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We thank the Reviewer for their detailed analysis of the manuscript. We disagree
with a number of the points raised in the review in relation to the presentation of the
manuscript, the model conceptualization and the data assimilation algorithm. Details
on these aspects of the manuscript are provided below, with the Reviewer’s comments
in italic.

I thank the reviewers for their response and their clarifications provided below. Unfor-
tunately, no agreement was reached on the most fundamental issues I raised in the
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initial response.

Critical among them remain the authors’ specific implementation of the EnKF algo-
rithm, and the boundary condition assumptions of the groundwater model, the latter of
which I consider serious enough issue to invalidate the results obtained and the con-
clusions reached. In addition, several points of my initial review were unfortunately not
addressed: The authors’ precise implementation of the EnKF still remains unreported
– with new details in the authors’ response below confounding their implementation
even further –, as do the governing equations of the authors’ custom-made UZM.

Further examples follow below, with my responses being recorded in blue. As a con-
sequence, I must stand by my initial recommendation for a rejection with invitation to
resubmit. To keep this from ending up in a constant back-and-forth between the au-
thors and myself - and to give other reviewers the time to form their own opinion -, I will
leave the response at this, and potentially revisit this manuscript only towards the end
of the review period.

Explaining what kind of parameters your model uses is not particularly helpful if you
are not providing the governing equation(s) of your UZM. After skimming Gelsinari et
al. (2020) (recommended reading ‘for a detailed description’) I could also not locate
the governing equations anywhere in the original publication. If you develop a new
method, at least show us exactly what you are doing mathematically. Section 2.2.2:The
explanation of SWAP is great, but again, show us how your UnSAT-UZM functions to
at least the same degree of detail (and this does not mean explaining what it does, but
providing the equations).

The UnSAT unsaturated zone model (UZM) was presented in Gelsinari et al. (2020),
with the equations reported in its supplemental material. We do not think that includ-
ing the UnSAT model description in this manuscript or in its supporting information is
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needed. Please also be aware that the submission system does not allow manuscripts
with too much overlap with published papers. However, we will revise the manuscript to
be more specific on where to find these equations. We will also revise the description
of the model to clarify the meaning of the parameters listed in the manuscript.

It is not necessary to reproduce the derivation of the algorithm in full detail, but remem-
ber that the reader is not as familiar with your work as you are. Your study sets out to
compare two UZMs of differing complexity, but the reader cannot judge which is which
(and in what ways they differ) without seeing what the model actually does. Simply pro-
vide the governing equations. A few lines of equations and an explanatory paragraph
would likely be sufficient. For MODFLOW, for example, this would be a mass balance
equation specifying that fluxes across the cell boundaries follow Darcy’s Law, that is
has various source and sink terms, and storage changes. The governing equations
permit the reader to see at a glance which processes you considered and which ones
you omitted.

If you are worried about the submission system flagging your paper due to significant
similarities with your previous submission, reword your description of the model instead
of copy-and-pasting.

First off, normally FloPy generates the entire model input for MOD-FLOW (not just Kh
and Sy as well as the model discretization), so just say that you use the MODFLOW-
Python interface FloPy to create the model – that’s much clearer. Also, provide the
MODFLOW input files, because the current information about the model parameteriza-
tion is sparse at best, and choices made in the other packages (particularly the solver)
can severely affect the fidelity of the results obtained.

We agree on the fact that FloPy generates the entire groundwater model. We will add
the suggested sentence "FloPy was used to generate the model".
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That’s a step in the right direction, but you should still provide the model input files.
They aren’t large in size – particularly for a model as simple as yours – so there is
no storage-based reason for omitting them, or simply add a table with all MODFLOW
parameters to the supporting information. As it stands right now, the unspecified as-
sumptions you make in the creation of the groundwater model remain undocumented.
This makes it virtually impossible for a reader to reproduce your workflow and check
the assumptions you didn’t actively report.

In addition, choosing eight-day time steps for groundwater models is certainly not con-
ventional. There is no real reason why you should reduce the MODFLOW timestep size
to the resolution of the CMRSET data set. The CMRSET ET estimates do not serve
as input for MODFLOW (your UZM predictions, available at a finer temporal resolution,
already do this job). Even if you only had inputs on this temporal resolution, MOD-
FLOW allows the definition of coarsely-resolved stress periods (during which forcings
are either assumed blockwise-constant or are interpolated) subdivided by timesteps of
a finer temporal resolution.

The 8-day frequency, albeit unusual for groundwater applications, is the most efficient
time step for the assimilation framework, as the filter would update the state variable of
MODFLOW (i.e. heads) with this frequency. This minimises the required input/output
phase between the filter (to which the CMRSET is an input) and the model, which is
one of the most time consuming tasks of the entire process.

Yes, but remember that there is a price to pay for coarser time discretization. If you
only ever measure data on, say, Sundays, then you can still freely simulate forward
on a daily timescale. Just use the last entry of your seven-day set of predictions for
the data assimilation. If you jump ahead in weekly increments, you cannot resolve any
dynamics on a finer time scale.
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Why is this problematic? Because real groundwater dynamics operate on much finer
time scales. Assume it rains during your WT measurement on Sunday. The water table
will be temporarily (!) increased, but your model cannot reflect this adequately without
having it rain for an entire week. This is not reflecting what’s happening in nature. I get
it that you want to save computational effort, but your UZM is significantly more finely
discretized in space (per 1km cell) than the groundwater model AND runs on an hourly
time step. Compared to the computational demand of the UZM, reducing the GWM
(groundwater model) time step should come at a negligible extra cost.

I appreciate that coupling MODFLOW to an external UZM requires communication be-
tween the two modules, which comes at a computational cost if it occurs at a high
frequency. This loops back to the question I asked in the first review: if you are in-
terested in checking what UZMs add to GWM, why did you not compare the results
to integrated GWMs with in-built UZMs. For MODFLOW or HGS, both modules are
internally coupled and can simulate along the same time scales without major compu-
tational cost, and significantly more efficiently than your external coupling. This raises
the question of what value your external coupling adds to pre-existing solutions. To
answer this question, simply compare them. Does your coupling represent the vadose
zone dynamics better than pre-existing solutions? Is it faster? What are the trade-offs?

