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Abstract 

The predictability of freshwater availability is one of the most important issues facing the world’s population. Even 

in relatively wet tropical regions, seasonal fluctuations in the water cycle complicate the consistent and reliable supply of 

water to urban, industrial and agricultural demands. Importantly, historic streamflow monitoring datasets are crucial in 15 

assessing our ability to model and subsequently plan for future hydrologic changes. In this technical note we evaluate a new 

global product of monthly runoff (GRUN_v1; Ghiggi et al., 2019) using small tropical catchments in the Philippines. This 

observations-based monthly runoff product is evaluated using archived monthly streamflow data from 55 catchments with at 

least 10 years of data, extending back to 1946 in some cases. These catchments are completely independent of the GRUN 

gridded product as no catchments in the Philippines were of sufficient size to fulfil the original filtering criteria and 20 

databases of these data were either not digitized or difficult to compile. Using monthly runoff observations from catchments 

with more than 10 years of data between 1946 and 2014, we demonstrate across all observations significant but weak 

correlation (r2 = 0.372) and skilful prediction (Volumetric Efficiency = 0.363 and log(Nash-Sutcliff Efficiency) = 0.453) 

between the predicted values and the observations. At a regional scale we demonstrate that GRUN performs best among 

catchments located in Climate Types III (no pronounced maximum rainfall with short dry season) and IV (evenly distributed 25 

rainfall, no dry season). We also find a weak negative correlation between volumetric efficiency and catchment area, and a 

positive correlation between volumetric efficiency and mean observed runoff. Further, analysis of individual rivers 

demonstrates systematic biases (over and under) in baseflow during the dry season, and under-prediction of peak flow during 

some wet months among most catchments. These results demonstrate the potential utility of GRUN and future data products 

of this nature with due consideration and correction of systematic biases at the individual basin level to: 1) assess trends in 30 
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regional scale runoff over the past century, 2) validate hydrologic models for un-monitored catchments in the Philippines, 

and 3) assess the impact of hydrometeorological phenomenon to seasonal water supply in this wet but drought prone 

archipelago. Finally, to correct for underprediction during wet months we perform a log-transform bias correction which 

greatly improves the nationwide Root Mean Square Error between GRUN and the observations by an order of magnitude 

(2.648 vs. 0.292 mm/day). This technical note demonstrates the importance of performing such corrections when accounting 35 

for the proportional contribution of catchments from smaller catchments in tropical land such as the Philippines to global 

tabulations of discharge. 

1 Introduction 

The global water crisis is considered as one of the three biggest global issues that we need to contend with, affecting 

an estimated two-thirds of the world’s population (Kummu et al., 2016; WEF, 2018). Among the sources of freshwater, the 40 

most important compartment in terms of utility is surface water flow, which is the primary resource for irrigation, industrial 

use and for bulk domestic water supply for many large cities. Along with the purpose of flood mitigation during extreme 

weather events, monitoring streamflow is a vital activity that many nations conduct with various levels of coverage. Long 

term streamflow datasets prove useful in resource management and infrastructure planning (e.g., Evaristo and McDonnell, 

2019). Such data is even more critical in areas that rely on run-of-the-river supply and do not utilize storage structures such 45 

as dams and impoundments. Further, a robust, long term dataset is crucial in the face of increased variability in stream 

discharge due to land use change, increased occurrence of mesoscale disturbances and climate change (e.g., Abon et al., 

2016; David, et al., 2017; Kumar et al., 2018). 

There is a disparity in the availability of long-term gauged rivers datasets between continental areas and smaller 

island nations. This in the face of the latter having an invariably more dynamic hydrometeorologic system owing to the size 50 

of their catchment and proximity to the ocean (e.g., Abon et al., 2011; Paronda et al., 2019). Furthermore, in the case of 

tropical island nations these are where the impact of climate change in the hydrologic cycle could be observed the most 

(Nurse et al., 2014). Thus, the Philippines offers a unique example where manual stream gauging programs have started in 

1904 and, while spotty at times, have continued on to today. In this work we analyse data since 1946. This island nation on 

the western side of the Pacific Ocean shows a very dynamic hydrologic system as affected by tropical cyclones, seasonal 55 

monsoon rains, sub-decadal cycles such as the El Nino Southern Oscillation (ENSO) and overlaid on top of all these are the 

hydrologic changes caused by climate change (Abon et al., 2016; David, et al., 2017; Kumar et al., 2018).   

