
We thank Referee #1 for the questions & comments. We have interspersed our responses between the questions
and comments. New texts, figures, Tables planned to be included in the manuscript in response to the comments
are marked in blue in our responses below.

Referee #1:

In this work,the authors analyzed the relationship between potential evapotranspiration (ETo), actual evapotran-
spiration (ETa), and surface water evaporation, using data from multiple sources.

Major comments: 1. Study objective #1 is not clear. Relationship between PET and Actual ET has been
well studied in the literature. The authors should mention the previous works in this area. I found the literature
survey is too cursory. Suggest that the authors move some materials from Section 2 to the Introduction. Even
so, it is not clear to me from the Intro why the existing results are not sufficient, such that the authors need a
sophisticated ML to revisit the problem. The motivation needs to be elaborated further in the Intro.

Response:

1.1 ‘objective #1 is not clear. Relationship between PET and Actual ET has been well studied in the literature’

To be more accurate with the definition of different evapotranspiration processes in our revised manuscript
in accordance with the description by Allen(1998) and McMohan et al. (2013) (both references were cited in the
original manuscript), we have replaced ‘PET’ (referring to ETo in the original manuscript) with the ’reference
crop evapotranspiration’, and also provided the description of ‘PET’ and differentiated it from the reference
crop evapotranspiration, ETo. To that end, we plan to include the following description in the end of the first
paragraph of the Introduction section:

Evapotranspiration can be computed as reference crop evapotranspiration (ETo), actual evapotranspiration
(ETa), or as potential evapotranspiration from wet surfaces (ETp) with a specific crop type or surfaces covered
by large volume of water, such as wetlands or lakes (Stagnitti et al., 1989). Esw is used to represent ETp from
a lake in this paper. Esw from a free water surface has been commonly estimated using the Penman equation
(Penman, 1948) that combines the energy budget and mass transfer approaches.

After all, the correct statement in the revised manuscript will read as

‘...The deterministic analysis reveals that reference crop evapotranspiration, ETo, set the upper bound for
ETa, but the lower bound for Esw in the study area...’

For the sake of clarity, in Objective #1, we look into the relationship not only between reference crop
evapotranspiration (ETo) and Actual ET, but also their relations with lake evaporation.

As per the referee’s comment, however, we plan to include the following discussion (and additional ref-
erence) on the relationships between reference crop evapotranspiration, actual ET, and lake evaporation in the
Introduction section:

From a practical standpoint, ETp has been applied mostly in hydrology, meteorology and climatology;
whereas, ETo has been applied mostly in agronomy, agriculture, irrigation and ecology (Xiang et al., 2020). In
particular, ETp rather than ETa is a common input for hydrological models, such as HYDRUS, SWAP, SWAT,
and MODFLOW-2000 (Li et al., 2016). In drought characterization, ETp, approximated by the ETo, has been
used to calculate the aridity index (Kingston et al., 2009, Greve et al., 2019). Although Kristensen and Jensen
(1975) reported that ETp may not be the upper limit of ETa for all crops or development stages, typically ETp

sets the upper bound for ETa due to limited water availability for evapotranspiration (Lascano and Bavel 2007,
Li et al., 2016). When ETa < ETp, moisture becomes limited, the air becomes drier and the excess energy heats
up the atmosphere, which subsequently increases ETp (Wang and Zlotkonik, 2012). However, ETp

∼= ETa
∼=

Esw holds for wet surface evaporation (Mortan, 1965, Milly and Dunne, 2016). (ETa/ETp) represents the

1



evaporative stress index, (ESI), in which ETp was approximated by Liu et al. (2019) using the PME-computed
PME. The ESI was used to study short term droughts (Choi et al., 2013) and evaluate the irrigation need for crop
growth and land classification (Yao, 1974) and water stress using remotely sensed hydrological and ecological
properties (Anderson, 2016). If soil moisture data are available, ETa can be computed by multiplying ETp

by the soil moisture extraction function, defined as the ratio of the measured soil moisture to the field capacity
(Lingling et al., 2013). For more comprehensive discussion on different evapostranspiration measures, the
readers may refer to the paper by McMahon et al. (2013).

