
 1 / 51 
 

Global component analysis of errors in three satellite-only global 

precipitation estimates 

Hanqing Chena, b, c, Bin Yonga*, Pierre-Emmanuel Kirstetterd,e, Leyang Wangc, Yang 

Honge 

aState Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, 5 

Hohai University, Nanjing 210098, China. 

bSchool of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, 

China. 

cKey Laboratory for Digital Land and Resources of Jiangxi Province, East China 

University of Technology, Nanchang 330013, China. 10 

dSchool of Meteorology, University of Oklahoma, Norman, OK 73072, USA 

eSchool of Civil Engineering and Environment Sciences, University of Oklahoma, 

Norman, OK 73019, USA. 

Corresponding author: Bin Yong (yongbin@hhu.edu.cn) 

Abstract: Revealing the error components of satellite-only precipitation products 15 

(SPPs) can help algorithm developers and end-users understand their error features and 

improve retrieval algorithms. Two error decomposition schemes were employed to 

explore the error components of IMERG-Late, GSMaP-MVK, and PERSIANN-CCS 

SPPs over different seasons, rainfall intensities, and topography classes. Global maps 

of the total bias (total mean squared error) and its three (two) independent components 20 

are depicted for the first time. Evaluation results obtained between similar regions are 

discussed and it is found that they cannot be extended to one another region. Hit and/or 
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false biases are major components of the total bias in most overland regions globally. 

The systematic error contributes to less than 20% of the total error in most areas. Large 

systematic errors are primarily due to missed precipitation. It is found that the SPPs 25 

show different topographic patterns in terms of systematic and random errors. Notably, 

GSMaP-MVK shows a stronger topographic dependency in terms of the four bias 

scores. A novel metric namely normalized error component (NEC) was proposed to 

isolate the impact of topography on the systematic and random errors. Potential 

directions toward improved satellite precipitation retrievals and error adjustment 30 

models were discussed. 

Keywords: Satellite precipitation; Error component; Systematic error; Rainfall 

intensity; Topography 

1. Introduction 

As precipitation is a key input for the hydrological cycle system, accurately estimating 35 

precipitation is of great significances for the study of the global water cycle (Hou et al., 

2014; Kidd et al., 2017; Skofronick-Jackson et al., 2017; Chen et al., 2019a). Traditional 

methods depend on rain gauge networks to obtain precise point-scale precipitation 

observations (Kidd and Huffman, 2011b). In addition, ground-based radars can provide 

remotely-sensed observations for precipitation estimation over a range of 40 

approximately 250 km (Zhang et al., 2016; Chen et al., 2019b). However, these two 

methods for estimating precipitation are affected by a number of factors, including local 

terrain, weather regimes, environment, and economy. It is challenging to obtain 

continuous spatiotemporal precipitation estimates over many regions of the world, 
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especially over complex terrain and developing countries (Baez-Villanueva et al., 2020). 45 

 

Satellite-based instruments have the ability to overcome the limitations of rain gauge 

and ground-based radar networks to provide precipitation estimates covering large areas 

globally (Kidd et al., 2011a). However, satellite-based precipitation products are 

affected by biases and uncertainty, especially over mountains areas (Tian et al., 2010a; 50 

Maggioni et al., 2016a; Chen et al., 2020b). Therefore, it is necessary to 

comprehensively analyze the structure of uncertainty in satellite-based precipitation 

products, especially those relying on satellite observations only. Over the past 20 years, 

there is a large body of literature investigating error features of satellite precipitation 

products at the global scale (e.g. Yong et al., 2015; Liu et al., 2016; Beck et al., 2017; 55 

Chen et al., 2020b) and regional scale (e.g. AghaKouchak et al., 2011; Yong et al., 2010, 

2013, 2016; Takido et al., 2016; Tan et al., 2017; Prakash et al., 2018; O and Kirstetter, 

2018; Gebregiorgis et al., 2018; Beck et al., 2019; Chen et al., 2019b). These studies 

have provided a great deal of valuable information for algorithm developers and end-

users. Most studies use the mean error to analyze the error features of SPPs, which 60 

could be misleading because the mean error averages different error components. In 

some cases, the error components compensate each other and generate lower mean error 

values than the absolute values of the individual components (Chen et al., 2019b). 