 In the absence of long-term streamflow datasets, several researchers have compiled datasets worldwide which are 

used to extrapolate streamflow in non-gauged areas (Maybeck et al., 2013, Gudmundsson et al., 2018, Do et al., 2018). 

Several global hydrological models have also been created to project variations in streamflow and extend present-day 60 

measurements to the future (ref). The latest contribution to modelled global streamflow product is the Global Runoff 

Reconstruction (GRUN) (Ghiggi et al., 2019). GRUN is a global gridded reconstruction of monthly runoff at 0.5 degree 
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(~50km by 50km) spatial resolution. It uses global streamflow data from 718 large river basins that is used to train a machine 

learning algorithm that would be able to take precipitation and temperature data to predict monthly global runoff for the 

period 1902-2014. 65 

This technical note evaluates the accuracy of the GRUN dataset (GRUN_v1) as applied to the hydrodynamically-

active smaller river basins in the Philippines. Additionally, it explores the possible hydrologic parameters that may need to 

be considered and/or optimized such that global datasets may be able to model runoff in smaller, ungauged basins more 

accurately. 

 70 

2 Dataset and Methods 

2.1 GRUN observations-based global gridded (0.5°x0.5°) runoff dataset  

GRUN is a recently published global reconstruction of monthly runoff time series spanning 1902 to 2014 created 

using a machine learning algorithm based on training temperature and precipitation fields from the Global Soil Wetness 

Project Phase 3 (GSWP3; Kim et al., 2017; http://hydro.iis.u-tokyo.ac.jp/GSWP3/index.html) using the Global Streamflow 75 

Indices and Metadata Archive (GISM) (Ghiggi et al., 2019). In this contribution we analyze GRUN_v1 

(https://doi.org/10.3929/ethz-b-000324386) which was trained on large (> 10,000 km2) stations from GISM (Do et al., 2018; 

Gudmundsson et al., 2018) and validated using 718 large (>50,000 km2) monthly river discharge datasets from the Global 

Runoff Data Centre (GRDC) Reference Dataset 

(https://www.bafg.de/GRDC/EN/04_spcldtbss/43_GRfN/refDataset_node.html). We refer the reader to Ghiggi et al. (2019) 80 

for more information but note that because of the catchment size filtering criteria, none of the GISM and GRDC data from 

the Philippines was used (Personal Communications, G. Ghiggi, 2019). As such, we view our analysis as a completely 

independent test of the GRUN runoff reconstruction using small tropical catchments. 

 

2.2 Historical streamflow observations 85 

In this contribution we analyse monthly observations of discharge from 74 manually observed streamflow stations 

from three Philippine datasets. The observations span 1946 to 2016, although only data through 2014 are utilized due to the 

time period included in GRUN_v1.  

 

2.2.1 Bureau of Research and Standards (BRS) Dataset 90 

The historical discharge data was originally acquired from the Bureau of Research Standards (BRS) under 

Department of Public Works and Highways (DPWH). The records keeping was transferred to the Bureau of Design, also 

under DPWH, which continues to record gage data from some rivers up to this date. The degree of accuracy of records were 

categorized as “excellent”, “good”, “fair”, or “poor” using the following convention: “Excellent” means about 95% of daily 

discharges are within ±5% difference of the actual gauge height vs height computed from the rating curve; “Good” is within 95 

±10%; and “Fair” is within ±15%; while “Poor” means daily discharges are below the 15% “Fair” accuracy. This is the only 
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basis of accuracy for this set of data. A majority of the reprocessed BRS data used in this analysis come from Tolentino et al. 

(2016), however, some of the datasets were subsequently updated using the online archive for this study 

(https://apps.dpwh.gov.ph/streams_public/station_public.aspx). 

