases. For PERSIANN-CCS, it evidently 

overestimated the precipitation in arid and semi-arid regions, which is attributed to hit 

and false components. Conversely, obviously underestimation precipitation is over 

southeastern regions, and the hit error is major error components. Over China, IMERG 

suite shows slight underestimations or overestimations over most regions although miss 295 

bias and false bias are relatively larger, this feature is similar to that in JJA season. For 

GSMaP suite and PERSIANN-CCS, they sorely underestimated (overestimated) 

precipitation in humid areas (the residual regions of China) due to larger missed 

precipitation (false error component). On the other hand, all SPPs have a common 

feature that their total biases are very similar to their respective hit component over 300 

Mexico, Brazil, Europe, and India because of missed precipitation and false bias 

canceling one another. 

 

Global maps of the four bias metrics for five SPPs over DJF season are shown in Figs. 
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5 and S4. One can be seen that five SPPs show an obvious similarity in error 305 

characteristics in Brazil and Australia, their total biases are very similar to their 

respective hit components. On the other hand, the differences in spatial maps of the four 

bias scores primarily exist in COUNS, Europe, and China. The discrepancies of 

retrieval algorithms and input sources used in these satellite product systems lead to 

these differences. 310 

 

Finally, the summary of the total bias and its major error components for these SPPs in 

main regions of the world is listed in supplementary materials to help readers quickly 

finding the needed information, see Table S1. 

3.1.2 Spatial analysis of the systematic error over different seasons 315 

These five SPPs share considerable similarities in the global maps of systematic errors 

in most areas of the global land areas for four seasons, with the systematic error of less 

than 20% of total mean squared error, as shown in Figs. 6 and S5. It means that the 

random error is the leading error component of the total mean squared error in most 

regions of the global land areas. Also, these SPPs show an evidently seasonal 320 

dependency in several regions, such as COUNS, China, and Russia. IMERG suite has 

relatively larger systematic errors of exceeding 80% in the semi-humid and semi-arid 

regions of COUNS during DJF season. Similarly, the systematic errors of IMERG suite 

are very large for DJF season in mainland China except for humid regions and the 

proportions are over 90%. For GSMaP suite, the seasonal feature mainly occurs in 325 

mainland China and Russia. It can be seen that there are larger systematic errors in DJF 
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season than other seasons over Russia. Meanwhile, it cannot be ignored that GSMaP 

suite exhibits large proportions of the systematic error for SON season in most humid 

regions of China. Finally, the proportions of the systematic error for PERSIANN-CCS 

have an obvious feature of seasonality dependency in China, Europe, and eastern 330 

COUNS and are relatively larger in the parts of these areas, especially over China. 

3.2 Error components of different precipitation intensities 

The three bias scores (i.e., total bias, hit bias, and false bias) of five SPPs in different 

rainfall intensities are shown in Fig. 7. Note that false error component does not exist 

because rainfall intensity categories are from the benchmark. Generally speaking, these 335 

SPPs show a high degree of consistency in three bias scores in different precipitation 

intensities. In addition, hit bias is the major error component in most rainfall intensities. 

Compared with other SPPs, GSMaP-NRT shows relatively larger biases in the light 

rainfall events (1-2 mm/day). It can be due to lacking backward-propagated PMW in 

morphing process, which leads to seriously overestimate the precipitation values in the 340 

light rainfall events. 

 

On the other hand, the variations of the systematic error for these five SPPs with six 

rainfall intensities are depicted in Fig. 8. Each SPP shows unique variations of 

systematic errors with increasing precipitation intensities. One can be seen that IMERG 345 

suite and GSMaP-NRT have less systematic error (close to 0%) in the rainfall events 

less than 40mm/day. In contrast, the proportions of the systematic error for residual 

SPPs (i.e., GSMaP-MVK and PERSIANN-CCS) increase with increasing rainfall 
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intensity, indicating that the proportions of the systematic error for the two SPPs are 

strongly related to precipitation intensity. Additionally, all SPPs have relatively larger 350 

proportions of the systematic error when rainfall intensity is over 40mm/day. Besides, 

all SPPs underestimated the precipitation volume in the heavy rainfall events with 

intensity exceeding 40mm/day (see Fig. 7). The underestimated precipitation of these 

SPPs in such heavy rainfall events might result in generating large systematic errors. 