 

Tian et al. (2009) proposed an error decomposition scheme to separate the total bias 65 

into three independent components (i.e., hit bias, miss bias and false bias). To date, 



 4 / 51 
 

several evaluation studies investigate major bias components of satellite precipitation 

products over several regions, such as Mainland China (Yong et al., 2016; Xu et al., 

2016; Su et al., 2018; Chen et al., 2020b), United States (Tian et al., 2009), Central Asia 

(Guo et al., 2017). AghaKouchack et al. (2012) used an error decomposition technique 70 

proposed by Willmott, (1981) to separate the total mean squared error into the 

systematic and random errors for evaluating three satellite precipitation products (i.e., 

CMORPH, PERSIANN, and real-time TMPA) over the conterminous United States 

(CONUS). Maggioni et al. (2016b) further investigated the systematic errors of TMPA 

products over CONUS. However, these studies were concentrated on limited regions 75 

and did not provide a global focus. Importantly, the question of transferability of 

regional evaluation results to different but similar areas still needs to be investigated. It 

has implications in terms of improving the performance of SPPs in regions of the world 

where no ground observations are available. Besides, investigation is still need on the 

major component of the total bias that produces the largest systematic errors. 80 

 

Topography is a crucial factor that influences satellite precipitation retrievals (Tapiador 

et al., 2012; Xu et al., 2017; Chen et al., 2019b). While several studies have strived to 

investigate the total bias of satellite precipitation retrievals over various topography (e.g. 

Takido et al., 2016; Guo et al., 2017; Xu et al., 2017; Chen et al., 2019b), error 85 

components remain underexplored. In particular, the literature that investigates the 

potential link between systematic (random) error and terrain features is lacking, which 

limits the characterization of satellite precipitation error. Furthermore, previous studies 
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used the mean elevation as a way to describe the underlying terrain. As the mean 

elevation often does not objectively represent the complexity of topography, a more 90 

relevant metric is needed. 

 

Precipitation intensity is another important impact factor driving errors of satellite 

precipitation estimates (Tian et al., 2009; Kirstetter et al., 2013; Chen et al., 2013; Chen 

et al., 2020b). Previous efforts found that satellite precipitation products tend to 95 

overestimate light rainfall and underestimate heavy rainfall (Tian et al., 2009; Kirstetter 

et al., 2013; Chen et al., 2013). Tian et al. (2009) investigated the major components of 

the total bias in six SPPs (e.g. AFWA, TMPA suite, CMORPH, PERSIANN, and NRL) 

for different rainfall intensities, and Maggioni et al. (2016b) quantified the relationship 

between the systematic (random) error of TMPA products and rainfall intensity, while 100 

Kirstetter et al. (2018) revealed the relationship between the systematic (random) error 

in PERSIANN-CCS and precipitation intensity. Nevertheless, the potential links 

between the systematic (random) error of IMERG-Late and GSMaP-MVK and 

precipitation intensity are still absent. 

 105 

The objective of this study is four-fold: (1) to reveal the major components of errors 

(including total bias and total mean squared error) for three SPPs including IMERG 

Late run (IMERG-Late), GSMaP Microwave-IR Combined Product (GSMaP-MVK), 

and PERSIANN-CCS for four seasons across global land areas; (2) to investigate the 

potential for the transferability of the regional assessment results to other similar 110 
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regions; (3) to investigate what are the factors causing large systematic errors; (4) to 

inform users and algorithm developers on how to improve these satellite precipitation 

products. 

2. Study area, datasets and methodology 

2.1 Study area 115 

The study area covers the global lands (60°N/S). Fig.1a shows the topographic relief in 

terms of standard deviation of elevation (SDE; more information in section 2.3.3). SDE 

was introduced to better describe the topography at each grid cell. The variability of 

topography highlights complex terrain areas that include the western CONUS, the 

Andean mountains, southern Europe, Turkey, Iran, Afghanistan, the Tibetan Plateau 120 

(TP), most humid regions in mainland China, and Japan, etc. The global land areas can 

be divided into four climate regions namely humid regions (average annual 

precipitation (AAP) > 800mm/yr), semi-humid regions (AAP between 400 – 800 

mm/yr), semi-arid regions (AAP between 200 – 400 mm/yr), and arid regions (AAP < 

200 mm/yr), as shown in Fig. 1b. The geographical distribution of the climate regions 125 

can be found in Fig.1c. 

2.2 Datasets 

2.1.1 Reference products 

Three high-accuracy rain gauge data sets are employed as the references. The Climate 

Precipitation Center unified (CPCU) data are used as the benchmark over the global 130 

land areas except for mainland China. CPCU produces continuous daily precipitation 
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at 0.5º spatial resolution using optimal interpolation (OI) based on > 17,000 gauges (Xie 

et al., 2007; Chen et al., 2008). For the benchmark over mainland China, China Gauge-

based Daily Precipitation Analysis (CGDPA) data are used. This dataset, with a 0.25º 

spatial and daily temporal resolution, is developed based on ~ 2400 rain gauges using 135 

the OI method. Assessment results indicate that this ground-based precipitation dataset 

outperforms CPCU and the East Asia gauge analysis (EA_Gauge; Xie et al., 2007) over 

mainland China (Shen and Xiong, 2016). To alleviate the effects of reference 

inconsistency on the analysis, the error scores of SPPs over mainland China and the rest 

of the world are calculated separately and subsequently merged. The detailed procedure 140 

is provided in supplementary material. Regarding the component analysis of SPP errors 

in different topographies, high-accuracy and high spatiotemporal resolution ground 

observations (hourly and 0.1°) derived from 25,982 rain gauges (Shen et al., 2014) are 

used as the benchmark. The spatial distribution of the rain gauge can be found in Chen 

et al. (2019b) and Chen et al. (2020b). However, this product has large uncertainties in 145 

cold seasons due to freezing weather. The analysis was executed at a 0.1° spatial 

resolution to avoid smoothing the topography features as much as possible. In this study, 

only the pixels with at least one rain gauge are considered. The spatial distribution of 

rain gauges including CPCU and CGDPA is shown in Fig. 1d. 