The Reviewer further states that a finer temporal resolution for the groundwater model
would not have greater computational time in the present configuration. Adding that:...
If your model takes a suspiciously long time to solve, this might be evidence that the
solution of MODFLOW’s iterative solver is unstable, which should set off alarm bells
concerning the model design. This is something you could check by analyzing the LST
(list) file, looking at the residuals and the convergence. Also, you are definitely NOT on
a regional scale for groundwater models: your model domain is only 1 km by3 km.

We acknowledge that, at this scale, refining the temporal resolution of the groundwater
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model is possible. However, the model is set-up for application at the regional scale.
This justifies the choice of the time step of the coupled models to match the frequency
of the assimilated observation. Additionally, because observations of water table levels
are available approximately every 3-4 weeks, the 8-days step can be considered a fine
temporal resolution. The long time taken by the simulation is not due to the issues with
the convergence of the iterative procedure to solve the equations. The MODFLOW
solver (CONJUGATE-GRADIENT SOLUTION PACKAGE, VERSION 7, 5/2/2005) usu-
ally takes less than a second (with residuals below 0.05

This solution time seems fine, thank you for providing more details. I would advise the
authors to stress their intention of application to a real regional model more strongly.
At the moment, neither the title of the manuscript nor its abstract reflect this intention
– only very few groundwater models are created for predictions on such large, truly
regional scales.

Of course, this objective opens an entirely new can of worms: if you apply your model
at a larger scale, you will suddenly have significantly more parameters and states to
estimate. As a consequence, the dimensionality of the span of your state and/or pa-
rameter space will be commonly larger than the amoung of particles you can affort.
As a consequence, the EnKF’s covariance matrix will usually be rank-deficient, which
makes the current DA performance unrepresentative for the application you have in
mind (right now, you seem to have more particles than space dimensions, hence a
good chance at full rank). On the positive side, however, the boundary effects I criti-
cized would likely be less pronounced. Why not scale this model up to a small regional
application? This would also address my criticism of the boundary effects I explain in
greater detail below.

Are you using the MODFLOW-Sy also as the specific yield for Configuration-2? If
so,why do you call it MODFLOW-Sy in the table? Is Sy the same for both soil layers?
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Also, the reference to section 2.3 is nonsense – there is not a single mention of Sy in
this entire section.

Specific yield (Sy) is a MODFLOW parameter that is independently used and calibrated
in Configuration-1 and Configuration-2. The second question is unclear, please refor-
mulate. There are not two soil layers for the MODFLOW model, as explained inline
171-172 “...applied to domain of 1 x 5 cells of 1 km2 each, and a single vertical uncon-
fined layer” Sy is then mentioned in the table of section 2.3; however, we agree that is
not further explained in the section. We will amend this.

I assumed that the authors did not calibrate soil parameters which have a correspond-
ing meaning in both modules (UZM and MODFLOW) separately. Specific yield (used
by MODFLOW) and porosity (used by the UZM), for example, are related variables:
specific yield can never be higher than porosity. As such, I assumed the authors cali-
brated all model parameters for all layers, with some form of sanity checks in place. I
guess that it is unlikely that the water table will reach the upper soil layer, the assump-
tion of keeping the groundwater model one-layered is fine. Carry on.

The reviewer makes a number of remarks on Figure 3

We agree with the reviewer on better presenting Figure 3, and we will modify it accord-
ingly in the revised version of the manuscript.

That’s good to hear!

You never mention at what tables you fixed your prescribed head boundaries. Also,
you should not reference section 3.1 (part of the results section). You have to explain
the model setup in the Methods section, not refer to the results section to complete the
picture. Clarify what you mean by saying you changed the boundaries to obtain ‘more
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shallow water tables’: Shallower in terms of distance from the surface (=increased WT)
or a shallower water body (= decreased WT)?

We thank the Reviewer for noting this. We described why we selected the constant
head boundaries, but missed to report the actual value (i.e -3.5 m below the sur-
face);this will be added in the revised version of the manuscript. We will also modify the
text to avoid referencing to following sections in the methods. In the entire manuscript,
we always referred to shallow water table being a water table closer to the surface. We
will make this clear in the revised manuscript.

A good decision to improve the future manuscript, but the fundamental issue of the
boundary conditions remains. More comments on this below.

If your UnSAT-UZM is discretized into layers anyways, why can’t you represent the
sediment heterogeneity the same way as the SWAP-UZM? This limitation seems poorly
justified and reduces the comparability between the two approaches. Elaborate on why
you had to make this distinction

The conceptual UnSAT UZM becomes unstable when accounting for sharp vertical
changes in the soil parameterizations. Therefore, we accounted for the decrease in
the hydraulic conductivity across the soil column. These details were not clearly stated
and will be added in the revised manuscript.

This is a bit worrying. Did you use a temporally explicit or implicit solution scheme?
If your system is explicit, I recommend converting it to an implicit solution scheme
- those are usually a lot more stable. Python has a few elegant solvers for sys-
tems of nonlinear equations. The fact that you have stability issues might prevent
you from roughening the temporal scale of your UZM without also roughening the
spatial resolution (see CFL number: https://en.wikipedia.org/wiki/Courant-Friedrichs-
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Lewycondition), whichmayconflictwithyourintentiontousethisforhighlycomputationally−
intensiveregionalmodels.

You should definitely report this in the manuscript, as it can be a significant factor for
the decision for or against a certain framework. Be honest about the limitations of
your work - you should only omit information because it is unnecessary. The fact that
your inability to reproduce the sharp discontinuity in the UnSAT UZM was not a design
choice but a numerical stability issue (one the SWAP UZM does not seem to share) is
critical information to make an informed decision about which framework to use.

The reviewer requests that we clarify what we mean by "interdependence between WT
and actual ET".

