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Abstract. Agricultural production and food prices are affected by hydroclimatic extremes. There has been a large literature 

measuring the impacts of individual extreme events (heat stress or water stress) on agricultural and human systems. Yet, we lack 

a comprehensive understanding of the significance and the magnitude of the impacts of compound extremes. This study combines 

a fine-scale weather product with outputs of a hydrological model to construct functional metrics of individual and compound 

hydroclimatic extremes for agriculture. Then, a yield response function is estimated with individual and compound metrics 15 

focusing on corn in the United States during the 1981-2015 period. Supported by statistical evidence, the findings suggest that 

metrics of compound hydroclimatic extremes are better predictors of corn yield variations than metrics of individual extremes. The 

results also confirm that wet heat is more damaging than dry heat for corn. This study shows the average yield damage from heat 

stress has been up to four times more severe when combined with water stress. Keywords. agriculture; climate impacts; water 

balance model; extreme heat; extreme drought.  20 

1 Introduction 

The United States is the world’s top food exporter, being the major producer of global calories of the four staple crops corn, 

soybeans, wheat and, rice, which together account for 75% of the calories humans consume (USDA NASS).  Specifically, it 

produces more than 40% of the world’s corn. Precipitation and temperature weather extremes cause variation in crop yields, 

affecting not only crop growth but also crop prices and farm revenues. As climate changes, all regions of the planet are experiencing 25 

more frequent weather extremes, and often with greater magnitude than in the past (WMO, 2013); the WMO calls 2001-2010 the 

“decade of climate extremes”, and this time frame did not even include the record-breaking year 2012 that devastated corn and 

soybean production across the U.S. (Rippey, 2015).  This year was both very hot and very dry in many parts of the corn belt.  To 

understand past and future global food security, it is therefore essential to quantify and build predictive models of the impacts of 

extreme weather events on staple crop yields. 30 

 

The focus of this paper is statistical modeling of crop yields, (e.g., Schlenker and Roberts, 2009), which draws heavily on the field 

of econometrics. While there is also a rich literature of process-based crop yield models (Jones et al., 2017), many of these models 

still rely on observational data-derived statistical relationships between extreme weather events and yields to capture impacts of 

extremes. Additionally, recent high-visibility studies on the impact of weather extremes on past and future crop yields rely entirely 35 

on statistical econometric modeling (Lobell et al., 2013).  The relationship between extreme heat and crop yields has been well-

documented, particularly across the United States (US) and for corn, the U.S.’s largest crop by acreage (Schlenker and Roberts, 
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2009; Urban et al., 2012; Diffenbaugh et al., 2012; Roberts et al., 2013; Lobell et al., 2013; Urban et al., 2015; Wing et al., 2015; 

Burke and Emerick, 2016). Statistical and process-based crop models also appear to agree on corn yield impacts due to heat (Liu 

et al., 2016; Tebaldi and Lobell, 2018).  40 

 

However, there is less agreement and greater uncertainty around the crop yield impacts of hydrologic extremes, due largely to the 

use of annual or season mean precipitation metrics in statistical models that fail to capture hydrologic extremes (D’Odorico and 

Porporato, 2004; Lobell and Burke, 2010; Schaffer et al., 2015; Werner and Cannon, 2016).  These cumulative indices - monthly 

mean, or seasonal average precipitation - do not capture extreme events that occur within the season. For example, precipitation 45 

amounts from early-season floods and late-season droughts can cancel out when taking the average, effectively smoothing over 

these extreme events in the data. The computed mean for this variable can be misleading as crop growth responds to day-to-day 

variability. While average conditions are important, exposure to extreme water stress can cause permanent unrecoverable damage 

to plants (Denmead and Shaw, 1960), while too much water can cause yield-damaging floods, waterlogging, or may wash out soil 

nutrients and fertilizers (Kaur et al., 2018; Schmidt et al., 2011; Urban et al., 2015).  50 

 

Crops obtain most of their water directly from soil moisture, yet extreme water metrics based on soil moisture have been only 

minimally explored (Fishman, 2016). Several studies have highlighted the need for irrigation to compensate for soil moisture 

deficits (Li et al., 2017; McDonald and Girvetz, 2013; Meng et al., 2016; Williams et al., 2016), further pointing to soil moisture 

as a potentially more important crop water availability metric than precipitation. However, current statistical studies have had 55 

limited success in statistically capturing the yield response to soil moisture metrics (Bradford et al., 2017; Peichl et al., 2018; 

Siebert et al., 2017). There are several potential reasons for this limited success. First, direct measures of soil water availability 

include complex biophysical and hydrological processes that are difficult to capture in a rather simple statistical model.  Another 

barrier has been the limited availability of daily fine-scale soil moisture data, as well as the inconsistency of soil moisture data 

with heat information. It has therefore become a standard practice in statistical crop modeling either to focus on a limited 60 

geographical area (Rizzo et al., 2018; Wang et al., 2017) or to employ a proxy variable like precipitation, evapotranspiration, or 

vapor pressure deficit estimates (Comas et al., 2019; Roberts et al., 2013).  