2.1.2 Satellite-only precipitation products 150 

The main focus of this study is to analyze the error components of the three SPPs (i.e. 

IMERG-Late V6, GSMaP-MVK V7, and PERSIANN-CCS). The corresponding 

gauge-adjusted satellite precipitation products (IMERG Final run, gauge-adjusted 
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GSMaP, and PERSIANN Climate Data Record) that merge ground-based rain gauge 

and satellite observations were not used in this study to ensure an objective assessment 155 

with independent benchmarks (e.g. the gauge-adjusted GSMaP ingests CPCU data). 

Note that other satellite-only SPPs are not included in this study, either because they 

are not released to the public (e.g. CMORPH) or they have been decommissioned (e.g. 

real-time TMPA; https://gpm.nasa.gov/). A 5-year period (2015-2019) was chosen to 

investigate SPPs error components. Table 1 provides general information on the three 160 

SPPs and more detailed information about their production processes can be found in 

Chen et al. (2020b). 

 

To be consistent with CPCU data (0.5º, daily), all SPPs are resampled to the same 0.5º 

spatial resolution and aggregated to daily temporal resolution.  165 

2.3 Methodology 

2.3.1 Error decomposition technique 

Tian et al. (2009) proposed an error decomposition scheme to separate the total bias 

(TB) into hit bias (HB), miss bias (MB), and false bias (FB). This technique is effective 

at identifying the major error components of the total bias, and can provide valuable 170 

information to customize retrieval algorithms and mitigate errors. The four bias scores 

can be defined as follows (Tian et al., 2009): 

�� =
∑(���)

∑ �
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where �  and �  are the precipitation measured by satellite and rain gauge, 

respectively; ��  and ��  are the precipitation estimates of hit rainfall events for 

satellite and rain gauge, respectively; �� denotes the precipitation missed by satellite 180 

in miss rainfall events; ��  indicates the precipitation measured by satellite in false 

rainfall events. 

 

Another error decomposition technique decomposes the total mean squared error into 

systematic and random error components. This strategy was used to separate numerical 185 

weather prediction models into systematic and random errors by Willmott, (1981). 

Subsequently, AghaKouchack et al. (2012) employed this technique to investigate the 

systematic and random errors of three satellite precipitation products (i.e., CMORPH, 

PERSIANN, and real-time TMPA) over CONUS. This error decomposition method can 

be defined as follows (Willmott, 1981; AghaKouchack et al., 2012): 190 
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where ��  and ��  represent the systematic and random components of error, 195 

respectively; � and � are slope and intercept, respectively, and they can be computed 

by using least square method. Note that the systematic error component (�� ) plus 

random error component (��) add up 100%. 
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2.3.2 Normalized error component 

The systematic and random errors of SPPs are impacted by several key impact factors, 200 

such as season and rainfall intensity (AghaKouchack et al., 2012; Maggioni et al., 

2016b; Kirstetter et al., 2013, 2018). To isolate the influence of topography on the 

systematic and random errors, a novel metric called the normalized error component 

(NEC) is proposed that filters the impact of precipitation intensity. This metric is 

defined as follows: 205 

��� = �∑ ��� − ��
��

��� � /�(∑ (� − �)��
��� ) × �̅�             (10) 

where �̅ indicates the mean value of ground-based observations for each topographic 

class. Note that the relationship between NEC and topography degenerates into the 

relationship between systematic error and topography when the mean precipitation (i.e., 

�̅) of all topography classes is close. Thus, the NEC metric works only when the rainfall 210 

intensities are significantly different across all topographic categories.  

2.3.3 Index of topography complexity 

To better describe the variability of topography for each grid cell, the standard deviation 

of elevation (SDE) is proposed instead of average elevation. The larger the SDE value, 

the higher the terrain gradients within the grid cell, reflecting steeper topography. The 215 

SDE formula is defined as follows:  

�

�� =
�

�
∑ ��

��� = �
�

�
∑(�� − ��)�

                     (11) 

where �� indicates the mean value of elevation for each pixel; �� denotes ith elevation 

value of each grid cell; n represents the elevation sample size of each pixel. The global 
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map of SDE is shown in Fig. 1a. The SPPs errors and their components are computed 220 

as functions of SDE under different topographies. The relationship between error and 

precipitation intensity is similarly established for various rainfall rate classes to 

investigate the impact of rainfall intensity. 

