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Abstract. The bio-physical processes occurring in the unsaturated zone have a direct impact on the water table (WT) dynamics.

Representing these processes through the application of Unsaturated Zone Models (UZMs) of different complexity has an

impact on the estimates of the volumes of water flowing between the the unsaturated zone and the groundwater region. These

values, known as net recharge, are often used as the shared variable that couples UZMs to groundwater models. However, as

recharge estimates are always affected by a degree of uncertainty, model-data fusion methods, such as data assimilation, can5

be used to inform these coupled models and reduce uncertainty. This study assesses the effect of UZM complexity (conceptual

versus physically-based) to update groundwater model outputs, through the assimilation of actual evapotranspiration (AET)

rates, for a water-limited site in South Australia. AET rates are assimilated because they have been shown to be related to

the WT dynamics, and thus form the link between remote sensing data and the deeper parts of the soil profile. Results have

been quantified using standard metrics, such as RMSE and r, and reinforced by calculating the CRPS, which is specifically10

designed to determine a more representative error in stochastic models. It has been found that, once properly calibrated to

reproduce the AET-WT dynamics, a simple conceptual model may be sufficient for this purpose, thus using one configuration

over the other should be motivated by the specific purpose of the simulation and the information available.

Copyright statement. None

1 Introduction15

Actual evapotranspiration (AET) and groundwater recharge to the water table (WT) are two related major components of the

water cycle. This is because AET is a function of the soil water content within the root zone, as the root water uptake is

distributed along the entire root system (Grinevskii, 2011; Neumann and Cardon, 2012). Improving AET estimates, by means

of a detailed modeling of the soil water transport, can enhance the simulation of net recharge (i.e. recharge to the WT minus
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transpiration from WT) and, in turn, WT dynamics. This is particularly important when the WT is within the reach of the roots,20

as is common in Australian semi-arid catchments (Banks et al., 2011), because the root water uptake from groundwater and

the capillary fringe can largely contribute to AET (Mensforth et al., 1994; Orellana et al., 2012).

AET is often simulated through a variety of numerical models that reproduce the soil water-vegetation interaction with dif-

ferent level of details. Advanced integrated surface water-groundwater models (e.g. Hydrogeosphere (Therrien et al., 2006),25

CATHY (Camporese et al., 2010), PARFLOW (Jones and Woodward, 2001)) or coupled saturated-unsaturated zone models

(Facchi et al., 2004; Simunek et al., 2009; Zhu et al., 2012; Van Walsum and Veldhuizen, 2011; Grimaldi et al., 2015) are able

to account for the direct groundwater-vegetation interaction. In general, the representation of the unsaturated zone is obtained

from simple conceptual water balance models or detailed physically-based models.

30

Conceptual unsaturated zone models (UZMs) simplify the processes occurring in the unsaturated zone, and are widely used

for spatially distributed hydrological simulations (Teuling and Troch, 2005). An example is Batelaan and De Smedt (2007),

who successfully applied a coupled surface-groundwater balance model at the regional scale focusing on the assessment of

net recharge rates. Conceptual water balance models have been found to be flexible as they usually require shorter run times

and fewer parameters, and are suitable when stochastic simulations based on Monte-Carlo techniques are applied (Kim and35

Stricker, 1996; Fatichi et al., 2016). However, for more detailed simulations, such as in ecohydrology or agricultural modeling,

simple UZMs may fail to accurately simulate important processes such as water stress or root growth (Krysanova and Arnold,

2008), thus physically-based models are preferred. Commonly, physically-based models solve the Richards equation for water

flow in porous media, relying on relationships between soil volumetric water content, hydraulic conductivity and soil water

pressure head (van Dam et al., 2008; Scheerlinck et al., 2009). Physically-based models thus have the ability to account for40

specific effects that affect the calculation of AET, such as capillary rise, thereby impacting net recharge estimates. The latter

is particularly important when UZMs are coupled to saturated models as net recharge acts as the link between both models

(Doble et al., 2017).

The spatial variability and number of parameters (e.g. the water retention curve and detailed vegetation characteristics) re-45

quired by physically-based models, their application, particularly in data scarce areas, can be challenging (Simmons and Meyer,

2000). On the other hand, conceptual models may require fewer input data, however, their recharge estimates may be less reli-

able. This occurs because they are affected by both structural uncertainty, induced by the simplification of the model (Renard

et al., 2010), and the epistemic and aleatory uncertainty of the forcing inputs (Khatami et al., 2019). Accurate model parameters

and meteorological inputs are far from always available, especially at large spatial scales. Therefore, the use of remote sens-50

ing data can provide vital information for these models (Entekhabi and Moghaddam, 2007; Carroll et al., 2015; Lu et al., 2020).

One way to make use of the remote sensing observations is through data assimilation, which combines model results with

independent observations to reduce model uncertainty. In the field of hydrology, there is a plethora of studies on the assimila-
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tion of diverse observations such as soil moisture (SM), leaf area index, streamflow and groundwater levels (Liu et al., 2012;55

Li et al., 2016). Satellite remote sensing data have been proven to be a valid alternative when field-based observations cannot

provide sufficiently accurate measurements. Remotely sensed SM values are a function of the water content of the upper few

centimeters of the soil (Pipunic et al., 2014). Consequently, models using remotely sensed SM assimilation extrapolate the

update for the upper soil layer to the entire modeled soil column through the covariance between the upper and lower layer

modeled SM values. On the other hand, remotely sensed AET rates are a function of the modelled water content of the soil60

column up to the rooting depth. In consideration of this, the assimilation of remotely sensed AET has the potential of directly

updating the water content of the entire modeled soil column. In recent years, the assimilation of satellite-based AET observa-

tions has been recognised to be beneficial for the reduction of the uncertainty of several hydrogeological products (e.g. recharge

and depth to WT), especially for data-scarce areas (Entekhabi and Moghaddam, 2007; Doble et al., 2017; Gelsinari et al., 2020).

