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Abstract. End-Member Mixing Analysis (EMMA) is a method of interpreting streamwater chemistry variations and is widely

used for chemical hydrograph separation. It is based on the assumption that the streamwater is a mixture of varying contribu-

tions from relatively time-invariant source solutions (end-members). These end-members are typically identified by collecting

additional measurements of candidate end-members from within the watershed. This technical note introduces a complemen-

tary, data-driven method: Convex-Hull End-Member Mixing Analysis (CHEMMA), to infer the end-member compositions5

and their associated uncertainties from the streamwater observations alone. The method involves two steps. The first step

uses Convex-Hull Non-negative Matrix Factorization (CH-NMF) to infer possible end-member compositions by searching

for a simplex that optimally encloses the streamwater observations. The second step uses Constrained K-means Clustering

(COP-KMEANS) to classify the results from repeated applications of CH-NMF to analyze the uncertainty associated with the

algorithm. In an example application using the 1986 to 1988 Panola Mountain Research Watershed dataset, CHEMMA is able10

to robustly reproduce the three field-measured end-members found in previous research using only the streawater chemical

observations. It also suggests the existence of a fourth end-member. Further work is needed to explore the constraints and

capabilities of this approach.

1 Introduction15

End-Member Mixing Analysis (EMMA) has been used to interpret observed streamwater chemical concentration profile vari-

ability in terms of time-varying contributions from end-member "sources", each supplying water with a constant concentration

profile. This method has been applied in many different hydro-climatic and geology settings (Bernal et al., 2006; Hooper et al.,

1990; Li et al., 2019; Lv et al., 2018; Jung et al., 2009; Neill et al., 2011). EMMA has also been used to distinguishing sources

of dissolved organic matter in natural streams (Hur et al., 2006; Yang and Hur, 2014), specific conductance (Kronholm and20

Capel, 2015), and other combinations of streamwater attributes that can be assumed to have conservative mixing (Barthold
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et al., 2011).

EMMA assumes that the chemical composition of streamwater should be explained by the conservative mixing of a finite

set of temporally invariant end-members (Hooper et al., 1990). These end-members, therefore, are the most extreme points that25

define a range within which all streamwater observations are included. End-members are identified by collecting samples of

candidate source-water within the watershed. Inasmuch as the end-members are identified by candidate sampling, they depend

upon hypotheses that 1) identified end-members supply streamwater; and 2) identified end-member set may be incomplete.

Streamwater concentration are naturally correlated. EMMA utilizes the Principal Component Analysis (PCA) method to30

convert the naturally correlated streamwater concentrations into a set of linearly uncorrelated variables. Each new variable,

which is called Principal Component (PC), is a linear combination of the observed streamwater attributes. For a set of n vari-

ables, PCA first requires standardized observations (Xobs) by subtracting the mean and dividing the standard deviation. Then it

calculates a projection matrix Pobs, which transforms the from the observation space to the PC space, by decomposing the co-

variance matrix of Xobs. The transformed columns of Yobs (representing the n observations in the PC space) are uncorrelated,35

and each of which accounts for a portion of total variance:

Yobs = Xobs PT
obs. (1)

Standardized end-member candidates Xem can be projected into the PC space by the same projection matrix Pobs, and be

converted in the transformed space as Yem:

Yem = Xem PT
obs. (2)40

To find the parsimonious subset of appropriate end-members, EMMA then takes the information provided by PCA to deter-

mine the approximate dimensionality of the streamwater mixture and to screen end-members. In the PC space, appropriate

end-member candidates (Yem) are selected by choosing ones that tightly bound the transformed observations (Yobs) (Christo-

phersen and Hooper, 1992; Hooper et al., 1990; Hooper, 2003). However, the number of retained PCs is usually determined

using a heuristic, such as using the number of PCs that explain at least 1
n proportion of the total variance, because of the45

need to capture the variance. After subjectively determined the number of PCs, Christophersen and Hooper (1992) mathemati-

cally proved that one end-member more than the number of PCs is required to describe the rank of the streamwater observation.

There are limitations to this approach, that can result in spurious or incomplete source identification (Delsman et al., 2013;

Hooper, 2003; Valder et al., 2012; Yang and Hur, 2014). Specifically, 1) the composition of a source cannot be determined50

unless candidate end-member measurements are obtained that are representative of it; 2) determining the number of significant

PC is subjective; 3) EMMA is not able to deal with non-conservative mixing if non-linear structure are not provided to replace

the current simplex structure (Christophersen and Hooper, 1992).
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Here we focus on the first of these issues. In spite of EMMA’s wide applications (Ali et al., 2010; Bernal et al., 2006; Burns55

et al., 2001; Delsman et al., 2013; Hooper and Christophersen, 1992; James and Roulet, 2006; Jung et al., 2009; Li et al.,

