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Abstract. The bio-physical processes occurring in the unsaturated zone have a direct impact on the water table dynamics.

Representing these processes through the application of Unsaturated Zone Models (UZMs) of different complexity can have

an impact on the estimates of recharge rates. In coupled configurations with UZMs, these recharge rates are often used as input

for groundwater models and drive the water table dynamic. Because recharge estimates are always affected by uncertainty,

model-data fusion methods, such as data assimilation, can be used to reduce the uncertainty in the model results. In this study,5

the required complexity (i.e. conceptual versus physically-based) of the unsaturated zone model to update groundwater models

through the assimilation of evapotranspiration (ET) rates is assessed for a water-limited site in South Australia. ET rates are

assimilated because they have been shown to be related to the groundwater table dynamics, and thus form the link between

remote sensing data and the deeper parts of the soil profile. It has been found that, under the test site conditions, a conceptual

UZM can be used to improve groundwater model results through the assimilation of ET rates.10

Copyright statement. None

1 Introduction

Evapotranspiration (ET) and recharge to the water table (WT) are two major components of the water cycle. Because ET is

a function of the soil water content within the root zone, as the root water uptake is distributed along the entire root system

(Grinevskii, 2011; Neumann and Cardon, 2012), improving ET estimates, by means of a detailed modeling of the soil water15

transport, can lead to better simulation of recharge and WT dynamics. This is particularly important when the WT is within the

reach of the roots, as it is common in Australian semi-arid catchments (Banks et al., 2011), where the direct transpiration from

the WT is a major contribution to the total ET (Mensforth et al., 1994; Orellana et al., 2012).
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ET is often simulated through numerical models that reproduce the soil water-vegetation interaction. Advanced integrated20

surface water-groundwater models (e.g. Hydrogeosphere (Therrien et al., 2006), CATHY (Camporese et al., 2010), PARFLOW

Jones and Woodward (2001)) or coupled saturated-unsaturated zone models (Facchi et al., 2004; Simunek et al., 2009; Zhu

et al., 2012; Van Walsum and Veldhuizen, 2011; Grimaldi et al., 2015) are able to account for the direct groundwater-vegetation

interaction. In general, the representation of the unsaturated zone is obtained with simple conceptual water balance models or

detailed physically-based models.25

Conceptual unsaturated zone models (UZMs) simplify the processes occurring in the unsaturated zone, and are widely used

for spatially distributed hydrological simulations (Teuling and Troch, 2005). An example is Batelaan and De Smedt (2007),

who successfully applied a coupled surface-groundwater balance model at the regional scale focusing on the assessment of

recharge rates. Conceptual water balance models have been found to be flexible as they usually require shorter run times and30

fewer parameters, and are suitable when stochastic simulations based on Monte-Carlo techniques are applied (Kim and Stricker,

1996; Fatichi et al., 2016). However, for more detailed simulations, such as in ecohydrology or agricultural modeling, simple

UZMs may fail to accurately simulate important processes (i.e. water stress, root growth) (Krysanova and Arnold, 2008), and

physically-based models are preferred. These models commonly solve the Richards equation for water flow in porous media,

relying on the relationship between volumetric water content, hydraulic conductivity and soil water pressure head (van Dam35

et al., 2008; Scheerlinck et al., 2009). Therefore, physically-based models have the ability to account for specific effects (e.g.

capillary rise) that affect the calculation of ET, thus impacting recharge estimates. The latter is particularly important when

UZMs are coupled to saturated models as recharge acts as the link between both models (Doble et al., 2017).

Because of the number and spatial variability of parameters (e.g. the water retention curve, detailed vegetation characteris-40

tics) required by physically-based models, their application, particularly in data scarce areas, can be challenging (Simmons and

Meyer, 2000). On the other hand, conceptual models may require fewer input data, but their recharge estimates may be less

reliable. This is because they are affected by both structural uncertainty, induced by the simplification of the model (Renard

et al., 2010), and the epistemic and aleatory uncertainty of the forcing inputs (Khatami et al., 2019). Accurate model parameters

and meteorological inputs are far from always available, especially at large spatial scales. Therefore, the use of remote sens-45

ing data can provide vital information for these models (Entekhabi and Moghaddam, 2007; Carroll et al., 2015; Lu et al., 2020).

One way to make use of the remote sensing observations is through data assimilation, which is a method to combine model

results with independent observations to reduce model uncertainty. There is a plethora of studies on the assimilation of di-

verse observations (e.g. soil moisture (SM), leaf area index, streamflow and groundwater levels) in hydrology, reviewed several50

times in the last decade by various authors (Liu et al., 2012; Li et al., 2016). Many of these studies are based on satellite re-

mote sensing data, which have been proven to be a valid alternative when field-based observations cannot provide sufficiently

accurate measurements. Remotely sensed SM values are a function of the water content of the upper few centimeters of the

soil (Pipunic et al., 2014). Consequently, models using remotely sensed SM assimilation extrapolate the update for the upper
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soil layer to the entire modeled soil column through the covariance between the upper and lower layer modeled SM values. On55

the other hand, remotely sensed evapotranspiration rates are a function of the modelled water content of the soil column up to

the rooting depth. Remotely sensed ET assimilation thus directly updates the water content of the entire modeled soil column.