65

All satellite observations present a trade-off between accuracy, time-frequency and spatial coverage. In addition, no satellite

retrievals are free from errors, as exposed in Long et al. (2014), who analysed and compared the uncertainty in the AET es-

timates from different sources including the Moderate-Resolution Imaging Spectroradiometer (MODIS). They concluded that

AET derived from land surface models had a lower uncertainty than the MODIS based AET (5 mm/month vs 12.5 mm/month,

respectively), and suggested a hybrid approach for taking advantage of the integration of land surface models and remotely70

sensed products. Droogers et al. (2010), applied an inverse modeling approach (i.e. forward-backwards optimization) using a

physically-based UZM, and found that improvements were obtained when the frequency of the AET observations was finer

than a 15-day interval. It appears that, for the purpose of proficiently using AET retrievals, the assimilation framework should

allow frequent updates (< 15-days interval), and account for observation errors. This was also synthetically shown by Gelsinari

et al. (2020) who improved the model outputs, using the Ensemble Kalman Filter (EnKF) for the sequential assimilation of75

the averaged 8-days AET into a conceptual UZM coupled to MODFLOW (Harbaugh, 2005). The assimilation of satellite AET

observations have been shown to be a feasible way to constrain hydrologic models, however this has yet to be validated against

experimental data. Furthermore, it is known that UZMs of different complexity can yield different AET estimates, producing

distinct recharge values and, in turn, a diverse dynamics of the WT.

80

This study aims to perform the validation of the AET assimilation framework proposed in Gelsinari et al. (2020) and to

assess the use of a conceptual and a physically-based UZM within a data assimilation framework to improve WT estimates. The

quantities of interest are the temporal WT fluctuation dynamics and the modeled actual AET. A conceptual and a physically-

based UZM are coupled to MODFLOW, and applied to a water-limited study site in the south-east of South Australia. Remotely

sensed AET observations are assimilated into both of these coupled models, and assessments of the improvements in the results85

of the model are made. Based on this assessment, a number of recommendations regarding the required UZM complexity to

obtain a positive impact on the quantities of interest are made.
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2 Methods

2.1 Study Area and Data

The study area is situated in the south-eastern part of South Australia, north of the city of Mount Gambier (See figure 1[a],[b]).90

This region has a Mediterranean climate with cool wet winters and warm dry summers. The climatic forcing inputs are rainfall

and potential evapotranspiration (PET) obtained from the Bureau of Meteorology (BOM - station n. 26021). The historical data

for this station report an average annual rainfall and PET of approximately 710 and 980 mm·year−1, respectively, calculated

over the period 1942-2017. The Morton equation (Donohue et al., 2010) and the Budyko-curve (Donohue et al., 2007) classify

the area as dominated by evapotranspiration or water-limited (Jackson et al., 2009; Benyon et al., 2006).95

Figure 1. Localization of the study area within Australia [a], the South East of South Australia [b], and a detail of the forest plantation [c].

The red square indicates the CMRSET tile. © Google Maps

The study site is a Pinus Radiata plantation next to the Mount Gambier airport (Figure 1[c]). The trees were originally

planted in July 1996 with a density of 1225 trees/ha and there was no thinning of the plantation during the observations. The

survey performed by Benyon et al. (2006) classified the soil as duplex. This type of soil presents a contrast between the upper
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part, which features sandy-loam characteristics with high hydraulic conductivity, and the lower part, classified as clay, with a100

finer texture and lower hydraulic conductivity. The average WT depth, from the observations at one bore, is reported at approx-

imately 6 meters below the surface. SM observations were taken with a neutron probe, about every 4 weeks from August 2000

to January 2005, up to a depth of 3 meters at an interval of 30 cm. In this region more than 90% of the available groundwater

is in shallow aquifers and these plantations have been shown to have direct access to groundwater (Benyon and Doody, 2004).

105

AET data are derived from the remotely sensed CSIRO MODIS reflectance-based scaling evapotranspiration (CMRSET) al-

gorithm (Guerschman et al., 2009). These values are obtained by rescaling the PET rates calculated with the Penman-Monteith

algorithm using the Enhanced Vegetation Index and Global Vegetation Moisture Index obtained from the MODIS spectrora-

diometer (Swaffer et al., 2020). The observations are available every 8 days with a spatial resolution of 250 by 250 m.

2.2 Model Description110

The tests presented in this study used two different configurations of coupled groundwater-unsaturated zone models, which are

depicted in Figure 2. The following sections describe the models as well as the coupling framework.

Figure 2. Coupled models representation. Left: UnSAT conceptualization coupled to MODFLOW. Right: SWAP conceptualization coupled

to MODFLOW.
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2.2.1 UnSAT - UZM

The UnSAT (Unsaturated zone & SATellite) UZM is a one-dimensional soil water balance model. The unsaturated zone is

divided into layers and the water balance of each layer is solved at every time step. Water flows downward from the top layer115

to the last and the latter delivers recharge (see Figure 2). The model uses climate forcing data (i.e. precipitation [mm·hr−1] and

PET [mm·hr−1] ) on a raster distributed basis as inputs, and returns values of AET [mm·hr−1], runoff [mm·hr−1], recharge

[mm·hr−1] and soil water content (θ [mm3 mm−3]). The soil is parameterized using the porosity (θs), a critical soil-water con-

tent to define water stress (θ∗ [mm3 mm−3]), residual soil-water content (θr [mm3 mm−3]) (as in Laio et al. (2001)), hydraulic

conductivity (Ks [mm3 mm−3]), and an empirical value for drainage (b [-]); the root system is defined using root depth (lr120

[mm]) and a root density distribution parameter (Vr [-]) (Vrugt et al., 2001a).

The size of the layers (∆z [mm]) remains constant while their number changes according to the depth to WT, which is

provided by the groundwater model. Along the soil profile, the model accounts for water extraction due to root water uptake.

