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Abstract. We analyze the relationship between potential evapotranspiration (ETo), actual evapotranspiration (ETa), and sur-

face water evaporation (Esw) in the semi-arid south-central Texas, using hourly climate data, daily lake evaporation mea-

surements, and daily actual evapotranspiration measurements from an eddy covariance (EC) tower. The deterministic analysis

reveals that ETo set the upper bound for ETa, but the lower bound for Esw in the study area. Unprecedentedly, we demon-

strate that a newly developed probabilistic machine learning (ML) model, using a hybridized NGBoost-XGBoost framework,5

can accurately predict the daily ETo, Esw, & ETa from local climate data. The probabilistic approach exhibits great potential

in overcoming data uncertainties, in which 99% of the ETo, 90% of the Esw, and 91% of the ETa test data at three watersheds

were within the model’s 95% prediction interval. The probabilistic ML model results suggest that the proposed framework can

serve as a robust and computationally more efficient tool than the hourly Penman-Monteith equation to predict the ETo while

avoiding computationally-involved net solar radiation calculations. Additionally, the performance analysis of the probabilistic10

ML model indicates that it can be successfully implemented in practice to overcome the uncertainties associated with pan

evaporation & pan coefficients in Esw estimates, and to offset the high capital & operational costs of EC towers used for Ea

measurements. Finally, we demonstrate, for the first time, a coalition game theory approach to identify the order of impor-

tance, dependencies & interactions of climatic variables on the ML-based ETo, Esw, and ETa predictions. New knowledge

gained through the game theory approach is beneficial to strategically locate weather stations for enhanced evapo(transpi)ration15

predictions, and plan out sustainability and resilience efforts, as part of water management and habitat conservation plans.

1 Introduction

Evapo(transpi)ration is one of the key components of a groundwater budget in drought-prone regions with scarce water supplies

(Heilman et al., 2009; Gokmen et al., 2013; Glenn et al., 2015), facing challenges of sustainable development and climate

resilience. Reliable prediction of evapo(transpi)ration is useful in such regions to determine aquifer recharge (Hauwert and20

Sharp, 2014; Xie et al., 2018), and subsequently, evaluate groundwater sustainability to meet municipal, agricultural, ranching,

industrial, and recreational water demands, while sustaining quality & quantity of environmental flows to protect and maintain

a healthy ecologic environment for endemic groundwater-obligated species.
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The karstic Edwards aquifer in semi-arid south-central Texas is the primary source of drinking water for the city of San Anto-

nio and is also home to several threatened and endangered aquatic species (e.g., Texas blind salamander, San Marcos salaman-25

der) at the major spring outlets (Devitt et al., 2019). Up to 65% of rainfall is lost to evapo(transpi)ration (Dugas et al., 1998) in

south-central Texas, which has a few permanent surface waters and experiences frequent droughts. In some years, anomalously

sinking motions and divergent water vapor flux over the Texas area reduce precipitation and increase downward solar radiation,

which results in dry and hot soil promoting the occurrence of extreme heat waves (Deng et al., 2018). Such an extreme summer

heat wave occurred in 2011 with average temperature 3◦C above the 1981-2010 mean for June through August (Hoerling et al.,30

2013). The likelihood of exceeding a given unusually high summer temperature in the Texas region was reported to be about

10 times greater with 2011 anthropogenic emissions compared to preindustrial forcing (Rupp et al., 2015). Under the current

and forecasted climate conditions in south-central Texas, increased air and groundwater temperatures and decreased aquifer

recharge and springs flow could make endangered or threatened endemic aquatic species vulnerable to extinction (Mahler and

Bourgeais, 2013; Devitt et al., 2019). Therefore, reliable estimates of evapo(transpi)ration are essential for improved manage-35

ment of Edwards aquifer’s groundwater resources and environmentally-sensitive habitats for groundwater-dependent species,

as part of the current and future resource planning. In light of the importance of evapo(transpi)ration processes for the karstic

aquifer system in south-central Texas, the main objectives of this paper are to

1. investigate the relation between the potential evapotranspiration (ETo), surface water evaporation (Esw), and the actual

evapotranspiration (ETa) in the semi-arid region of south-central Texas,40

2. develop novel ML-based probabilistic predictive models of ETo, Esw, ETa based on local climate data, and assess the

models’ predictive performances using statistical measures, and

3. apply a game theory approach to determine the order of importance, dependencies & interactions of climatic variables

on ETo, Esw, and ETa predictive models.

Recently, several ML models (e.g. genetic algorithms, neural networks, clustering, tree-based ensembles, fuzzy models, mul-45

tivariate adaptive regression splines, extreme learning machines) have shown promising results due to their ability to simulate

the complex nonlinear behavior of the reference evapotranspiration, pan evaporation, terrestrial evapotranspiration (Nema et al.,

2017; Feng et al., 2017; Lu et al., 2018; Jovic et al., 2018; Dou and Yang, 2018; Mehdizadeh, 2018; Kisi and Alizamir, 2018;

Tao et al., 2018; Fan et al., 2018; Sanikhani et al., 2019; Pan et al., 2020). However, a critical challenge with these existing ML

models is that the nonlinear relationship between climatic variables and the evapo(transpi)ration makes it difficult to account50

for inherent uncertainties (Tang et al., 2018). Therefore, in this paper, we confront the uncertainties in evapo(transpi)ration

predictions using a hybrid probabilistic NGBoost-XGBoost ML model without compromising the accuracy of the predictions.