In recent years, the assimilation of satellite-based ET observations has been recognized to be beneficial for the reduction of the

uncertainty of several hydrogeological products (e.g. recharge and depth to WT), especially for data-scarce areas (Entekhabi

and Moghaddam, 2007; Doble et al., 2017; Gelsinari et al., 2020)).60

However, all satellite observations present a trade-off between accuracy, time-frequency and spatial coverage, and satellite

retrievals are not free from errors. For instance, Long et al. (2014) analyzed and compared the uncertainty in the ET esti-

mates from different sources including the Moderate-Resolution Imaging Spectroradiometer (MODIS). They concluded that

ET derived from land surface models had a lower uncertainty than the MODIS based ET (5 mm/month vs 12.5 mm/month,65

respectively), and suggested a hybrid approach for taking advantage of the integration of land surface models and remotely

sensed products to reduce uncertainty. Droogers et al. (2010), using a physically-based UZM, applied an inverse modeling

approach (i.e. forward-backwards optimization), and found that improvements were obtained when the frequency of the ET

observations was higher than a 15-day interval. Therefore, an assimilation algorithm that correctly accounts for the observation

errors when assimilating remotely sensed ET observations into UZMs should be used for this purpose. This was synthetically70

shown by Gelsinari et al. (2020) who used the Ensemble Kalman Filter (EnKF) for the sequential assimilation of the averaged

8-days ET into a conceptual UZM coupled to MODFLOW (Harbaugh, 2005), improving the model outputs. Unlocking the po-

tential of using ET observations to inform models, with the aim of reducing the uncertainty in the outputs, is a currently active

area of research. The assimilation of satellite ET observations have been shown to be a feasible way to constrain hydrologic

models, but has yet to be validated against experimental data. Furthermore, it is known that UZMs of different complexity can75

yield different ET estimates, producing distinct recharge values and, in turn, a diverse dynamics of the WT.

This study aims to perform the validation of the ET assimilation framework proposed synthetically in Gelsinari et al. (2020)

and to assess the UZM complexity required for the assimilation to positively update groundwater models. In particular, the

quantities of interest are the temporal WT fluctuaction dynamic and the modeled actual ET. A conceptual and a physically-80

based UZM are coupled to MODFLOW, and applied to a water-limited study site in the south-east of South Australia. Remotely

sensed ET observations are assimilated into both these coupled models, and an assessment of the improvements in the model

results is made. Based on this assessment, a number of recommendations regarding the required UZM complexity to obtain a

positive impact on the quantities of interest are made.
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2 Methods85

2.1 Study Area and Data

The study area is situated in the south-eastern part of South Australia, north of the city of Mount Gambier (See figure 1[a],[b]).

This region has a Mediterranean climate, with cool wet winters and warm dry summers. Climatic forcing inputs are rainfall

and potential ET (PET) obtained from the Bureau of Meteorology (BOM) station number 26021. The historical data for this

station report an average annual rainfall and potential ET of approximately 710 and 980 mm·year−1, respectively, calculated90

over the period 1942-2017. The Morton equation (Donohue et al., 2010), and the Budyko-curve (Donohue et al., 2007) thus

classify the area as dominated by ET, or water-limited (Jackson et al., 2009; Benyon et al., 2006).

Figure 1. Localization of the study area within Australia [a], South East of South Australia [b], detail of the forest plantation [c]. The red

square indicates the CMRSET tile. © Google Maps

The study site is a Pinus Radiata plantation next to the Mount Gambier airport (Figure 1[c]). The area was originally planted

in July 1996 with a density of 1225 trees/ha, there was no thinning of the plantation during the observations. The survey per-95

formed by Benyon et al. (2006) classified the soil as duplex. This type of soil presents a contrast between the upper part, which
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features sandy-loam characteristics with high hydraulic conductivity, and the lower part, classified as clay, with a finer texture

and lower hydraulic conductivity. The average WT depth, from the observations at one bore, is reported at approximately 6 me-

ters below the surface. SM observations were taken at an interval of 30 cm up to 3 meters with a neutron probe. The campaign

was conducted from August 2000 to January 2005 with an average measurement frequency of 4 weeks. Because in the area100

more than 90% of the available groundwater is in shallow aquifers, these plantations have been shown to have direct access to

groundwater (Benyon and Doody, 2004).

Remotely sensed data of actual ET from the CSIRO MODIS reflectance-based scaling evapotranspiration (CMRSET) algo-

rithm (Guerschman et al., 2009) were used. These values are obtained by rescaling the PET rates calculated with the Penman-105

Monteith algorithm using the Enhanced Vegetation Index and Global Vegetation Moisture Index obtained from the MODIS

spectroradiometer (Swaffer et al., 2020). The observations are available every 8 days with a finest spatial resolution of 250 by

250 m.