Applications discussed above show that different, yet interrelated, evapotranspiration measures have been
used in practice, although they may be converted from one into the other using empirical relations and/or ad-
ditional hydroclimatic variables. Additional complexities in evapotranspiration calculations and projection are
introduced by changes in climate (Milly and Dunne 2016) and land use (Ozdogan and Salvucci, 2004), which
alter land surface and lower atmosphere energy budget, and hence, evapotranspiration rates. For example, ex-
pansion of irrigated areas in the southern parts of Turkey resulted in∼ 50% reduction in ETp and Ep in 23 years
due to decreases in wind speed and increases in humidity. Similarly, ETo exhibited a decreasing trend with an
average value of 3 mm/year in the northwest China over 50 years due to decreasing wind speed and radiation
and increasing humidity and temperature (Huo et al., 2013).

1.2 ‘literature survey is too cursory’
In the original manuscript, we provided extensive literature review with 50+ references cited in the Introduc-

tion and Methods sections in describing different evaporation measures (ETo, ETa, Esw), related measurement
and calculation techniques, the rationale for their inclusion in our analysis, previously used ML techniques, and
the main advantages of our ML model for evapotranspration predictions.

As per the referee’s comment, however, we have included additional references (previously reported rela-
tions in the literature among the evapotranspiration measures) in the revised manuscript to further improve the
discussion and clarity (please see our response 1.1 above for further details).

1.3 ‘moving some materials from Section 2 to the Introduction’
Agree. As per the referee’s comment, the Introduction section and Section 2 will be merged, restructured,

and revised to enhance the clarity. The discussion on the Edwards aquifer system (between line # 24-30 in the
Intro section of the original manuscript) will move to Section 2.1, which will be named ‘Study Area and Data
Availability’ in the revised manuscript.

1.4 ‘why existing results are insufficient; why a sophisticated ML to revisit the problem’
To our knowledge, this is the first ML model proposed & tested to simultaneously predict ETo (while avoid-

ing computationally involved net solar radiation calculations), Esw (while suppressing uncertainties associated
with pan evaporation coefficient, measurements, and upscaling), and ETa (while offsetting high capital & main-
tenance costs of Eddy Covariance towers) using the standard sets of climatic data obtained from local weather
stations, with the exception that water temperature is also required in Esw calculations. From a practical stand-
point, it is a cost-effective and efficient computational method that can be used to predict different evaporation
measures simultaneously with high accuracy, explicitly addressing prediction ‘uncertainties’, different from
traditional ML models.

To further provide insights into why we want to use a more sophisticated ML model, we plan to include the
following ‘research question’ in the Introduction section.

Considering the presence of different models for representing evapotranspiration processes as discussed
above, we raise the following research question: Can we have a computationally-efficient and unified data-
driven machine learning (ML) model to (i) avoid calibration parameters and empirical relations, (ii) calculate
different evapotranspiration measures using the standard hydroclimatic data sets, (iii) analyze and report the
order of importance of hydroclimatic variables, while explicitly accommodating their interactions with each
other to identify the most crucial data that need to be acquired for particular evapotranspiration process, (iv)
seek new knowledge that may not be readily available from non-probabilistic ML, numerical, or empirical
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models, and (v) perform probabilistic predictions over the entire solution space for more accurate assessment of
uncertainties related to hydrological predictions?

Moreover, in reference to other ML algorithms listed in the Intro section of the original manuscript, the
rationale for the use of a sophisticated ML (hybrid XGBoost-NGBoost) was already provided in line # 51 and
159-165 of the original manuscript. The new ML model is capable of taking ‘uncertainties’ into consideration.
As emphasized in the Intro section, this challenge was brought up by Tang et al. (2018). As illustrated in Fig.
1 and discussed throughout the manuscript, the proposed hybrid ML model is capable of producing not only
point predictions (as can be done by traditional ML models), but also a probability distribution over the entire
solution space (new modeling capability by our hybrid ML model) required for quantifying the uncertainties
related to hydrological predictions.