The probabilistic model takes in respective feature values x and returns a distribution over the target y indicating the relative

likelihood of different values of y. To our knowledge, ML-aided probabilistic predictions of ETo, Esw, and ETa is unprece-

dented. We demonstrated that the hybrid ML model is capable of producing robust and accurate daily ETo, Esw, and ETa55

predictions based on historical climate data, in which ≥ 90% of the predicted target values were within the 95% prediction

interval.
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Moreover, for the first time we applied a game theory approach (Lundberg et al., 2020) to explain the importance of the

features (e.g., climatic variables) on the ML-basedETo,Esw, andETa predictions. This approach manifests how the individual

feature value, while considering its interaction with other features learned and built-up from the historical data, influences the60

model’s predictions, which enhances the model’s ability to make sentient projections honoring the underlying hydrological

processes. Our analysis revealed that the top three most important variables in the order of importance in south-central Texas

forETo predictions are the shortwave solar radiation, air temperature, and relative humidity; forEsw predictions are the surface

water temperature, month of the year, and relative humidity; and for ETa predictions are the shortwave solar radiation, month

of the year, and relative humidity. Such information would be useful to strategically locate weather stations and sensors over65

the aquifer region to collect the most relevant data for enhanced evapotranspiration predictions and/or assess the suitability of

simplified evapotranspiration prediction models for the watersheds with scarce data. Moreover, the interpretability of our ML

model in combination with the game theory approach is capable of revealing new knowledge that may not be immediately

apparent. For example, although soil moisture content was not included in our ML-model as a feature, but its effect was

captured in ETa measurements at the EC tower, the ML model predicted low ETa despite high ETo & low RH in certain70

times, which could be an indication of critical water deficiency in the soil. Such new knowledge from the ML model is essential

for the current and future “well-informed” groundwater management and habitat conservation plans.

2 Methods

Description of Evapo(transpi)ration Measures. Different evapo(transpi)ration measures, including pan and lake evapora-

tion, potential evapotranspiration, and actual evapotranspiration considered in this paper are briefly described here prior to75

associated calculations and ML methods are introduced. For more comprehensive discussion, the reader may refer to the paper

by McMahon et al. (2013).

Evaporation pans are used to determine evaporation from water surface at the pan-scale (Ep), which are then scaled-up

to estimate evaporation from open water bodies (Esw) such as lakes (Dingman, 1992). Therefore, lake evaporation can be

interpreted as hybrid measured-estimated evaporation.Esw was viewed to represent regional potential evaporation (Vercauteren80

et al., 2009) and has been used in terrestrial water balance calculations (Roderick et al., 2009). Daily or monthly empirical

Meyer’s formulas (MF) have been used to calculate Esw, based on surface water temperature, relative humidity, and wind

speed measurements (Penman, 1948; Xu and Sing, 2002; Burn and Hesch, 2006).

Potential evapotranspiration (ETo), on the other hand, accounts for climate-driven watershed-scale evapotranspiration from a

hypothetical reference crop in a saturated soil, which reflects the evaporation power of the atmosphere. The Penman-Monteith85

equation (PME), based on the energy-balance, is used to calculate ETo (Allen et al., 1998). PME calculations require time

series of shortwave solar radiation, air temperature, atmospheric pressure, relative humidity, and wind speed data. PME can

be used for hourly to monthly ETo estimates, depending on the temporal resolution of the input climate data. ETo was used

to estimate Esw (Vercauteren et al., 2009), actual evaporation (Boughton, 2004), vegetation potential evapotranspiration (Jia

et al., 2009) or aridity index (Nash et al., 1997). The PME can be coupled with surface conductance models and leaf area90
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indices for evapotranspiration predictions. Using this approach, Zhang et al. (2008) reported good agreement between 5-year

average evaporation rates predicted through the PME and using water balances at 120-gauged catchments in Australia. Leuning

et al. (2008) noted reliable estimates of daily evapotranspiration rates at the kilometer-scale using the PME. PME calculations,

however, are more complicated and involve more climate variables than empirical MFs. Therefore, simplified versions of the

PME with fewer climate variables have been explored and tested for watersheds with scarce data (Fan et al., 2018; Irmak et al.,95

2003; Peng and Feng, 2017).

However, neither ETo nor Esw provides a direct estimate for actual evapotranspiration (ETa), which is the sum of evap-

oration from soil and transpiration from vegetation. As compared to ETo, ETa is more site-specific and spatially-variable,

depending on soil and vegetation types. Reportedly, an increase in transpiration from vegetation could result in a two-fold de-

crease in soil evaporation (Yongqiang et al., 2016). Eddy covariance (EC) is the most direct method of measuring land surface100

water vapor flux (Burba, 2013) without disturbing the water-air interface (Vesala et al., 2006), and hence, provides accurate

site-scale ETa measurements (Wang et al., 2015). When coupled with the energy balance method, the EC technique provides

an alternative measure of latent heat flux equivalent to ETa (Wilson et al., 2001; Zitouna-Chebbi et al., 2018). Shi et al. (2008)

noted that PME resulted in higher latent flux than the EC method in estimating ETa of dry forest canopy. The relation between

ETo and ETa is to be explored for the semi-arid region in this paper.105

Penman-Monteith Equation (PME). A detailed description of underlying physical processes and calculation steps of the

PME for hourly ETo estimates can be found in the FAO by Allen et al. (1998). This section provides the main equations and

critical implementations for the solution of the PME for hourly ETo given by

ETo =
0.4084(Rn−G) + γ 37

Ta+273u2 (eo− ea)
4+ γ (1 +0.34u2)

, (1)

where4 is the slope of the saturation vapor pressure [kPa oC−1], Rn is the net solar radiation [MJ/(m2 d)], G is the heat flux110

[MJ/(m2 d)], γ is the psychrometric constant [kPa oC−1], Ta is the air temperature [oC], eo is the saturated vapor pressure

[kPa], ea is the actual vapor pressure [kPa], and u2 is the wind speed measured at 2 m above the ground surface [m/s].

γ = 0.665×10−3P , in which P is the atmospheric pressure [kPa].Rn = (1−α)Rns, in which α is the albedo that determines

the fraction of the measured solar radiation, Rs [MJ/m2 d], reflected by the surface. eo = 0.6108eT
∗
a , ea = eo (RH)/100, and

4= 2503.058eT
∗
a /(Ta+237.3)2, in which RH is the relative humidity [-] and T ∗a = 17.27Ta/(Ta+237.3). Hourly-averaged115

Ta, RH , P , u2, ea, and eo, and hourly-aggregated Rs are used in Eq. 1. Net solar radiation is defined as Rn =Rns−Rnl,
in which Rns is the measured net incoming shortwave radiation and Rnl is the outgoing longwave radiation [MJ/(m2 d)]

computed as

Rnl = σ

[
T 4
a,max +T 4

a,min

2

]
(0.34− 0.14

√
ea)
(

1.35
Rs
Rso
− 0.35

)
, (2)

where σ is the Stefan-Boltzmann constant (4.903 × 10−9 MJ / (K4 m2 d), T 4
a,max and T 4

a,min are the maximum and minimum120

absolute air temperatures during the 24-hour period [K].Rso is the clear-sky radiation [MJ/(m2 d)]. Linearized Beer’s radiation
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law leads to Rso =
(
0.75 +2× 10−5z