2.2 Model Description

Two different configurations of coupled groundwater-unsaturated zone models were tested. The UZMs conceptualization and110

the coupling to the groundwater model are depicted in Figure 2. This section introduces the models and the coupling framework.

2.2.1 UnSAT - UZM

The UnSAT (Unsaturated zone & SATellite) UZM (See Gelsinari et al. (2020) for a detailed description) is a one-dimensional

soil water balance model. The unsaturated zone is divided into layers and the water balance of each layer is solved at every

time step. The model uses climate forcing data (i.e. precipitation and PET) on a raster distributed basis as inputs, and returns115

values of actual ET, runoff, recharge and soil water content (θ). The soil is parameterized using the porosity (θs), a critical

soil-water content to define water stress (θ∗), residual soil-water content (θr) (as in Laio et al. (2001)), hydraulic conductivity

(Ks), and an empirical value for drainage (b); the root system is defined using root length (lr) and the root density distribution

parameter (Vr) as explained in Vrugt et al. (2001). For numerical stability and accuracy the model time step is set to 1 hour.

2.2.2 SWAP - UZM120

The Soil Water Atmosphere Plant (SWAP v. 4.0) model, developed by Alterra is one of the most used physically-based UZMs

(van Dam et al. (2008); Kroes et al. (2017)). This agro-hydrological model applies the Richards equation and is able to simulate

the water, heat and solute flow in heterogeneous, variably saturated soils. In addition, it has the potential of accounting for a

detailed soil water vegetation interaction as it specifically simulates the dynamics of the crop growth cycle.

125

SWAP has a long history of applications for climate change studies (Droogers et al., 2008; Farkas et al., 2014), fire hazard

evaluation (Taufik et al., 2019), impact of land-use change studies (Bennett et al., 2013), water use management (Droogers
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Figure 2. Coupled models representation. Left: UnSAT conceptualization coupled to MODFLOW. Right: SWAP conceptualization coupled

to MODFLOW.

et al., 2000), groundwater exploitation (Li and Ren, 2019), and holistic assessment of the soil hydraulic properties (Pinheiro

et al., 2019).

130

In SWAP, the Richards equation is solved for the pressure head using finite differences. The soil hydraulic retention func-

tions are based on the analytical formulations proposed by van Genuchten (1980). The model requires the van Genucthen soil

parameters and a number of vegetation specific parameters (Feddes et al., 1976). In this study, the drought stress parameters

are a result of the calibration. These are the pressure head below which water uptake reduction starts (i.e. −3000 mm) and

the pressure head triggering no further water extraction (i.e. −30000 mm). The standard root density distribution for forests135

is used. SWAP has the ability to represent an internal saturated part of the soil column that is controlled by a specified head

(simulating drains in the original conceptualization) at the boundary of the domain. In this study, the internal SWAP saturated

function is neglected and replaced by the MODFLOW model.
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2.2.3 Groundwater Model140

The groundwater model chosen for the study is MODFLOW 2005 (Harbaugh, 2005). This modular flexible model has pack-

ages dedicated to the calculation of ET and the application of recharge to the groundwater. In this study, the ET package of

MODFLOW (EVT) was replaced with the UZMs (UnSAT and SWAP), and the recharge (RCH) package was used to apply the

UZMs calculated net-recharge to the cell-specific head.

145

The aquifer saturated hydraulic conductivity (Kh) and specific yield (Sy) as well as model discretization are defined through

FloPy (Bakker et al., 2016), a library that allows MODFLOW to run in a Python environment. The model runs at an 8 day-time

step, which is considered adequate for GW dynamics. This choice was made to synchronize the models and assimilation time

frequencies as the CMRSET data are available with a temporal resolution of 8 days.

2.2.4 Coupling150

The UZMs were coupled to MODFLOW according to their time steps. UZMs require a shorter time step as the water content

varies at a higher frequency than the depth to the WT in the groundwater model (Xu et al., 2012). Variation of the WT at

regional scales usually is only appreciable after a period of months or years. Thus, applying a larger time step for the saturated

zone model is a valuable option to reduce the computational time (Facchi et al., 2004). At large spatial scales, dimensional

simplification to 1D unsaturated zone flow simulations has been shown to be sound because the direction of the unsaturated155

zone flow is predominantly vertical (Zhu et al., 2011).

Configuration-1 (Figure 2 left side) features the UnSAT model coupled to MODFLOW through recharge. This configura-

tion specifically accounts for plant transpiration from the WT by calculating the balance between recharge entering the WT

(positive) and transpiration (negative). UnSAT runs at an hourly time step while MODFLOW runs with an 8-day time step,160

matching the MODIS time step. Once MODFLOW has performed the calculation of the WT levels, these are fed back on a

raster basis to UnSAT, which uses them to recalculate the number of layers in which the unsaturated zone is discretized.This

dynamic scheme, defined in Zeng et al. (2019) as the non-iterative feedback coupling method, is considered a valuable trade-off

between the computational cost of fully coupled or iterative schemes and numerical accuracy.