3. Results 

3.1 Global view of error components 225 

3.1.1 Spatial analysis of error components over different seasons 

As the seasonal dependency of SPPs errors has been documented (Tian et al., 2009; 

Chen et al., 2019), the analysis first focuses on different seasons. The following 

seasonal division scheme was implemented: (1) Spring (Mar – May, hereafter refer to 

as MAM); (2) Summer (Jun – Aug, hereafter refer to as JJA); (3) Fall (Sep – Nov, 230 

hereafter refer to as SON); (4) Winter (Dec – Feb, hereafter refer to as DJF). 

 

For MAM season (Fig. 2), the majority of SPPs share considerable similarities in total 

bias. IMERG-Late and GSMaP-MVK seriously overestimate precipitation (total bias > 

100%) over most regions of the globe, such as the humid regions of CONUS, Mexico, 235 

Europe, India, and the semi-humid areas of China (see Figs. 2a, e). Yet, the total biases 

come from different error components in different areas. The total biases of IMERG 

and GSMaP are mainly dominated by hit component in CONUS and Europe, while the 

hit and false errors dominate in Mexico, India and mainland China. As for PERSIANN-

CCS, its larger total biases primarily occur in CONUS (except for its humid regions), 240 



 12 / 51 
 

Mexico, Brazil, and most of land areas in Asia (except for humid regions in China). 

Correspondingly, these larger total biases originate from hit and false components over 

CONUS and Brazil, while they are dominated by false errors over Asia and Mexico. 

 

Regarding the JJA season (Fig. 3), the three SPPs exhibit large overestimations over 245 

most of CONUS (total bias > 80%), which primarily owe to the hit error component for 

IMERG and GSMaP. As for northwest Mexico, the precipitation is evidently 

overestimated with hit bias by the three SPPs. Regarding Europe, the hit error is also 

the major error component for IMERG and GSMaP. PERSIANN-CCS underestimates 

precipitation over most regions of Europe, due to miss errors and hit errors. In addition, 250 

the SPPs show relatively better performance in mainland China during the JJA season 

(Summer), with a lower total bias of ± 20%. 

 

As for the SON season (Fig. 4), SPPs share considerable differences in the error features. 

Over most regions of CONUS, IMERG displays relatively low overestimation and 255 

underestimation. However, GSMaP seriously overestimates precipitation over CONUS 

due to its larger hit biases. PERSIANN-CCS overestimates precipitation in arid and 

semi-arid regions of CONUS, which is attributed to hit and false components, while it 

underestimates precipitation over southeastern regions due to the hit error component. 

Over most regions of China, IMERG shows slight underestimation or overestimation. 260 

GSMaP and PERSIANN-CCS sorely underestimate (overestimate) precipitation in 

humid areas (except for humid regions) due to a larger proportion of missed 
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precipitation (false error component). On the other hand, all SPPs have in common a 

feature that their total biases are very similar to their hit error components over Mexico, 

Brazil, Europe, and India, because missed precipitation and false bias cancel one 265 

another. 

 

Global maps of the four bias metrics for the three SPPs over the DJF season are shown 

in Fig. 5. One can notice that the three SPPs display an obvious similarity in error 

characteristics over Brazil and Australia. Again their total biases are very similar to their 270 

respective hit error component. On the other hand, differences in the four bias scores 

exist in CONUS, Europe, and China among the SPPs. Different retrieval algorithms and 

input sources used in different satellite products may explain these differences. 

 

The summary of the total bias and its major error components in the main regions of 275 

the world is listed for the three SPPs in supplementary materials (Table S1). Overall, 

the global maps of the total bias and its three independent error components indicate 

that hit and/or false error components are the major contributor of the total bias. 

 

3.1.2 Spatial analysis of the systematic error over different seasons 280 

The three SPPs share considerable similarities in the global maps of systematic errors 

for the four seasons over most global land areas. The systematic error is less than 20% 

of the total mean squared error as shown in Fig. 6. It means that the random error is the 

leading error component of the total mean squared error in most regions. As discussed 
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in the previous section, the SPPs show an evident seasonal dependency in several 285 

regions such as CONUS, China, and Russia. IMERG has relatively larger systematic 

errors exceeding 80% in the semi-humid and semi-arid regions of CONUS during DJF. 

Similarly, the systematic errors of IMERG are very large (over 90%) over mainland 

China (except for humid regions) during DJF. For GSMaP, the seasonal variations 

mainly occur in mainland China and Russia. Systematic errors are larger in DJF than 290 

other seasons over Russia. Meanwhile, it cannot be ignored that GSMaP exhibits large 

proportions of systematic error during SON in southwest China. Finally, the 

PERSIANN-CCS systematic error displays an obvious seasonality in mainland China, 

Europe, and eastern CONUS and it is relatively larger in over mainland China. 