3.3 Error components of different topographies 355 

In this section, the analysis is executed at finer spatiotemporal resolution (0.1°, hourly) 

so as to avoid the smoothing of topography relief. Additionally, in order to exclude the 

interferences of other factors (e.g., climate region and season) on conclusions, the 

humid regions of China for JJA (summer) season are chosen to explore the major 

components of the total bias and total mean squared error under different topography 360 

categories. 

 

The four bias metrics of five SPPs for different terrains are shown in Fig. 9. These 

evaluated SPPs share some similarities in the variations of the four bias scores with 

terrain. One of the common features is that their miss biases increase with increasing 365 

terrain. Another is that the underestimated (overestimated) precipitation mainly came 

from miss (false) bias. The performance of all evaluated SPPs is impacted by 

topography in different extents. Relatively, the four biases metrics of GSMaP suite 

display significantly topographic dependency, especially for false and hit error 

components. This may be because the orographic/non-orographic rainfall classification 370 
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scheme used in the GSMaP retrieval system tends to overestimate the precipitation in 

the hit orographic rainfall events and capture the false-positive of the orographic rainfall 

(Yamamoto and Shige, 2015). 

 

Fig. 10a shows the proportions of the systematic error for five SPPs under eleven terrain 375 

categories. Obviously, the systematic errors of all SPPs have a strongly topographic 

dependency, however, different SPPs exhibit distinct dependency patterns of 

topography. The proportions of the systematic error for IMERG suite increase with 

increasing topography complexity. While GSMaP suite and PERSIANN-CCS share a 

common feature that their proportions of the systematic error increase with increasing 380 

topography complexity when SDE values are below 300 m and they decrease starting 

from 300 m. Compared with other evaluated SPPs, PERSIANN-CCS has relatively 

larger systematic errors in all topography categories. Nevertheless, these results shown 

in Fig. 10a may be impacted by rainfall intensity. Therefore, the influence of the solely 

topographic factor on the systematic error is still unclear. This issue is substantially 385 

investigated in discussion section, see section 4.2. 

4. Discussion 

4.1 Potential for the transferability of the regional assessment results to other 

areas 

There are many evaluation results associated with mainstream SPPs over most regions 390 

of the earth’s land, such as COUNS, Europe, India, China, and so on. On the other hand, 

these SPPs lack necessary assessment in many regions with sparse ground observations, 
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such as Africa, central Australia, Mongolia, and so on. Using available evaluation 

results extended to other similar areas is an effective method that understands the 

performance of satellite precipitation products in the areas with sparse ground 395 

observations. Consequently, whether the evaluation results between similar regions can 

be extended to one another is a scientific question that needs to be answered urgently. 

 

The comparisons in errors between the humid regions of COUNS and China are 

regarded as a representative example for analysis because these two chosen areas are 400 

located in the same latitude and have similar AAP (see Figs. 1b, c). In addition, these 

two selected areas are dominated by monsoon climate. One can see that all evaluated 

SPPs exhibit relatively larger discrepancies in spatial maps of the four bias scores for 

all four seasons over these two selected study areas (see Figs. 2-5). Similarly, these two 

chosen humid areas also have larger differences in the spatial maps of the systematic 405 

error (see Fig. 6). In addition, there are no any two areas where the assessment results 

can be extended to one another in the residual land areas of the world. Our previous 

study (i.e., Chen et al., 2019b) found that the large performance differences exist 

between various sensors. Meanwhile, the sensors onboard different satellites exist 

significant differences in the spatial maps of the sampling frequency (see Fig. 2 in Chen 410 

et al., 2019b). These analysis results further indicated that the evaluation results of SPPs 

from different areas might be large discrepancy due to the differences of the satellite 

samples used in satellite precipitation retrieval systems between various areas. 

Therefore, it can be concluded that the evaluation results between similar areas could 
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not be extended to one another. Future evaluation efforts should be focused on the 415 

ungauged regions and the exploration of the novel evaluation methods that do not 

depend on ground observations. 