165

For Configuration-2 (Figure 2 right side) the unsaturated zone is simulated through the SWAP model, with the pressure

head along the soil column as state variable. The model has been coupled to MODFLOW through the recharge, similar to the

coupling methodology reported by Xu et al. (2012). This way of coupling the model requires caution in the definition of the

Sy parameter, which becomes part of the deterministic calibration and is further explained in section 2.3.

170
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Figure 3. Schematic of the simulation domain. Configuration-1 models the unsaturated zone as a homogeneous profile with UnSAT.

Configuration-2 models the soil heterogeneity by accounting for the change in soil properties with SWAP. The WT is represented at ini-

tial conditions on the left-hand side, and at a generic simulation time, showing the depression caused by the root water extraction, on the

right-hand side.

2.3 Model Domain and Calibration

The coupled model configurations were applied to a domain of 1 x 5 cells of 1 km2 each, and a single vertical unconfined

layer (Figure 3). The boundary cells were set to a constant head obtained via calibration (See Section 3.1). UnSAT can account

for the decrease of Ks along the soil column, whereas SWAP is capable of explicitly modeling the heterogeneity of the soil

column, as described in Section 2.1. Thus, For Configuration-1, the decay of Ks is a result of the calibration, while other soil175

parameters are homogeneous along the soil column length (i.e. 10 m). In Configuration-2, the first (Upper) 1.5 meters of soil is

classified as "Sandy-Loam" soil and the second (Lower) is a "Loam-Clay" soil spanning the rest of the simulated soil column

(i.e. 8.5 m).

Preliminary analyses of this study (not shown) indicated that, in order to get significant improvements in the model outputs,180

the link between WT depth and ET had to be accurately reproduced. For both configurations, attempting to assimilate ET

fluxes, without reproducing the interdependence between WT and actual ET, yielded poor filter performances. To account for

this interdependence, and reduce the order of freedom of the ill-posed problem of calibration, a multi-objective function (MOF)

which combines WT depths and actual ET values was introduced. Then, SM observations were used for refinement and to set

boundaries to the soil parameters. The algorithm Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995; Shi and185

Eberhart, 1998) was used for calibration minimizing the specifically defined MOF:
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Table 1. Calibrated parameter values used for the simulations and their perturbation fraction.

Model Parameter Configuration 1 Configuration 2 Perturbation

UnSAT + MODFLOW SWAP + MODFLOW Fraction %

Homogeneous Top | Bottom

Hydraulic conductivity - Ks [mm·hr−1] 25 24 | 41 10

Drought Stress (Reduction) [mm] - −3000 -

Drought Stress (No extraction) [mm] - −30000 -

Oxygen Stress (Reduction) [mm] - −100 -

Oxygen Stress (No extraction) [mm] - + 5 -

Soil porosity [mm3·mm−3] 0.35 0.36 | 0.36 -

Critical transpiration SM(θ∗) [mm3·mm−3] 0.12 - -

Residual SM (θr) [mm3·mm−3] 0.03 0.01 | 0.02 -

Drainage empirical value [-] 2.50 - -

Root depth [mm] 8000 2900 10

Root distribution parameter (Vr) [-] 0.5 - -

MODFLOW Kh [m·d−1] 10.0 8.0 10

MODFLOW Sy [-] 0.12 0.11 10

MOF =
RMSE(WT )
σ(WT )

+
RMSE(ET )
σ(ET )

, (1)

where RMSE is the Root Mean Square Error, and σ is standard deviation. PSO searches the n-dimensional solution space,190

where n is the number of parameters given, in order to minimize equation 1. The calibrated parameters are listed in Table 1.

The drainage empirical value and root distribution parameter apply only to Configuration-1. The oxygen stress values, one of

which indicates the upper pressure head limit for no extraction and the other the start of the plant transpiration reduction, apply

to Configuration-2. The other values are for both configurations.

195

For each configuration, the observation data set was divided into two periods used for calibration and validation. For cali-

bration, 46 8-day time steps covering roughly the year 2001 were used, while the rest of the data set (4.5 years in total) was

used for validation.

2.4 Assimilation

The EnKF (Evensen, 1994) was used because of its ability to deal with highly non-linear systems. The filter initially requires200

the establishment of a number of ensemble members, generated by perturbing the forcing inputs of precipitation and PET. The
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ensemble population size was set to 32, a size which has been widely used for a number of EnKF applications (Mitchell et al.,

2002; Pauwels et al., 2013). To verify the spread and accuracy of the ensemble, a number of statistical variables, originally

developed for numerical weather prediction by Talagrand et al. (1997), were calculated on the ensemble population.

205

Usually, in data assimilation studies, the assimilated observations are model states, also called prognostic variables, such

as SM, pressure head and WT levels. This paper uses actual ET flux observations, which are diagnostic variables of the cou-

pled configurations. Therefore, the interaction between actual ET and model states occurs in the UZM, of which actual ET is a

model result. Following the findings of Gelsinari et al. (2020), actual ET data from MODIS (CMRSET data set) are assimilated

into the coupled model configurations.210

The two configurations apply a similar scheme of the EnKF, the difference lying in the composition of the state vector, as the

state variables of the UZMs are different. More specifically, the state vector of Configuration-1, for a single ensemble member

(i= 1, · · · ,M ) is composed of the WT level h and the SM values at time step s, reading

z [1]
i,f
k

= [θ1 θ2 · · ·θn] · · · , (2)215

where θ1,θ2, · · · ,θn are the SM values of the UZM layers, for the i-th ensemble member, and f means forecast.