For each layer, the water balance equation is solved using an explicit finite difference approximation, solved with an hourly125

time step (∆t). The water balance of the layer at soil surface is calculated as

θt+1
1 = θt1 +

P t −AET t
1 −Qt −Dt

1

∆z1
·∆t , (1)

where, P is precipitation, D is percolation, and Q is runoff. In Eq. 1, the subscripts 1 refer to the the soil layer at the130

surface, and the superscripts refer to the time step. The percolation Dt
1 which proceeds to the lower layer, is defined by the

Clapp–Hornberger (Clapp and Hornberger, 1978) modification of the Brooks-Corey model.

AET is calculated as:

AET = PET ·β(z) ·α(θ), (2)135

where β(z) is the root distribution function as in Vrugt et al. (2001b), and α is a water stress reduction function (Laio et al.,

2001; Feddes et al., 1976).

For the layers below the first, including the last layer which delivers recharge to the groundwater model, the water balance

equation is140

θt+1
n = θtn +

Dt
n−1 − (AET t

n +Dt
n)

∆zn
·∆t . (3)
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For a more detailed description of the UnSAT model see Gelsinari et al. (2020).

2.2.2 SWAP - UZM

The Soil Water Atmosphere Plant (SWAP v. 4.0) model, developed by Alterra, is one of the most used physically-based UZMs

(van Dam et al. (2008); Kroes et al. (2017)). This agro-hydrological model is able to simulate the water, heat and solute flow145

in heterogeneous, variably saturated soils. Water flow is simulated using the Richards equation. In addition, it has the potential

of accounting for a detailed soil water vegetation interaction as it specifically simulates the dynamics of the crop growth cycle.

In SWAP, the Richards equation is solved for the pressure head using finite differences. The soil hydraulic retention func-

tions are based on the analytical formulations proposed by van Genuchten (1980). The model requires the van Genucthen soil150

parameters and a number of vegetation specific parameters (Feddes et al., 1976). In this study, the drought stress parameters

are a result of the calibration. These are the pressure head below which water uptake reduction starts (i.e. −3000 mm) and the

pressure head triggering no further water extraction (i.e. −30000 mm). For this experiment, the standard forest root density

distribution is applied.

155

2.2.3 Groundwater Model

The groundwater model chosen for the study is MODFLOW 2005 (Harbaugh, 2005). This modular flexible model has pack-

ages dedicated to the calculation of evapotranspiration and the application of recharge to the groundwater. In this study, the

evapotranspiration package of MODFLOW (EVT) was replaced with the UZMs (UnSAT and SWAP), and the recharge (RCH)

package was used to apply the UZMs calculated net-recharge to the cell-specific head.160

Flopy (Bakker et al., 2016), a library that allows MODFLOW to run in a Python environment, was used to generate the

saturated model and specify parameters, such as the aquifer saturated hydraulic conductivity (Kh) and specific yield (Sy). The

model runs at an 8-day time-step, which is considered adequate for WT dynamics. This choice was made to synchronise the

models and assimilation time frequencies as the CMRSET data are available with a temporal resolution of 8 days.165

2.2.4 Coupling

UZMs require a shorter time step than MODFLOW as the water content varies at a higher frequency than the depth to the WT

in the groundwater model (Xu et al., 2012). Variation of the WT at regional scales usually can only be observed at temporal

scales in the order of moths or years. Thus, applying a larger time step for the saturated zone model is a valuable option to

reduce the computational time (Facchi et al., 2004). At large spatial scales, dimensional simplification to 1D unsaturated zone170

flow simulations has been shown to be sound because the direction of the unsaturated zone flow is predominantly vertical (Zhu
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et al., 2011).

Configuration-1 (Figure 2 left side) features the UnSAT model coupled to MODFLOW. This configuration specifically

accounts for plant transpiration from the WT by calculating the balance between recharge entering the WT (positive) and tran-175

spiration (negative). UnSAT runs at an hourly time step while MODFLOW runs with an 8-day time step, matching the MODIS

time step. Once MODFLOW has performed the calculation of the WT levels, these are fed back on a raster basis to UnSAT,

which uses them to recalculate the number of layers in which the unsaturated zone is discretised. This dynamic scheme, defined

in Zeng et al. (2019) as the non-iterative feedback coupling method, is considered a valuable trade-off between the computa-

tional cost of fully coupled or iterative schemes and numerical accuracy.180

For Configuration-2 (Figure 2 right side), the unsaturated zone is simulated through the SWAP model, with the pressure

head along the soil column as state variable. The model has been coupled to MODFLOW through the recharge similar to the

coupling methodology reported by Xu et al. (2012). This way of coupling requires caution in the definition of the Sy parameter,

which becomes part of the calibration (See Section 2.3).185

2.3 Model Domain and Calibration

The model configurations were applied to a domain of 1 x 5 cells of 1 km2 each and a single vertical unconfined layer (Figure

3). The domain discretisation was chosen as a result of a sensitivity analysis conducted on a range of model domains varying

from fine (1 x 20 cells) to coarse (1 x 5 cells). The boundary cells were set to a constant head obtained via calibration (i.e. 3.5190

m below the surface). The location chosen allows the model configuration to be kept simple imposing the boundary conditions

of the saturated model as constant head. This is due to the site being in the centre of a forestry block, more than two kilometres

from any groundwater extraction. For this region, where WT is 6 m deep or shallower, it has been shown that forestry transpi-

ration from groundwater is around 2 orders of magnitude (i.e. 435 ML/yr for a 1 km by 1 km fully forested cell) larger than the

maximum groundwater extraction rate from a single bore (Benyon et al., 2006). To further reinforce the selection of constant195

head boundary conditions, an analysis of the WT fluctuations was conducted on bores in the proximity of the study area but

outside of the forest, showing that for a WT level of 4.4 m below the surface with the standard deviation was low (i.e. 0.12 m).

This supports the assumption that the if higher WT table fluctuations are observed (such as the investigated location), these are

dependent on the local net recharge.