 100 

 
Figure 1: Map of Philippines with location of streamflow stations used in this analysis overlaid on climatic type (as in 
Tolentino et al., 2016; Kintanar, 1984; Jose and Cruz, 1999). Note that no long-term stations are available for Palawan. 
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2.2.2 Global Runoff Data Centre (GRDC) Reference Dataset 105 

Ten catchments from the GRDC Reference Dataset were compiled 

(https://www.bafg.de/GRDC/EN/04_spcldtbss/43_GRfN/refDataset_node.html; requested July 2019) and analysed in this 

contribution. Over 45 sites from the Philippines are available in the GRDC data; however, almost all do not fulfil our criteria 

of having over 10 years of coverage. Four of these catchments also duplicated or extended the BRS datasets, and one extends 

a GSIM dataset (see below). Notably four of the time series available from GRDC are available back to the 1940s (Table 1). 110 

 

2.2.1 Global Runoff Data Centre (GSIM) Reference Dataset  

Only two time series of the available five GSIM time series (Maybeck et al., 2013, Gudmundsson et al., 2016, Do et 

al., 2018) cover more than 10 years. Further, none of these data were included in the original training of GRUN due to 

catchment size constraints. 115 

 

2.3 Criteria for Inclusion of Datasets 

All catchment areas were verified using the digital elevation model from the 2013 Interferometric Synthetic 

Aperture Radar (IfSAR) data.  All hydrologic datasets were normalized to runoff (mm/yr), sometimes also notated as 

‘specific discharge’ in the literature. We only considered streamflow stations where the published and verified areas agreed 120 

and coverage spanned 10 or more years. The location of all streamflow stations is shown on Figure 1 and listed in Table 1. 

Catchment areas span 4 orders of magnitude (8.93 to 6487 km2) and cover the majority of the Philippines excluding Palawan 

(see Figure 1). The location of catchments was paired to GRUN grid cells (0.5° by 0.5°) for the analysis. Given that all but 

one catchment is smaller than the area of the GRUN grid cells (~3,000 km2) we view this pairing as sufficient for validation 

purposes. This assumption was tested by interpolating the GRUN grid to the gauging location as well as the watershed 125 

centroids, and no significant difference in correlation to the observations that were observed.  

 

2.4 Statistical Performance Metrics 

To assess the performance of GRUN we use a suite of metrics commonly used to assess model performance in 

hydrologic studies. These metrics are calculated for each individual catchment (n=55) and for each climate type (n=4; see 130 

below) shown in Figure 1. 

Firstly, we use the commonly used square of the Pearson correlation coefficient (r2). This metric for bivariate 

correlation measures the linear correlation between two variables. In this case the predicted monthly values from GRUN 

versus the observed monthly values from the streamflow datasets. It varies from 0 (no linear correlation) to 1 (perfect 

correlation). The use of r2 does not account for systematic over- or under-prediction in runoff because it only accounts for 135 

correlation among the observed and predicted values (see Krause et al. (2005) for further discussion of the use of r2 in 

hydrological model assessment).  
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Secondly, the primary metric used here is Volumetric Efficiency (VE) (Criss and Winston, 2008), utilized 

previously by Tolentino et al. (2016) on a subset of the BRS catchments analysed here. VE is defined as:  

  140 

𝑉𝐸 = 1 − ∑'()'*
∑'*

              (1) 

 

where P is the modelled/predicted values and O is the observed runoff values. A value of 1 indicates a perfect score. Because 

we are interested in the performance of GRUN over the period of each streamflow record, unlike Tolentino et al. (2016), we 

calculate VE using all paired monthly observed and simulated values rather than the monthly medians. This results in lower 145 

VE scores than those previously reported by Tolentino et al. (2016) compared to hydrologic models. 

Further, we use both the linear and logged Nash-Sutcliffe efficiency (NSE) parameter. Proposed by Nash and 

Sutcliffe (1970) it is defined as: 

 

𝑁𝑆𝐸 = 1 − ∑('()'*)/

∑('*)0123('*))/
              (2) 150 

 

The range of NSE can be between -∞ and 1 (perfect fit). NSE values are useful (compared to VE) in that values less than 

zero indicate that the mean value of the observed data is a better predictor than the hydrologic model. NSE is also calculated 

using logarithmic values prior to calculation to reduce the influence of peak flow and increase the influence of low flow 

values  (see further discussion in Krause et al., 2005). 155 

 Finally, to evaluate a possible strategy for performing a bias correction of the GRUN simulated values at a 

countrywide scale we use the Root Mean Square Error (RMSE) in units of runoff (i.e., mm/day). The RMSE is applied to the 

raw GRUN simulated values and the observation based bias corrected GRUN values at the country, climate type (see below) 

and individual catchment level.  