For Configuration-2, the state vector is similarly composed and reads

z [2]
i,f
k

= [p1 p2 · · ·pn] (3)

where, for the i-th ensemble member, p1,p2, · · · ,pn are the pressure head values for each layer of the UZM. The filter scheme220

is then similarly applied for both configurations as follows.

The aggregated state vector for the assimilation time step k and the ensemble member i is then composed in the same fashion

for both configurations. The aggregated vector of Configuration-1 is

xi,f
k = [hi,f , zi,f

[1]1
, zi,f

[1]2
, · · · ,zi,f

[1]t
]T , (4)

where t is the number of times the UZM model is applied during the assimilation time step, which is different in the two config-225

urations, T indicates the transposed vector, and h is the WT level, permanent during the t time steps, simulated by MODFLOW.

The observation from the CMRSET for the k time step is the vector

yk = [ETk] . (5)
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The remainder of the assimilation algorithm is described in Gelsinari et al. (2020). According to their findings, the state230

variable update had to be limited to preserve numerical stability. This was equally true for both models and applies specifically

to the WT levels. A limitation of ±50% of the prior values is applied for the SM content of Configuration-1 and, similarly,

to the pressure head variable of Configuration-2. This avoids the convergence problem in physically based models reported in

Zhang et al. (2018).

2.4.1 Ensemble Generation235

The generation of a statistically meaningful ensemble, which preserves the relationship between ET and WT levels obtained

during the calibration, is crucial for the application of the EnKF (Gelsinari et al., 2020). A number of ensemble generation

techniques were applied to the two configurations, and a consistent approach for both configurations was adopted. First, a

simple perturbation of forcing inputs, by adding a random number sampled from Gaussian distributions with different standard

deviations, as performed by Gelsinari et al. (2020), was tested. Then, a mixed method involving the perturbation of both inputs240

and the parameters, with the latter perturbed by adding a random number proportionally to the calibrated value, was applied.

For the UZMs, the parameters selected for the perturbation were Ks and root depth, and for MODFLOW the saturated Kh and

Sy . Initial conditions of WT levels were also perturbed to induce a good spread in the ensemble from the early stages of the

simulation. This ensemble of simulations is defined as the open loop, which represents the "prior" distribution. After applying

the filter, the resulting distribution is called the assimilation run and represents the "posterior".245

In such a nonlinear configuration, it is a challenge to generate ensembles that maintain the statistical accuracy, and simulta-

neously preserve the ET - WT relationship. The most adequate ensembles for the two configurations, obtained by calculating

the ensemble validation skills on the modeled ET based on the method explained in Talagrand et al. (1997), were retained (De

Lannoy et al., 2006; Pauwels and De Lannoy, 2009). Results are shown in Section 3.2).250

2.5 Verification skills

The assimilation skills are evaluated using the Root Mean Square Error (RMSE) and the Pearson correlation coefficient (r)

defined as:

RMSE =

√√√√ 1
L

L∑

k=1

(ok − fk)2 , (6)

r =

L∑

k=1

(ok − o)(fk − f)

√√√√
L∑

k=1

(ok − o)2 ·
L∑

k=1

(fk − f)2

. (7)255
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Table 2. Results for the calibrated runs.

Variable Configuration RMSE r

WT 1 0.230 [m] 0.790

Levels 2 0.360 [m] 0.400

SM 1 0.049 [mm3 mm−3] 0.410

Upper 2 0.045 [mm3 mm−3] 0.610

SM 1 0.085 [mm3 mm−3] 0.592

Lower 2 0.018 [mm3 mm−3] 0.850

ET 1 0.791 [mm day−1] 0.811

2 0.870 [mm day−1] 0.788

Here, ok is the observation and fk is the modeled variable at time k and L is the size of the data set. The filter performance are

assessed comparing these metrics, applied to the assimilation results, to the respective open loop run.

3 Results and Discussion

3.1 Deterministic Runs

During the calibration with the PSO, the dynamics of the parameter optimization algorithm was monitored, showing that the260

MODFLOW saturated hydraulic conductivity (Kh) had a consistent tendency towards high values (100 m·d−1 or higher) in

order to minimize Equation 1. This was interpreted as an effect of ET component on the objective function ET component,

which was inducing the UZMs to transpire water directly from the WT to compensate for the low ET values. The boundary

conditions for the groundwater model were thus modified by imposing a constant head boundary with shallower WT depth,

which maintained Kh at a plausible order of magnitude. Conceptually, these boundary conditions represent the water supplied265

from the regional aquifer to the plantation, and induce the WT depression shown on the right hand side of Figure 3.