200

UnSAT can account for the decrease of Ks along the soil column, whereas SWAP is capable of explicitly modeling the het-

erogeneity of the soil column, as described in Section 2.1. Thus, for Configuration-1, soil parameters are homogeneous along

the soil column length (i.e. 10 m), while in Configuration-2, the first (Upper) 1.5 meters of soil is classified as "Sandy-Loam"

soil and the second (Lower) is a "Loam-Clay" soil spanning the rest of the simulated soil column (i.e. 8.5 m).

205
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Figure 3. Schematic of the simulation domain. Configuration-1 models the unsaturated zone as a homogeneous profile with UnSAT.

Configuration-2 models the soil heterogeneity by accounting for the change in soil properties with SWAP. The representation of WT levels

refers to the generic simulation time, and is conceptually showing the depression caused by the root water extraction.

In order for the system to be observable, the link between WT levels and AET has to be accurately reproduced. It should

be noted that this link has been described in the literature (Shah et al., 2007; Xie et al., 2018; Zha, 2020). To account for this

interdependence, a multi-objective function (MOF) which combines WT depths and AET values, was introduced. Then, SM

observations were used for refinement and to set boundaries to the soil parameters. The algorithm Particle Swarm Optimization

(PSO) (Kennedy and Eberhart, 1995; Shi and Eberhart, 1998) was used for calibration minimising the specifically defined210

MOF:

MOF =
RMSE(WT )

σ(WT )
+

RMSE(AET )

σ(AET )
, (4)

where RMSE is the Root Mean Square Error, and σ is standard deviation. PSO searches the n-dimensional solution space,215

where n is the number of parameters given, in order to minimise equation (4). The calibrated parameters are listed in Table 1.

Applying a calibration/validation approach, the observation datasets were divided into two periods. For calibration, 46 8-day

time steps covering roughly the year 2001 were used, while the rest of the data set (4.5 years in total) was used for validation.
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Table 1. Calibrated parameter values used for the simulations and their coefficient of variation.

Model Parameter Configuration 1 Configuration 2 Coefficient

UnSAT + MODFLOW SWAP + MODFLOW of variation %

Homogeneous Top | Bottom

Hydraulic conductivity - Ks [mm·hr−1] 25 24 | 41 10

Drought Stress (Reduction) [mm] - −3000 -

Drought Stress (No extraction) [mm] - −30000 -

Oxygen Stress (Reduction) [mm] - −100 -

Oxygen Stress (No extraction) [mm] - + 5 -

Soil porosity [mm3·mm−3] 0.35 0.36 | 0.36 -

Critical transpiration SM (θ∗) [mm3·mm−3] 0.12 - -

Residual SM (θr) [mm3·mm−3] 0.03 0.01 | 0.02 -

Drainage empirical value [-] 2.50 - -

Root depth (lr) [mm] 8000 2900 10

Root distribution parameter (Vr) [-] 0.5 - -

MODFLOW Kh [m·d−1] 10.0 8.0 10

MODFLOW Sy [-] 0.12 0.11 10

2.4 Assimilation220

The EnKF (Evensen, 1994) was used because of its reduced computational burden when dealing with highly non-linear sys-

tems. The filter initially requires the establishment of a number of ensemble members, generated by perturbing the forcing

inputs of precipitation and PET. After having tested other ensemble sample sizes (i.e. 16, 32, 64), the ensemble sample size

was set to M = 32, a size which has been widely used for a number of EnKF applications (Mitchell et al., 2002; Pauwels et al.,

2013), and represented the best trade-off between computational time and accuracy for the case tested. To verify the spread and225

accuracy of the ensemble, a number of statistical variables, originally developed for numerical weather prediction by Talagrand

et al. (1997), were calculated on the ensemble population (see Section 2.4.1).

Usually, in data assimilation studies, the assimilated observations are model states (also called prognostic variables) such

as SM, pressure head, and WT levels. This paper uses AET flux observations, which are diagnostic variables. Therefore, the230

interaction between AET and model states occurs in the UZM, of which AET is a model result. Following Gelsinari et al.

(2020), AET data from the CMRSET are assimilated into the coupled model configurations.
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The two configurations apply a similar scheme of the EnKF, the difference lying in the composition of the aggregated state

vector, as the state variables of the UZMs are different. Specifically, the state vector of Configuration-1, for a single ensemble235

member (i= 1, · · · ,M ) is composed of the WT level h and a vector of the SM values at time step s, represented as:

z [1]
i,f
s

= [θ1 θ2 · · ·θn] (5)

where θ1,θ2, · · · ,θn are the values of SM content for each layer of the UZM, for the i-th ensemble member, and f representing

forecast.

240

For Configuration-2, the vector of soil water pressure heads is

z [2]
i,f
s

= [p1 p2 · · ·pn] (6)

where, for the i-th ensemble member, p1,p2, · · · ,pn are the pressure head values for each layer of the UZM. The filter scheme is

then similarly applied for both configurations as follows. Here, only the aggregated state vector of Configuration-1 (composed

in the same fashion for both configurations) for the assimilation time step k and the ensemble member i is reported. This is:245

xi,f
k = [hi,f , zi,f[1]1 , z

i,f
[1]2
, · · · ,zi,f[1]t ]

T , (7)

where t is the number of times the UZM model is applied between two applications of the filter (i.e 8-days), T indicates the

transposed vector, and h is the WT level, constant during the t time steps, simulated by MODFLOW.