More precisely, the hybrid model can produce prediction intervals in addition to point predictions that can
effectively inform the user about the model’s confidence by quantifying the total number of target datapoints
that fall within the specified bounds (e.g. 95%) of the prediction interval. The statistical metrics calculated
on the point predictions - such as R2 and RMSE - may not be conclusive about the predictive uncertainties
of the resulting models. For example, the statistical metrics for the ETa model (in Table 1) suggest that the
model performs reasonably or fairly, whereas the ML-evaluated ‘probabilistic distribution’ reveals that 91%
of the predicted values are within the 95% prediction interval of the target variable, which provides additional
confidence in the model’s performance from a practical point-of-view.

1.5 ‘motivation needs to be elaborated further in the Intro’
Agree. Please see our response to Major comment 2 (our reponse 2.1) below.

Major comment 2: Similarly, in Section 2 the motivation of using ML is not clear. What regression methods
have been used before? Why existing methods are insufficient in terms of model performance? The authors
need to touch on these aspects. Otherwise, the work seems to focus on a new ML algorithm without justification
and no baseline results (e.g., multivariate linear regression) were provided.

Response:
2.1 ‘motivation’

Although the main motivation for the use of ML was hinted in the Abstract (line # 8-13), throughout the
manuscript (e.g., line # 283-287, 300-302, 309-311, 320-322), and in the Conclusion section (line #400−412)
of the original manuscript, as per the referee’s comment, we plan to include the following info in the Intro
section of the revised manuscript to enhance the clarity:

The main motivation for development of such a model is to (i) seek an alternative method to the Penman-
Monteith equation to avoid computationally intensive net solar radiation computations in ETo calculations;
(ii) overcome uncertainties associated with the pan coefficients, pan evaporation measurements, and upscaling
methods for Esw estimates; (iii) offset high capital & maintenance costs of EC towers used for ETa measure-
ments, and (iv) assessing uncertainties associated with the ML predictions.

2.2 What regression methods have been used before?
As discussed in line # 45 - 57 of the original manuscript, previous regression-based methods that were uti-

lized include neural networks, clustering, tree-based ensembles, fuzzy models, multivariate adaptive regression
splines, and extreme learning machines. However, the crux of the problem is that none of these ML models are
designed to produce prediction intervals for continuous target variables such as ETo, Esw, and ETa, which is
critical to account for the inherent uncertainties in predictions. Therefore, we applied NGBoost to solve this
problem, which is designed to produce prediction intervals for continuous target data. However, as mentioned
by Duan et al. [1], “NGBoost is not specifically designed for point estimation” and “better tree-based base learn-
ers and regularization (such as XGBoost by Chen and Guestrin [2] ) are more likely to improve performance”.
These future work indications in their paper led us to develop the hybrid NGBoost-XGBoost model that pro-
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vides the best of both models in terms of their ability to accurately generate both the prediction intervals and
point predictions, respectively (this information and references will also be included in the revised manuscript).

2.3. ‘why existing methods are insufficient in terms of model performance?’
As elaborated in the original manuscript (e.g., line # 159-165), the existing ML models provide only the

point predictions, but not the probability distributions over the entire outcome space of continuous target
variables. The latter, however, is critical for enhanced uncertainty assessments and building confidence in model
predictions.

For example, unlike the other ML methods listed in line #51 of the original manuscript, ‘uncertainties’ in
predictions are accommodated by the NGBoost-XGBoost model, which provided the confidence that at least
90% of the predicted PET, actual ET, and lake evaporation in our ML-based calculations were within 95% of
the prediction interval of the target variables. Please see our responses in 1.4 and 2.2 for additional discussion.

2.4 ‘without justification and no baseline results?’
‘justification’

For justification for the use of the XGBoost-NGBoost model, pleased see (i) through (v) under ‘research
question’ in our responses 1.4, and (i) through (iv) under ‘motivation’ in our response 2.1 from the applica-
tion standpoint, in addition to ‘built-in uncertainty calculation’ for the predicted target variables from the ML
modeling standpoint. This will be highlighted in the Intro section of the revised manuscript to enhance the
clarity.

‘baseline results’

As per the referee’s comment, we have compared the performance of the hybrid model with respect to a
baseline linear regression model and included the results in Table 1 below (new analyses and results are marked
in blue), which will be included the revised manuscript. The comparison revealed that our proposed hybrid
model performs better than the baseline in terms of the statistical metrics for point predictions. But, more
importantly, it provides uncertainty estimates through ‘probabilistic predictions’ (as we further elaborated in
our response to Comment # 1.4), which is imperative to practically deploy such models with confidence.