 

A few recent studies have highlighted the importance of mean soil moisture metrics for estimating crop yields in the US (Ortiz-

Bobea et al., 2019; Ribeiro et al., 2020). However, Ortiz-Bobea et al. (2019) estimated the average impact of heat stress on corn 65 

yields without distinguishing between a hot-dry day (dry heat) and a hot-wet day (wet heat), and similarly, Ribeiro et al., (2020) 

evaluated the impacts of dry-heat and ignores the impacts of wet-heat stress. These papers do not focus on the interaction or 

compound effects. Therefore there is currently no robust predictive framework that captures the implications of compound 

extremes, which appear in the historical climate record and are expected to become more frequent under future climate change 

conditions (Myhre et al., 2019). It is important to build such a framework because harmful extreme heat can be less harmful when 70 

there is sufficient soil moisture (Hauser et al., 2018), indicating that previous estimates of extreme heat impacts on staple crop 

yields may be biased high. 

 

This paper presents the first statistical predictive crop yield model that directly addresses the gap in our knowledge of crop yield 

impacts due to compound weather extremes, including both dry-heat and wet-heat. This is accomplished by using high-resolution, 75 

daily simulated soil moisture data that is consistent with daily temperature data, applied to corn yield data across the continental 

United States.  
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2 Methods  

This paper introduces two statistical models of crop yield as a function of heat and soil moisture, effectively building on the 

regression model methods from Schlenker and Roberts (2009) and Ortiz-Bobea et al. (2019). While both of these studies considered 80 

similar metrics for heat, the former is based on precipitation and the latter considers an average soil moisture metric. The current 

study extends them by introducing easy-to-use metrics of individual and compound extremes based on simulated soil moisture. 

Here, model 1 assumes that the impacts of heat and water on corn yields are separable. This model considers metrics of individual 

extremes (heat stress and water availability). Relaxing the separability assumption, Model 2 assumes the yield impacts of heat and 

water are mutually interdependent. Model 2 considers metrics of compound extremes. Model 1 helps to estimate the marginal 85 

impacts of heat stress (individual extreme) as well as the marginal impact of daily soil moisture stress (individual extreme) on crop 

yields. Model 2 provides a framework to measure the conditional marginal impact of heat and soil moisture (compound extremes) 

on crop yields.  

2.1 Data  

In estimating the marginal impact of soil moisture on corn yields, we employ information about soil moisture, temperature, 90 

precipitation, and corn yields for counties of the United States for the 1981-2015 period. The data on yield is obtained from USDA-

NASS (United States Department of Agriculture-National Agricultural Statistics Service) at the county level. The yield is defined 

as the corn production (in bushels) divided by harvested area (in acres). Precipitation is defined in millimeters as accumulated 

rainfall during the growing season (Apr-Sep). It is calculated based on PRISM (Parameter-elevation Regressions on Independent 

Slopes Model) daily information at 2.5 x 2.5 arcmin grid cells over the continental US for 1981-2015. It is aggregated to each 95 

county according to cropland area weights. Compound metrics of heat and soil moisture are also calculated daily at the gridded 

level. Then we aggregate the metrics to the growing season and county level. Daily soil moisture content and soil moisture fraction 

are obtained from the Water Balance Model (Grogan, 2016; Wisser et al., 2010) based on daily simulations using PRISM data at 

6 x 6 arcmin grid cells for the 1981-2015 period over the continental US.  

 100 

2.2 Data processing  

Major metrics used in this study are listed in Table 1. To derive the metrics listed in this table, the climate and soil moisture data 

are processed. The heat metrics are based on the concept of growing degree days. Following D’Agostino and Schlenker (2015), 

the daily distribution of temperatures is approximated assuming a cosine function between the daily minimum and maximum 

temperature. Let  𝑡 = acos , then degree days (dday) at each day is defined using 105 

𝑑𝑑𝑎𝑦(𝑏) =

⎩
⎨

⎧
( )

− 𝑏 𝑖𝑓 𝑏 ≤ 𝑇

( )
− 𝑏 +

( )
𝑠𝑖𝑛 𝑡                𝑖𝑓 𝑇 < 𝑏 ≤ 𝑇

0 𝑖𝑓 𝑇 < 𝑏

  (1) 

where b is the base for calculating degree days and can take the base values as well as critical values. This study considers a 

piecewise-linear function to aggregate the degree days. The major assumption is that plant growth is approximately linear between 

two bounds. Degree days between two bounds is simply degree days above the smaller bound minus degree days above the larger 

bound. Degree days are initially calculated for each day at each 2.5 x 2.5 arcmin grid cell during the growing season (Apr-Sep). 110 

Then they are aggregated for the whole growing season from the first day of April through the last day of September. Finally, they 
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are aggregated to the county level using cropland area weights. We employ the Crop Data Layer from the US Department of 

Agriculture to exclude grid cells with no cropland and to aggregate the grid cell information to the county level (Boryan et al., 

2012; USDA-NASS, 2017). 

 115 

The soil moisture metrics are constructed as the deviation from normal. Normal levels are defined as seasonal mean volumetric 

soil moisture over the 1981-2015 period. The water available to plants depends on volumetric soil moisture as well as soil type. 

To operationalize the soil moisture metric, this study considers the soil moisture deviation from normal. Soil moisture deviation is 

defined as daily soil moisture minus the normal soil moisture levels. Figure S1 shows the difference between normal soil moisture 

content, water available to plants, and unavailable water. The soil moisture level is considered extreme if it is below/above a 120 

threshold. The threshold is obtained by testing the impacts of 5-mm intervals of soil moisture deviation from normal. 