The average state vector reads:

xf
k =

1

M

M∑
i=1

xi,f
k . (8)250

To compose the state deviation matrix, the value of xf
k is subtracted from the elements of the state vector as:

Xf
k = [x1,f

k −xf
k x2,f

k −xf
k x3,f

k −xf
k · · ·x

M,f
k −xf

k ] (9)

The observation from the CMRSET for the k time step is the vector

yk =AETk (10)
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which is a scalar value because of the choice of matching observation and assimilation frequencies.255

Because of the 8-days frequency of the observations, the average AET over 8 days simulated by the models is

ŷi,f
k =

1

8

t∑
s=1

AET i,f
s , (11)

with s being the individual UZM steps. The average over the ensemble population (M) of Equation 11 reads

yf
k =

1

M

M∑
i=1

ŷi,f
k . (12)260

The matrix for observation-simulation deviation is composed as:

Yf
k = [ŷ1,f

k −yf
k ŷ2,f

k −yf
k ŷ3,f

k −yf
k · · · ŷ

M,f
k −yf

k ] . (13)

Combining the matrices calculated above it is possible to calculate the background state covariance matrix265

PHT
k =

1

M − 1
Xf

kY
fT
k (14)

and the observation-simulation error covariance matrix

HPHT
k =

1

M − 1
Yf

kY
fT
k . (15)

These lead to the formulation of the Kalman Gain as:

Kk =
PHT

k

HPHT
k +Rk

(16)270

where Rk is the observation error covariance matrix. The Kalman gain transfers the difference between the observed and

simulated AET to the state variables with the updating equation

xi,a
k = xi,f

k +Kk[yk − ŷi,f
k +vi

k] , (17)

where vi
k is a random number with mean 0 and standard deviation as the observation error (i.e. 0.2 mm/day).

275
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According to Gelsinari et al. (2020), the state variable update had to be constrained to preserve numerical stability. This was

equally true for both models and applies to the WT levels and SM. A limitation of ±50% of the prior values is applied for the

SM content of Configuration-1 and, similarly, to the pressure head variable of Configuration-2. This avoids the convergence

problem in physically-based models reported in Zhang et al. (2018).

280

2.4.1 Ensemble Generation

The generation of a statistically meaningful ensemble, which preserves the relationship between AET and WT levels obtained

during the calibration, is crucial for the application of the EnKF (Gelsinari et al., 2020). A number of ensemble generation

techniques were applied to the two configurations, and a consistent approach for both configurations was adopted. The average

over the verification period of the ratios between ensemble skill and ensemble spread, which should tend to 1, and between285

ensemble skill and mean squared error, which should tend to
√

(M + 1)/2M (Talagrand et al., 1997; De Lannoy et al., 2006),

were calculated on the modeled AET values. First, a simple perturbation of forcing inputs, by adding a random number sam-

pled from Gaussian distributions with different standard deviations, as performed by Gelsinari et al. (2020), was tested.

By perturbing the forcing inputs alone, the ensemble spread was not reaching appropriate values. Thus, a mixed method290

involving the perturbation of both inputs and parameters, with the latter perturbed by adding a random number proportionally

to the calibrated value, was applied. For the UZMs, the parameters selected for the perturbation were Ks and root depth, and

for MODFLOW the saturated Kh and Sy . Initial conditions of WT levels were also perturbed to induce a good spread in the

ensemble from the early stages of the simulation. The Talagrand et al. (1997) verification skills were applied to the ensembles

generated with the aforementioned approach, and the most adequate ensembles for the two configurations were retained. The295

scores obtained for the two ratios were comparable to others found in the literature (e.g. De Lannoy et al. (2006); Pauwels

and De Lannoy (2009); Gelsinari et al. (2020)). These ensembles are defined as the open loop, which represents the "prior"

distribution. After applying the filter, the resulting distribution is called the assimilation run and represents the "posterior".

2.5 Verification Skills300

In this section, the results for the open loop and assimilation runs are assessed. This is conducted by analysing the error between

the predicted models and the observations. The common quantifiable measures used to assess the overall errors in these models

are the Root Mean Square Error (RMSE), the Pearson correlation coefficient (r), and the Continuous Ranked Probability Score

(CRPS) (Hersbach, 2000).

305
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The RMSE and r are defined as:

RMSE =

√√√√ 1

L

L∑
k=1

(ok − fk)2 , (18)

where ok are the observations, fk are the modelled variables at time step k and L is the size of the data set. The RMSE is an

important metric which measures the square of the difference in the errors and is presented to convey a possible broad overall

error between the observations and the model. A disadvantage of RSME is the excessive weight of large outliers.310

The next component for analysing the performance in verifying the results is the Pearson correlation coefficient to understand

the relationship between the observed values and the predicted model values. The Pearson correlation coefficient (r) is defined

as

r =

L∑
k=1

(ok − o)(fk − f)√√√√ L∑
k=1

(ok − o)2 ·
L∑

k=1

(fk − f)2

, (19)315

In particular, this investigate the strength of the linear relationship between the predicted and observed values as they pro-

ceeds through time. A value of r > 0 implies a positive relationship; the closer the value of r is to 1 the stronger and more

accurate the relationship.320

The CRPS is a measure to quantify the difference between the predicted value and the observed cumulative distribution in

terms of the probabilistic distributions for each time step. The CRPS is calculated, at a specific time step, from the cumulative

distribution function given by the ensemble simulation of the variable of interest x (i.e. AET and WT levels) as follows:

CRPSk =

+∞∫
−∞

(P (x)k −P0(x)k)2 dx, (20)325

where P0 is the observation distribution at the time step (k), and P (x) is the cumulative distribution function. As the obser-

vation (x0) is usually a single value, P0 is formulated as P0 =H(x−x0), with H being the Heaviside function. The CRPS is

applied to reinforce the value of the result as it is specifically designed to assess probabilistic simulations and is increasingly

being used in hydrologic ensemble simulations. The reasons are it intrinsically weighs errors by assigning a lower weight to the

largest residuals (Schneider et al., 2020) thus accounting for observations that in other cases are defined as outliers. Therefore,330
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it is the preferable measure in determining the error in forecasting models since it is more robust to outliers producing a more

representative result. Note that a value of the CRPS of zero is only possible in case of a perfect deterministic forecast. Thus,

the lower the value of the CPRS the better the model performance.

This is calculated over the entire simulation period and the average CRPS is defined as follows:335

CRPS =
1

L

L∑
k=1

CRPSk , (21)

where L is the number of observations. This permits an analysis of the measures and a comparison of the RMSE and the CRPS.