)
Ra, in which z is the elevation of the weather station above the sea level [m] and Ra is

the extraterrestrial radiation [MJ/(m2 d)]. In other words,Rso ∼ 0.75 ofRa, which accounts for 25% reduction inRa due to the

interaction of Ra with atmospheric gases (Zhang et al., 2008; Raza and Mahmood, 2018). (Rs/Rso) is the relative shortwave

radiation, representing the cloud cover, defined as125

0.33≤ Rs
Rso
∼ Rs

(0.75 +2× 10−5z)Ra
≤ 1.0, (3)

in which the lower bound of 0.33 and the upper bound of 1.0 represent the dense cloud cover and clear sky on a particular day,

respectively. The first, second, and third terms in Eq. 2 account for the effect of air temperature, air humidity, and cloudiness

on Rnl. Ra depends on the geographic location of the weather station and time of the day, and is computed as

Ra =
72Gscdr

π
[(ω2−ω1)sin(ϕ)sin(δ) + cos(ϕ)cos(δ)(sin(ω2)− sin(ω1))] , (4)130

where Gsc is the solar constant [0.0820 MJ/(m2min)], dr is inverse relative distance earth-sun [-], δ is the solar declination

[rad], ϕ is the latitude of the weather station [rad], ω1 and ω2 are the solar time angle at the beginning and end of the period

[rad]. Here, dr = 1 + 0.033cos(2πJ/365) and δ = 0.409sin(2πJ/365− 1.39), in which J is the day count of the year. Solar

time angle at midpoint of hourly period, ω [rad], is given by

ω = (π/12)([t+ 0.006667(Lz −Lm) +Sc)− 12] , (5)135

in which t is the standard clock time at an half-and-hour intervals [hr], Lz = 90
◦

for central Texas, Lm is the longitude of the

weather station [degrees], and Sc is the seasonal correction for solar time [hr], given by Sc = 0.1645sin(2b)−0.1255cos(b)−
0.025sin(b), in which b= 2π (J − 81)/364. ω1 = ω− (πt1/24) and ω2 = ω+ (πt1/24).

In hourly ETo calculations, Ra = 0 when the sun is below the horizon at ω <−ωs or ω > ωs. To keep the cloudiness,

Rs/Rso in Eq. 3, and hence,Rnl in Eq. 2 finite,Rs/Rso at night times (i.e., when the sun is below the horizon) is set toRs/Rso140

value 2-3 hours prior to sunset. The sunset time in each day of the year can be identified by (ωs− 0.79)≤ ω ≤ (ωs− 0.52).

When the sun is above the horizon (Ra > 0),G= 0.1Rn corresponds to smaller heat outfluxes, promoting soil warming during

day times. In contrast, when the sun is below the horizon (Ra = 0),G= 0.5Rn corresponds to larger heat outfluxes, promoting

soil cooling at nights. Moreover, wind speed, u2 ≥ 0.5 m/s in ETo calculations to account for the effects of boundary layer

instability and buoyancy of air in promoting exchange of vapour at the surface when air calm.145

Meyer’s Formula (MF). Meyer’s formula (MF) is a mass transfer-based, empirically constructed formula (Meyer, 1915),

whose different versions have been used to calculate daily or monthly Esw. It is typically expressed in the form of Esw =

β (eo− ea), in which β is the empirically determined constant, eo and ea are defined in terms of surface water temperature,

5
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unlike in the PME. Reportedly, the best form of the MF to predict daily Esw from free water surface constructed using data

from England (Penman, 1948; Xu and Sing, 2002)150

Esw,d = 0.35(1 +0.98/100u2)(eo− ea) (6)

where u2 is expressed in [mm/d], and eo and ea are expressed in [mm-Hg] in Eq.6. For monthly evaporation estimates from

surface of a water body using data from Canadian prairies (Burn and Hesch, 2006),

Esw,m = 7.58C
(
1 +6.21× 10−2u7.62

)(
1 +3.28× 10−5z

)
(eo− ea) , (7)

where u7.56 is the monthly-averaged wind speed measured at 7.56 m above the ground surface, expressed in [km/hr], and eo155

and ea are expressed in [mbar] in Eq.7. C = 1 in the original work by Burn and Hesch (2006). C 6= 1 is introduced here to

adjust the magnitude of monthly Esw. When compared to PME in Eq. 1, MFs involve fewer climate variables and do not

involve computationally-involved net solar radiation calculations.

ML Methods. Recently, Fan et al. (2018) showed that extreme gradient boosting (XGBoost) is capable of producing relatively

accurate predictions of daily ETo in comparison to other ML models for different climatic zones of China. However, XGBoost160

provides a point prediction that does not include any information regarding the level of variability in the predicted hydrological

characteristics such as ETo, Esw, and ETa. To solve this inherent problem, we propose a unique NGBoost hybridized with

XGBoost model to produce point predictions as well as a probability distribution over the entire outcome space for quantifying

the uncertainties related to hydrological predictions. The proposed hybrid model could provide practitioners with a better

understanding of the uncertainty in the ETo, Esw, and ETa predictions without compromising the accuracy of the predictions.165

XGBoost, proposed by Chen and Guestrin (2016), is a tree-based ensemble learning algorithm that follows the principle of

boosting. Boosting is a general technique in ML, where multiple weak learners such as Classification and Regression Trees

(CART) are organized to produce a strong learning model (Marsland, 2014). The fundamental concept behind this technique is

to produce new learners that are sequentially fitted to the residuals from the previous learner, which are then added to the model

to update the residuals. Gradient boosting enhances the flexibility of the boosting algorithm by generating the new learners that170

are maximally correlated to the negative of the gradient of the loss function. This process enables the convergence of the loss

function and allows arbitrary differentiable loss functions to be used in the model building process (Chen, 2014; Chen and

He, 2015). From the computational standpoint, XGBoost is built with a multiprocessing OpenMP API (Chandra et al., 2001),

which enables XGBoost to use all the CPU cores in parallel during while training, making it computationally efficient and

scalable. Moreover, XGBoost presorts the independent variables at the beginning of the training process, which further reduces175

the training complexity and computational time.