 

Figure 1 visualizes soil moisture conditions as the basis for the construction of the soil moisture metrics (on the figure: extreme 

surplus = A, surplus = B, around normal = C+D, deficit = E, extreme deficit = F). Three types of metrics are constructed for each 

condition. The simplest metric is the number of days during the growing season with each condition. To show the intensity of each 125 

condition, the second metric is defined based on cumulative deviation from normal for each condition. Finally, a compound metric 

is defined as the sum of degree days for each observed soil moisture condition. In Table 1, SMavg is calculated as the seasonal 

mean of soil moisture content (in mm for the 1000 mm topsoil) from the first day of April through the last day of September for 

each grid cell for each year. This metric shows the average soil moisture conditions. Then, NDD and NDS represent the number 

of days when the daily volumetric soil moisture content is more than 25 mm below normal levels or is more than 25 mm below 130 

normal levels, respectively. Further, CMS and CMD show the cumulative soil moisture surplus (above normal) and deficit (below 

normal) while CEMS and CEMD show the cumulative extreme soil moisture surplus (25+ mm above normal) and deficit (25+ 

mm below normal), respectively. These are metrics of extreme soil moisture conditions. Finally, CMN represents a cumulative 

metric of soil moisture index around normal.  

2.3 Model (1) individual extremes 135 

Model 1 is a basic model that uses individual extremes, following a similar approach as Schlenker and Roberts (2009). Model 1 

assumes that the effects of heat on corn yields are cumulative over the growing season and separable from water. In other words, 

the end-of-season yield is the integral of daily heat impacts over the growing season. This relationship can be demonstrated via 

Eq. (2): 

𝑦 = ∫ 𝑔(ℎ)𝜑 (ℎ)𝑑ℎ +  𝑧 𝜹 + 𝑐 + 𝜖   (2) 140 

Where yit is crop yield, g(h) is a function showing yield as a function of heat, φit(h) is the time distribution of heat (h) over the 

growing season in location i and year t, while the heat ranges between the lower bound ℎ and the upper bound ℎ; metrics of water 

availability (e.g., precipitation or soil moisture) and other control factors are denoted as 𝑧 , and ci is a time-invariant fixed effect 

All other unobserved variables are in the 𝜖  term. The fixed effect variable (also termed the unobserved individual effect) allows 

us to control for other biophysical or economic characteristics of each location which are not varying over time and can potentially 145 

explain the yield differences between counties. Note that this form of equation with fixed effects and unobserved variables is a 

standard econometric method. We evaluate the accuracy of this model, compared to historical data, using first cumulative 

precipitation, then mean soil moisture as the water availability metric 𝑧 .  
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For Model (1), different representations of water variables are considered. In Model (1-a), 𝑧  includes cumulative precipitation 150 

from the first day of April to the last day of September and its square term; this will evaluate the standard way yields have been 

estimated in previous studies. In Model (1-b), 𝑧  is the seasonal mean soil moisture index and its square term, used to evaluate the 

use of soil moisture instead of precipitation. Model (1-c) includes the number of days with low soil moisture as well as the number 

of days with high soil moisture, evaluating the importance of extreme soil moisture events (Fig. 1). In Model (1-d), 𝑧  includes 

metrics of soil moisture below or above normal levels, evaluating the importance of extreme soil moisture intensity (Fig. 1). For 155 

Model (1), assumes a piece-wise linear form for 𝑔(ℎ). It includes degree days above 29˚C as a metric of extreme heat as well as 

degree days from 10 to 29˚C as a metric of beneficial heat. Look at the Supplementary Information for more details about each 

model. 

 

2.4 Model (2) compound extremes  160 

Here, a new statistical model is introduced to focus on the compound metrics of available water and heat as the major indicators 

of plant growth to evaluate if including the conditional marginal impact of heat and water on yields provides improved yield 

estimates. Model 2 is: 

𝑦 = ∫ ∫ 𝑔(ℎ, 𝑚)𝜑(ℎ, 𝑚)𝑑ℎ𝑑𝑚 + 𝑐 + 𝜖  (3) 

where 𝑦  is the crop yield, 𝑔(ℎ, 𝑚) is the yield response function to each combination of soil moisture level, m, and 165 

heat, h; 𝜑(ℎ, 𝑚) is the distribution of soil moisture and heat; 𝑚 and 𝑚 are upper and lower thresholds of soil moisture; 

ℎ and ℎ are maximum and minimum heat;  ci is a time-invariant county fixed effect; and 𝜖  is the residual. Here, the model 

does not separate the impact of heat from water. In other words, the marginal impact of heat depends on water; and the 

marginal impact of water depends on heat. 