3.2 Error components dependency with precipitation intensities 295 

The three bias scores (i.e., total bias, hit bias, and miss bias) of the three SPPs are shown 

in Fig. 7 for different rainfall intensities. Note that the false error component does not 

exist because the reference precipitation is positive. In general, the SPPs show a high 

degree of consistency in the three bias scores for different precipitation intensity classes. 

The hit bias is the major error component in most classes.  300 

 

The variations of systematic error with six rainfall intensities are depicted in Fig. 8. 

Each SPP shows unique variations of systematic errors with increasing precipitation 

intensity. One can see that IMERG and GSMaP have less systematic error (close to 0%) 

for intensities less than 40mm/day. In contrast, PERSIANN-CCS systematic error 305 

shows a strong and increasing relation with rainfall intensity. Additionally, all SPPs 
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have relatively larger proportions of systematic error and underestimate the 

precipitation volume in rainfall events where rainfall intensities are over 40 mm/day 

(see Fig. 7). This underestimation in such heavy rainfall events certainly results in large 

systematic errors. 310 

3.3 Error components for different topographies 

In this section, the analysis is performed at a finer spatiotemporal resolution (0.1°, 

hourly). Additionally, the humid regions of mainland China during JJA are chosen to 

explore the major components of the total bias and total mean squared error under 

different topography categories, to exclude interferences with other factors (e.g. climate 315 

and season). Observations from 25,982 rain gauges are used as the benchmark to ensure 

the reliability of the error results (Chen et al., 2020a). The gauge number in each 

topography category is displayed in Fig. 9. 

 

The four bias metrics are shown in Fig. 10 for different terrain classes. The SPPs share 320 

similarities in the variations of the four bias scores with terrain. The miss biases 

decrease with increasing SDE. Also, miss (false) bias mainly contributes to the 

underestimated (overestimated) precipitation. The performance of all SPPs is impacted 

by topography to different extents. Relatively, the four GSMaP-MVK biases metrics 

display more significant topographic dependency, especially in terms of false and hit 325 

error components. A possible explanation is that the orographic/non-orographic rainfall 

classification scheme used in the GSMaP retrieval tends to overestimate precipitation 

in the hit orographic rainfall events and is affected by false-positive in orographic 
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rainfall (Yamamoto and Shige, 2015). 

 330 

Fig. 11a shows the proportions of the systematic error for the three SPPs under eleven 

terrain SDE categories. Obviously, the systematic errors of all SPPs display a strong 

topographic dependency, yet SPPs exhibit distinct dependency patterns. For IMERG-

Late, the proportion of the systematic error increases with SDE. GSMaP-MVK and 

PERSIANN-CCS display similar trends in that the proportions of systematic error 335 

increases with topography complexity when SDE is below 300 m then decreases with 

SDE above 300 m. Compared to other SPPs, PERSIANN-CCS has relatively larger 

systematic errors in all topographic categories. Nevertheless, the results shown in Fig. 

11a may be impacted by rainfall intensity, making any inference on the influence of 

topography challenging. This issue is substantially investigated in section 4.2. 340 

4. Discussion 

4.1 Potential for transferability of the regional assessment to other areas 

While there are numerous evaluations of mainstream SPPs over regions of the Earth’s 

land, such as CONUS, Europe, India, China, many other regions lack the needed ground 

networks to assess SPPs such as Africa, central Australia, Mongolia, etc. It raises the 345 

important question of extrapolating evaluation results to other similar areas where no 

ground observations are available. The transferability of evaluation results to other 

regions needs to be investigated. 
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The comparisons of total bias between the Chinese Fujian (FJ) and Zhejiang (ZJ) 350 

provinces are regarded as a representative example for such analysis. The two areas are 

located in the humid regions of mainland China. They are dominated by the same 

monsoon climate and have similar topography. The spatial distribution of the total bias 

for each SPP shows large differences between FJ and ZJ provinces, as shown in Fig. 12. 

Besides, the total biases in FJ (or ZJ) show evident differences for each SPP. It appears 355 

as if the evaluation results between similar areas may not be extended to one another. 

Chen et al. (2019b) found that large differences in performance exist between various 

sensors onboard different satellites, that may be related with sampling frequency (see 

Fig. 2 in Chen et al., 2019b). Also, that may be also caused by other factors (e.g. 

characteristics of precipitation regimes, such as precipitation types) not captured by 360 

satellites or the reference. Future evaluation efforts should focus on ungauged regions 

and explore novel methods that do not depend on ground observations. 