NGBoost, proposed by Duan et al. (2019), is a supervised learning algorithm with generic probabilistic prediction capability.

A probabilistic prediction produces a full probability distribution over the entire outcome space; thus, enabling the users to

quantify the uncertainties of the evapotranspiration predictions produced by the model. In standard point prediction settings,
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the object of interest is an estimate of the scalar function E(y|x), where x is the feature vector and y is the prediction target,180

without accommodating uncertainty estimates. In contrast, under a probabilistic prediction setting, a probabilistic forecast with

probability distribution Pθ(y|x) is produced by predicting the parameters θ. NGBoost can perform probabilistic forecast with

flexible tree-based models, given that NGBoost is designed to be scalable and modular with respect to the base learner (e.g.

decision trees), probability distribution parameter (e.g. normal, Laplace), scoring rule (e.g. Maximum Likelihood Estimation).

We utilized NGBoost’s modular design to hybridize it with XGBoost base learners to enhance the resulting model’s pre-185

dictive capability. As shown in Fig. 1, the input feature vector x in the hybrid NGBoost-XGBoost model is passed on to the

XGBoost base learners to produce a probability distribution of the predictions Pθ(y|x) over the entire outcome space y (i.e.,

ETo). The models are then optimized by scoring rule S(Pθ,y) using a maximum likelihood estimation function that yields

calibrated uncertainty and point predictions. The feature vector x for ETo and ETa predictions consists of Ta, P , RH , u2, and

Rs; and the feature vector x for Esw predictions consists of Tsw, Ta, P , RH , u2, and Rs.

Figure 1. Conceptual representation of the hybrid NGBoost-XGBoost model for ETo, Esw, and ETa prediction.
190

2.1 Data Availability

The Edwards Aquifer Authority (EAA) initiated a pilot program in 2014 to establish a network of weather stations across the

Edwards aquifer region to collect local climate data. Measured local climate data at these stations relevant to watershed-scale

ETo calculations include the incoming shortwave solar radiation (Rs), atmospheric pressure (P ), air temperature (Ta), relative

humidity (RH), and wind speed (u2). For this study, local climate data at the 15 min intervals from 9/1/2015 to 12/31/2019 were195

acquired from weather stations at the Nueces Duernell Ranch (NDR) and Bandera County River Authority and Groundwater

District’s office (BCRA) in Fig. 2. Local climate data at the Camp Bullis Savanna (CBS) station was available since 1/25/2016.

Local climate data at the NDR weather station. For hourly-ETo calculations, hourly-averaged Ta, P , RH , and u2 and

hourly-summed Rs at the NDR station, shown in Fig. 3, were used as input in Eq. 1. The total number of missing hourly

records was 2, which were filled in by linear interpolation. The NDR weather station was selected in the analysis due to its200

proximity to Uvalde County, TX, where monthly representative cloud cover data was available, which were used to test the

model accuracy in Section 3. Local climate data at the BCRA and CBS stations, along with ETa measurements at Savanna,

Well 10 are provided in Appendix A.

Surface Water Data. Daily and monthly surface water evaporation data closest to the NDR site were obtained from Ingram

Lake in Texas. Daily pan evaporation measurements (Ep) from 9/1/2015 to 12/31/2019 were taken by the Texas Water De-205
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Figure 2. Data source locations across the Edwards aquifer region. The map shows the location of EAA’s weather stations with local climate

data, the U.S. Geological Survey (USGS)’s station with surface water temperature data, Ingram Lake with estimated lake evaporation data,

Uvalde city with the cloud cover data, and the eddy covariance tower with the actual evapotranspiration data. BCRAGD refers to the Bandera

County River Authority and Groundwater District’s office.

velopment Board (TWDB). 1.9% of these measurements were missing, which were filled in by linear interpolation. These

measurements were upscaled to daily lake evaporation totals (Esw) using monthly-varying pan coefficients developed by the

TWDB. However, sporadically extremely high and low Esw values, shown in Fig. 4a, were found to be quantitatively incon-

sistent with the climatic data (Ta, Rs, and RH) trends at the BCRA station, provided in Appendix A. Therefore, this time

series is regarded as anomalous. Such anomalies are quite common in Ep measurements due to birds drinking from the pan,210

debris falling in, or water splashing out (Thompson, 1999). Subsequently, these anomalies are carried into the daily Esw data,

but largely smoothed out in monthly-averaged Esw. Because the ML model was run with daily Esw data here, a 7-day rolling

median function was used to reduce the noise and outliers in the daily Esw data (Fig. 4a). Monthly Esw, derived from daily

Esw (Fig. 4) were then used to determine the suitability of the MFs to predict the monthly Esw at Ingram Lake.

The daily and monthly MFs rely on surface water temperature, Tsw, rather than Ta, in eo and ea calculations (Eqs. 6-7). The215

closest gauging station, with the surface water temperature data from 9/1/2015 to 12/31/2019 at the 15-min (or 1-hr) intervals,

to Ingram Lake is the U.S. Geological Survey Station (USGS 08195000) located at the Frio River in Concan, TX. The Frio

River at the USGS 08195000 and Ingram Lake are small-size surface water bodies fed by groundwater from the Trinity aquifer.

8
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Figure 3. Hourly climate data and statistical correlations among them at the NDR weather station.

Therefore, Tsw from the Frio river were used in MF-based Esw calculations at Ingram Lake. Daily-averaged Tsw are shown in

Fig. 4b. Because the Frio river is a groundwater-fed river, Tsw ≥ Ta in winter; whereas, Tsw ≤ Ta in summer. 0.26% of daily220

Tsw were missing, which were filled in by linear interpolation.

Actual Evapotranspiration Measurements. ETa measurements were obtained from the EC tower at Savanna, Well 10 near

Camp Bullis, TX. Instruments were installed approximately 1.2 m above the height of the vegetation. Vegetation at the EC

tower is open oak savanna. Daily ETa data were available from 5/4/2016 to 1/21/2019 (Appendix A). 2 (< 0.1%) daily ETa

measurements were missing, which were filled in by linear interpolation.225

3 Results and Discussion

Potential Evapotranspiration via Penman-Monteith Equation. Hourly ETo were calculated via Eq.1, using local climate

data at the NDR weather station from 9/1/2015 to 12/31/2019. In Fig. 5a, Ra, computed using Eq. 4, relies on information on

the geographic location of the weather station and hourly-varying solar time angle.Ra was subsequently used to calculateRso.