The calibration technique proposed in Section 2.3 was able to reproduce the link between the WT dynamics and ET for

both configurations (See figure 4). Configuration-1 performs better overall in the representation of the WT dynamics with a

RMSE of 0.23 m, while the RMSE of Configuration-2 is slightly larger (i.e. 0.36 m). Configuration-1 also shows a higher cor-270

relation coefficient (0.790 vs 0.400) for the WT. Configuration-1 shows a lower temporal variability than Configuration-2, but

the latter better matches the temporal evolution of the WT. There is a time lag between groundwater observations and model

WT fluctuation for Configuration-2, which also explains the higher RMSE and lower correlation. This lag may be induced by

preferential flow that the Richards equation does not account for, or to a slower response of the WT to the meteorological input

that is discussed later in this section.275
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[a]

[b]

Figure 4. Combined WT fluctuations for the two configurations plotted over the observed WT levels [a]. Modeled actual ET [b] for both

configurations plotted over the remotely sensed actual ET observations.

The capillary fringe and soil heterogeneity are represented differently by the two configurations. For physically-based

Configuration-2, the detail of the capillary fringe is represented in Figure 5 [d] by the blurred area above the saturated zone

(i.e. dark blue). Configuration-2 is also able to represent the heterogeneity of the soil column, as shown in Figure 5 [d] where

a sharp variation of the SM content at 1.5 m depth is caused by the different soil parameters. Configuration-1 has no ability280

to represent the capillary fringe effect, and it does not explicitly account for duplex soil. However, it can account for a decay

of the hydraulic conductivity along the soil column. Because of these reasons, the modeled SM from Configuration-2 shows a

good agreement with the observations, especially in the lower soil (Figure 5 [f]). Configuration-1 has a low SM RMSE (0.049

mm3·mm−3) and a reasonable agreement in terms of the Pearson correlation coefficient r (0.410) for the upper soil [b], but the

resulting SM is consistently below the observed values in the bottom soil (panel [c]), with an RMSE of 0.137 mm3· mm−3.285

Both configurations report a higher correlation for the lower soil.
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Figure 5. Temporal evolution of the SM contents. Panels [a] and [d] show the entire modeled column, including the fluctuation of the WT

(i.e. the dark blue area). Panel [b] and [e] represent the modeled and observed water content for the upper soil (averaged over 0-300 mm

depth). Panel [c] and [f] show these results for the lower soil (averaged over the interval 1500-1800 mm depth).

For ET, Configuration-1 yields good results with a lower RMSE and similar correlation when compared to Configuration-2.

In particular, the physically-based Configuration-2, underestimates the simulated ET for the Southern hemisphere late sum-

mer/early autumn as shown in Figure 4 [b]. In this period, the soil water content is low, as shown in Figure 5 [d], and the290

system is actively transpiring from the groundwater. This can be interpreted as an effect of the coupling to the groundwater

model. The conceptually based Configuration-1, with a rooting depth of 8.0 m, is able to extract water directly from the water

table and immediately transforms it into ET. Configuration-2, with a rooting depth of 2.9 m, achieves this by reducing the

pressure head along the soil column. Thus water has to flow across a part of unsaturated zone before becoming available for

direct plant transpiration, reducing the rapid response of the model to the forcing inputs. This also explains the lag in the WT295

dynamics previously described. Another possible reason for the underestimation of ET are the two oxygen stress parameters

that reduce transpiration in conditions close to saturation (Table 1). These parameters are calibrated and kept constant during

the simulation period. Configuration-2 has shown to be highly sensitive to these parameters, while Configuration-1 does not
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include this process.

300

3.2 Ensemble simulations

The generation of the ensemble is also found to be a key step of the method. The simple perturbation of forcing inputs was not

able to generate a sufficiently broad ensemble spread, particularly for Configuration-2. For both configurations, the combined

perturbation of parameters and forcing inputs was found to produce adequate ensembles. This is obtained by applying the

ensemble validation, as discussed in Section 2.4.1, to the first year of the data set, excluding the first 10 time steps to avoid305

the influence of the initial conditions (i.e. from the 10 to the 45th time step). For the meteorological data, the best candidates

are obtained by perturbing the input with a random number sampled from a Gaussian distribution having a standard deviation

proportial to the value of the forcing inputs (i.e. 50% for Configuration-1 and 10% for Configuration-2). For the parameters,

last column of Table 1 lists the perturbation fractions. Additionally, for Configuration-2, Sy has a lower limit of 0.1 to preserve

numerical stability of the coupled models.310

Figure 6. WT levels and actual ET and spread of the open loop ensembles for Configuration-1 [a,c] and Configuration-2[b,d]

In the case of the conceptual Configuration-1, the WT level spread of the open loop ensemble is consistently covering the

observations (Figure 6[a]). The mean of the ensemble is close to the observations, but does not follow the seasonal variability

appropriately. The associated spread of the actual ET for Configuration-1 is wider than that of Configuration-2. More specif-
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ically, the latter is narrow during wet periods (i.e. April to November) and becomes wider for the dry period (Figures 6[c]315

and 6[d]). A similar effect, with a larger magnitude, was reported during the ensemble generation phase and led to the double

perturbation of the meteorological inputs and the parameters as explained in Section 2.4.1.