4.2 Impact of topography on the systematic error 

In section 3.2, the results indicated that systematic errors are related to rainfall intensity 

to some extent. Although we used the humid regions of China as study areas and 420 

analyzed in summer season to alleviate the interferences of the climate and season 

factors on the systematic error for these five SPPs. However, the discrepancies in 

precipitation intensity are inevitable between different topography categories, which 

affect the proportions of the systematic error for these products. Thus, we proposed 

NEC metric to exclude the impact of the precipitation intensity on systematic error and 425 

subsequently assessed the influence of the solely topographic factor on systematic error. 

 

Fig. 10b shows the variations of NEC values for five evaluated SPPs by SDE for 

summer season over the humid regions of China. It is obvious that the relationship 

between the NEC and SDE is highly similar to the relationship between systematic error 430 

and SDE. We found that the fundamental reason in the similarity of the two 

relationships is that the mean precipitations (i.e., �̅, see equation (10)) of all SDEs are 

very close, with around 0.24 mm/h. According to the results shown in Fig. 10b, the 

impacts of the topography on the proportions of the systematic error for IMERG suite 

increase with increasing terrain complexity. For GSMaP suite and PERSIANN-CCS, 435 

their proportions of the systematic error are positive correlation with topographic 
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complexity when the SDE value is less than 300 m. However, they are negative 

correlation starting from 300 m. 

4.3 Which component of the total bias tends to produce larger systematic error? 

Speaking generally, the proportions of the systematic error for five evaluated SPPs are 440 

below 20% for all four seasons over most areas of the global land areas. However, it 

cannot be ignored that these SPPs have larger systematic errors in several regions, such 

as parts of COUNS, China and Russia (see Fig. 6). In addition, we found that these 

areas with larger systematic errors always have relatively larger miss biases (see Figs. 

2-6). Thus, there is a very attractive question whether miss bias tends to produce larger 445 

systematic errors. According to the definition of systematic and random errors (see 

equations (7-8)), missed precipitation tends to produce larger systematic error relative 

to hit and false biases. We believe that missed precipitation is a definitive factor 

producing larger systematic errors. 

4.4 Potential directions of the improvement in satellite retrieval algorithms and 450 

error adjustment models 

According to the results shown in this study, all evaluated SPPs have larger errors over 

most areas of the global land areas, suggesting that the quality of these evaluated SPPs 

have larger room for further improvement. 

 455 

First, currently several studies attempted to reduce the errors of satellite-derived 

precipitation retrievals only considering seasonal and/or topographic factors into their 

error adjustment models or blending algorithms (e.g., Tian et al., 2010b; Hashemi et al., 
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2017; Bhuiyan et al., 2018; Le et al., 2018; Choubin et al., 2019; Shen et al., 2019; 

Baez-Villanueva et al., 2020). In practice, we found that the errors of these five 460 

evaluated SPPs show significantly regional features. Meanwhile, the impact of several 

crucial factors (i.e., topography, season, climate, and rainfall intensity) on the errors of 

satellite precipitation estimates is very remarkable and has been proved in the results of 

this study and our previous studies (i.e., Chen et al., 2019b, 2020). Consequently, there 

are reasons to believe that incorporating all four factors (i.e., topography, season, 465 

climate region/different areas, and rainfall intensity) into error adjustment models and 

blending algorithms is expected to further reduce the errors of satellite precipitation 

estimates. 

 

Second, the global maps of the total bias (and total mean squared error) and its three 470 

(and two) components for five evaluated SPPs were given in this paper. The results 

indicated that the hit and/or false errors are the major error components of the total bias 

for these SPPs over most regions of global land areas except for China, while the total 

biases of these SPPs primarily came from miss and false biases in China. In addition, 

the random error is the major component of the total mean squared error for these 475 

evaluated SPPs in most regions of the global land areas. Consequently, the satellite 

retrieval algorithms and error adjustment algorithms should focus on the reduction of 

hit and false biases inherent in these SPPs over most regions of the world. For China, 

the target of the improvement in future retrieval algorithms is to reduce miss and false 

biases for these five SPPs. 480 
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Finally, the results of this paper are useful to improvement the adjustment algorithms 

for gauge-adjusted version of GSMaP (GSMaP-Gauge) because this gauge-adjusted 

product was made of GSMaP-MVK adjusted by CPCU data. 