The ratio of the measured Rs to the computed Rso provides an estimate for cloudiness, defined as the fraction of the number of230

cloudy-sky hours in a day. In Fig. 5b, PME-computed monthly-averaged cloudiness from 2016 through 2019 agrees well with

the monthly-averaged representative cloudiness for the Uvalde city.

9
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Figure 4. Surface water measurements closest to the NDR weather station. Surface water temperatures at 15-min intervals were obtained

from Frio river in Concan, and daily lake evaporation data were obtained from Ingram Lake in Texas.

(a) Extraterrestrial radiation (b) Monthly cloud coverage in 2016 - 2019

(c) Longwave (outgoing) radiation
(d) Potential evapotranspiration

Figure 5. Intermediate results (a) - (c), and daily or monthly potential evapotranspiration totals (d) at the NDR station computed by Eq. 1.
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Measured Rs was the input to the PME. Rnl in Fig. 5c was computed by Eq. 2, based on daily extremes of air temperature,

and hourly cloud cover and actual vapor pressure. Rnl was then used to calculate the net solar radiation, Rn =Rnl−Rs,
in Eq.1. Hourly ETo were aggregated to daily ETo, which is the time interval at which both Esw and ETa measurements235

were available. Although hourly ETo contains negative values at the humid and rainy hours, daily ETo’s were persistently

non-negative (Fig. 5d), as expected for the Texas climate.

Lake Evaporation Using Meyer’s Formula. Daily and monthly Esw data from Ingram Lake, the closest water body to the

NDR site, have been reported by the TWDB. Applicability of Eqs. 6 and 7 to predict monthly Esw were tested here using

monthly Esw data. In this analysis, Esw at Ingram Lake computed using Eq. 6 averaged over each month to obtain monthly240

Esw. Local climate data from two weather stations, the NDR station (∼ 90 km away) and the BCRA station (∼ 40 km away),

were used in calculations.

In Fig. 6a, monthly-averaged daily Esw computed by Eq. 6 matched the Esw data almost perfectly (R2 = 0.99) when the

climate data at the NDR station was used, but underpredicted the Esw when the climate data at the BCRA station was used. As

shown In Fig. 6b, the original form of Eq. 7 with C = 1 matched the overall monthly trend of the Esw data, but underestimated245

the magnitude of Esw irrespective of climate data from the NDR or BCRA station. When C = 1.6 with the BCRA data (and

C = 1.5 with the NDR data), Eq. 7 matched the monthly Esw data almost perfectly (R2 = 0.99). Although the empirical

relations in Eqs. 6 and 7 were independently derived using site-specific data at two markedly different geographic locations in

Canada and England, these equations matched monthly Esw in south-central Texas surprisingly closely in Fig. 6.

(a) Using Daily Meyer’s Formula (b) Using Monthly Meyer’s Formula

Figure 6. Comparison of surface water evaporation at Ingram Lake computed by using Meyer’s Formula (MF) and local climate data at the

NDR and BCRA weather stations against TWDB’s lake evaporation data.

Computed Potential Evapotranspiration vs. Lake Evaporation. Fig. 7 shows that ETo, in general, set the lower bound for250

Esw at Ingram Lake for the entire period. In 2016, ETo ∼ Esw for most of the year except in December. Although Esw >ETo
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in the summer of the following years, with the largest difference in the summer of 2018, ETo appears to be a reliable predictor

for Esw especially in spring and winter months.

Fig. 7 reveals thatETo computed by the PME using the climate data from the NDR or BCRA stations can be used to estimate

the minimum monthly Esw, computed by MF and determined by TWDB, for Ingram Lake. This is rather an interesting result,255

given that the empirical MF does not involve complex solar radiation (e.g., extra-terrestrial, clear-sky, outgoing longwave)

calculations as in the PME and relies on surface water temperatures rather than air temperatures. It can be argued that surface

water temperature may implicitly account for the solar radiation effect on Esw. Nevertheless, the main conclusion from Fig. 7

is that ETo at the NDR station set the lower bound for Esw at nearby Ingram Lake (i.e., ETo ≤ Esw). Fig. 7 further suggests

that if uncertainty in local climate measurements are higher than lake evaporation measurements, mathematically simpler MF,260

after being validated with historical lake water evaporation data, can be used to predict potential evapotranspiration from new

lake evaporation data. Fig. 7 also shows that monthly-aggregated ETo near Ingram Lake is slightly higher in summers than at

the NDR or BCGA sites. However, if the climate data near Ingram Lake is not available, data from a farther weather station

to the west can be used to predict the ETo, and hence, the lower bound for Esw. Based on the existing data, the results also

suggest that no additional weather station is needed between the NDR and BCGA stations to predict ETo and/or Esw from265

other surface water bodies fed by the same groundwater system between these two stations.

Figure 7. Comparison of monthly lake water evaporation against computed monthly potential evapotranspiration using local climate data

from the NDR and the BCGA weather stations.

Potential Evapotranspiration vs. Actual Evapotranspiration.

Fig. 8 compares daily or monthly Bowen-ratio-corrected ETa measurements from the EC tower against ETo computed by

the PME, using local climate data from the CBS station. According to this plot, ETo ≥ ETa during the monitoring period, as

expected. In some summer months, ETo was about three times higher than ETa (e.g., July 2017), indicating that the soil was270
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too dry in summer times to contribute to the evapotranspiration at the CBS site. As compared to ETo at the NDR site, ETo is

typically higher at the CBS site in summer months, revealing spatial variability in ETo. The results in Figs. 7 and 8 lead to

ETa ≤ ETo ≤ Esw. (8)

(a) Daily evapotranspiration (b) Monthly evapotranspiration

Figure 8. Daily or monthly measured actual evapotranspiration from the EC tower at the Camp Bullis site vs. potential evapotranspiration

computed by Eq. 1

ETa is the most critical evapotranspiration estimate, especially for irrigation, agricultural, and water resources management

practices. As discussed previously, the EC method provides the most accurate prediction for ETa; however, the associated275

capital and maintenance costs are high (e.g., the capital cost for the EC tower at the CBS site was about $40,000 and required

frequent maintenance). Thus, EC-based ETa data acquisition is expensive. On the other end, Esw measurements are important

indicators of global climate change (Wang et al., 2018), which could affect the water levels & chemistry, and the sustainability

of the lake habitat. Existing monthly pan evaporation coefficients, however, have inherent uncertainties and their potential

adjustments for future climate conditions remain unclear. In brief, capital and operational costs for ETa measurements, and280

the accuracy of the upscaling method to determine Esw for the current & future climate conditions are the main challenges that

practitioners face.