 170 

Two approaches are employed to estimate the impacts of compound extremes within this model. First, we construct a binning 

estimator based on daily interaction on heat and soil moisture in the model (2-a). We define several intervals of soil moisture (SM) 

represented by daily dummy variables and we interact these dummy variables with the daily excess heat index of 29oC. Also, we 

take 25 mm intervals for soil moisture deviation from normal. In other words, we split the degree days into degree days conditional 

to soil moisture conditions. This includes dday29˚C & SM 75+ mm below normal (extreme deficit), dday29˚C & SM 25-75 mm 175 

below normal (deficit), dday29˚C & SM 0-25 mm around normal (normal), dday29˚C & SM 25-75 mm above normal (surplus), 

and dday29˚C & SM 75+ mm above normal (extreme surplus). We estimate a coefficient for each combination of excess heat and 

soil moisture; ie., we estimate a model with metrics of degree days while controlling for soil moisture. Second, we estimate a 

model with metrics of soil moisture while controlling for temperature in the model (2-b). We define an index of soil moisture when 

the temperature is above the threshold and an index of soil moisture when the temperature is below the threshold. If H is the average 180 

daily temperature, and H* is the temperature threshold, the metrics are the index of normal soil moisture (SM 0-25+ mm around 

normal) when H > H*, the index of normal soil moisture when H < H*, the index of moisture deficit (SM 25+ mm below normal) 

when H > H*, index of moisture deficit when H < H*, the index of moisture surplus (SM 25+ mm above normal) when H > H*, 

and the index of moisture surplus when H < H*. Look at the Supplementary Information for more details about each model. 
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3 Results 185 

The overall simulation results from WBM are illustrated in Fig. 2-4, showing gridded historical mean for the cultivated continental 

US, average annual variations for the cultivated continental US, and bivariate distribution of soil moisture and heat for the corn 

growing grid cells. To illustrate the spatial heterogeneity, Fig. 2 shows the growing season mean soil moisture content (in mm in 

1000 mm topsoil) as calculated based on daily root-zone soil moisture level from Apr-Sep for 1981-2015 at 2.5 x 2.5 arcmin grids 

excluding non-cultivated area. Average growing season soil moisture is heterogeneous across the Continental US, with distinct 190 

regional patterns (see Fig. 2). For the corn belt, the soil moisture level is relatively high compared to other regions. The mean of 

volumetric soil moisture ranges from below 50 mm in southern California to above 250 mm in the Corn Belt and around 

Mississippi.  

 

To compare the variation of simulated soil moisture and precipitation, Fig. 3 illustrates the weighted average soil moisture and 195 

precipitation over the cultivated US for 1981-2015. In general, variation in soil moisture average is higher than in that of 

precipitation (Fig. 3), showing how this new water metric is different from previous approaches. One interesting finding is that for 

some years the mean precipitation and the mean soil moisture move in opposite directions. For example, in 1990 the mean 

precipitation is declined by around 5% while the mean soil moisture is increased by around 13%.  

 200 

To show the dynamics of soil moisture and heat, Fig. 4 shows their bivariate distribution by month based on daily information for 

all the cultivated grid cells in the US Corn Belt for 1981-2015. Heat and soil moisture combinations vary through the growing 

season (Fig. 4) The data shows significant month-to-month variation, with the second half of the season facing hotter and dryer 

days. Also, July has the highest variation in soil moisture deviation with a high probability of compound extremes as the distribution 

moves toward the lower right.  205 

 

Below, we describe the regression results from each individual model, and compare their performance to identify which metrics 

are important to include in the statistical estimate of corn yields. The central finding is that metrics of soil moisture extremes are 

statistically significant, and models including intensity, duration, and severity metrics (as illustrated in Fig. 1) better capture both 

mean and variation in U.S. corn yields.  This point is illustrated in Fig. 5, which compares Model 1a  to Model 2a: each model 210 

estimates the percentage change in corn yields assuming additional 10 degree-days above 29˚C and no change in mean soil 

moisture. The figure shows that Model (1) would significantly underestimate the damage for conditions with extreme water surplus 

or extreme water deficit.  

3.1 Model (1): predicting yield responses to individual extremes 

 The results from Model (1-a) show a strong relationship between corn yields and heat and precipitation (Table 2 column 1-a). The 215 

marginal impact of a degree-day within 10-29˚C is significantly positive while that from an additional degree day above 29˚C is 

strongly negative, confirming the seminal findings of Schlenker and Roberts (2009).  

 

The results from Model (1-b), excluding precipitation, shows the marginal relationship with soil moisture is also significant (Table 

2 column 1-b). This confirms the findings of Ortiz-Bobea et al. (2019). It shows that the marginal relationship with soil moisture 220 

is increasing up to ~92 mm in 1000 mm topsoil and decreasing for higher values.  
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In Model (1-c), we consider the number of days that soil moisture is either too high or too low. The model with metrics of soil 

moisture extremes further improves the fit, revealing a negative marginal relationship associated with the number of days with 

low/high soil moisture. Regarding Model (1-c), the coefficient on the number of days with low moisture is also significant and 225 

negative. Our estimation sample shows 26 days of high soil moisture and 27 days of low soil moisture on average. The implication 

is that eliminating 25 days of high soil moisture and 25 days of low soil moisture can improve the corn yields by up to 12.6%.  