5. Conclusion 485 

This paper executed the investigations on the major error components of the total error 

(including total bias and total mean squared error) for five SPPs (i.e., IMERG-Early, 

IMERG-Late, GSMaP-NRT, GSMaP-MVK, and PERSIANN-CCS) over different 

seasons, rainfall intensities, and terrains. The major conclusions based on the study 

results are summarized as follows: 490 

1. This paper is the first to depict the global maps of the total bias (total mean 

squared error) and its three (two) independent components for five SPPs over 

four seasons. We found that these five SPPs have remarkably regional features 

in error, and the evaluation results between similar regions could not be copied 

to one another. This is due to the differences of satellite samples used in 495 

satellite precipitation retrieval systems between different areas. On the other 

hand, this finding indicated that the assessment of satellite precipitation 

products is very necessary over various regions of the world. Future efforts 

should focus on the areas still lacking evaluation and investigating novel 

evaluation techniques that do not rely on ground-based observations. 500 

2. Hit and/or false errors are the major components of the total bias for five SPPs 

evaluated over most areas of the world except for China (see Table S1), while 
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miss and false biases are the two major error components in China in spite of 

partially mutual cancellations between these two components. In terms of the 

systematic error, the proportions of the systematic error for these five evaluated 505 

SPPs are below 20% over most areas of the global land areas. Nevertheless, 

they have an evident feature of seasonality dependency in several regions, such 

as COUNS, China, and Russia. Besides, we found that the areas with larger 

proportions of the systematic error always have larger missed precipitation. 

According to equations (7-8), the large miss bias leads to generate larger 510 

systematic error. Thus, it can be concluded that missed precipitation is a 

decisive factor producing larger systematic errors. 

3. All SPPs except for GSMaP-NRT exhibit a high degree of consistency in the 

three bias scores (i.e., total bias, hit bias, and miss bias) under different rainfall 

intensities, their total biases primarily came from the hit component. On the 515 

contrary, each SPP has its own characteristics in the relationship between the 

systematic error and precipitation intensity. Besides, we found that all SPPs 

have relatively larger proportions of the systematic error in the rainfall events 

with intensity exceeding 40 mm/day. 

4. We introduced standard deviation of elevation to replace mean elevation to 520 

better depict the topographic situations of the grid cell. Overall, all SPPs share 

considerable similarities in the four bias metrics (i.e., total bias, hit bias, miss 

bias, and false bias) under most terrain classes. Relatively, the four bias scores 

of GSMaP suite have a stronger topographic dependency, especially for false 
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bias and hit bias. The main cause may be that the orographic rainfall retrieval 525 

module used in GSMaP retrieval system tends to overestimate the precipitation 

in the hit orographic rainfall events and capture the false-positive of the 

orographic rainfall. Furthermore, we found that these five SPPs exhibit 

distinctly various topographic dependency patterns in systematic error. A novel 

metric namely normalized error component was proposed to strictly evaluate 530 

the influence of the solely topographic factor on systematic error. It is found 

that the pattern of the impact of the solely topographic factor on systematic 

errors is almost the same with the relationship between systematic error and 

topography, primarily due to mean precipitation (i.e., �̅, see equation (10)) of 

around 0.24 mm/h in all terrain categories. 535 

We hope that the new findings reported in this paper will be useful to improvement of 

satellite precipitation retrieval algorithms and error adjustment models and to 

improvement the potential applications of these products. 
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Figure and Table Captions 

Fig. 1. (a) Global map of topography; (b) mean annual precipitation of the global land 

from 1891 to 2018 (128 years); (c) global land is divided into four climate areas (i.e., 

humid, semi-humid, semi-arid, arid); (d) the spatial maps of rain gauges used in Climate 720 

Precipitation Center unified (CPCU) data and China Gauge-based Daily Precipitation 

Analysis (CGDPA) data. 

Fig. 2. Global maps of the total bias and its three independent components for the three 

satellite-only precipitation global precipitation estimates (i.e., IMERG-Late, GSMaP-

MVK, and PERSIANN-CCS) at a 0.5° spatial and daily temporal resolution in the 725 

MAM season across global land for the period from 2015 to 2019 (5 years): (a-d) 

IMERG-Late, (e-h) GSMaP-MVK, (i-l) PERSIANN-CCS. 