 160 

2.5 Climate Types 

The Philippines has four Climate Types (see also Abon et al., 2016; Tolentino et al., 2017): Type I Climate on the 

western seaboard of the Philippines is characterized by distinct wet (May to October) and dry (November to April) seasons; 

Type II Climate on the eastern seaboard has no distinct dry period with maximum rains occurring from November to 

February; Type III inland climate experiences less annual rainfall with a short dry season (December to May) and a less 165 

pronounced wet season (June to November); and, Type IV southeast inland climate experiencing depressed rainfall and 

characterized by an evenly distributed rainfall pattern throughout the year. Further description is provided in Figure 1. 

 

 

 170 
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3 Results and Discussion 

 Statistical comparisons described above between individual catchments and the GRUN dataset are shown in the 

supplemental figures and tabulated in Table 1. Shown also in the supplemental figures (Figure A1) are time series 

comparisons between the GRUN runoff values and runoff (area normalized discharge). Statistics performance metrics across 

all data as well as by climate types I to IV are also listed in Table 1. Given the emphasis on a country scale evaluation of 175 

GRUN we primarily focus below on results in aggregate grouped by climate type or among all catchments. 

 Across all observations GRUN has a r-squared of 0.372 and a VE of 0.363 (Table 2). Using log(runoff) values 

(following Criss and Winston, 2008) this improves to an r-squared of 0.546 and a volumetric efficiency (VE) of 0.733, 

suggesting reasonable utility in the GRUN product at a country scale for the Philippines, despite no training data from the 

Philippines being used in the creation of GRUN  (Personal Communications, G. Ghiggi, 2019). The raw RMSE across the 180 

dataset is 2.648 mm/day (Table 2). In the following we break down the comparison between the streamflow observations and 

GRUN by first comparing runoff distributions and extreme values at the individual basin level, then aggregating our results 

by Climate Type, and finally look at several correlations of VE to watershed characteristics.  

 

3.1 Comparison of runoff distributions 185 

 Average runoff values among all catchments compared to GRUN show reasonably good predicted values. In Figure 

2A median values of runoff (black dots) given a volumetric efficiency (VE) metric of 0.509 across all catchments, the 

average (mean) difference between median observations and simulated values is +16%. Looking at extreme monthly values 

(maximum and minimum) over the months of observation demonstrates significant underprediction in wettest conditions 

(orange dots in Figure 2A) with almost all catchments’ maximum observations falling above the 1:1 line and a lower VE 190 

score of maximum values of 0.194. For baseflow conditions spread around the 1:1 line for minimum values is more evenly 

distributed, however the VE score of 0.154 is similarly low due to a greater spread than the median values.  

 Comparison of runoff distributions ranked by catchment size in Figure 2B demonstrates that maximum runoff 

values appear to be most underpredicted by GRUN in the smallest catchments. However, we do find a significant correlation 

(at p<0.01, r2 =0.391) between log values of maximum runoff difference (observed minus predicted) versus catchment area 195 

(not shown), with a negative relationship. This suggests that particularly for small catchments, which may have steeper 

average slope, GRUN underpredicts monthly runoff values associated with the wet season.  

In general, the median and interquartile ranges (IQR, 25% to 75%) shown in Figure 2B overlap between GRUN and 

the observations. For five catchments of large (n=2) and relatively small sizes (n=3) the IQR of the observations does not 

overlap with the GRUN runoff IQR. The three small catchments are Climate Type III (yellow) and the two large catchments 200 

are Climate Type IV. In two catchments of moderate size the GRUN IQR is greater than the observed IQR runoff range.  
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Figure 2. Comparison of runoff ranges and distributions. (A) Comparison of median and extreme (maximum and minimum) 

monthly values between the observations and GRUN.  (B) Distribution of runoff between observations (colored) and GRUN 

(white) using box and whisker plots. Plots show the median, interquartile range and maximum/minimum values. The GRUN 205 

distributions only include months were observations are present. 
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3.2 Comparison by climate type 

In all basins regardless of Climate Type, a general underestimation of the model is seen for the highest runoff 210 

months, as noted above looking at the distributions by basin. This is especially evident in Climate Types I and II with 

pronounced wet seasons as also shown by their lower r-squared values (Figure 3) and lower VE values. Climate Type II also 

has the highest RMSE value of 4.554 mm/day. Climate Types III and IV have comparable r-squared and VE values though 

skewness towards underprediction during the highest runoff months is still evident, particularly for Climate Type IV. 