In many ecosystems where the roots can reach the capillary fringe, transpiration rates
depend on groundwater levels; in turn, water table depths in these situations are related
to the transpiration rates. This means that the link between the water table dynamics
and transpiration must be correctly modeled. This relationship has been shown in many
studies, both experimentally (Vincke and Thiry, 2008; Benyonet al., 2006, Marchionni
et al., 2019) and using numerical models (Loheide et al.,WRR 2005). In many areas
in the southern part of Australia, trees can grow roots to several meters to tap the
capillary fringe at large depths. An often used reference for eucalyptus plantations,
for example, is that the roots can use groundwater when the water table is about 6 m
(Benyon et al., 2006); however, trees have been observed to use groundwater at very
different depths, reaching more than 20 m below ground (Eamus et al, 2015). We will
provide more details on this in the revised version of the manuscript to strengthen the
justification for the application of the models and the assimilation procedure that we
used.

Throughout the manuscript we deal with this concept in:
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Abstract: "..ET rates are assimilated because they have been shown to be related to
the groundwater table dynamics. "

Introduction: "...Because ET is a function of the soil water content within the rootzone,
as the root water uptake is distributed along the entire root system, improving ET esti-
mates, by means of a detailed modeling of the soil water transport, can lead to better
simulation of recharge and WT dynamics. This is particularly important when the WT
is within the reach of the roots, as it is common in Australian semi-arid catchments..."

Study area description: "Because in the area more than these plantations have been
shown to have direct access to groundwater (Benyon and Doody, 2004)."

Calibration section: "...For both configurations, attempting to assimilate ET fluxes, with-
out reproducing the interdependence between WT and actual ET, yielded poor filter
performances." and again by introducing a multi objective function which calibrates
specifically on the two quantities. And exposed in the “Results and Discussion” and
“Conclusion” section as a fundamental step for the ET data assimilation.

We are convinced this should be enough explanation for the concept. However, we are
available to provide more details

I thank the authors for the detailed response. Unfortunately, I’m afraid you might have
misunderstood my comment. I have no doubt that evapotranspiration can have an
influence on groundwater tables, and that tree can access groundwater through their
roots. If that were the case, my criticism concerning the exaggerated effect of ET on
the WT dynamics would be nonsensical.

To me, the term ‘interdependence’ implies causation between the two variables. The
only thing you have, however, is correlation between the two variables. And as the
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authors certainly know, correlation does not imply causation. As an example blatantly
stolen from “Statistics explained to my cat”: ‘going to bed in your shoes’ and ‘having
a headache the next morning’ correlate with each other. However, to correctly repro-
duce the *cause* for this correlation would require reproducing the confounding factor:
getting extremely drunk the night before, thus being unable to take off your shoes, thus
waking up with a hangover.

In your case, the situation is a bit more dangerous, as ET can indeed cause WT fluc-
tuations. The critical point is that you have no way of distinguishing which parts of
the water table fluctuations are a consequence of *local* evapotranspiration and which
are not. You solve this conundrum simply by assuming that there are no regional and
seasonal fluctuations of the water table whatsoever. This assumption is incorrect. I
have demonstrated this below in Figure 1 and Figure 2 using freely available WT data
near your field site. As a consequence, your model must reproduce the observed water
table fluctuations exclusively as a direct result of evapotranspiration on the small plot
of land which you model.

In short: you reproduce the correlation between AET and WT by neglecting natural
WT fluctuations and (at least implicitly) assume it is causation. Since there are ad-
ditional effects with influence water table dynamics, your model must exaggerate the
influence of ET in order to achieve a fit. Your simulated evapotranspiration is partially
real evapotranspiration, and partially a surrogate for omitted dynamics.

To verify the spread and accuracy of the ensemble, a number of statistical variables,
originally developed for numerical weather prediction by Talagrand et al. (1997), were
calculated on the ensemble population.” What kind of ‘statistical variables’ did you
calculate? Why did you calculate them? Right now this sentence provides as much
information as writing “and then we did some unspecified math.
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We agree that more detail are needed on this aspect. We calculated the ensemble
skill(esnk), ensemble spread (ensp) and mean squared error (mse) (Talagrand et al.
1997;De Lannoy et al., 2006) for the ET values and applied them to verify the ensemble
as in Gelsinari et al. (2020). We will clarify this in the revised version of the manuscript.

That’s a step in the right direction, but you have not reported the results of your en-
semble verification either. If you go into details about what metrics you use, also report
what values you obtained and how they can be interpreted.

2 - Model Choice, Conceptualization, and Set-up

The Reviewer asks why we did not use HydroGeoSphere, or the MODFLOW EVT or
UZF packages.

Despite its limitations, MODFLOW is a very commonly used model, particularly in
groundwater management. This project was developed to underpin and support exist-
ing MODFLOW groundwater management models in the South East and many other
parts of Australia. We therefore focused on which conceptualisation of the unsatu-
rated zone is most appropriate to couple with MODFLOW. We will add details on this
in the revised manuscript to justify the selection of the model. We did not use the
MODFLOW EVT or the ETS packages as they do not account for more complex re-
lationships between depth to groundwater and both evapotranspiration and recharge
(Doble and Crosbie, 2017).

This is a valid decision, and it’s good you want to add details. But your manuscript
sets out to explore which degree of complexity is required in order to reproduce the
UZ dynamics – and their influence on WT – adequately (see your manuscript title and
abstract). This is exactly the reason why you should compare it to pre-existing, in-
built solutions! Using the simplified integrated UZ modules of MODFLOW would be a
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perfect background to contrast what value (if any) apparently more sophisticated UZM
such as SWAP or UnSAT add to the groundwater models, and at what expense they
come. This would be a great opportunity to show what your approach can provide, and
at what cost it comes (of course provided you fix the GWM first, else the results are
unrepresentative of realistic conditions).

As it stands, you essentially present two different variations of a highly expensive
SwissArmyHammer™ (“the high-powered tool for all your hammering needs”) – the
1000 dollar and the 2000 dollar variants – but fail to show which value they would
provide over the standard run-of-the-mill hammer we already have in our workshops.
That’s not very good marketing.