Fig. 3. As in Fig. 2 for JJA season. 

Fig. 4. As in Fig. 2 for SON season. 

Fig. 5. As in Fig. 2 for DJF season. 730 

Fig. 6. Global maps of the systematic errors for the three satellite-only global 

precipitation estimates (i.e., IMERG-Late, GSMaP-MVK, and PERSIANN-CCS) at a 

0.5° spatial and daily temporal resolution in four seasons (i.e., MAM, JJA, SON, and 

DJF) over global land for the period from 2015 to 2019 (5 years): (a-d) IMERG-Late, 

(e-h) GSMaP-MVK, (i-l) PERSIANN-CCS. 735 

Fig. 7. The four bias scores (i.e., total bias, hit bias, miss bias, and false bias) for the 

five satellite-only global precipitation estimates (i.e., IMERG-Late, IMERG-Early, 
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GSMaP-MVK, GSMaP-NRT, and PERSIANN-CCS) at a 0.5° spatial and daily 

temporal resolution under different rainfall intensities. Note that the precipitation 

intensity categories are from references. 740 

Fig. 8. As in Fig. 7 for systematic error. 

Fig. 9. The four bias scores (i.e., total bias, hit bias, miss bias, and false bias) for the 

five satellite-only global precipitation estimates (i.e., IMERG-Late, IMERG-Early, 

GSMaP-MVK, GSMaP-NRT, and PERSIANN-CCS) under different terrains. Note that 

the analysis executed at a 0.1° spatial and hourly temporal resolution in the humid 745 

regions of mainland China over JJA (summer) season for the period from 2015 to 2019 

(5 years). 

Fig. 10. (a) Systematic errors for the five satellite-only global precipitation estimates 

(i.e., IMERG-Late, IMERG-Early, GSMaP-MVK, GSMaP-NRT, and PERSIANN-

CCS) under different topographies; (b) the variations of normalized error component 750 

(NEC) for the five satellite-only global precipitation estimates with increasing terrain 

complexity. Note that the analysis executed at a 0.1° spatial and hourly temporal 

resolution in the humid regions of mainland China over JJA (summer) season for the 

period from 2015 to 2019 (5 years). 

Table 1 The information about five satellite-only global precipitation estimates used in 755 

this study. 
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Figures 

 

Fig. 1. (a) Global map of topography; (b) mean annual precipitation of the global land 760 
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from 1891 to 2018 (128 years); (c) global land is divided into four climate areas (i.e., 

humid, semi-humid, semi-arid, arid); (d) the spatial maps of rain gauges used in Climate 

Precipitation Center unified (CPCU) data and China Gauge-based Daily Precipitation 

Analysis (CGDPA) data. 
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Fig. 2. Global maps of the total bias and its three independent components for the three 

satellite-only precipitation global precipitation estimates (i.e., IMERG-Late, GSMaP-

MVK, and PERSIANN-CCS) at a 0.5° spatial and daily temporal resolution in the 
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MAM season across global land for the period from 2015 to 2019 (5 years): (a-d) 770 

IMERG-Late, (e-h) GSMaP-MVK, (i-l) PERSIANN-CCS. 
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Fig. 3. As in Fig. 2 for JJA season. 
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Fig. 4. As in Fig. 2 for SON season. 
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Fig. 5. As in Fig. 2 for DJF season. 780 
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Fig. 6. Global maps of the systematic errors for the three satellite-only global 

precipitation estimates (i.e., IMERG-Late, GSMaP-MVK, and PERSIANN-CCS) at a 

0.5° spatial and daily temporal resolution in four seasons (i.e., MAM, JJA, SON, and 785 
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DJF) over global land for the period from 2015 to 2019 (5 years): (a-d) IMERG-Late, 

(e-h) GSMaP-MVK, (i-l) PERSIANN-CCS. 
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Fig. 7. The four bias scores (i.e., total bias, hit bias, miss bias, and false bias) for the 790 

five satellite-only global precipitation estimates (i.e., IMERG-Late, IMERG-Early, 