In this experiment, the models are naturally stochastic processes allowing the CPRS to produce a more representative value and

robust measure for the errors compared to the RMSE. In conclusion of this section, all three measures will be used to assess

the performance of the filter.340

3 Results and Discussion

3.1 Deterministic Runs

During the calibration with the PSO, the dynamics of the parameter optimisation algorithm was monitored, showing that the

MODFLOW saturated hydraulic conductivity (Kh) had a consistent tendency towards high values (100 m·d−1 or higher) in

order to minimise Equation (4). This was interpreted as an effect of AET component on the objective function, which was in-345

ducing the UZMs to transpire water directly from the WT to compensate for the low AET values. The boundary conditions for

the groundwater model were thus modified by imposing a constant head boundary with shallower WT depth, which maintained

Kh at a plausible order of magnitude.

With the calibration technique proposed in Section 2.3, the coupled models were able to simultaneously reproduce the dy-350

namics of both the WT and ET for the two configurations. Configuration-1 performs better overall in the representation of the

WT dynamics with a RMSE of 0.23 m, while the RMSE of Configuration-2 is slightly larger being 0.36 m. Configuration-1

also shows a higher correlation coefficient (0.790 vs 0.400) for the WT. Configuration-1 shows a lower temporal variability

than Configuration-2, but the latter better matches the temporal evolution of the WT. There is a time lag between groundwater

observations and model WT fluctuation for Configuration-2, which also explains the higher RMSE and lower correlation. This355

lag may be induced by preferential flow that the Richards equation does not account for, or to a slower response of the WT to

the meteorological input that is discussed later in this section.

The soil heterogeneity is represented differently by the two configurations. The physically-based Configuration-2 can repre-

sent the heterogeneity of the soil column, as shown in Figure 5 [d] where a sharp variation of the SM content at 1.7 m depth is360
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Figure 4. Observed and modelled [a] WT fluctuations and [b] AET after calibration.

Table 2. Results for the calibrated runs.

Variable Configuration RMSE r

WT 1 0.230 [m] 0.790

Levels 2 0.360 [m] 0.400

SM 1 0.049 [mm3 mm−3] 0.410

Upper 2 0.045 [mm3 mm−3] 0.610

SM 1 0.085 [mm3 mm−3] 0.592

Lower 2 0.018 [mm3 mm−3] 0.850

AET 1 0.791 [mm day−1] 0.811

2 0.870 [mm day−1] 0.788

caused by the different soil parameters. Configuration-1 has no ability to explicitly account for duplex soil, thus the soil profile

does not show sharp variations of the water content. However, it can account for the decay of the hydraulic conductivity along

the soil column. Because of these reasons, the modeled SM from Configuration-2 shows a good agreement with the observa-

tions, especially in the lower soil (Figure 5 [f]). Configuration-1 has a low SM RMSE (0.049 mm3·mm−3) and a reasonable

agreement in terms of the Pearson correlation coefficient r (0.410) for the upper soil [b], but the resulting SM is consistently365

below the observed values in the bottom soil (panel [c]), with an RMSE of 0.137 mm3· mm−3. Both configurations report a

higher correlation for the lower soil.

For AET, Configuration-1 yields good results with a lower RMSE and similar correlation when compared to Configuration-2.

In particular, the physically-based Configuration-2 underestimates the simulated AET for the Southern hemisphere late sum-370

mer/early autumn as shown in Figure 4 [b]. In this period, the soil water content is low (Figure 5 [d]), and the roots take up

water directly from groundwater. This can be interpreted as an effect of the coupling to the groundwater model. The conceptu-

ally based Configuration-1, with a rooting depth of 8.0 m, is able to extract water directly from the water table and immediately

transforms it into AET. Configuration-2, with a rooting depth of 2.9 m, achieves this by reducing the pressure head along the
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Figure 5. Temporal evolution of the SM contents and WT levels. Panels [a] and [d] show the entire modeled column, including the fluctuation

of the WT (i.e. the dark blue area). Panel [b] and [e] represent the modeled and observed water content for the upper soil (averaged over

0-300 mm depth). Panel [c] and [f] show these results for the lower soil (averaged over the interval 1500-1800 mm depth).

soil column. Thus water has to flow across a part of the unsaturated zone before becoming available for direct plant transpira-375

tion, reducing the rapid response of the model to the forcing inputs. This also explains the lag in the WT dynamics previously

described. Another possible reason for the underestimation of AET are the two oxygen stress parameters that reduce transpira-

tion in conditions close to saturation (Table 1). These parameters are calibrated and kept constant during the simulation period.

Configuration-2 has shown to be highly sensitive to these parameters, while Configuration-1 does not include this process.

380

3.2 Ensemble simulations

The generation of the ensemble is found to be a key step of the method. The simple perturbation of forcing inputs was not able

to generate a sufficiently broad ensemble spread, particularly for Configuration-2. For both configurations, the combined per-

turbation of parameters and forcing inputs were found to produce more accurate ensembles, in accordance with the ensemble

validation skills calculated on the first year of the data set, excluding the 10 first time steps to avoid the influence of the initial385

conditions; the validation is thus applied from the 10th to the 45th time step. For the meteorological data, the best ensembles
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are obtained by perturbing the input with a random number sampled from a Gaussian distribution having a standard deviation

proportional to the value of the forcing inputs (i.e. 50% for Configuration-1 and 10% for Configuration-2). For parameters, the

last column of Table 1 lists the coefficient of variation. Additionally, for Configuration-2, Sy has a lower limit of 0.1 to preserve

numerical stability of the coupled models.390

Figure 6. WT levels and AET and spread of the open loop ensembles for Configuration-1 [a,c] and Configuration-2[b,d]