Considering the aforementioned challenges, we present a robust ML model using the local climate data as the independent

feature that can (i) predict ETo as an alternative to computationally intensive PME; (ii) predict Esw to eliminate uncertainties

associated with pan evaporation measurements and pan evaporation coefficients needed to upscaleEp toEsw; (iii) predictETa285

to offset the high capital and operational costs for EC towers. In addition, we explain the nonlinear feature dependencies on the

ETo, Esw, & ETa predictions, based on solid game theory, to enhance the transparency and interpretability of the ML model.
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Predictive ML Models. We investigated if daily ETo can be accurately computed by the probabilistic ML model using local

climate data, as an alternative to Eq. 1. The ML model was trained by using 90% of the daily climate data & the month of the

year as features, and the PME-computed ETo data as the target. Subsequently, the trained ML model was used to predict ETo290

for the remaining 10% of the data (testing period). In the end, ML-predicted daily ETo were compared against PME-computed

daily ETo to assess the performance of the ML-model on the testing data. Differences between the ML-predicted ETo from

the PME-computed ETo on the testing dataset are shown in Fig. 9a, in which ∼ 99% of the PME-computed ETo were within

the model’s 95% prediction interval. In other words, the model was successful ∼ 99% of the times in determining the exact

interval around each predicted (ETo) value such that there is a 95% probability that the corresponding target (ETo) value is295

within this interval. Additionally, based on the statistical measures in Table. 1, calculated using the point predictions from

the model, the ETo predictions by the hybrid NGBoost-XGBoost ML model can be used as a reliable alternative method to

estimate watershed-scale ETo. The total training time for the ETo hybrid model was ∼ 30 minutes that involved choosing the

optimum model out of 230 candidates using a 3-fold grid search cross-validation technique, which equates to 690 model fits

on an Intel Core i9-9980XE CPU and 64 GB RAM computer. The main advantage of the ML-based ETo prediction model is300

that it does not require computationally-involved extra-terrestrial, clear-sky, and outgoing longwave (outgoing) solar radiation,

as part of net solar radiation calculations.

Table 1. ML predictive model accuracy test with statistical measures.

Data RMSE*(mm) MAE†(mm) R2 ‡

ETo Training data only 0.099 0.074 0.996

Testing data only 0.139 0.102 0.992

Esw Training data only 0.703 0.545 0.843

Testing data only 0.918 0.736 0.750

ETa Training data only 0.388 0.291 0.891

Testing data only 0.533 0.411 0.804
(*) Root mean square error; † Mean absolute error; ‡ Pearson correlation

The ML-based Esw prediction model was trained by using the first 90% of the daily climate data & the month of the year

as features, and the measured Esw data as the target. Subsequently, the model was tested on the remaining 10% of the data.

The comparison between ML-predicted daily Esw and the measured Esw on the testing data is shown in Fig. 9b. The ML-305

predicted Esw matched the measured Esw very closely, and ∼ 90% of the actual Esw were within the model’s 95% prediction

interval in the testing dataset. Based on the statistical measures in Table. 1, probabilistic prediction of Esw by the hybrid

NGBoost-XGBoost ML model can be used as a reliable method forEsw projections. The total training time for theEsw hybrid

model was ∼ 6 minutes, including choosing the optimum model from 690 model fits. The main advantage of the ML-based

Esw prediction model is that Esw predictions are not affected by anomalies in Ep measurements (Fig. 4a) or uncertainties in310

monthly pan evaporation coefficients.
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(a) ETo predictions on the testing data
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(b) Esw predictions on the testing data
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(c) ETa predictions on the testing data

Figure 9. Graphical representation of the predictive capability of the hybrid NGBoost-XGBoost model.
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The ML-based ETa prediction model was trained by using the first 90% of the daily Rs, PME-computed ETo, & the month

of the year as features, and the measured ETa data as the target. Subsequently, the model was tested on the remaining 10%

of the data. The comparison between ML-predicted daily ETa and the actual ETa measurements - on the testing data - is

shown in Fig. 9c, in which ∼ 91% of the actual ETa values were found within the model’s 95% prediction interval. ML-based315

ETo predictions was more accurate than the ETa predictions due, in part, to the availability of less data from the EC tower at

the CBS site than at Ingram Lake or the NDR site for the ML-model training. However, based on the statistical measures in

Table. 1, probabilistic prediction of ETa by the hybrid NGBoost-XGBoost ML model, with an R2 of 0.804 on testing data,

can still be used as a reliable method to estimate the future ETa. The total training time for the ETa hybrid model was ∼ 9

minutes, including the 690 model fits to choose the optimum model. The main advantage of the ML-based ETa prediction320

model is that it offsets the high capital and maintenance costs for the installation and operation of EC towers to acquire ETa

measurements. Obviously, if moreEsw andETa measurements are available for ML-model training, the predictive accuracy of

the respective ML models would improve. The EAA is planning to construct additional EC towers in other parts of the aquifer

region to collect more ETa data, which would enhance the training and predictive performance of the ML-model. Similarly, as

the TWDB continues to collect Esw data by effectively filtering out observed anomalies, availability of longer Esw data with325

less noise for ML-model training would enhance the predictive accuracy of the model.

Feature Importance in ETo, Esw, and ETa Predictive ML Models. It is imperative for end-users to peek inside ML models

to better understand how the features contribute to the model predictions or how they affect the overall model performance.