4.2 Impact of topography on the systematic error 

In section 3.2, the results indicated that systematic errors are related with rainfall 

intensity. Although the analysis is performed in the humid regions of mainland China 365 

during the summer season to alleviate interferences of climate and seasonal factors on 

the systematic error, discrepancies in precipitation intensity that affect the proportions 

of SPP systematic error are expected between different topography categories. The NEC 

metric is designed to exclude the impact of the precipitation intensity on the systematic 

error. It is used to extract the influence of topography on the systematic error. 370 
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Fig. 11b shows the variations of NEC values for the three SPPs as a function of SDE 

for the summer season over the humid regions of mainland China. It is obvious that the 

relationship between the NEC and SDE is highly similar to that between the systematic 

error and SDE. The similarity of the two relationships can be explained as the mean 375 

precipitation (i.e., �̅, see equation (10)) of all SDEs is close around 0.24 mm/h. The 

relationship between NEC and SDE degenerates into the relationship between 

systematic error and SDE once the mean precipitation at all topographic classes is close. 

According to the results shown in Fig. 11b, the impacts of topography on the systematic 

error for IMERG increases with terrain complexity. For GSMaP and PERSIANN-CCS, 380 

the systematic error increases (decreases) with topographic complexity when SDE is 

less than (above) 300 m. 

4.3 What are the factors causing larger systematic error? 

In general, the proportions of systematic error for the three evaluated SPPs are below 

20% for all four seasons and over most of the global land areas. However, it cannot be 385 

ignored that these SPPs have larger systematic errors in several regions, such as parts 

of CONUS, China and Russia (see Fig. 6). In addition, SPPs in these areas with larger 

systematic errors have always relatively larger miss biases (see Figs. 2-6), implying that 

miss bias tends to produce larger systematic errors relative to hit and false biases, 

according to the definition of systematic and random errors (see equations (7-8)).  390 

4.4 Potential directions of the improvement in satellite retrieval algorithms and 

error adjustment models 

The results in this study suggest that the quality of the evaluated SPPs have significant 
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room for further improvement. Several recent studies attempted to reduce the errors in 

satellite precipitation retrievals by only considering seasonal, rainfall intensity, and/or 395 

topographic factors into their error adjustment models or blending algorithms (e.g. Tian 

et al., 2010b; Hashemi et al., 2017; Bhuiyan et al., 2018; Le et al., 2018; Choubin et al., 

2019; Shen et al., 2019; Baez-Villanueva et al., 2020). In practice, the errors show 

significant regional features (at least for the three evaluated SPPs). The impact of 

several key factors (i.e., topography, season, climate, and rainfall intensity) is very 400 

significant, suggesting that incorporating all four factors (i.e., topography, season, 

climate region/different areas, and rainfall intensity) into error adjustment models and 

blending algorithms is expected to further reduce the errors of satellite precipitation 

estimates. 

 405 

Second, the global maps of total bias (total mean squared error) and its three (two) 

components indicate that the hit and/or false errors are the major contributor of the total 

bias. The random error is found to be the major component of the total mean squared 

error. Consequently, the satellite retrieval algorithms and error adjustment algorithms 

should focus on reducing the hit and false biases in these SPPs over most regions of the 410 

world. 

 

Finally, the findings of this study are relevant to the improvement of gauge-adjusted 

versions of the satellite retrievals (e.g. GSMaP-Gauge blends GSMaP-MVK and CPCU 

data). 415 
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5. Conclusion 

This paper investigates major error components of the total error for three SPPs (i.e., 

IMERG-Late, GSMaP-MVK, and PERSIANN-CCS) over different seasons, rainfall 

intensities, and various topography. The major conclusions are summarized as follows: 

1. This study is the first to depict global maps of the total bias (total mean squared 420 

error) and its three (two) independent components for three SPPs over four 

seasons. The errors are found to have remarkably regional features, and the 

evaluation results show limited transferability from one region to another. This 

can be attributed to differences in satellite sampling between areas and may be 

also caused by other factors (e.g. characteristics of precipitation regimes, such 425 

as precipitation types), which cannot be captured by satellites or the reference. 

This finding highlights the need for assessing satellite precipitation products 

over various regions of the world. Future efforts should focus on areas with 

lack of evaluation and on investigating novel evaluation techniques that do not 

rely on ground-based observations. 430 

2. Hit and/or false errors are the major components of the total bias for the three 

SPPs over most areas of the world (see Table S1). The proportions of the 

systematic error are below 20% and display a strong seasonality in several 

regions, such as CONUS, China, and Russia. It appears that missed 

precipitation is a decisive factor producing large systematic errors. The 435 

evaluation results indicate that the satellite retrieval algorithms and error 

adjustment algorithms should focus on reducing the hit and false biases in these 
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SPPs over most regions of the world. 

3. All SPPs exhibit a high degree of consistency in the three bias scores (i.e., total 

bias, hit bias, and miss bias) under different rainfall intensities. Their total 440 

biases came primarily from the hit error component. Each SPP displays a 

specific relationship between the systematic error and precipitation intensity. 

All SPPs have relatively larger systematic error in rainfall events with intensity 

exceeding 40 mm/day. 