Figure 7. WT levels and actual ET and spread of the assimilation run for Configuration-1 [a,c] and Configuration-2 [b,d]

The spread of the WT levels for Configuration-2 (see panel [b]) covers the WT observations for most of the simulations

and is wider than for Configuration-1. The mean represents the amplitude of the seasonal fluctuations better as compared to

Configuration-1, but leads to a shallower WT as a result of the perturbation of the forcing inputs.320

Table 3. RMSE and correlation for three variables between the open loop and the assimilation.

Config Type Actual ET | WT Levels | SM Upper Soil | SM Lower Soil |

RMSE r RMSE r RMSE r RMSE r

1 Open loop 0.760 0.820 0.280 0.730 0.045 0.497 0.102 0.468

Assimilation 0.730 0.830 0.236 0.734 0.044 0.498 0.098 0.428

2 Open loop 0.830 0.810 0.626 0.880 0.041 0.888 0.019 0.940

Assimilation 0.810 0.820 0.307 0.675 0.042 0.864 0.017 0.900
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Table 3 summarizes and compares the results between the open loop and the assimilation for actual ET, WT levels, and

SM contents of the upper and lower soil layers. For both configurations, the ET assimilation slightly decreases the RMSE and

improves the correlations. In particular, the RMSE of ET for Configuration-1 reduces from 0.76 mm·day−1 for the open loop

to 0.73 mm· day−1. The RMSE for the ET for Configuration-2 reduces from 0.83 mm·day−1 for the open loop to 0.81 mm325

day−1. The correlation also improves marginally for both configurations (i.e. + 0.01). However, these are non-trivial results

as the data assimilation, through the EnKF, is designed to improve the model states. Therefore, the reduction of the ET errors

suggests that the improved state variables are contributing to a better modeling of other hydrological quantities.

In Configuration-2, the assimilation is not able to improve ET in the Summer of 2000/2001 and 2002/2003. This results330

in poorer WT simulations during these periods (Figure 7[b]). Here, the filter is trying to increase the amount of water in the

system to match the higher assimilated observation, which is a correct application of the methodology. Thus, the WT is made

shallower by the filter but this does not reflect in a higher modeled ET. The reason for this is the behaviour of the SWAP vege-

tation parameter oxygen stress. The filter is increasing the pressure head of the system, in an attempt to provide more water to

transpire, but the actual transpiration from the plant is hindered by SWAP, which recognizes the soil to be too saturated for the335

plant to transpire. The EnKF then causes the WT to rise, and increases the amount of recharge entering the groundwater. When

the observed ET is lower than the simulations, the filter reduces the pressure head and the model allows the plant to transpire.

Therefore, in the two time steps after this effect, the modeled ET is higher than the observation, after which this phenomenon

disappears. This artefact is not seen in Configuration-1 as the oxygen stress is not accounted for.

340

Figures 8 and 9 show the observations, the mean of the open loop (blue dash-dotted line) and the mean of the assimilation

runs (red dot line), for Configuration-1 and Configuration-2, respectively. For both configurations, the assimilation improves

the RMSE when compared to the open loop runs. The best results are obtained for Configuration-1, showing a RMSE of 0.236

m with a 15 % error reduction compared to the open loop. Configuration-2 resulted in a substantial error reduction of 38.9 %

as compared to the open loop. However, the overall RMSE value (0.307 m) is still higher than Configuration-1. Apart from the345

oxygen stress artefacts explained above, the assimilation run of Configuration-2 is consistently better than the open loop. This

is not always the case for Configuration-1, where the open loop was already performing well. The correlation remains largely

unchanged for Configuration-1, and reduces for Configuration-2 mainly due to the updates during the summers of 2000/2001

and 2002/2003.

350

The two violin plots shown in the insets to Figure 8 and 9 provide a visual representation of the magnitude of uncertainty

before (prior) and after (posterior) the assimilation. In general, the spread of the WT levels for Configuration-1 is narrower

than the equivalent for Configuration-2. Even when the mean of the open loop is closer to the observation, as in the first violin

plot of figure 8, the assimilation helps in reducing the uncertainty around the WT levels. The second violin plot shows an

ideal situation, where the assimilation mean is very close to the observed value and the uncertainty interval is narrow. This355

combination was not obtained for Configuration-2. As shown in the violin plots of figure 9, the posterior covariances (i.e. the
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Figure 8. Observations, open loop mean and assimilation mean for Configuration-1. In the insets the green and red surfaces represent the

violin plots of the open loop (Prior) and the assimilation runs (Posterior) distributions, respectively, for two dates indicated by the boxes.

red violin plot) are still large after the assimilation. This means a lower uncertainty reduction compared to Configuration-1.