In the case of the conceptual Configuration-1, the WT level spread of the open loop ensemble is consistently covering the

observations (Figure 6[a]). The mean of the ensemble is close to the observations, but does not follow the seasonal variability

appropriately. The associated spread of the AET for Configuration-1 is wider than that of Configuration-2. More specifically,

the latter is narrow during wet periods (i.e. April to November) and becomes wider for the dry period (Figures 6[c] and 6[d]).395

A similar effect, with a larger magnitude, was reported during the ensemble generation phase and led to the perturbation of

both the meteorological inputs and the parameters as explained in Section 2.4.1.
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Figure 7. WT levels and AET and spread of the assimilation run for Configuration-1 [a,c] and Configuration-2 [b,d]

The spread of the WT levels for Configuration-2 (see 6[b]) covers the WT observations for most of the simulations and

is wider than for Configuration-1. The mean represents the amplitude of the seasonal fluctuations better as compared to

Configuration-1, but leads to a shallower WT as a result of the perturbation of the forcing inputs.400

Table 3. RMSE, correlation and CRPS for three variables between the open loop and the assimilation.

Config. Type AET | WT Levels | SM Upper Soil | SM Lower Soil |

RMSE r CRPS RMSE r CRPS RMSE r CRPS RMSE r CRPS

1 Open loop 0.760 0.820 0.541 0.280 0.730 0.161 0.045 0.497 0.204 0.102 0.468 0.078

Assimilation 0.730 0.830 0.508 0.236 0.734 0.134 0.044 0.498 0.206 0.098 0.428 0.077

2 Open loop 0.830 0.810 0.624 0.626 0.880 0.426 0.041 0.888 0.037 0.019 0.940 0.013

Assimilation 0.810 0.820 0.597 0.307 0.675 0.229 0.042 0.864 0.036 0.015 0.900 0.012
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Table 3 summarizes the RMSE, r and CRPS values for AET, WT levels, and SM contents (upper and lower soil layers),

and compares the results of the assimilation run to the open-loop. The table allows for a quick comparison between the results

given by the RMSE, standardly used and understood across the modeling community, and the CRPS averaged over the simu-

lation period (i.e. CRPS), which allows for an appropriate and representative analysis of the ensemble distributions. For both405

configurations, the AET assimilation slightly decreases the RMSE, the CRPS and improves the correlations. In particular, the

RMSE of AET for Configuration-1 reduces from 0.76 mm·day−1 for the open loop to 0.73 mm· day−1. The RMSE of AET for

Configuration-2 reduces from 0.83 mm·day−1 for the open loop to 0.81 mm day−1. A similar patter is observed for theCRPS,

with the relative percentage change improvements varying from 4.3% to 6.1%. In this case, the CRPS reinforces the relevance

of the RMSE results. The correlation also improves, although marginally, for both configurations (i.e. + 0.01). However, these410

are non-trivial results as the data assimilation, through the EnKF, is designed to only improve the model states. Therefore, the

observed reduction in AET errors suggests that the model states (i.e. WT, SM) updated by the filter are contributing to better

modeling of other hydrological quantities (e.g. AET).

In particular there are instances in Configuration-2 where the assimilation is not able to improve AET in the first quarter of415

2001 and, to a lesser extent, at the beginning of 2003. This causes poorer WT simulations performances during these periods,

as seen in Figure 7[b], and highlighted by the higher values in Figure 8[b]. Here, the filter is trying to increase the amount of

water in the system to match the higher assimilated observation, which is a correct application of the methodology. Thus, the

WT is made shallower by the filter but this does not reflect in a higher modeled AET. The reason for this is the behaviour of

the SWAP vegetation parameter oxygen stress. The filter is increasing the pressure head of the system, in an attempt to provide420

more water to transpire, but the actual transpiration from the plant is hindered by SWAP, which recognises the soil to be too

saturated for the plant to transpire. The EnKF then causes the WT to rise, and increases the amount of recharge entering the

groundwater. When the observed AET is lower than the simulations, the filter reduces the pressure head and the model allows

the plant to transpire. Therefore, in the two time steps after this effect, the modeled AET is higher than the observation, after

which this phenomenon disappears. This artefact is not seen in Configuration-1 as the oxygen stress is not accounted for.425

In Figure 8, the single bars represent the CRPSk computed for each time the observations (WT levels above, AET below)

are available over the entire simulation period. For this reason the length of these datasets is different, as the CMRSET ob-

servations temporal interval is eight days while the WT levels observations are more infrequent and present gaps. Generally,

lower CRPS values are seen in Configuration-1 for both WT levels and AET. CRPS values for the WT level are substantially430

reduced in the first part of the simulation for both configurations, with Configuration-1 performing particularly well between

August 2002 through July 2003 and in reducing the prior errors around the end of 2004. Analysing the CRPS values for AET

(See Figure 8[c]), in most cases the assimilation improves the CRPS values, with the exemption of the central part of 2004.

This is also seen in Figure 7 when the assimilation fails to reduce the AET in the winter of 2004. For Configuration-2, the WT

level CRPS starts with higher values, and apart from the spikes of 2001 (discussed earlier), it presents continuous, constant435

improvements, outperforming Configuration-1 in the last part of the simulation. This pattern is similarly observed for the CRPS
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Figure 8. CRPS values WT levels and AET for Configuration-1 [a,c] and Configuration-2 [b,d]

calculated for AET.