 

Model (1-d) shows the estimated coefficients when considering surplus and deficit (soil moisture deviation from normal) instead 

of average seasonal soil moisture. Here, we consider two thresholds for low and high soil moisture. Returning to Fig. 1, we evaluate 230 

the area of all blue bars and the area of all red bars. It shows that the marginal impact of the moisture deficit (cumulative negative 

soil moisture deviation) is significant and positive. This indicates the positive contribution of additional soil moisture when the 

soil moisture levels are below normal. On the other hand, the marginal impact of additional soil moisture in a wet period – i.e., a 

positive soil moisture deviation -- is negative. In other words, this measure captures the fact that plants will benefit from reductions 

in soil moisture when the soil moisture levels are above normal. This is an indicator of the value of sub-surface drainage for 235 

agriculture. Note that the Model (1-d) decreases the marginal relationship with extreme heat (dday29˚C). However, this effect is 

not statistically different from that produced by the first model.  

 

The coefficient of the deficit in Model (1-d) is significant and positive. On the other hand, the coefficient of the extreme deficit is 

also significant and positive. The estimation sample shows this metric is around 2300 mm on average. It indicates that reducing 240 

the deficit by 2300 mm and reducing the surplus by the same amount can improve the corn yield by up to 21.2% on average. Note 

the mean soil moisture can stay unchanged in this scenario.  

3.2 Model (2): predicting yield responses to compound extremes  

In Model (2-a) we introduce heat-soil moisture interactions to test whether soil moisture availability changes the marginal impact 

of heat on yields (estimation results are in Table 3). We find that the average marginal impacts of dday29˚Cs (heat stress) are all 245 

significant. The coefficient on dday29˚C combined with the extreme deficit is -0.0082. The coefficient of ddays29˚C (heat stress) 

combined with extreme water surplus is -0.0140. These figures are significantly different compared to Model (1).    

 

We estimate a model with soil moisture while controlling for temperature (2-b). The results are presented in Table 4.  The 

coefficient of degree days from 10˚C to 29˚C is significant and positive. This is not significantly different from previous models 250 

(1-a, 1-b, 1-c, 1-d, and 2-a). The coefficient on degree days above 29˚C is significant and negative. It is close to the estimated 

values from Model (2-a) but slightly lower than Model (1). This indicates that the average damage from extreme heat index 

(dday29˚C) is around 25% lower than Model (1). The estimated parameters show the yield response to changes in soil water 

content. Comparing the parameter values can show the difference in yield response to soil moisture in hot weather and moderate 

weather. The coefficient on normal soil moisture conditional to hot weather is 0.00012. The coefficient on normal soil moisture 255 

conditional to moderate weather is 0.00003. This indicates that the yield response to water is up to four times higher in hot weather. 

The marginal impact on soil moisture deficit index is 0.00009 in hot weather and is 0.00002 in moderate weather. This also supports 

the finding that water is up to four times more beneficial to corn yields in hot weather. Also, the results show that the damage from 

excess water is up to two times larger in hot weather.  
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3.3 Model comparison 260 

A comparison of model performance metrics is given in Table 5, along with a description of the water metric and the extreme 

metric used in each model. We find that for Model 1b-d and Model 2a-d the coefficients on the soil moisture metrics are significant 

and with expected signs. Comparing the models’ performance suggests that Model (1-b), with mean soil moisture, performs better 

than the Model (1-a), with cumulative precipitation. Also, Model (1-d), with the extreme soil moisture metrics, outperforms both 

previous models (with cumulative precipitation or with mean soil moisture). The best corn yield predictor is from Models (2-a) 265 

and (2-b), considering compound extremes through the daily interaction of heat and soil moisture.  We find that using a seasonally 

averaged soil moisture metric is insufficient for capturing yield extremes; i.e., the temporal resolution of the soil moisture metric 

is important for estimating corn yield variability.  Figure 6 illustrates the difference by comparing the modeled impacts of average 

soil moisture (Model 1-b) on corn yields (Panel a) to the impacts considering the deviation from normal soil moisture (Model 1-d) 

estimated for a sandy soil type (Panel b) and a clay soil type (Panel c). In other words, when parametrizing the soil moisture as a 270 

deviation from normal, we get a specific piece-wise linear yield response to water depending on soil types (and normal levels of 

soil moisture), the extremes of which are completely missed by the model that only uses mean soil moisture. We find that the 

average corn yield damage from excess heat is up to four times more severe when combined with water stress. This damage can 

only be estimated when including soil moisture and metrics of extreme water stress (e.g., Models 2a-d). 

3.4 Decomposing the variation in US corn yields 275 

We have decomposed the changes in the US corn yields from 1981 to 2015 to understand the relative roles of soil moisture and 

heat in interannual corn yield variation. Figure 7 illustrates a decomposition based on our findings while aggregated for the whole 

US. With no climate variation, the US corn yield is expected to have a smooth positive trend as shown in green color. The deviation 

from the trend occurs due to changes in water and heat stressors. The blue bars are showing the expected changes in US corn yields 

due to changes in the water stress while the orange bars are demonstrating the expected yield changes due to changes in heat stress. 280 

While there have been years in which the stressors have moved together (e.g. 2011 and 2012), for several years water and heat 

have offset each other’s benefit or damage. For example, in 1992 the damage from heat is partially offset by benefits from water. 

Or in 2010, the damage from water stress is partially offset by benefits from heat. 

3.5 Robustness checks 

The Supplementary Material provides several robustness checks. The goal is to investigate whether different assumptions can 285 

improve the predictive power of Model (1) such that it outperforms Model (2). We answer three questions. First, are the estimation 

results from Model (1) different from those using alternative water metrics from WBM output? Second, are the estimates in Model 

(1) different from those obtained using a model considering growth stages? And third, do the main findings change if we alter the 

geographical scope of the study?  