Table 1: Hybrid NGBoost-XGBoost ML model accuracy test with statistical measures and comparison with a
baseline linear regression model.

Model Data RMSE*(mm) MAE†(mm) R2 ‡ C§
f (%)

ETo Baseline Training data only 0.205 1.364 0.984 -
Testing data only 0.191 1.374 0.986 -

Hybrid Training data only 0.099 0.074 0.996 100
Testing data only 0.139 0.102 0.992 99.4

Esw Baseline Training data only 0.953 1.493 0.711 -
Testing data only 1.015 1.504 0.695 -

Hybrid Training data only 0.703 0.545 0.843 99.1
Testing data only 0.918 0.736 0.750 89.9

ETa Baseline Training data only 0.647 1.003 0.698 -
Testing data only 0.719 1.011 0.643 -

Hybrid Training data only 0.388 0.291 0.891 99.9
Testing data only 0.533 0.411 0.804 91

(*) Root mean square error; †Mean absolute error; ‡ Correlation Coefficient; § Percentage of datapoint within the
model’s 95% prediction interval.
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Major comment 3: The ML pipeline is not clear. A diagram is needed to show inputs and output to the ML
model. Around L185, the authors simply spelled out the inputs, without much reasoning. Why these features
are selected? What is the lead time of prediction? The promise of ML is not so much for well gauged sites, but
for sites with a lot of missing data.

Response:
3.1 ‘diagram’

As per the referee’s comment, we have revised the flow chart in Fig. 1 of the original manuscript, as shown
below, which we plan to include in the revised manuscript.
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XGBoost Base Learners {𝒇𝒇𝒎𝒎 𝒙𝒙 } 𝑴𝑴
𝒎𝒎 = 𝟏𝟏

Distribution 𝑷𝑷𝜽𝜽 𝒚𝒚 𝒙𝒙

Scoring Rule 𝑺𝑺(𝑷𝑷𝜽𝜽,𝒚𝒚)

𝜃𝜃

F
it 

N
at

ur
al

 G
ra

di
en

ts
 � 𝜵𝜵

𝜽𝜽

Mandatory 
Climatic 

features: Ta, P, 
RH, u2, and Rs

Optional 
Hydrologic 

features: Tsw for
Esw predictions; 
and ETo for ETa

predictions

Mandatory 
Seasonal 

feature: Month 
of the year

ETo predictions

Esw predictions

ETa predictions

y (predictions)

Figure 1: Conceptual representation of the hybrid NGBoost-XGBoost model for ETo, Esw, and ETa prediction.

3.2 ‘why these features are selected?’
As per the referee’s comment, we will include this information in the manuscript. Briefly,

The climatic variables (Ta, P , RH , u2, Rs) in Eq. 1 (PME) were chosen as the features for the ETo

predictive model. The same climatic variables were used as the features for the ETa predictive model, in
addition to ETo to quantify its contribution to ETa. Tsw in Eqs. 6 and 7 (Meyer’s formula) was added as a new
feature to the climatic variables in the Esw predictive model. Moreover, ‘month’ was chosen as an additional
feature in all predictive models based on the observed seasonality in Tsw data, ETa measurements from the EC
tower, and expected seasonality in soil moisture content at the site where the the EC tower is located.

3.3 what is the lead time in predictions?
If the Referee refers to the ‘training time’ of the ETo, Esw, and ETa predictive models by the ‘lead time

in predictions’, this information was already included in the ’Predictive ML Models’ section of the original
manuscript. Briefly, the total training time of the ETo, Esw, and ETa predictive models are ∼ 30 min, ∼ 6
min, and ∼ 9 min. As mentioned in the manuscript, the models were developed using an Intel Core i9-9980XE
processor and 64 GB RAM computer. Otherwise, please provide clarification on what the Referee means by the
‘lead time in predictions’.