To this end, we investigated the relationship and contribution of each feature to the prediction of the ETo, Esw, and ETa

models using Shapley values – a method from coalition game theory. The Shapley value is the average marginal contribution330

of each feature value across all possible combinations of features. The features with large absolute Shapley values are deemed

important. To obtain the global feature importance, we average the absolute Shapley values for every feature across the data,

sort them in decreasing importance and plot them. Each point on the plot represents a Shapley value for individual features and

instances. The position on the x- & the y-axis is determined by the Shapley values & the feature importance, respectively, and

the color scale depicts the feature importance from low to high. Interested readers may refer to Lundberg et al. (2020) for the335

mathematical and algorithmic background of the Shapley value calculations.

Fig. 10a shows that the order of importance of local climate variables from the highest to the lowest on the computed ETo

involves theRs, Ta,RH , u2, & P . The month of the year is deemed to be the second least important feature for theETo model.

This finding is important to evaluate the suitability of the simplified versions of the PME proposed for semi-arid watersheds

with scarce climate data. Irmak et al. (2003) proposed two simplified PMEs that require less number of climate variables to340

calculate the net radiation (Rn in Eq. 1). The first equation relied on the measured Ta and Rs, whereas the second equation

relied on predictedRs, and measured Ta andRH . Although the simplified equations were used to estimateRn only, the second

equation, built on the three most important climate variables identified in Fig. 10a for more accurateETo estimates, is expected

to perform better for the semi-arid regions, if the predicted Rs has low uncertainty. This is consistent with the conclusion by

Irmak et al. that the second equation accounted for 79% of the variability in Rn in their case studies.345
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(c) Feature importance - ETa predictive model

Figure 10. The order of importance of climate variables on the ETo, Esw, and ETa predictions.
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Rs was recently used as a surrogate variable to reduce the uncertainty of ETo projection data (Yoo et al., 2020). This can be

justified by the findings from Fig. 10a, in which Rs displayed a more profound impact on ETo than the other forcing variables.

On the other hand, the mean annual temperature was used by Hartmann et al. (2017) as a proxy for ETo in assessing aquifer

recharge sensitivity to climate variability based on the argument that Rn is temperature-dependent and temperature is the

best-understood and most common climatic variable for large-scale hydrological models. Similarly, a computationally simple350

method of Berti et al. (2017) that relies only on Ta was reported to be the best alternative method to the PME in describing

spatiotemporal characteristics of ETo in different sub-regions of mainland China (Peng and Feng, 2017). Such assumptions

(Hartmann et al., 2017) and conclusions (Peng and Feng, 2017), however, should be made with caution in ETo calculations,

especially for semi-arid regions, as the ML analysis unveiled that Rs (as part of Rn in Eq. 1) is more important than Ta in ETo

prediction. Moreover, Figs. 3 and 11 revealed that the statistical correlation between Rs and Ta is weak with R2 ≤ 0.6. Thus,355

the use of Ta as a proxy for ETo is questionable for the semi-arid regions.
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(a) Climatic variables vs. ETo.
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(b) Climatic variables vs. Esw.
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(c) Climatic variables vs. ETo and ETa.

Figure 11. Correlation map between daily climatic variables and (a) the potential evapotranspiration at the NDR site, (b) lake evaporation at

Ingram Lake, and (c) and actual evapotranspiration at the Camp Bullis site.

Gong et al. (2006) noted that although the order of importance of climate variables onETo estimates through the PME varied

with season and region in their study, ETo in general was most sensitive to RH , followed by Rs, Ta and u2. The authors used

time-histories of daily Ta, u2, RH , and daily sunshine duration. In our analysis, however, measured climate variables were

available at the 15-min intervals, including also Rs and P . Unlike the general conclusion by Gong et al., our ML-based feature360

importance calculations in Fig. 10a revealed that both Rs and Ta were more critical than RH on ETo estimates.

Fig. 10b shows that the Esw is largely impacted by the Tsw followed by RH . Ta is given lower importance because of the

high correlation (R2 = 0.95) between Tsw and Ta (Fig. 11b), and thus, the model considers Ta as redundant. Fig. 10b also

highlights the model’s understanding of the underlying hydrological process. For example, we see that the model tries to push

the Esw predictions upward - represented by higher Shapley value on the x-axis - when the Tsw feature values are high -365

represented as red dots - and the RH feature values are low - represented as blue dots. In other words, after being trained with
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the historical data, the ML model predicts higher Esw when Ta is higher and RH is lower, representing the underlying physics

correctly, and hence, evidencing of its capability of making learning-based conscious predictions.

For theETa predictions, we found that theRs followed by the month of the year,RH , and Ta are the most important factors

forETa predictions, as shown in Fig. 10c. However, in comparison toETo,ETa is dependent less strongly onRs (R2 = 0.77),370

as the time-dependent soil moisture and vegetation transpiration also impact ETa measurements, unlike for PME-computed

ETo in Eq. 1. Besides, the analysis did not reveal a strong impact of ETo on the ETa predictions, because ETo calculations

are based on the assumption of a hypothetical reference crop growing in a saturated soil (Section 2), and hence, not accounting

for the effect of temporally-varying transpiration rates from the actual vegetation (open oak savanna at the EC tower site) and

the transient nature of the soil moisture content affecting ETa measurements. Due to the temporal variations in water uptake,375

vegetation transpiration, and soil moisture content on the field near the EC tower, where ETa measurements were taken, the

month of the year became a strikingly more important feature in theETa model than in theETo model. Interestingly, we found

many instances where the ML model tries to push the ETa predictions higher - represented by higher Shapley value on the x-

axis - when theRH is relatively high - represented as red dots - in Fig. 10c. In other words, the ML model in certain conditions

predicts higher ETa when RH is high. Such findings were also reported by Yan and Shugart (2010) from ETa measurements380

by the EC method. High ETa at high RH could be attributed, for example, to high air-vapor uptake by water deficit soil and

vegetation in hot and humid days, which are subsequently released back into air due to evaporation from soil and transpiration

from vegetation; or evaporation from saturated soil and transpiration from vegetation in high RH conditions following rain

events; or evaporation from moist soil on a cold day following rain events. Unlike the ML-based modeling, the dynamics

between soil moisture, vegetation water uptake, rain events, Ta, RH and ETa cannot be captured by one-to-one correlation,385

as shown in Fig. 11. Additionally, Fig. 12 shows that, in certain situations, the model generates low ETa predictions despite

high ETo & low RH measures, which could be driven by critical moisture deficiency in the soil, especially in hot and dry

summer. This could be a concern in future, as for a 2◦C of global warming, most of Texas was projected to experience more

than a doubling in the number of days above 38◦C (Wobus et al., 2018). Such more frequent high Ta over extended periods

could increase the soil moisture deficiency, and decrease aquifer recharge and springs flow, which could affect sustainability of390

groundwater for consumptive water uses and environmental flows for groundwater-bound threatened and endangered species.