 290 

For the first robustness question, alternative water metrics, we re-estimate Model (1) using daily evapotranspiration (which is 

related to the water requirements of plants) and soil moisture fraction. Overall, the findings remain robust to alternative soil 

moisture metrics from WBM including the mean of soil moisture fraction (soil moisture content divided by field capacity), the 

seasonal mean of evapotranspiration as well as within season standard deviation of them. We also look at the results using an 

alternative interpolation of WBM data to PRISM resolution (nearest neighbor versus bilinear interpolations). We reject the null 295 

hypothesis that the coefficient on yield response to heat is different between these two metrics. Also, we reject the null hypothesis 

that the prediction power across these models is higher than Model (2).     
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To test the second robustness question, time separability, we re-estimate Model (1-b) for two-month intervals (Apr-May, Jun-Jul, 

Aug-Sep), and the findings remain robust. We find that considering bi-monthly variables does not change the yield response to 300 

heat. Although this alternative formulation does improve the predictive power of Model (1-b) a little bit, the performance is not 

better than the original Models (2-a) and (2-b) with compound extremes. 

 

To test the sensitivity of our findings to geographical area, we re-estimate the models for Eastern US and Western US. We find 

that the estimated coefficients of Models (1-a) and (1-b) are not robust to the geographical choice, while those of Model (2) remain 305 

robust.  

4 Discussion 

In this paper, we have identified new water availability metrics that improve the predictive power of statistical corn yield models. 

While predictive power is an important outcome of this analysis, the insights gained from incrementally adding higher temporal-

resolution metrics of water extremes to the models are also valuable for understanding the drivers of corn yield variability, and for 310 

revealing the resolution of water availability data required to capture future extremes under climate change scenarios. Statistical 

crop models have been used to both elucidate drivers of crop yield trends and variability, and to evaluate potential climate change 

impacts on crop production in the future (e.g., Lobell and Burke, 2010; Diffenbaugh et al. 2012). However, these models typically 

use seasonally averaged water availability metrics (e.g., total growing season precipitation), and utilize precipitation more often 

than soil moisture. Generally, if the location of the study does not expect a significant change in the within-season distribution of 315 

the soil moisture, a mean soil moisture index will work. However, if there is an expected change in this distribution, using the 

mean variable will create biased yield projections. Because climate models project significant changes in the frequency and 

intensity of both extreme precipitation and temperature (Bevacqua et al., 2019; Manning et al., 2019; Myhre et al., 2019; Poschlod 

et al., 2020; Potopová et al., 2020; Wehner, 2019; Zscheischler et al., 2018), the results presented here show that the mean metrics 

of water availability – especially mean precipitation - are not sufficient to capture the impacts on yields. It is necessary to consider 320 

the metrics of extreme events as illustrated in Fig. 1. As we find that the coefficient on extreme heat is significantly different when 

considering soil moisture, it is possible that previous climate impact studies have over- or under-estimated the yield impacts. 

Further, farm management practices can alter soil moisture – and therefore yields – independent of precipitation. Supplemental 

irrigation, as well as no-till farming, cover cropping, and soil conservation, can increase soil moisture.  These adaptations may 

occur in places predicted to face higher mean precipitation coupled with more extreme water events. The results of these 325 

management practices cannot be captured by statistical models looking at precipitation metrics alone. Such precipitation-based 

studies could potentially lead to over-estimation yield damages under future climate extremes by not accounting for human 

adaptations designed to conserve soil moisture.   

 

Applying this framework to climate impact studies will face a key challenge – namely projecting the future compound extremes 330 

with the high temporal resolution of Model 2. It requires collaboration between hydrologists, climate scientists, and statisticians 

(Zscheischler et al., 2020). For future yield projections, we need reliable future projections of daily temperature (maximum and 

minimum) and soil moisture. Unfortunately, to the best of our knowledge, available data sets including predictions of future soil 

moisture have a relatively coarse spatial and temporal resolution, and rely on climate model projections with known difficulties 
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representing daily temporal resolution events (Hempel et al., 2013). Further research is required to improve the ability of climate 335 

models and impact models in projecting the bivariate distribution of heat-moisture (Sarhadi et al., 2018). 

5 Conclusions  

This study serves to bridge the gap between statistical studies of climate impacts on crops and their biophysical counterparts by 

recognizing the central role of soil moisture – which is not a simple linear transformation of precipitation – in understanding crop 

yields. We employ a fine-scale, high temporal resolution dataset to investigate the conditional marginal value of soil moisture and 340 

heat in US corn yields for the 1981-2015 period employing a statistical framework. The major contribution of this study is showing 

that the coefficient on extreme heat (dday29˚C) is significantly different while considering daily interactions with soil moisture, 

emphasizing the importance of compound hydroclimatic conditions.  

 

Our first key finding is that seasonal mean soil moisture performs better than average precipitation in statistically predicting corn 345 

yield. While the majority of current empirical studies employ precipitation as a proxy of water availability for crops, we show that 

the precipitation coefficient may not be always an appropriate measure of water availability. This study suggests that soil moisture 

content should be used in estimating crop yields instead of cumulative rainfall for locations with high runoff, drainage, or irrigation 

(e.g. Western and Central US).  