The UZF1 package, which is already coupled to MODFLOW, would be an alternative
to SWAP. However, SWAP solves the full Richards equation, while UZF1 solves a kine-
matic wave approximation of the Richards equation. Also, SWAP is considered a better
model for the soil-water-vegetation interaction (Vereecken et al., 2016), an important
aspect when modelling vegetated areas. SWAP combines detailed modules on soil
water flow, root water extraction, vegetation development and evapotranspiration. The
model has been extensively applied in scientific research (https://swap.wur.nl/).

Certainly, but as I already said above: your manuscript sets out to gauge what degree
of complexity is required. In groundwater flow, you could theoretically attempt to resolve
flow on the pore scale, but in most applications little value is gained by doing so. More
realism in the UZM always sounds nice, but in practice we have to make trade-offs. The
more complex the model, the fewer ensemble members and the less fine resolution
(temporal or spatial) you can afford. In the end, the advantages gained by coupling to
a more sophisticated UZM may not be worth it.

To see how much SWAP really adds, you might compare it to HGS instead of MOD-
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FLOW, which also solves the full Richard’s equation and simulates both the vadose and
phreatic zone, requiring no external coupling. Again, you are attempting to improve on
something which might already have a more efficient pre-existing solution. Show the
reader what value your coupling adds over what already exists (in terms of prediction
fidelity, versatility, or computational effort) so that she or he may make a more informed
decision.

Your groundwater model is highly unrealistic, its coupling with the UZM likely extremely
exaggerated (as hinted by the need to calibrate both parts to avoid ‘poor filter perfor-
mance’), which invalidates the results you obtain and the conclusions you draw from
it.

We disagree with this statement and we address all the remarks the Reviewer made in
relation to this issue below.

I thank the reviewers for addressing these points and will also reply below.

...with the groundwater model, I take issue with the decision to resolve a 3 km by 1
km model domain with only three numerical cells (plus two prescribed-head boundary
cells). This has a number of highly questionable consequences: If you wish to resolve a
hydrogeological depression, choosing such a coarse spatial resolution severely affects
which drawdown curve you obtain

The scope of this manuscript is not to resolve a hydrogeological depression in space.
The observation of water table levels presented are at a single location. We recog-
nize that the model conceptualization phase is a fundamental aspect of any numerical
simulation. The simple model domain is a result of numerical experiments which have
shown us how it is possible to obtain similar water table dynamics with both a fine
(20cells in the x-axis) and coarse (5 cells in the x-axis) model domain. Figure 1 at the
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end of this document shows the water table fluctuation, calculated with Configuration-
1,in the cell of the two domains simulating a similar location in the same study area.
Itis worth to say that the run-time for the fine set-up is roughly 5 times larger than for
the coarse set-up. If we were to resolve the cone of depression induced by the root
transpiration we would have certainly decided for a different conceptualization.

But you do resolve a cone of depression induced by root transpiration, whether you
set out to do so or not. This is literally the only thing your model is doing. You assign
two constant fixed head boundary conditions, so any water table fluctuations you sim-
ulate in the centre of your observed model domain is the direct result of a water table
depression induced exclusively by your UZM.

Your manuscript even explicitly states that you also have to consider the water tables
as part of the calibration objective function in order to obtain reasonable results (more
on this below). Since you calibrated both models jointly, any conceptual errors from
grid resolution and inadequate boundary assumptions do not remain confined to the
GWM. During calibration, these errors propagate to the UZM as well – a phenomenon
known as parameter surrogacy (although in this case “model surrogacy” would be more
fitting).

Furthermore, your statement here seems to conflict with the objective you set out ear-
lier: to apply the resulting coupling to a regional flow field. In this setting you will have
to reproduce a hydrogeological depression in space – else your UZM would not be
required for the GWM at all.

It is, however, good to see that the coarse spatial resolution does not seem to have a
major impact on the predictions.

We purposely did not use a very fine resolution because (1) the MODIS-CMRSET
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data are already at a 1 km resolution and (2) the intention is to apply this work at a
regional scale, thus prohibiting very small cell sizes. The work is the first step toward
the application of the EnKF to large-scale groundwater modelling.

As mentioned before, I recommend stressing the intention to use this in a regional-
scale model more strongly in the manuscript. And if that is the case, why did you not
test the model on a limited regional scale with multiple observation wells and a limited
number of interacting cells (Limiting yourself to, say, a 20x20 grid)? The advantages
you reap by confining your study to a small, well-defined region (namely somewhat
detailed knowledge of the UZM-relevant parameters) is squandered by calibrating your
system to a groundwater model with poorly justified, unrealistic boundary conditions.

The Reviewer says that with the given boundary conditions, "In essence, you artificially
prevent that any other external influence (say, regional irrigation water extraction during
summer, regional water table fluctuations due to seasonal variations in precipitation
and ET, etc.)"

The location of the study is in the centre of a forestry block, more than two kilome-
tres from any groundwater extraction, and was originally selected for a previous study
to specifically look at the impacts of forestry on groundwater (Benyon et al., 2006).
Groundwater use (not total ET, but ET from a groundwater source) by forestry (Pinus
radiata and Eucalyptus globulus) for this region, where the water table was less than6
m below the surface (and soils were light to medium textured and groundwater was not
saline) was estimated by Benyon et al. (2006) to be on average 435 ML/yr (range108–
670 ML/yr) for a 1 km by 1 km fully forested cell. This exceeds by around 2 orders of
magnitude the maximum groundwater extraction rate from a single bore for the region,
albeit on a diffuse scale rather than point scale. Working on the assumption that there
is not likely to be more than one or two high extraction bores in a 1 km square area,
water use by forestry is seen to be significant.
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For this reason, and from personal communication with water managers in the region,
it is a valid assumption that the impact of recharge and transpiration from forestry on
groundwater would far exceed the impacts of extraction through pumping and other
temporal variations.

Again, the fact that the forest is the exclusive cause of WT fluctuations is a very strong
claim which you have not sufficiently supported with data. This shouldn’t be particularly
hard to do. Australia has a very dense and for the most part publicly accessible network
of groundwater wells:

http://www.bom.gov.au/water/groundwater/explorer/map.shtml.

I have taken the liberty to select a few wells near your field site (see attached images
at the end of the document, Figure 1 and Figure 2) and took a look at the water table
dynamics. Unsurprisingly, even though the well I show in the Figures is about 2 km
away from the forest, it shows a clear seasonal water table trend.