Figure 10 presents the scatter plots of the SM in the top (at a depth of 300 mm) and bottom (1800 mm) parts of the soil

for each configuration. The open loop of Configuration-1 has an RMSE of 0.045 mm3·mm−3 for the upper soil and 0.102360

mm3·mm−3 for the lower soil. In the latter, the simulated water contents are consistently lower than the observations. This is

mainly due to the model’s inability to represent capillary rise. The assimilation only marginally improved the SM content, with

slightly better results for the bottom part of the soil, where the RMSE was reduced to 0.098 mm3·mm−3. The open loop of

Configuration-2 has a lower RMSE, 0.041 and 0.017 mm3·mm−3 for the top and bottom part of the soil, respectively. However,

it is slightly overestimating the SM content for the entire column. This is consistent with the shallower WT (i.e. more water365

in the system) observed for the WT levels in the open loop (Figure 6[d)]. The assimilation did not improve the top layer SM

content, with an RMSE of 0.042 mm3·mm−3. However, the assimilation improved the SM content of the bottom part (Figures
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Figure 9. Observations, open loop mean and assimilation mean for Configuration-2. In the insets the green and red surfaces represent the

violin plots of the open loop (Prior) and the assimilation runs (Posterior) distributions, respectively, for two dates indicated by the boxes.

10[g] and [h]), for which the best results are obtained (i.e. 0.015). The updating of the entire soil column is a positive result of

the assimilation of ET rates, as opposed to the assimilation of remotely sensed SM values. The latter usually results in stronger

updates in the upper parts of the soil, because of the reduced correlation between the SM contents in the upper and deeper parts370

of the soil column.

Generally, these results consolidate the synthetic approach in Gelsinari et al. (2020), and further confirm that the assimilation

framework is not only able to update and improve the WT level, which is a prognostic variable of the coupled model, but also

the modeled ET, and consequently the recharge to the WT. In addition, albeit marginally, the filter improves the unsaturated375

zone state variables regardless of the manner in which the SM content is calculated (volumetric SM or pressure head).
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Figure 10. Scatter plots of the upper [a,b,e,f] and lower [c,d,g,h] soil water content. Configuration-1 open-loop [a,c], Assimilation [b,d].

Configuration-2 open-loop [e,g], Assimilation [f,h]. N.B. Observations are reported on the x axes.

4 Conclusions

This study validates the assimilation of the satellite-based evapotranspiration (ET) data set (CMRSET) into two coupled unsat-

urated zone-groundwater configurations. Specifically, these configurations are composed by a conceptual water balance model

(UnSAT) and a physically-based agro-hydrological model (SWAP), respectively, coupled to MODFLOW and applied to a380

semi-arid, pine plantation in the south-east of South Australia.

The most important findings can be summarized as:

Calibration. This study shows the need to calibrate the model using a multi-objective function, with normalised com-

ponents of water table (WT) and actual ET. In this way, both configurations are representing the WT-ET relationship in385

an appropriate manner and benefit from the assimilation of ET observations.

Configuration-1. The assimilation of ET values through the Ensemble Kalman Filter (EnKF) using a conceptual unsat-

urated zone model, produced the best results for the prognostic variable WT levels and the diagnostic fluxes of actual

ET. SM values were also slightly improved in both the upper and lower parts of the soil column. However, because of

the model conceptualization the mismatch in the lower part of the soil is considerably larger than for Configuration-2.390

The reduced number of parameters of this configuration allows for a simpler calibration, which is able to represent the
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WT dynamics. Similarly, the generation of an appropriate ensemble is more straightforward mostly due to the model

conceptualization, which allows the WT to respond quickly to direct root water extraction by transpiration.

Configuration-2. The ET assimilation into a physically-based unsaturated zone model, based on the Richards equation,

produced the largest improvements to the WT levels with a larger uncertainty reduction and an adequate representation395

of the capillary fringe. Improvements to actual ET fluxes were similar to Configuration-1. For SM, generally the impact

of the assimilation algorithm was small, with a positive update for the lower soil layers, and a negative update for the

upper layers. Here, the calibration involved a larger number of parameters and produced a good representation of the

SM dynamics. However, due to the non-linearity introduced with the coupling (e.g. capillary fringe), errors in the WT

levels and ET fluxes are higher. In addition, the ensemble generation is constrained by the high model parameterization,400

making it more difficult to produce an appropriate ensemble that preserves the ET-WT relationship.

ET information. The updating of the entire soil column is an advantage of the assimilation of remotely sensed ET over

satellite SM retrievals. ET rates express the moisture status of the entire root zone. Thus, assimilating ET overcomes

the SM assimilation tendency to produce stronger updates in the most superficial part of the soil because of the reduced

correlation between the upper and lower SM contents.405

In conclusion, it is possible to use either a conceptual or a physically-based unsaturated zone model in the assimilation of

satellite-based ET estimates to inform hydrogeological models. Both model coupling configurations reduce the uncertainty

related to state variables (such as WT and SM) and fluxes of actual ET. The findings indicate that a simple conceptual model

may be sufficient for this purpose, thus using one configuration over the other should be only motivated by the specific purpose

of the simulation and the information available. This study represents a step towards the use of satellite-based ET retrivals for410

water resources management. For future applications at larger scales, more research is to be conducted in areas with different

groundwater, vegetation and soil conditions, with the intent of prioritizing regions where the ET assimilation is more effective.
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