 350 

Also, the metrics of soil moisture extremes can explain a portion of the damages to corn yield. On average, farmers can improve 

corn yields by up to 24% only by avoiding extreme water stress. We also find that the coefficient of excess soil moisture is negative. 

This is in line with the current agronomic literature (Torbert et al., 1993; Urban et al., 2015) which points out that high soil moisture 

content can result in nutrient loss through excess water flows. In addition, at high humidity, the plants may have difficulty 

remaining cool at high temperatures. There is also a risk of waterlogging soils. With a few notable exceptions (e.g., rice), most 355 

crops do not grow well in inundated conditions as the plant roots need oxygen, so the direct impact of excess water stress is because 

of the anoxic conditions. 

 

Finally, the marginal impact of heat index on crop yields depends on the soil moisture level. We show the average yield damage 

from heat stress is up to four times more severe when combined with water stress; and therefore the value of water in maintaining 360 

crop yield is up to four times larger on hot days. 
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Table 1. Major variables in each model of the study 480 

 Heat metric (h) Water metric (m) 
 
Model 1: individual extremes 
1-a dday 10˚C to 29˚C  

dday 29˚C 
Precipitation  
Square of Precipitation  
 

1-b dday 10˚C to 29˚C  
dday 29˚C 

Seasonal mean soil moisture content (SMavg) 
Square of seasonal mean soil moisture content 
 

1-c dday 10˚C to 29˚C  
dday 29˚C 

Number of days with low soil moisture (NDD) 
Number of days with high soil moisture  (NDS) 
 

1-d dday 10˚C to 29˚C  
dday 29˚C 

Index of soil moisture above normal levels (CMS) 
Index of soil moisture below normal levels (CMD) 

 
Model 2: compound extremes 
2-a dday 10˚C to 29˚C 

dday 29˚C & SM 75+mm below normal  
dday 29˚C & SM 25-75 mm below normal  
dday 29˚C & SM 0-25 mm around normal  
dday 29˚C & SM 25-75 mm above normal  
dday 29˚C & SM 75+ mm above normal 
 

Seasonal mean soil moisture content  
Square of seasonal mean soil moisture content 

2-b dday 10˚C to 29˚C  
dday above 29˚C 

SM 0-25+ mm around normal (CMN)when T > T*  
SM 0-25+ mm around normal (CMN) when T < T*  
SM 25+ mm above normal (CEMS) when T > T* 
SM 25+ mm above normal (CEMS) when T < T* 
SM 25+ mm below normal (CEMD) when T > T* 
SM 25+ mm below normal (CEMD) when T < T* 
 

Definitions: dday: degree days; SM: soil moisture; SMavg: seasonal mean soil moisture; NDD: number of days when the soil 

moisture content is more than 25 mm below normal levels; NDS number of days when the soil moisture content is more than 25 

mm below normal levels; CMS index of moisture surplus; CMD: index of moisture deficit; CMN: index of normal soil moisture; 

CEMS index of extreme moisture surplus; CEMD: index of extreme moisture deficit. 

  485 
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Table 2. Corn yield estimation without the interaction of heat and soil moisture in Model 1 (a-d). 

 (1-a) (1-b) (1-c) (1-d) 
    Log 

CornYield 
Log 

CornYield 
Log 

CornYield 
Log 

CornYield 
Degree Days 10-29°C Apr-Sep .000336*** .000343*** .0003486*** .0003083*** 
  (.000087) (.00008) (.0000725) (.0000683) 

Degree Days above 29°C Apr-Sep -.005307*** -.005114*** -.005277*** -.005041*** 
  (.000673) (.000691) (.0006678) (.0005999) 

Precipitation Apr-Sep .000658**    
  (.000254)    

Precipitation Apr-Sep Square -5.16e-07**    
  (-9.35e-07)    

Seasonal Mean Soil Moisture Content   .003593***   
   (.000664)   

Seasonal Mean Soil Moisture Content Square  -.000017***   
   (3.000e-06)   

 Number of days with SM 25+ mm above normal   -.001838***  
     (.0003816)  

 Number of days with SM 25+ mm below normal    -.002089***  
     (.0002817)  

Index of Soil Moisture above Normal (mm)    -.000040*** 
    (2.800e-06) 

Index of Soil Moisture below Normal (mm)    .000044*** 
    (7.100e-06) 

Obs. 69923 69923 69923 69923 
R-squared  0.4686 0.4714 0.4795 0.4914 
AIC (Akaike’s information criterion) -21238.1 -21612.3 -22696.8 -24303.4 
BIC (Bayesian information criterion) -21201.4 -21575.7 -22660.2 -24266.8 
     
Standard errors are in parenthesis & adjusted for 
state clusters 

    

*** p<0.01, ** p<0.05, * p<0.1     
Notes: Table lists regression coefficients and shows standard errors in brackets. The constant term and coefficients on the interaction of each 
state and time trends are not reported.   
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 490 