The problem is that the water table dynamics you observe are not exclusively lo-
cal. They depend on local and regional recharge, local and regional water extraction
(plant-based or anthropogenic), evaporation, exchange with rivers, and simple physical
groundwater flow – effects which occur and accumulate over hundreds of kilometres.

If your background is in vadose zone modelling, it may seem natural to neglect lateral
flow (thus permitting one-dimensional, pixel-based approaches), as they are more or
less justified in the unsaturated zone, but this assumption is simply not valid for ground-
water flow. I wish it were – it would allow hydrogeologists to employ the same elegant
localization schemes meteorologists are using. Unfortunately, local changes to the
groundwater levels propagate and accumulate non-trivially in all directions.
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In your case, the assumption of a constant head boundary condition is demonstrably
not supported by nearby GW observations. I recommend revising the groundwater
model significantly: make it properly 2-D (add cells in each horizontal direction, so you
can consider regional flow in 2-D) and assign time-varying prescribed head boundary
conditions according to the regional water table dynamics in all directions from the
forest. Only then can the reader appreciate how much value the UZMs add to the GW
dynamics.

In an uncalibrated, coupled model the influence of actual ET on the water table would
be likely negligible (there is a reason why hydrogeologists often neglect the UZ).

Where groundwater is deep, this is a reasonable assumption. ET is exclusively from
infiltrated rainfall in the unsaturated zone, and not supplied by the groundwater. Most
of the surface processes are damped by the large lag time between infiltration and
recharge. However, where groundwater is within plant rooting zones, more specifically
lower than 10 m from the surface with a range of 6 m 20 m (Crosbie et al., 2015,Benyon
et al., 2006), particularly in semi-arid areas, ET can have a significant effect on the
water table, as demonstrated in Vincke and Thiry (2008), Benyon et al. (2006)and
Eamus et al. (2015).

Yes, but what I meant in this context is far more specific. The critical word in your
response is ‘CAN have a significant effect on the water table’. It doesn’t have to. If
local (!) AET is indeed the driving force for the WT fluctuations you observe, you
would not have to calibrate the groundwater model as well. You could simply calibrate
your UZMs, and apply the resulting AEM estimations as negative recharge forcing to a
groundwater model using prior (i.e., uncalibrated) hydraulic parameters.

The water tables would of course fluctuate a bit, maybe even significantly, but likely not
enough to reproduce the correct WT dynamics. I assume this is what happened in your
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unreported preliminary experiments, before you had to add WT dynamics as a part of
your multi-objective function. As a consequence, you must calibrate both the UZM and
the GWM – because, as I stressed too many times already, local AET is not the only
source of WT fluctuations. Since you assume that it is, the GWM must meet the UZM
halfway to produce the right response for the what are likely largely the wrong reasons.
And, considering your WT results, even this does not seem to be enough. Again, the fix
is simple: create a more representative model of regional dynamics (e.g., 20x20, which
is still very small) and assign time-variable head boundaries at the edges. Maybe your
UZM wouldn’t have to fling the WT as strongly around as it does at the moment, and
small nudges might be enough.

Since you dynamically readjust the resolution of your UZM: Do you account for hys-
teresis effects? How thick are these layers? Are you assuming the water tables as
blockwise-constant or do you interpolate between them?

We do not account for soil water hysteresis effects, as this has a minor effect on re-
gional groundwater recharge simulation. The layer thickness for the UnSAT model is
fixed to 10 cm. We assume that the water table is measured at the centre of a model
cell and blockwise-constant.

Fair enough, thank you for the information. This might warrant a small comment in the
manuscript, though.

why is the root depth so dramatically different between the two configurations? This
should be a system property, and as such be constant between the two configurations.
It makes no sense to assume two different root depths if you want to compare the two
models.

As the two UZM are conceptually different, they dissimilarly account for this parameter.
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Specifically, as UnSAT does not simulate the capillary fringe, the direct extraction from
groundwater is possible with a root depth that allows roots to reach the water table.
Therefore the root depth in UnSAT is larger than for SWAP. We will add a comment on
this in the revised version of the manuscript.

This sounds more like both models account for the parameter the *same* way, but (in
yet another instance of parameter surrogacy) the UnSAT UZM uses this parameter to
compensate for an omitted effect – in this case, capillary rise. If we cannot trust the
parameters of the UZM to represent the processes they are supposed to represent,
what do we stand to gain from choosing a potentially more ‘realistic’ representation of
the UZ dynamics? This could warrant greater discussion.

3 - Data Assimilation

The Reviewer makes a number of remarks regarding the data assimilation algorithm,
which can be summarized as follows

The Reviewer states that we may not have understood the theoretical foundations of
the DA algorithm because we state that the EnKF was used because of its ability to
deal with highly non-linear systems, and encourages us to revisit the derivation of the
EnKF.

Evensen (1994) developed the EnKF to deal with nonlinear systems, by replacing the
propagation of the error covariance in the Extended Kalman Filter by an ensemble-
based calculation. He stated in the abstract of his paper: "The proposed method can
therefore be used with realistic nonlinear ocean models on large domains on existing
computers". The difference between the Discrete Kalman Filter (as originally derived
for linear systems by Kalman), the Extended Kalman Filter and the Ensemble Kalman
Filter is the calculation of the error covariance. The only one in this family of filters that
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does have a derivation is the original DKF.

As I stated in my original response, being able to deal with nonlinear systems, and
using the algorithm *because* a system is nonlinear are two different things entirely.
Simple example: In a pinch, a cooking pan can be used to dig a hole, but choosing
a pan (over a spade) *because* you want to dig a hole is still the wrong decision.
Choosing a pan because you cannot afford a spade, however, can be a valid choice.
At the moment, it sounds like you extol the pan for its great digging properties.

(Replace all instances of ‘pan’ with EnKF and ‘spade’ with particle filter/variational ap-
proaches of choice)

And, as you correctly stated, the key is the calculation of the error covariance, which
is only sufficiently representative of the underlying probability distribution if the prior is
sufficiently Gaussian and the forecast sufficiently linear. Otherwise, these properties
aren’t retained and eventually lost.