4. All SPPs share considerable similarities in terms of the four bias metrics (i.e., 445 

total bias, hit bias, miss bias, and false bias) over most SDE classes. Relatively, 

the four bias scores of GSMaP have a stronger topographic dependency, 

especially for false bias and hit bias. The three SPPs exhibit distinctly various 

topographic dependency patterns in systematic error. The NEC metric was 

proposed to isolate the influence of topography on the systematic error. It is 450 

found that the relationship between NEC and topography degenerates into the 

relationship between systematic error and topography, primarily due to mean 

precipitation (i.e., �̅ , see equation (10)) of ~ 0.24 mm/h in all terrain 

categories. 

The new findings reported in this paper will be useful to improve satellite precipitation 455 

retrieval algorithms and error adjustment models, as well as the potential applications 

of these products. 
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Code/Data availability 

The IMERG suite data can be obtained from https://pmm.nasa.gov/data-

access/downloads/gpm; the GSMaP suite data are obtained from 460 

ftp://rainmap:Niskur+1404@hokusai.eorc.jaxa.jp/; the ground-based data in mainland 

China can be downloaded from http://data.cma.cn; the CPCU data can be downloaded 

from ftp://ftp.cpc.ncep.noaa.gov/precip/. MATLAB codes used in this study are 

available by contacting the first author (hanqingchen1007@163.com). 
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Figure and Table Captions 645 

Fig. 1. (a) Global map of topography; (b) mean annual precipitation of the global land 

from 1891 to 2018 (128 years) based on the Global Precipitation Climatology Centre 

(GPCC) monthly gauge analysis; (c) global land is divided into four climate areas (i.e., 

humid, semi-humid, semi-arid, arid); (d) the spatial maps of rain gauges used in Climate 

Precipitation Center unified (CPCU) data and China Gauge-based Daily Precipitation 650 

Analysis (CGDPA) data. 

Fig. 2. Global maps of the total bias and its three independent components for the three 

satellite-only precipitation global precipitation estimates (i.e., IMERG-Late, GSMaP-

MVK, and PERSIANN-CCS) at a 0.5° spatial and daily temporal resolution in the 

MAM season (Mar-May) across global land for the period from 2015 to 2019 (5 years). 655 

Fig. 3. Global maps of the total bias and its three independent components for the three 

satellite-only precipitation global precipitation estimates (i.e., IMERG-Late, GSMaP-

MVK, and PERSIANN-CCS) at a 0.5° spatial and daily temporal resolution in the JJA 

season (Jun-Aug) across global land for the period from 2015 to 2019 (5 years). 

Fig. 4. Global maps of the total bias and its three independent components for the three 660 

satellite-only precipitation global precipitation estimates (i.e., IMERG-Late, GSMaP-

MVK, and PERSIANN-CCS) at a 0.5° spatial and daily temporal resolution in the SON 

season (Sep-Nov) across global land for the period from 2015 to 2019 (5 years). 

Fig. 5. Global maps of the total bias and its three independent components for the three 

satellite-only precipitation global precipitation estimates (i.e., IMERG-Late, GSMaP-665 
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MVK, and PERSIANN-CCS) at a 0.5° spatial and daily temporal resolution in the DJF 

season (Dec-Feb) across global land for the period from 2015 to 2019 (5 years). 

Fig. 6. Global maps of the systematic errors for the three satellite-only global 

precipitation estimates (i.e., IMERG-Late, GSMaP-MVK, and PERSIANN-CCS) at a 

0.5° spatial and daily temporal resolution in four seasons (i.e., MAM, JJA, SON, and 670 

DJF) over global land for the period from 2015 to 2019 (5 years): (a-d) IMERG-Late, 

(e-h) GSMaP-MVK, (i-l) PERSIANN-CCS. 

Fig. 7. Three bias scores (i.e., total bias, hit bias, and miss bias) of the three satellite-

only global precipitation estimates (i.e., IMERG-Late, GSMaP-MVK, and 

PERSIANN-CCS) at a 0.5° spatial and daily temporal resolution under different rainfall 675 

intensities. Note that the precipitation intensity categories are from references. 

Fig. 8. Systematic errors of the three satellite-only global precipitation estimates (i.e., 

IMERG-Late, GSMaP-MVK, and PERSIANN-CCS) at a 0.5° spatial and daily 

temporal resolution under different rainfall intensities. Note that the precipitation 

intensity categories are from references. 680 

Fig. 9. Gauge number for each topography class. 

Fig. 10. Four bias scores (i.e., total bias, hit bias, miss bias, and false bias) of the three 

satellite-only global precipitation estimates (i.e., IMERG-Late, GSMaP-MVK, and 

PERSIANN-CCS) under different terrains. Note that the analysis executed at a 0.1° 

spatial and hourly temporal resolution in the humid regions of mainland China over JJA 685 

(summer) season for the period from 2015 to 2019 (5 years). 
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Fig. 11. (a) Systematic errors for the three satellite-only global precipitation estimates 

(i.e., IMERG-Late, GSMaP-MVK, and PERSIANN-CCS) under different topographies; 

(b) the variations of normalized error component (NEC) for the three satellite-only 

global precipitation estimates with increasing terrain complexity. Note that the analysis 690 

executed at a 0.1° spatial and hourly temporal resolution in the humid regions of 

mainland China over JJA (summer) season for the period from 2015 to 2019 (5 years). 