Table 3. Corn yield estimation while splitting heat stress index in Model 2a 

       (2-a) 
    Log CornYield 

 Degree days from 10˚C to 29˚C .0003083*** 
   (.0000685) 

 dday29˚C & SM 75+ mm below normal (extreme deficit) -.0082398*** 
   (.0014372) 

 dday29˚C & SM 25-75 mm below normal (deficit) -.0062069*** 
   (.0009793) 

 dday29˚C & SM 0-25 mm around normal (normal) -.0037559*** 
   (.0004045) 

 dday29˚C & SM 25-75 mm above normal (surplus) -.0055709*** 
   (.0012041) 

 dday29˚C & SM 75+ mm above normal (extreme surplus) -.0140295*** 
   (.0019083) 

 Mean daily soil moisture content (mm) .0026635*** 
   (.0008153) 

 Square of mean daily soil moisture content  -.0000161*** 
   (2.600e-06) 

 Observations 69923 
 R-squared .4921 
 Akaike's Crit -24401.6 
 Bayesian Crit -24328.3 
  
Standard errors are in parenthesis & adjusted for state clusters  
*** p<0.01, ** p<0.05, * p<0.1  

  Notes: Table lists regression coefficients and shows standard errors in brackets. The constant term and coefficients on the interaction of each 
state and time trends are not reported.  
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 495 

Table 4. Estimation of corn yields while splitting the soil moisture metrics in Model 2b  

      (2-b) 
    log CornYield 

 Degree days from 10˚C to 29˚C .0003154*** 
   (.0000689) 

 Degree days above 29˚C -.004044*** 
   (.0005384) 

 Index of normal soil moisture when T > T* .0001199*** 
   (.0000342) 

 Index of extreme moisture surplus when T > T* -.0000628*** 
   (.0000151) 

 Index of extreme moisture deficit when T > T* .000092*** 
   (.0000234) 

 Index of extreme moisture deficit when T < T* .0000209*** 
   (7.100e-06) 

 Index of extreme moisture surplus when T < T* -.0000326*** 
   (3.200e-06) 

 Index of normal soil moisture when T < T* .000028** 
   (.0000105) 

 Observations 69923 
 R-squared .5006 
 Akaike's Crit -25582.4 
 Bayesian Crit -25509.2 
  
Standard errors are in parenthesis & adjusted for state clusters  
*** p<0.01, ** p<0.05, * p<0.1  

  Notes: Table lists regression coefficients and shows standard errors in brackets. The constant term and coefficients on the interaction of each 
state and time trends are not reported.   
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Table 5: Performance metrics for Models 1(a-d) and 2(a-b).  500 

Model  Water metric  Extreme metric 
R-

squared  

AIC (Akaike’s 
information 
criterion)  

BIC (Bayesian 
information 
criterion)  

1-a 
Avg. 

precipitation 
Precipitation sqr 0.469 -21,238 -21,201 

1-b 
Avg. soil 
moisture 

Soil moisture sqr 0.471 -21,612 -21,576 

1-c 
Avg. soil 

moisture 
Number of days with low/high 

soil moisture 
0.480 -22,697 -22,660 

1-d 
Avg. soil 

moisture 
Avg soil moisture 

deficit/surplus 
0.491 -24,303 -24,267 

2-a 
Avg. soil 
moisture 

T binned by extreme 
deficit/surplus 

0.492 -24,402 -24,328 

2-b 
normal soil 

moisture x T 
extreme deficit/surplus x T 0.501 -25,582 -25,509 
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Figure 1. Soil moisture dynamics within a typical growing season. Some soil moisture conditions can be harmful to crops including excess 505 
wetness [i], moisture stress intensity[ii], duration of moisture stress [iii], and severity of soil moisture stress [iv].   
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50  100  150  200  250 

Mean soil moisture (mm in 1000 mm topsoil) 

Figure 2. Growing season mean soil moisture content (in mm in 1000 mm topsoil) as calculated based on daily root-zone soil moisture 
level from Apr-Sep for 1981-2015 at 2.5 x 2.5 arcmin grids excluding non-cultivated area. The soil moisture level is obtained from the 510 
Water Balance Model (WBM) and non-cultivated area information is from USDA National Cultivated Layer. This map illustrates the 
heterogeneity of simulated soil moisture over the Continental US and even within states.   

Non-cultivated 
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Figure 3. Variations of average precipitation versus average soil moisture over corn areas in the United States. The precipitation is 
aggregated from PRISM and soil moisture is aggregated from WBM from 2.5 arcmin grid cells weighted by cropland area.  515 
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Figure 4. The bivariate density of heat and soil moisture for 1981-2015 For all the grid cells in the US Corn Belt. The precipitation is 
aggregated from PRISM and soil moisture is aggregated from WBM based on 2.5 arcmin grid cells.   
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 520 

Figure 5. Estimated damage to corn yield from an additional 10 degree-days above 29˚C and no change in seasonal mean soil moisture.  
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Figure 6. Estimated impact of soil moisture on log corn yields. Including soil moisture in the regression and its square term, as in model 525 
1-b, will give us a quadratic relationship between soil moisture and yields as in panel (a). A piece-wise linear parametrization, as in model 
1-d, can provide location-specific piece-wise linear relationship based on soil moisture deviation from normal as in panels (b) and (c). 
This will cause the maximum of the response curve to be in lower soil moisture levels for sand and in higher soil moisture levels for clay 
soil texture.    
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 530 

  

Figure 7. The bars show the “contribution of water” and “contribution of heat” in variation of US corn yields (left axis). The lines 

illustrate actual yields and trend (right axis).  
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