4 Conclusions

Reliable prediction of actual evapotranspiration,ETa, is useful to determine aquifer recharge in semi-arid regions, which is cru-

cial for development of groundwater management plans for sustainable consumptive water use while maintaining quality and

quantity environmental flows to protect delicate habitats for groundwater-dependent species under current and projected cli-395

matic conditions. Similarly, reliable lake evaporation,Esw, estimates and projections are important for lake water management,

recreation, infrastructures on the lake shore, lake habitat, local climate change, and water cycle. Potential evapotranspiration,

ETo, are often used to determine the climate-driven watershed-scale evaporation power of the atmosphere, which could be

extended to ETa predictions, if it is coupled with crop and soil information, and a surface conductance model.
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(a) RH dependence plot with ETo interaction. (b) ETo dependence plot with RH interaction.

Figure 12. Dependence & interaction plots revealing the interrelationship between RH , ET0, and the corresponding Shap values. The Shap

values represent the model’s behavior to either push the ETa value higher or lower. A higher Shap value means that the model is trying

to produce a higher ETa prediction, and vice-versa. The green boxes highlight the regions where low RH values correspond to high ETo

values but low ETa predictions, which could be attributed to soil moisture deficiency.

Eddy covariance (EC) towers provide accurate estimates for site-specificETa, but at the expense of high capital, operational,400

and maintenance costs, which often limit the use of multiple EC towers and/or their operational periods in resources manage-

ment projects. Pan evaporation method, on the other hand, is a simple, inexpensive, and widely-used data acquisition method

to predict Esw at open water bodies, but suffers from uncertainties in pan evaporation measurements and in pan coefficients

for the existing or projected climatic conditions when water evaporation is upscaled from the pan-scale to the large open-

water body-scale. ETo is often computed by energy-balance models, such as Penman-Monteith equation (PME) that relies on405

time-series of more local climate variables and includes rather complex calculations for net solar radiation computations. In

brief, ETa measurements are often challenged by the project budget; whereas, Esw measurements are affected by uncertain-

ties in and upscaling of pan-evaporation measurements. ETo calculations, on the other hand, require computationally-involved

calculations.

To eliminate these shortcomings in ETa, Esw, and ETo predictions, we proposed a hybrid ML probabilistic prediction410

model of ETo, Esw, and ETa using the local climate data and the month of the year as the only independent feature. Different

from other ML models, the proposed hybrid ML model is able to produce point predictions as well as a probability distribution

over the entire outcome space for quantifying the uncertainties related to hydrological predictions. The proposed hybrid model

could provide practitioners with a better understanding of the uncertainty in the ETo, Esw, and ETa predictions without

compromising the accuracy of the predictions. Our results showed that the hybrid (NGBoost-XGBoost) ML model successfully415

predicted the PME-computed ETo, and the measured Esw and ETa, in which ≥ 90% of the target data points were within
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the 95% prediction interval of the model, and R2 values for the point predictions were 0.99, 0.75, and 0.8, respectively,

using data from the model testing period. These results exhibit that the proposed hybrid ML model is a reliable and robust

alternative method to predict ETo, Esw, and ETa from local climate data, without implementing computationally-intensive

PME calculations, or coping with uncertainties in Esw estimates using evaporation pans, or having expensive EC tower setups420

for ETa measurements.

We also demonstrated that the hybrid ML model, based on a game theory approach, generated new knowledge, different from

sensitivity analyses findings in the existing literature, about the importance of features (variables) on the ETo, Esw, and ETa

predictions. The underlying idea behind this analysis was to explain the prediction of an instance by computing the contribution

of each feature to the prediction. Our analysis revealed that the shortwave solar radiation, air temperature, and relative humidity425

are the most critical features for the ETo predictions, whereas the surface water temperature, relative humidity, and the month

are the most critical features for the Esw predictions, and the shortwave solar radiation, month, and relative humidity are the

most critical features for the ETa predictions in the semi-arid climate.

The EAA has 12 active weather stations across the Edwards aquifer region. The proposed hybrid ML models would allow

continuousETa predictions, without the need for expensive EC tower setups, from continuously streaming climate data at these430

weather stations and through their interpolation between the stations. Moreover, the ML model would allow Esw predictions

from surface water bodies without equipped with sensors or tools for Esw measurements, if they are located closer to the

weather stations. Thus, the ML-model would curtail data acquisition costs and ML-basedETa predictions would be particularly

useful for real-time aquifer recharge estimates, and irrigation and agricultural water management.

The proposed hybrid ML model would also be a useful tool to project local evapotranspiration and its impacts on aquifer435

recharge when projected local climate data over the next 30-50 years is statistically-downscaled from global climate/regional

climate data and reinterpreted as a time series of local climate data. Such projections are crucial to predict potential drought

of records ahead of time before it results in irreversible damages on the sustainability of groundwater resources for diverse

consumptive uses and habitats of groundwater-bound endangered or threatened aquatic species.

Data availability. Data are available from the authors.440

Appendix A

Local climate data at the BCRA: The closest EAA’s weather station to Lake Ingram is located at the BCRA. The local climate

data at the BCRA station are available for the same period at the NDR station (Fig. A1). The total number of missing hourly

data were 2 (< 0.1%), which were filled by linear interpolation.
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Figure A1. Historical hourly climate data at the EAA’s BCRA weather station.

Local climate data and ETa measurements at the Camp Bullis Site: Daily ETa data were available from 5/4/2016 to445

1/21/2019. 32 (< 0.1%) local climate data at 15-min intervals and 2 (< 0.1%) daily ETa measurements were missing during

this period. Time histories of hourly-averaged Ta, P , RH , and u2 and hourly-aggregated Rs from the EAA weather station at

Savanna, Well 10 near Camp Bullis, TX along with daily ETa measurements are shown in Fig. A2.
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Figure A2. Historical hourly climate data from the EAA’s weather station at Savanna, Well 10, and daily ETa measurements from the EC

tower.
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