3.4 ‘The promise of ML is not so much for well gauged sites, but for sites with a lot of missing data.’
There is a growing number of studies in the literature, in which ML models have been primarily used

for assessment, simulation, estimation, solving and capturing nonlinear complexity, and projection of various
hydrologic processes, including for example, precipitation, evapotranspiration, droughts, floods, groundwater
levels ([3]–[15] are just a few examples from a long list of recent articles), different from other types of studies,
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in which the ML methods are primarily used for imputing missing data, as the Referee mentioned about. These
two types applications of the ML models (simulation & prediction vs. data imputation) were emphasized in
Refs. [7] and [16], as an example, without favoring one over another, as the ML methods have emerged as
promising modeling tools in both application fields, but not as a promising tool only for ‘ungauged’ systems
with lots of missing data, as the Referee suggested.

In the first type of applications discussed above (which is well-aligned with the the main scope of our current
manuscript), data imputation are often taken care of outside the ML modeling (e.g., by removing missing or
suspicious data as in Refs. [17], [18] or using statistical packages as in Ref. [3]). Thus, the main goal of the ML
modeling in this case is to decipher the nonlinear dynamics between the input (predictive variables) and output
(target variables) and use such information for prediction & projection of target variables without requiring
detailed physical information (e.g., constitutive equations reflecting physical laws) on the investigated system,
which would otherwise require a large volume of data, non-unique calibration processes, and high computational
costs, as emphasized by [7] and [10], as an example.

After all, we are well aware that ML modeling for hydrological simulations and predictions and ML model-
ing for data imputations are two different (but, sometimes integrated) applications. We have another manuscript
currently in review at one of the Artificial Intelligence journals, focusing on a new ML model -based on the
transfer learning approach- to impute long-stretches (a few months to a year) of missing data. This is another
application of the ML model the referee is referring to. In brief, in light of current literature and our experience,
we believe ML modeling is as important to analyze, predict, and project nonlinear dynamics between predictor
and target variables as to impute missing data. And, our current manuscript focused on the former application.

Major comment 4: Variable importance calculation is well established for tree-based method, which entails
finding whether a variable is selected to split on during the tree building process, and how much the squared
error (over all tress) us improved or reduced as a result. Why a new variable importance method is needed?

Response: The typical variable importance calculations are equivalent to a sensitivity analysis, measuring rel-
ative contribution of a specific predictor variable to the target observation without accommodating the dynamic
interaction of that specific predictor variables with the other predictor variables. In contrast, as mentioned in
the original manuscript, the Shapley value is the average marginal contribution of each feature value across all
possible combinations of features. Thus enabling (i) global interpretability: the collective SHAP values can
show how much each feature contributes to the target, which is similar to the traditional tree-based permuted
feature importance, however, the SHAP plots can additionally explain the positive or negative relationship be-
tween each feature value and the target (see Fig. 10 in the manuscript); (ii) local interpretability: traditional
variable importance plots only show the results across the entire dataset, but not on each individual datapoints.
In contrast, with the new SHAP-based technique each observation gets its own set of SHAP values (see Fig.
12 in the manuscript). This greatly increases the transparency of the ML models and reveals new insights. For
example, Fig. 12 reveals new knowledge on low ETa predictions despite high ETo & low RH measures in hot
and dry summer, which will be critical in future climate scenarios in Texas or elsewhere. Such insights are not
available from the traditional tree-based variable importance plots.

Minor comment: In Abstract, the authors concluded “the deterministic analysis reveals that ETo set the upper
bound for Eta”, isn’t this expected?

Response
As we discussed in our response to the Major Comment #1, ETo represents the reference crop evapotranspi-
ration, not the potential evapotransporation (this was a typo in the original manuscript and we corrected in the
revised version).

Fig. 8b show that ETa < ETo for most of the time, except for October through December of 2019, in which
ETa

∼= ETo, which we did not expect initially for a semi-arid region in Texas.
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Having said this, ETa < ETo confirms the reliability and confidence in measured local climatic data from
the local weather stations, our ETo calculations using the PME, and the actual ET measurements from the
EC tower. The validity of this relation confirms that the ML models were operated on ‘physically reasonable’
input data sets, eliminating concerns on potential uncertainties or inconsistencies in the input data used in ML
analysis.
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