 215 

 
Figure 3: Cross plots of GRUN predicted vs. observed monthly runoff by climate type (see Figure 1 for climate type 

distributions). Grey dots represent all data, colored dots represent data points from that region. The squared pearson 

correlation coefficient (r2) and volumetric efficiency (VE) metrics are listed on each panel. 

 220 
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3.3 Correlation and trends with watershed characteristics 

 In this section we analyse two potential correlations between watershed characteristics and VE scores. In Figure 4 

we show a weak positive correlation (r2 = 0.041, p = 0.137) between VE and log(catchment size) (listed in Table 1) and a 

stronger negative correlation with mean runoff (r2 = 0.182, p < 0.01). However, at low runoff there is significant spread in 225 

VE score, driven primarily by Climate Type I catchments (red box and whisker plot in Figure 4C). These catchments 

experience distinct wet and dry seasons in the northwest Philippines. The positive correlation with catchment size is likely 

primarily due to the extreme wet months biasing results as described above. This is particularly evident from the Nash-

Sutcliff Efficiency (NSE) and log(Nash-Sutcliff Efficiency) (NSE-log10) scores in Table 2 and Table A1. As discussed by 

Criss and Winston (2008) the NSE-log10 scores are in most cases significantly more skilful among our catchments because 230 

extremely wet months are weighted less than using the raw runoff values. It is also notable that the VE scores using log10 

values across the entire dataset is significantly improved (0.363 vs. 0.733; Table 2).  

Previous studies have investigated the correlation between runoff and catchment size (Mayor et al., 2011), and the 

different hydrologic and geologic factors that cause non-linear relationships between these two variables (Rodriguez et al., 

2014). Recently, Zhang et al. (2019) point out that runoff coefficients increase logarithmically as catchment size decreases. 235 

Moreover, the same paper reports that smaller catchments are more sensitive to vegetation cover, slope, and land use 

compared to larger catchments. This implies that predictability of basin runoff for smaller catchments are increasingly more 

difficult due to variances in the compounding factors mentioned above but more importantly that runoff-catchment size 

relationship derived from large basins must be corrected when applied to smaller catchments. We hypothesize that these 

effects proposed by Zhang et al. (2019) are also influencing the Philippines streamflow dataset utilized in this study. As 240 

such, we suggest that GRUN, while useful for studying trends, seasonality and average runoff from tropical catchments (e.g., 

Merz et al., 2011; Wanders and Wada, 2015) in the Philippines, is not suitable for extreme value analyses associated with 

major tropical storms during the wet seasons unless suitable bias corrections (see next section) can be effectively carried out. 
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 245 
Figure 4: Diagnostic plots of volumetric efficiency (VE) results. Cross plots show the correlation of VE with (A) 

catchment area and (B) mean runoff. (C) Box and whisker plots show data from distribution of VE by climate type. Box and 

whisker plots show the median, interquartile range and 95% confidence intervals and outliers (dots). The regression in (A) is 

between the VE scores and ln(Catchment Area). 

 250 

3.4 Bias Correction and Outlook 

 Overall, the GRUN data underestimates the actual observed runoff from Philippine basins. The GRUN dataset 

shows a range of 0 to 10mm/day for most basins and up to 20mm/day for larger basins in the group. The observed maximum 

runoff values are on average higher by and exceed 50mm/day during extreme rain events (Figure 3). Furthermore, the 

GRUN dataset also appears to underestimate minimum flow in streams from highly seasonal catchments (e.g. Types I and 255 

II).  
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These discrepancies may be a function of the direct interpolation of large basin characteristics to smaller basins as 

discussed in the previous section. The underestimation of runoff values during extreme rain events may also be a result of 

the fast saturation of the overlying soil and exceedance of rates of infiltration partly as a result of shallow aquifers filling up 260 

and consequently the conversion of excess rainfall into direct runoff (e.g., Tarasova et al., 2018). On the other hand, the 

underestimation of flow during low flow events may be a result of not accurately accounting for stream baseflow which is 

fed by shallow aquifers. 