GSMaP-MVK, GSMaP-NRT, and PERSIANN-CCS) at a 0.5° spatial and daily 

temporal resolution under different rainfall intensities. Note that the precipitation 

intensity categories are from references. 
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 795 

Fig. 8. As in Fig. 7 for systematic error. 
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Fig. 9. The four bias scores (i.e., total bias, hit bias, miss bias, and false bias) for the 

five satellite-only global precipitation estimates (i.e., IMERG-Late, IMERG-Early, 800 
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GSMaP-MVK, GSMaP-NRT, and PERSIANN-CCS) under different terrains. Note that 

the analysis executed at a 0.1° spatial and hourly temporal resolution in the humid 

regions of mainland China over JJA (summer) season for the period from 2015 to 2019 

(5 years). 
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Fig. 10. (a) Systematic errors for the five satellite-only global precipitation estimates 

(i.e., IMERG-Late, IMERG-Early, GSMaP-MVK, GSMaP-NRT, and PERSIANN-

CCS) under different topographies; (b) the variations of normalized error component 

(NEC) for the five satellite-only global precipitation estimates with increasing terrain 810 

complexity. Note that the analysis executed at a 0.1° spatial and hourly temporal 

resolution in the humid regions of mainland China over JJA (summer) season for the 

period from 2015 to 2019 (5 years). 
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Tables 814 

Table 1 The information about five satellite-only global precipitation estimates used in 815 

this study. 816 

R
ef

er
en

ce
 (

s)
 

H
uf

fm
an

 e
t 

al
. (

20
19

) 

H
uf

fm
an

 e
t 

al
. (

20
19

) 

U
sh

io
 e

t 
al

. (
20

09
) 

K
ub

ot
a 

et
 a

l.
 (

20
07

) 

S
or

oo
sh

ia
n 

et
 a

l.
 (

20
00

);
 

H
on

g 
et

 a
l.

 (
20

04
) 

R
es

ol
ut

io
n 

0.
1º

/0
.5

h
 

0.
1º

/0
.5

h
 

0.
1º

/1
h

 

0.
1º

/1
h

 

0.
04

º/
1h

 

D
at

a 

so
ur

ce
 

P
M

W
, I

R
 

P
M

W
, I

R
 

P
M

W
, I

R
 

P
M

W
, I

R
 

IR
 

F
ul

l 
na

m
e 

of
 p

ro
du

ct
 

In
te

gr
at

ed
 M

ul
ti

-s
at

el
li

tE
 R

et
ri

ev
al

s 
fo

r 

G
P

M
 L

at
e 

ru
n 

V
06

B
 

In
te

gr
at

ed
 M

ul
ti

-s
at

el
li

tE
 R

et
ri

ev
al

s 
fo

r 

G
P

M
 E

ar
ly

 r
un

 V
06

B
 

G
lo

ba
l S

at
el

li
te

 M
ap

pi
ng

 o
f 

P
re

ci
pi

ta
ti

on
 

M
ic

ro
w

av
e-

IR
 C

om
bi

ne
d 

P
ro

du
ct

 V
7

 

G
lo

ba
l S

at
el

li
te

 M
ap

pi
ng

 o
f 

P
re

ci
pi

ta
ti

on
 

in
 N

ea
r-

R
ea

l-
T

im
e 

V
6/

V
7 

P
re

ci
pi

ta
ti

on
 E

st
im

at
io

n 
fr

om
 R

em
ot

el
y 

S
en

se
d 

In
fo

rm
at

io
n 

u
si

ng
 

A
rt

if
ic

ia
l 

N
eu

ra
l 

N
et

w
or

ks
 

C
lo

ud
 

C
la

ss
if

ic
at

io
n 

P
ro

du
ct

 

IM
E

R
G

-L
at

e 

IM
E

R
G

-E
ar

ly
 

G
S

M
aP

-M
V

K
 

G
S

M
aP

-N
R

T
 

P
E

R
S

IA
N

N
-C

C
S

 

 817 

https://doi.org/10.5194/hess-2020-294
Preprint. Discussion started: 25 September 2020
c© Author(s) 2020. CC BY 4.0 License.