For both configurations, the assimilation improves the RMSE and CRPS when compared to the open loop runs. The best

results are obtained for Configuration-1, showing a RMSE of 0.236 m with a 15% error reduction compared to the open loop;440

this result is endorsed by the CRPS of 0.134 (error reduction of 16%). Configuration-2 resulted in a substantial RMSE reduc-

tion of 38.9% as compared to the open loop. The magnitude of these improvements is corroborated by the CRPS, with a value

after the assimilation of 0.229 from the prior of 0.426, which translates in an improvement of around 46%. However, RMSE

and CRPS values (0.307 and 0.229 m, respectively) are still higher in Configuration-1 than in Configuration-2. Apart from

the oxygen stress artefacts explained above, the assimilation run of Configuration-2 is consistently better than the open loop.445

This is not always the case for Configuration-1, where the open loop was already performing well. The correlation remains

largely unchanged for Configuration-1, and reduces for Configuration-2 mainly due to the updates during the first quarter of

2001 and beginning of 2003.
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For SM, the results are reported in Table 3, divided into the upper and lower soil. The open loop of Configuration-1 presents450

a RMSE of 0.045 mm3·mm−3 for the upper soil and 0.102 mm3·mm−3 for the lower soil. In the latter, the simulated water

contents are consistently lower than the observations. This is mainly due to the model’s inability to represent capillary rise. The

assimilation only marginally improved the SM content, with slightly better results for the bottom part of the soil, where the

RMSE was reduced to 0.098 mm3·mm−3. The open loop of Configuration-2 has a lower RMSE, 0.041 and 0.017 mm3·mm−3

for the top and bottom part of the soil, respectively. However, it is slightly overestimating the SM content for the entire column.455

This is consistent with the shallower WT (i.e. more water in the system) observed for the WT levels in the open loop (Figure

6[d]. The assimilation did not improve the top layer SM content, with an RMSE of 0.042 mm3·mm−3. However, effects of

the assimilation are seen for the SM content of the lower soil, for which the best results are obtained (i.e. 0.015). For SM, the

CRPS is unable to show significant variations and does not add valuable information. Although the improvements for SM are

limited and cannot be considered conclusive, the feasibility for this framework of updating the entire soil column is a positive460

result of the assimilation of AET rates, as opposed to the assimilation of remotely sensed SM values. The latter usually results

in stronger updates in the upper parts of the soil, because of the reduced correlation between the SM contents in the upper and

deeper parts of the soil column (Pipunic et al., 2014).

Generally, these results consolidate the synthetic approach in Gelsinari et al. (2020), and further confirm that the assimilation465

framework is not only able to update and improve the WT level, which is a prognostic variable of the coupled models, but also

the modeled AET, and consequently the recharge to the WT. In addition, albeit marginally, the filter improves the unsaturated

zone state variables regardless of the manner in which the SM content is calculated (volumetric SM or pressure head).

4 Conclusions

This study validates the assimilation of the satellite-based actual evapotranspiration (AET) data set (CMRSET) into two unsat-470

urated zone models coupled to MODFLOW forming two configurations, one using a conceptual water balance model (UnSAT)

and the other using a physically-based agro-hydrological model (SWAP). These configurations are applied to a semi-arid pine

plantation in the south-east of South Australia where the WT is within reach of the trees’ root system.

The most important findings can be summarized as:475

Calibration. This study shows the need to calibrate the model using a multi-objective function, with normalised com-

ponents of water table (WT) and AET. In this way, both configurations are representing the WT-AET dynamics, and are

thus able to benefit from the assimilation of AET observations.

Configuration-1. The assimilation of AET values through the Ensemble Kalman Filter (EnKF) using a conceptual

unsaturated zone model produced the best results for the prognostic variable WT levels and the diagnostic fluxes of480

AET. SM values were updated in both the upper and lower parts of the soil column, although only to a minor extent. In

22



addition, because of the model conceptualization, the mismatch in the lower part of the soil is considerably larger than for

Configuration-2. The reduced number of parameters of this configuration allows for a simpler calibration, which is able

to represent the WT dynamics. Similarly, the generation of an appropriate ensemble is more straightforward, mostly due

to the model conceptualization, which allows the WT to respond quickly to direct root water extraction by transpiration.485

Configuration-2. The AET assimilation into a physically-based unsaturated zone model, based on the Richards equation,

produced the largest improvements to the WT levels with a better representation of the soil heterogeneity. Improvements

to AET fluxes were similar for Configuration-1. For SM, the impact of the assimilation algorithm was small, with a

positive update for the lower soil layers, and a negative update for the upper layers. Here, the calibration involved a

larger number of parameters and produced a good representation of the SM dynamics. However, due to the non-linearity490

introduced with the coupling, errors in the WT levels and AET fluxes are higher. In addition, the ensemble generation

is constrained by the high model parameterization, making it more difficult to produce an appropriate ensemble that

preserves the AET-WT relationship.

AET information. The updating of the entire soil column is an advantage of the assimilation of remotely sensed AET

over satellite SM retrievals. AET rates express the moisture status of the entire root zone. Thus, assimilating AET has the495

potential to overcome the SM assimilation tendency to produce stronger updates in the most superficial part of the soil

because of the reduced correlation between the upper and lower SM contents. This experiment only showed the feasibility

of the proposed assimilation framework to improve SM contents. Preliminary results indicated that Configuration-2 is

preferred to conduct more experiments in order to quantify the significance of the SM updates.

In conclusion, the experiment explored the added value of AET information for constraining unobservable estimates (i.e. net-500

recharge) calculated by hydrogeological models. Improving the AET fluxes led to better recharge estimates. Thus, as recharge

is a key quantity driving the WT dynamics, the link between AET and WT in the model is strengthened. It was shown that it

is possible to use either a conceptual or a physically-based unsaturated zone model in the assimilation of satellite-based AET

estimates to inform hydrogeological models. The assimilation results have been quantified using standard metrics, such as

RMSE and r, and reinforced by calculating the CRPS, which is a specifically designed metric for ensemble simulations. The505

CRPS is applied as it is a measure to determine a more representative error, since is more robust in accounting for uncertainty

in stochastic models. The findings indicate that a simple conceptual model may be sufficient for this purpose, thus using one

configuration over the other should be motivated by the specific purpose of the simulation and the information available.

This study contributes to unlock the potential of using AET observations to inform hydrological models, with the aim510

of reducing the uncertainty in the outputs, and it represents a step towards the use of satellite-based AET retrievals for water

resources management. For future applications at larger scales, more research is to be conducted in areas with different ground-

water, vegetation and soil conditions, with the intent of prioritising regions where the AET assimilation is more effective.
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