Given the biases observed in our analysis and in particular the clear underprediction of GRUN during the wettest 

months we perform a bias correction of the GRUN dataset at a nationwide level using all the available filtered data used in 265 

our analysis. We do so in a two-step process to both correct the mean offset and stretch the wettest months to higher values 

with all transformations occurring in log-transform space (i.e., as displayed in Figure 3). Thus, we first add the mean 

log10(runoff) difference between the observations and the predicted values (0.117). Following this, using the lm function in 

R, we fit a linear regression between the observations and the GRUN predicted values (log10(runoff, observed) = m × 

log10(runoff, predicted) + b) and correct the predicted values using the slope (m=0.774) and intercept (b=0.099) derived 270 

from this regression. By carrying out these calculations in log-transform space the highest GRUN runoff values are the most 

significantly affected, which are the data points we have observed to be most underpredicted in our above analysis (Figures 

2A and 3). 

 To assess this bias correction, we calculated RMSE values at a catchment, climate type and countrywide level 

(Figure 5 and Tables 2 and A1). The log-transform bias correction greatly improves the nationwide RMSE value by an order 275 

of magnitude (2.648 vs. 0.292) and most significantly improves catchments from Climate Types III and IV (Figure 5; 2.285 

vs. 0.432 and 2.398 vs. 0.131, respectively; Table 2). Interestingly, the median RMSE value for Climate Type I and II 

catchments are not significantly improved, however, the RMSE range for both have been reduced (red and blue boxes in 

Figure 5, respectively). 

 This analysis and the improvement of RMSE values, as well as some of performance metrics such as NSE (see 280 

scores tabulated in Table 2), using a simple log-transform based bias correction demonstrates the importance of either: 1) 

including smaller catchments in future iterations of products such as GRUN, or 2) performing similar bias corrections on a 

country, region or even catchment scale as appropriate. This is particularly important given that taken at face value the 

proportional contribution of relatively small tropical land areas to global discharge accounting (e.g., Dai and Trenberth, 

2002) would be underestimated without such corrections. 285 
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Figure 5. Root Mean Square Error (RMSE) box and whisker plots of catchments grouped by climate type of observed 

values versus raw GRUN values (light-colored boxes) and bias-corrected GRUN values (bold-colored boxes). For bias 

correction equation and country-wide results see Table 2. 

 290 
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4 Conclusion 

Using monthly runoff observations from catchments in  the Philippines with more than 10 years of data between 

1946 and 2014, we demonstrated across all observations significant but weak correlation (r2 = 0.372) and skillful prediction 

(Volumetric Efficiency = 0.363 and log(Nash-Sutcliff Efficiency) = 0.453) between the GRUN-predicted values and actual 295 

observations. Looking at different hydrometeorological regimes, we demonstrated that GRUN performs best among low 

rainfall catchments located in climate types III and IV and showed a weak negative positive correlation between volumetric 

efficiency and catchment area. Further, we found that particularly for smaller catchments, maximum wet season values are 

grossly underpredicted by GRUN. The application of a nationwide bias correction to stretch high runoff values using log-

transform runoff values greatly improved the RMSE of the predicted values. We thus propose that the utilization of the 300 

GRUN dataset can be extended to other ungauged tropical regions with smaller catchments upon applying a similar 

correction as described in this study. 
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 415 
 