There are too many publications already which are vague on the properties and lim-
itations of the EnKF, resulting in a lot of derivative studies from other authors which
learned the algorithm from such studies without fully understanding the (admittedly not
very intuitive) source material. It pays to be precise. I stand by my initial request that
you should report the exact implementation of your EnKF application as well as the
assumptions and simplifications you introduced. Both are still missing.

The Reviewer states that the EnKF can only use nonlinear models because it fits a
Gaussian distribution to the ensemble after the forecast.

The EnKF does not fit any distributions, it updates state variables. Also, a filter does
not use a model, it is the model that uses the filter.
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Yes, the EnKF updates state variables under the assumption of Gaussianity (or at
least the assumption that mean and covariance [as estimated from the ensemble] are
sufficient statistics for the Bayesian update). Per definition, this assumption is only true
for Gaussian distributions.

No, the model is part of the filter, not the other way around. This is easy to check. A
model can provide predictions without a filter. A filter, on the other hand, does not work
without some kind of model (or, more precisely: a forecast distribution). This is why I
recommended revisiting the underlying theory. Despite how it is often treated in some
disciplines, the EnKF is decidedly *not* some heuristic optimization algorithm. Funda-
mentally, the EnKF is solving a filtering problem, the sequential Bayesian inference of
state uncertainty. In a Bayesian framework, uncertainty represents belief or knowledge
about a system variable.

https://en.wikipedia.org/wiki/RecursiveBayesianestimation

The model is what establishes a causal relationship between successive time steps,
allowing you to salvage some (but, without a perfect model, never all) information from
the previous time step to inform the states at the next time step. A model can be
as simple as “do nothing (deterministic identity), add noise” to a complex “coupled
GWM+UZM, add noise”. Without a model, none of the information at previous time
steps could be salvaged, and the filter would essentially just solve completely disjointed
Bayesian inference problems. As a consequence, it would not constitute a filter in the
classic sense.

In essence, a filter progresses like this:

state prior at time zero stochastic state forecast from t=0 to t=1 (increase entropy) state
assimilation step at time t=1 (decrease entropy) stochastic state forecast from t=1 to
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t=2 (increase entropy) state assimilation step at time t=2 (decrease entropy) etc.

This is essentially an ebb and flow of information. What makes the entire thing a little
bit more complex is that the deterministic model can also affect entropy depending on
whether its dynamics are dissipative, chaotic, or conservative. Part of the reasons why
the EnKF performs a lot better in the atmospheric sciences is that their systems are
chaotic, and hence already naturally add entropy to the system during the deterministic
forecast. Most hydrologic systems are dissipative and hence necessitate large forecast
errors or fudging the assimilation step (e.g., through localization, damping, etc.) in
order to retain ensemble spread against the combination of Bayesian inference and
deterministic dynamics both removing entropy.

The Reviewer suggests using the particle filter.

We have experience with Particle Filters, and our experience is that a much larger
ensemble size is required than for the EnKF, which is one of the reasons why we
decided to use the latter for this study.

Computational limitations are an acceptable pragmatic reason for using the EnKF in-
stead of theoretically more justified approaches. As mentioned above, I would recom-
mend that you motivate your choice of the DA algorithm this way, instead of justifying it
with the nonlinearity of your system. This makes little sense.

The Reviewer argues that we should not justify the ensemble size with examples from
literature.

Enough papers have been published on this issue. For soil moisture assimilation, it has
been shown that in land surface model data assimilation, an ensemble size of 12(Yin
et al., 2015) or even 10 (Kumar et al., 2008) is sufficient. Based on our experience with
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models of this level of complexity, an ensemble size of 32 is more than sufficient.

Then justify the ensemble size through the allegedly comparable complexity of the
related studies you cite, not just the fact that someone else used this ensemble size for
some other model. It’s a simple fix.

The Reviewer argues that the assimilated variable should be in the state vector and
that the observation matrix should contain zeros and ones.

The main advantage of the EnKF is the possibility of assimilating proxies of state vari-
ables that are nonlinearly related to the state variables. Examples are the assimilation
of brightness temperatures or radar backscatter values into land surface models to
update the soil moisture simulations, or the assimilation of streamflow into flood fore-
casting models to update the modeled soil water content.

Yes, you can use nonlinear observation operators to relate your observed variables
deterministically or stochastically to the states you are predicting.

But that’s not what you are doing, is it? As far as I can see, your UZMs predict AET
*jointly with* soil moisture, as AET is required to close the deterministic mass balance.
Similarly, the remote sensing data you assimilate has already been converted to AET
estimates.

You don’t require a proxy, you are simulating the state of interest directly. At least you
state so in line 115-116 for the UnSAT-UZM, and according to Figure 2 for the SWAP-
UZM. As such, AET should be part of the state vector and can be extracted with a
matrix of zeros and ones (or any other linear combination, unlikely to be relevant in
your case). For the purpose of data assimilation, it does not matter that AET at time
t may not directly predict AET at time t-1, as it does depend on other state variables
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which connect the two.

The examples provided by the authors may reveal some confusion on their part: An
example of a simple nonlinear observation operator would be

f(x) = x2

The examples you mentioned seem to describe two different systems: converting radar
backscatter values (which no model I am aware of predicts directly) deterministically
into a physical variable the model *is* predicting would be an example of a (possibly
nonlinear) observation operator. In this case, the physical variable would be a proxy
for radar backscatter, or vice versa. Another example would be rise in a mercury ther-
mometer, which can be (more or less linearly) transformed into a temperature estimate.

However, all flood forecasting models I am aware of predict a state corresponding to ob-
served streamflow directly (the clue is in the name). This does *not* mean that stream-
flow is a proxy for soil moisture. In the example you mentioned, soil moisture would
be a hidden (i.e., non-observed) state, which in the EnKF can be updated through the
cross-covariances between streamflow (the assimilated state) and soil moisture (the
hidden state).