Fig. 12. Spatial maps of the total biases of the three SPPs for four seasons over the 

Fujian (FJ) and Zhejiang (ZJ) provinces, respectively. 

Table 1 The information about three satellite-only global precipitation estimates used 695 

in this study. 
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Fig. 1. (a) Global map of topography; (b) mean annual precipitation of the global land 700 

from 1891 to 2018 (128 years) based on the Global Precipitation Climatology Centre 

(GPCC) monthly gauge analysis; (c) global land is divided into four climate areas (i.e., 

humid, semi-humid, semi-arid, arid); (d) the spatial maps of rain gauges used in Climate 

Precipitation Center unified (CPCU) data and China Gauge-based Daily Precipitation 

Analysis (CGDPA) data. 705 
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Fig. 2. Global maps of the total bias and its three independent components for the three 

satellite-only precipitation global precipitation estimates (i.e., IMERG-Late, GSMaP-

MVK, and PERSIANN-CCS) at a 0.5° spatial and daily temporal resolution in the 710 

MAM season (Mar – May) across global land for the period from 2015 to 2019 (5 years). 
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Fig. 3. Global maps of the total bias and its three independent components for the three 

satellite-only precipitation global precipitation estimates (i.e., IMERG-Late, GSMaP-

MVK, and PERSIANN-CCS) at a 0.5° spatial and daily temporal resolution in the JJA 715 
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season (Jun - Aug) across global land for the period from 2015 to 2019 (5 years). 
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Fig. 4. Global maps of the total bias and its three independent components for the three 

satellite-only precipitation global precipitation estimates (i.e., IMERG-Late, GSMaP-720 

MVK, and PERSIANN-CCS) at a 0.5° spatial and daily temporal resolution in the SON 
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season (Sep-Nov) across global land for the period from 2015 to 2019 (5 years). 
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 725 

Fig. 5. Global maps of the total bias and its three independent components for the three 

satellite-only precipitation global precipitation estimates (i.e., IMERG-Late, GSMaP-

MVK, and PERSIANN-CCS) at a 0.5° spatial and daily temporal resolution in the DJF 
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season (Dec-Feb) across global land for the period from 2015 to 2019 (5 years). 

 730 
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Fig. 6. Global maps of the systematic errors for the three satellite-only global 

precipitation estimates (i.e., IMERG-Late, GSMaP-MVK, and PERSIANN-CCS) at a 

0.5° spatial and daily temporal resolution in four seasons (i.e., MAM, JJA, SON, and 735 
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DJF) over global land for the period from 2015 to 2019 (5 years): (a-d) IMERG-Late, 

(e-h) GSMaP-MVK, (i-l) PERSIANN-CCS. 
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Fig. 7. Three bias scores (i.e., total bias, hit bias, and miss bias) of the three satellite-740 

only global precipitation estimates (i.e., IMERG-Late, GSMaP-MVK, and 

PERSIANN-CCS) at a 0.5° spatial and daily temporal resolution under different rainfall 

intensities. Note that the precipitation intensity categories are from references. 
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Fig. 8. Systematic errors of the three satellite-only global precipitation estimates (i.e., 745 

IMERG-Late, GSMaP-MVK, and PERSIANN-CCS) at a 0.5° spatial and daily 

temporal resolution under different rainfall intensities. Note that the precipitation 

intensity categories are from references. 
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 750 

Fig. 9. Gauge number for each topography class. 
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Fig. 10. Four bias scores (i.e., total bias, hit bias, miss bias, and false bias) of the three 755 

satellite-only global precipitation estimates (i.e., IMERG-Late, GSMaP-MVK, and 

PERSIANN-CCS) under different terrains. Note that the analysis executed at a 0.1° 

spatial and hourly temporal resolution in the humid regions of mainland China over JJA 

(summer) season for the period from 2015 to 2019 (5 years). 

  760 
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Fig. 11. (a) Systematic errors of the three satellite-only global precipitation estimates 

(i.e., IMERG-Late, GSMaP-MVK, and PERSIANN-CCS) under different topographies; 

(b) the variations of normalized error component (NEC) for the three satellite-only 

global precipitation estimates with increasing terrain complexity. Note that the analysis 765 

executed at a 0.1° spatial and hourly temporal resolution in the humid regions of 

mainland China over JJA (summer) season for the period from 2015 to 2019 (5 years). 
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Fig. 12. Spatial maps of the total biases of the three SPPs for four seasons over the 770 

Fujian (FJ) and Zhejiang (ZJ) provinces, respectively. 
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Tables 772 

Table 1 The information about three satellite-only global precipitation estimates used 773 

in this study. 774 
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