River Name Station Name Latitude Longitude Coverage
Years of 
Coverage

Catchment 
Area (km2) Dataset Climate Type

Sinalang River Penarrubia, Abra 17.622 120.715 1984-2015 32 136.128 BRS 1
Antequera River Sto. Rosario, Antequera, Bohol 9.493 123.890 1984-2016 33 54 BRS 4
Amparo River Brgy. Mabini, Macrohon, So. Leyte 10.042 124.018 1985-2007 23 74 BRS 4
Hira-an River Upper Hiraan, Rarigara, Leyte 11.258 124.672 1986-2010 27 8.93 BRS 4
Leyte River San Joaquin, Capocan, Leyte 11.880 124.829 1985-2007 23 29.15 BRS 3
Surigao River Surigao City 9.796 125.808 1986-2010 25 85 BRS 4
Bais River Cabanlutan, Bais City, Negros Oriental 9.876 124.140 1989-2015 27 41 BRS 2
Lingayaon River Lingayon, Alang-Alang, Leyte 11.192 124.863 1957-1991 35 18 BRS 4
Sapiniton River Libton, San MIguel, Leyte 11.188 124.795 1984-2010 27 277.3 BRS 4
Laoag River Poblacion, Laoag City, Ilocos Norte 18.203 120.590 1984-2016 33 1355 BRS; updated from Tolentino et al. (2016) 1
Pared River Baybayog, Alcala, Cagayan 17.682 121.270 1983-1996 14 966 BRS; used in Tolentino et al. (2016) 1
Ganano River Ipil, Echague, Isabela 16.812 121.211 1986-2001 16 977 BRS; used in Tolentino et al. (2016) 3
Magat River Baretbet, Bagabag, Nueva Vizcaya 16.992 121.073 1986-2002 17 2199 BRS; used in Tolentino et al. (2016) 3
Camiling River Poblacion, Mayantoc, Tarlac 15.018 120.503 1985-2017 33 288 BRS; updated from Tolentino et al. (2016) 1
Gumain River Sta. Cruz, Lubao, Pampanga 14.960 120.441 1985-2001 17 370 BRS; used in Tolentino et al. (2016) 1
Rio Chico River Sto. Rosario, Zaragosa, Nueva Ecija 15.658 120.088 1985-2006 22 1177 BRS; used in Tolentino et al. (2016) 1
San Juan River Porac, Calamba, Laguna 14.498 121.267 1986-1999 14 165 BRS; used in Tolentino et al. (2016) 4
Pangalaan River Pangalaan, Pinamalayan, Oriental Mindoro 13.275 121.260 1989-1999 11 32 BRS; used in Tolentino et al. (2016) 3
Das-ay River Sto. Nino II, Hinungangan, Leyte 10.385 125.202 1987-2007 21 59 BRS; used in Tolentino et al. (2016) 2
Tukuran River Tinotongan, Tukuran, Zamboanga del Sur 7.627 123.030 1986-2009 24 147 BRS; used in Tolentino et al. (2016) 3
Hijo River Apokan, Tagum, Davao del Norte 7.812 125.211 1986-2016 31 634 BRS; updated from Tolentino et al. (2016) 4
Cagayan de Oro River Cabula, Cagayan de Oro City, Misamis Oriental 8.316 124.811 1991-2004 14 1079 BRS; used in Tolentino et al. (2016) 4
Davao River Tigatto, Davao City 7.329 125.634 1984-1999 16 1683 BRS; used in Tolentino et al. (2016) 4
Allah River Impao, Isulan, Sultan Kudarat 6.568 124.085 1980-1994 15 1231 BRS; used in Tolentino et al. (2016) 3
Agusan Canyon River Camp Philips, Manolo Fortich, Bukidnon 8.296 124.450 1986-2004 19 48 BRS; updated from Tolentino et al. (2016) 3
Wawa River Wawa, Bayugan, Agusan del Sur 8.261 125.501 1981-2010 30 396 BRS; updated from Tolentino et al. (2016) 4
Buayan River Malandag, Malungon, South Cotabato 6.317 125.749 1986-2004 19 207 BRS; used in Tolentino et al. (2016) 4
Gasgas River Manalpac, Solsona 18.080 120.830 1978-1988 11 73 GISM 1
Jalaur River Calyan, Pototan, Iloilo 10.930 122.670 1976-1988 13 1499 GISM and GRDC 3
Padsan River Bangay 18.080 120.700 1946-1979 34 534 GRDC 1
Pampanga River San Agustin 15.170 120.780 1946-1977 32 6487 GRDC 1
Sipocot River Sabang 13.810 122.990 1946-1970 25 447 GRDC 2
Mambusao River Tumalalud 11.260 122.570 1950-1978 29 307 GRDC 3
Padada River Lapulabao 6.660 125.280 1949-1978 30 821 GRDC 4
Aloran River Juan Bacay, Aloran, Misamis Occ. 8.420 123.820 1978-2003 26 30 GRDC + BRS 3
Cabacanan River Baduang, Pagudpud 18.580 120.800 1979-2017 39 60 GRDC + BRS 1
Maragayap River Sta. Rita, Bacnotan, La Union 16.750 120.374 2004-2017 14 40 BRS 1
Abacan River San Juan, Mexico, Pampanga 15.118 120.703 2004-2017 14 217 BRS 1
Hibayog River La Victoria, Carmen, Bohol 9.876 124.141 2004-2017 14 41 BRS 4
Manaba River Calma, Garcia-Hernandez, Bohol 9.631 124.131 2001-2016 16 98 BRS 4
Gabayan River Canawa, Candijay, Bohol 9.848 124.450 2001-2017 17 48.5 BRS 4