Again, let me re-iterate what I have said before: please show explicitly what your EnKF
algorithm is doing. To meet you halfway, and better illustrate my bewilderment about
your (as yet unreported) implementation, I have attached a small Python script for a
simple, standard EnKF with this response, which demonstrates the properties I de-
scribe here. If your algorithm differs significantly mechanistically from the one I have
shown, show us in what ways it differs and how this is justified.

The Reviewer states that parameters should not be disturbed when generating the
ensemble.
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The essence of an ensemble is that all members have different properties. Reichle et
al. (2002), who introduced the EnKF to the hydrological sciences, explicitly state that
parameters can be disturbed or that even different models can be used to estimate the
error covariance

You failed to understand my comment, and simplified my response significantly. First
and foremost, I did *not* simply state that the parameters should not be disturbed.
In my initial review of the manuscript, I described three different scenarios in which
model parameters are explicitly considered, two of which explicitly permit or even re-
quire initial variance in the parameters, and invited the authors to clarify which of these
configurations (if any) they ascribe to.

As I mentioned in the original review, and repeated here, the EnKF solves a filtering
problem. At its core is a sequential Bayesian inference which seeks to infer a specific
probability density function. If you make any changes to the EnKF, show us what this
means in terms of the Bayesian inference. In your case, I do not see what meaning the
resulting system could have. To aid the authors in future attempts to clarify it, I have
provided a simple figure (Figure 3) illustrating what a standard state-only EnKF and an
augmented state vector EnKF are inferring, and how the authors’ approach does not
seem comparable.

The key difference is that in both the classic and state-vector augmentation EnKFs
particles share the same space (in the former case: full state space, conditioned on a
specific slice of parameter space; in the latter case: a combined space with all uncer-
tain state and parameter dimensions). In your case, each ensemble member is located
in its own space (due to conditioning each sample on different parameter values), yet
you somehow infer a joint pdf. Clarify this, please.

I would also like to note that the Reichle et al. publications only refers to this possibility
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in their outlook and did neither use nor detail this approach in the manuscript provided,
or whether they would have implemented this the same way you did. If you use this
method, I encourage you to include a short derivation of what pdfs you are exactly
approximating with your ensemble. It is dangerous to make changes to a Bayesian
inference algorithm without being completely certain what they would entail. Help the
reader understand what the consequences of your proposed solution are.

The Reviewer refers to Hendricks-Franssen and Kinzelbach (2008) for an explanation
on how to update parameters and states.

The main point of the paper that is referred to is error covariance inflation, which is
necessary because the ensemble is inadequately generated and over time be comes
too narrow. Our approach explicitly avoids this problem.

Yes, the paper focuses on error covariance inflation, but it provides a very nice, concise
overview on how to infer states and parameters jointly. This might keep you from having
to initialize your parameters with a calibration using the states you want to predict later,
which is already quite a dark grey area as far as Bayesian inverse crimes go. As a nice
side-effect, it gives you estimates of parameter uncertainty.

No, error covariance inflation is not only required because the ensemble is inadequately
generated. The issues the authors describe in this paper are a lot more fundamental
than that: you will almost always have an insufficient ensemble size, and as a conse-
quence you will get spurious correlations. ‘Adequately generating’ your ensemble can
at best help to ensure you do not end up with a geometrically degenerate ensemble
(i.e., dimensionality of the support of your ensemble ≤ ensemble size-1 or dimension-
ality of state space, whichever is smaller). Further issues can arise from the fact that
the assumptions of linearity and Gaussianity may not be met.
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Yes, your approach avoids this issue, but this alone is not worth much if you are not
showing what this means in terms of Bayesian inference. What consequences does
it have for the underlying pdf?. Forecast errors are supposed to compensate for the
imperfection of the numerical model, and that’s the reason why people add indepen-
dent noise onto the forecasts: so that the stochastic forecast can obtain states the
deterministic model could never predict.

As far as I can see, you are not really making a stochastic forecast, your ensemble
merely spreads because each particle has its own deterministic attractor due to the
fact that you condition each particle on a different parameter set. This is not the same
as a stochastic forecast. All other approaches I have listed above add noise to the state
(and, optionally, parameter) variables for a reason. This can upset mass balances (and
has to: in case the mass balances are wrong). If that’s an issue, the approach I men-
tioned by Reichert and Mieleitner, for example, circumvents this issue by randomizing
the parameters (and thus the mass fluxes between different state variables) instead.
Your approach is the only one which does not seem to be stochastic at all. Explore this
in detail, or revisit the fundamental assumptions to see if they make sense.

The Reviewer states that figure 10 is comical, and that there is something wrong
with the DA algorithm, ecause the soil moisture does not change while the AET does
change, and that this means that the ensemble has collapsed

The AET is the integrated response of the root system. The DA system has lowered
or increased the water table level, and thus layers are added to or removed from the
unsaturated zone. This will modify the modeled AET. This lowering or raising of the
WT means that the ensemble has not collapsed. This result does not mean that the
DA system doesn’t work, but, conversely, it proves that it does work.

Furthermore, here the Reviewer states that the ensemble has collapsed. Towards the
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end of the review, the statement is made that the settings (through selective parameter
perturbation) seem to have been deliberately designed to inflate the WT uncertainty
disproportionally, amplifying the Kalman update through the cross-covariances. These
comments are contradictory.

No, these comments are not contradictory, and I can show you why. As I mentioned
above already, the EnKF updates hidden states (soil moisture) through the cross-
covariances with observed states (AET). This has two consequences:

a) the only time the EnKF does not update hidden state variables is if the correlation
between both variables is zero, or if the uncertainty of both state variables has (virtu-
ally) collapsed. Since I heavily doubt that soil moisture is uncorrelated with AET*, the
ensemble must have collapsed in the corresponding state space dimensions.

b) if the uncertainty of a hidden variable is larger than the observed one and both vari-
ables correlate (a pre-requisite for updating hidden states), then the magnitude of the
update step is amplified for the hidden variable. Think of a lever, with the length of each
side corresponding to the uncertainty in the observed and hidden state dimensions.

