
Response to Anonymous Referee #1 
 

We summarized the response to Referee #1 to two main points: 1) the Ensemble Kalman filter applied to 

forward modelling and 2) the assumptions behind the choice of boundary conditions. 

1- We would like to start by clearly stating that way of discussing is not the intention of this discussion forum. Point 3 in 
the "General obligations for referees" for HESS states "A referee of a manuscript should judge objectively the quality 
of the manuscript and respect the intellectual independence of the authors. In no case is personal criticism 
appropriate." Remarks such as “This also suggests that the authors may not have understood the EnKF" in the first 
review is clearly personal criticism. Had no personal remarks been made, then the statement in the second review 
“Don't take criticism of your work as an insult" would not have been necessary. Personal comments get taken 
personally. Furthermore, the code of conduct of EGU states “Reviewers are expected  to provide a brief, clearly 
written, constructive and unbiased feedback in a timely manner." This is clearly not the case here. Had the reviewer 
provided a structured, objectively and concisely written list of dot-points instead of a rant, as good reviews do, the 
discussion would have been much more effective. Responding to such an excessively long review takes far too much 
time. 
 
We will briefly recall here how nonlinear operation systems work. We will not specify the meaning of each 
variable here, assuming the reviewer knows what they are, and report the key equations required to 
explain what we did. We start from the state update equation 
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where the gain is calculated as: 
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The two matrices products in the Kalman gain are: 
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The state and observation-simulation deviation matrices are written as: 
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Pauwels and DeLannoy (2009) provide an in-depth analysis of what this means, which we will summarize 
here. Assume one state variable (x, for example, catchment wetness) and one observation (y, 
streamflow). Entering Equations 3 and 4 into the expression for the Kalman gain leads  to: 
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Assume the observation error is zero. The Kalman gain then becomes: 
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This is very simply a linear regression, across all ensemble members, between the observation and the 

state. Thus, if the model predicts different streamflow than is observed, the state update becomes: 
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In other words, the gain maps the difference in observation space to state space. If the model 
underestimates the streamflow, Equation 7 will increase the modeled catchment wetness (if the 
covariance between catchment wetness and streamflow is positive, which it usually is). If the model 
overestimates the streamflow, Equation 7 will reduce the modeled wetness. So, yes, streamflow is a 
proxy for the wetness, because you update the catchment wetness without observing it. If the 
observation error is nonzero, the update will be reduced. For multiple observations and state variables, 
similar reasoning can be made.  
 
This is the way assimilation of brightness temperatures or backscatter values or streamflow into 
hydrologic models works. The observation system 
 

𝑦𝑘 =  ℎ (𝑥𝑘) + 𝑣𝑘     (8) 

 

in this case is a radiative transfer model (for brightness temperature assimilation), a backscatter model 
(for backscatter data assimilation), or the hydrologic model (for streamflow assimilation, as just 
explained). Thus, the model does not have to directly predict the variable it assimilates. They can be 
calculated through the observation system (Equation 8). 
 
What one CANNOT do, as is unfortunately done frequently in streamflow assimilation papers (and also 
suggested by the reviewer), is to enter these values in the state vector, simply because they are not state 
variables. One of the two prerequisites of a correct system description is that the system must be 
controllable. This means that an external input needs to be able to move the internal state of a system 
from any initial state to any other final state in a finite time interval. If discharge is in the state vector, at 
the beginning of the time step one can assign any value to it; regardless of the forcing, it will have no 
impact on the soil moisture content and streamflow at the end of the time step. We know no hydrologic 
models for which streamflow is an initial condition. Another prerequisite is that the system must be 
observable, meaning that all state variables must be able to be inferred from the observations. The two 
prerequisites are very closely linked to each other. 
 
Because flood forecasting models (especially the ones that are used for streamflow assimilation) usually 
have a very limited amount of state variables, when streamflow is entered into the state vector, problems 
with these two prerequisites usually do not occur, even though they are not met. But in a more 
complicated system such as ours, working with a system that is not correctly described can lead to 
significant problems, most likely excessive state updates. 
 
In the case of assimilating backscatter values, which the reviewer correctly points out no hydrologic 
models directly compute, how would this approach work, using an observation matrix with ones and 
zeros? How can a model enter a variable it doesn't compute in the state vector? Same question for 
assimilating brightness temperatures. The reason for the confusion when assimilating discharge is that, in 
this case, the model does directly compute the variable that is assimilated. And the poor system 
description does not lead to problems because of the limited amount of state variables.  
 
Reading the second review, we believe that the reviewer assumes that we are updating the parameters 
(which we do not) or that we disturb them at every time step (which we also do not). This is not clear. The 
pdf we infer is simply  P (𝑥𝑘|𝑥𝑘−1 ,𝑦𝑘). Disturbing initial parameter values is common practice in data 



assimilation with the EnKF (most of the papers listed below and most others). There is no parameter 
space in the Kalman filter equations, only state and observation space. This makes the last page in the 
second review very confusing. 
 

2- In order to justify the assumptions behind the choice of the fixed boundary conditions (BC), we compared 

the water table (WT) dynamics of the bore used by the Referee to another, more appropriate, bore. To 

minimize the BC influence on the simple domain conceptualization, we have purposely chosen a location 

and an aquifer where the time variability of BC was low. Figure 1 compares the WT dynamics (in red) of a 

bore located in the center of a forestry block, more than two kilometers  from any groundwater 

extraction, and the bore selected by the Referee (in blue), which is monitoring the levels of an incorrect 

aquifer. Constrained by the availability of the observations, the comparative analysis of the WT dynamics 

is only possible during the first part of the 70s, but a similar trend has been reported for other bores with 

more recent observations.  

 

Figure 1 - Water level dynamics for two bores. SWL is distance from the surface.  

As the WT dynamics at the bore selected by the referee is driven by conditions that are not representative 

of our simulation, a large “seasonal” fluctuation of the WT levels (in the order of 2 meters) is observable. 

Additionally, the aquifer monitored by this bore is classified as “Qpcb”, part of the Pleistocene 

Bridgewater Formation. This aquifer is described as “formed by Aeolianitic calcarenite, a partially 

calcretised ancient dunal system”. Further description of the aquifer characteristics reports that it 

contains minor quantities of groundwater, unconfined to semiconfined aquifers, often containing small 

fresh lenses that provide small stock/domestic supplies. This bore is also close to anthropogenic activity. 

In Figure1, the WT dynamics shown in red refers to a bore screened in correspondence to the aquifer 

reported in our study, which is classified as “Thgg”, consisting of grey marl with coarse bioclastic 

presenting frequent chert band. In the figure, the substantial differences in the WT fluctuations of the two 

bores are also indicated by the solid lines that mark the interval within one standard deviation (σ) from 

the means. For a large part of the observed dataset, the seasonal fluctuation of this bore is in the order of 

10-30 cm, making it hard to distinguish regional patterns from the effects of localized net-recharge. 

Therefore, we decided to maintain the BC head elevation constant over the simulated period.  
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