Bangkerohan River Brgy. Tagaytay, Bato, Leyte 10.342 124.834
1984-1990; 
2000-2009 17 168 BRS 4

Borongan River Brgy. San Mateo, Borongan City 11.628 125.403 1990-2008 19 111 BRS 2
Loom River Brgy. Calico-an, Borongan City 10.594 125.404 1986-2004 19 42 BRS 2
Pagbanganan River Brgy. Makinhas, Baybay City 10.637 124.865 1984-2008 25 128 BRS 4
Rizal River Brgy. Rizal, Babatngon, Leyte 11.389 124.908 1990-2008 18 15 BRS 4
Tenani River Brgy. Tenani, Paranas (Wright), Samar 11.806 125.127 1985-2001 17 394 BRS 2

Disakan River Disakan, Manukan, Zamboanga del Norte 8.480 123.048
1985-1991; 
1997-2000 11 109 BRS 3

Kabasalan River Banker, Kabasalan, Sibugay, Province 7.831 122.778 2002-2011 10 143 BRS 3
Sindangan River Dicoyong, Sindangan, Zamboanga del Norte 8.217 123.057 1990-2003 14 590.5 BRS 3
Alubijid River Alubijid, Misamis Oriental 8.570 124.476 1991-2009 19 124 BRS 3
Kipaliko River Tiburcia, Kapalong, Davao del Norte 7.602 125.681 2004-2016 13 147 BRS 4

Banaue River Poblacion, Banaue, Ifugao 16.915 121.061
1987-1995; 
2005-2010 15 15 BRS 3

Aciga River Santiago, Agusan del Norte 9.269 125.570 2002-2015 14 80 BRS 4

Agusan River Sta. Josefa, Agusan del Sur 7.993 126.036

1982; 1984-
1987; 1989-

2010 27 1633 BRS 4

Table 1: List of stations used in this analysis including full station names, updated catchment areas, years of coverage, division and climate type.

https://doi.org/10.5194/hess-2020-26
Preprint. Discussion started: 24 February 2020
c© Author(s) 2020. CC BY 4.0 License.

R
Highlight
the number of decimals used here seems inconsistentstandardize?

R
Sticky Note
the lengths of these records are understandably different but this may lead to a bias or a large influence of some catchments when you pool all the data for a region. It is therefore important to show also the results for the individual catchments - at least in terms of the spread of the r2, ve and nse values.



18 
 

 

Pearsons Coeff (r2)*
Volumetric 
Efficiency (VE)

Nash-Sutcliff 
Efficiency (NSE)

Nash-Sutcliff 
Efficiency (NSE-
log10)

Root Mean Square 
Error

Root Mean Square 
Error Bias Corrected 
**

Volumetric 
Efficiency (VE) Bias 
Corrected **

Nash-Sutcliff 
Efficiency (NSE) 
Bias Corrected **

Nash-Sutcliff 
Efficiency (NSE-
log10) Bias 
Corrected **

Entire Dataset 0.372 0.363 0.091 0.453 2.648 0.292 0.323 0.182 0.385
Entire Dataset log10(runoff) 0.546 0.733 n/a n/a n/a n/a 1.067 n/a n/a

Climate Type 1 (n=12) 0.211 0.252 0.062 0.538 2.476 0.298 0.168 0.111 0.432
Climate Type 2 (n=6) 0.409 0.354 0.05 0.49 4.554 0.544 0.349 0.188 0.457
Climate Type 3 (n=15) 0.471 0.404 0.026 0.23 2.285 0.432 0.345 0.011 0.188
Climate Type 4 (n=22) 0.535 0.403 0.159 0.414 2.398 0.131 0.377 0.323 0.36
Notes
* For regressions forced through intercept of 0
** Two-step bias correction procedure where first mean offset is added to the predicted GRUN values and then a log-transform stretch correction is applied (see text for details)

Table 2: Results of statistical agreement between GRUN aggregated by Climate Type and for the entire dataset (see Table A1 for individual catchments)
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