Since seeing is believing, I have attached a Python script showing a single EnKF anal-
ysis step for a primitive system with only two states. State 1 is observed, State 2 is
hidden. The uncertainty of State 1 has practically collapsed (i.e., the observed data
point lies significantly outside the ensemble). To reproduce the issue I described in
point (a), simply lower the standard deviation of the hidden variable to a value similar
to the observed variable (thereby reducing the magnitude of the update of the hidden
state), or set the off-diagonal entries of the covariance matrix to zero (thus prevent-
ing an update of the hidden state altogether). You will see that hidden state updates
are negligible if the uncertainy has collapsed to a similar degree than the observed
variable, and that the hidden state updates are zero if there is no correlation.
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To see what I describe in point (b), play around with the uncertainty of the hidden
state: the larger its uncertainty, the larger the hidden state update. Your setup seems
to always ensure that there is a large ensemble spread of the WT, hence augmenting
the Kalman update effect on the WT predictions. Increase the standard deviation of the
hidden variable, and the magnitude of the hidden state update will increase accordingly,
while the update for the observed state remains unchanged.

If neither of these effects above is responsible for the failure to update the soil moisture
predictions, then I encourage the authors to demonstrate what exactly is happening.

*even if soil moisture and AET were uncorrelated, it is unlikely that you would repro-
duce this with an ensemble of only 32 particles. That’s the problem with spurious
correlations, and the motivation behind localization approaches.

4 - Final remarks

With this document we are expressing our disagreement with the reviewer’s remarks
about the methods adopted in the manuscript, reinforcing the appropriateness of our
choices and the theory underpinning the experiments. However, in this reply we are
not going to provide a response to the remarks on the “Results and Discussion” and
“Conclusion” sections, as we have shown the Reviewer is basing these comments on
inexact assumptions.

I thank the reviewers for their comments. Unfortunately, simply stating disagreement is
not a productive way to address criticism raised during a review. Several points I raised
were not addressed at all, and those were not confined to the “Results and Discussion”
and “Conclusion” sections. A detailed description of how exactly the authors implement
the EnKF, and what the novel assumptions made therein entail, is still entirely missing.
The governing equations of the UZM should be reported. A comparison to pre-existing

C30



methods would be a valuable addition. And showing the ensemble correlation matrices
can aid the troubleshooting of your DA algorithm.

In a bid to help you improve the manuscript for a future re-submission, I have gone to
great lengths to clarify my comments in as simple terms as I can, and demonstrated
where the authors seem to err in several aspects of this study.

In general, the tone of the review and the use of words such as “fraudulent”, “fudging”,
“comical”, etc., are not appropriate for a review for a scientific journal. Certainly not for
a review in the public domain. It is also not appropriate to state that the authors do not
understand the methods that they are using, while is the reviewer that appears not to
have understood the applied methods.

It was certainly not my intention to disparage the authors. It is, however, important to
stress how certain sections of this manuscript can be received during an initial read-
ing. The reader cannot know the intention of the authors, so when the authors make
poorly justified assumptions which have the potential to bias the results in preferential
directions, and fail to draw attention to this bias, alarm bells must be set off. Similarly,
declaring that data assimilation improved the simulation of soil moisture and then pro-
ceeding to show a figure which shows virtually no difference between the open loop
and the DA run [Figure 10, "However, the assimilation improved the SM content of the
bottom part (Figures 10[g] and [h]), for which the best results are obtained (i.e. 0.015).
The updating of the entire soil column is a positive result of the assimilation of ET rates,
as opposed to the assimilation of remotely sensed SM values."] is a quite serious case
of over-selling what are not great results. This can be amusing during first contact:
You read that DA improves soil moisture predictions (not entirely unexpected), then
scroll down to a figure which shows that virtually nothing changed relative to the open
loop run. Since I trust the authors did not intend their manuscript to be received this
way, it is worth pointing out this probably unintended effect. I sincerely hope that the
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code snippet I provided will aid the authors in gaining a better understanding of how
the (standard) EnKF updates work and support them in revising the setup of their DA
algorithm. If for whatever reason their approach functions differently, I hope the exam-
ple provided alerted the authors to the existence of an alternative interpretation of the
EnKF, and stresses the importance of reporting exactly what they were doing.

Don’t take criticism of your work as an insult, use it as an opportunity to improve and
clarify your manuscript. If I questions whether you understood the DA algorithm, take
this as an opportunity to show the world that you did: report your EnKF implementation,
or write a small synthetic example (as I did) to demonstrate where my assumptions are
wrong. This is a review, not trench warfare. Don’t just defend your points, engage with
the criticism raised.

Case in point: the boundary condition issue I mentioned here a few times. It can be
readily demonstrated to be unrealistic, with data freely available online – again, some-
thing that would have been your task which I had to do for you. Basing a publication
about the beneficial use of UZMs for GWMs on a model setup which can only create
WT fluctuations through local effects of a UZM is the hydrological equivalent of locking
a cat in a box for a week with nothing but a lettuce and 200 slugs. Sure, at the end
of the week the cat will have eaten the slugs to stave off starvation, but subsequently
declaring that “cats are the new secret super-weapon against garden pests” would still
be deceiving. The experiment may have yielded results which could be interpreted in
result of the headline, but the experiment itself was not representative of reality, where
cats make other choices of food. A similar effect might apply here. Refuting this crit-
icism would be pretty straightforward: simply create a new groundwater model, set
time-variable prescribed head boundaries from nearby wells, revise the DA assump-
tions, and see if the results are still significant and how much the UZM contributes.
Your work will be all the better and more relevant for it.
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All in all, I encourage the authors to adopt a less antagonistic stance in the future. I
understand that you may identify strongly with your work - it’s always good if scientists
are passionate about their work -, but criticism voiced during a review is not a personal
attack. Be honest about the limitations of your work and don’t force the reader to read
between the lines. Don’t omit critical information. Other scientists may want to base
their own work on your contributions, so make sure that the results you have obtained
are significant and that your assumptions well-documented.

Please also note the supplement to this comment:
https://hess.copernicus.org/preprints/hess-2020-252/hess-2020-252-RC2-
supplement.pdf

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-
252, 2020.
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Fig. 2. Figure 2
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Fig. 3. Figure 3
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