2019; Lv et al., 2018; Neal et al., 1992; Neill et al., 2011; Valder et al., 2012), there is not a method to characterize missing

or unmeasured end-members. In this technical note, we focus on improving the identification of end-member compositions

and associated uncertainties. The method depends on the idea inherited from EMMA that the end-members are located near

the most extreme points that bound the observations in "mixing" space. This suggests that we might be able to interrogate60

the observational data projected in the end-member space to find such extremal points as end-members (even if no individual

samples fully represent that end-member). We propose a new EMMA approach, Convex-Hull End-Member Mixing Analysis

(CHEMMA), which is a data-driven method that characterizes the end-member chemical compositions, as well as an intrinsic

uncertainty component associated with the end-member. The ability of the method to infer end-members is demonstrated by an

application to the 1986 to 1988 Panola Mountain Research Watershed dataset published in Hooper and Christophersen (1992).65

2 Methodology

Convex-Hull End-Member Mixing Analysis (CHEMMA) applies a matrix factorization method, Convex-Hull Non-negative

Matrix Factorization (CH-NMF), along with a classification method, Constrained K-means Clustering (COP-KMEANS), to

find end-member compositions under EMMA assumptions. The CH-NMF method provides a numerical iterative algorithm

to search for end-member compositions that optimally enclose the streamwater observations in the PC space. The CH-NMF70

algorithm is run many times because each iteration of the search can result in highly non-unique optima. We apply the COP-

KMEANS method to classify the CH-NMF numerical outputs into clusters. The centroid of each cluster is assumed to represent

our best estimate of an end-member.

2.1 Adaption of CH-NMF to the EMMA problem

The concepts of "convex combination" and "convex hull" connect CH-NMF with the idea of end-member mixing. A convex75

combination is equivalent to a weighted sum. It is a linear combination of vectors where the weight associated with each vector

varies between zero to one, and the weights sum to one. If we construct a simplex, which means a highly dimensional polytope,

with some distinct vectors at its vertices, this simplex is a convex hull that encloses points within the hull to be a convex com-

bination of the vertices. Similarly, if we conservatively mixed distinct end-members, the streamwater chemical concentration

observations can be a weighted sum of end-members with their contributions. The ideas of "convex combination" and "convex80

hull" are mathematically identical to the end-member mixing.

The CH-NMF method describes a general methodology of finding the most extreme points (end-members) that form a sim-

plex with k vertices around the n-dimensional observation data cloud by searching for convex hull that enclose the data when

projected into a linear lower dimensional projection subspaces (Thurau et al., 2011). First, the observations are standardized85

(zero mean and unit variance), the PC vectors are calculated, and the top k PCs are retained as with EMMA. Next, the stan-
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dardized data are projected into the 2D subspace spanned by two of the PCs. Qualified points forming a convex hull around the

projected data are marked. This is repeated for every pair of PCs. Finally, we interpolate between convex-hull vertices in each

subspace to find the vertices of a simplex in a k-dimensional subspace. This simplex forms a "convex-hull" such that all the

data points can be optimally approximated as convex linear combinations of them. The algorithm is summarized as follows:90

Algorithm 1: CH-NMF algorithm (Thurau et al., 2011) adapted to the end-member identification problem given m

streamwater observations of n solutes
Result: ith end-member composition xn×1

emi , and its contribution hm×1
i , i= 1,2, ...,k

1. Subtract the mean (µ1:n) and dividing by standard deviation (σ1:n) for each solute to obtain standardized observation

matrix Xm×n
obs

2. Compute d eigenvectors (PCs) e1, ..., ed, d= rank(XobsXT
obs)≤ n

3. Project Xobs onto each of the
(
d
2

)
2D-subspaces spanned by pairs of PCs

4. Mark the k convex hull vertices for each projection plane and stored in matrix Sn×p, p is the maximum number of

points needed to make a convex hull in one projection plane.

5. Define end-member matrix Xn×k
em = [xem1,xem2, ...,xemk] and let Xem = SI,

minimize ‖S−SIp×kJk×p‖2F , s.t.
∑

i ij = 1, iij ∈ [0,1], and
∑

i jj = 1, jij ∈ [0,1]

6. Minimize ‖Xobs−Hm×kXT
em‖2F , s.t.

∑
j hi = 1,hij ∈ [0,1]

With given standardized m streamwater samples with n measured attributes Xm×n
obs and desired k end-members (Step 1,

Figure 1 a), CH-NMF decomposes the covariance matrix of the observations to obtain d PCs, which is the same linear or-

thogonal projection as PCA method (Step 2). Instead of immediate dimension reduction as EMMA, CH-NMF examines the

distribution of Xobs in all of the subspaces spanned by PC pairs (Step 3, Figure 1 b, light blue points) and marks the most95

extreme points (Figure 1 b, red crosses) that construct the convex hull (Figure 1 b, red lines) to store in S (Step 4). Then, a

subset of S, SI = Xem, is found as a convex combination of S (Step 5, Figure 1 c, square vertices of the simplex) that mini-

mizes the Frobenius norm ‖·‖2F (the entry-wise Euclidean norm of the matrix). Finally, the contribution H is found by finding

the convex combination of end-members that reproduces the data with minimal error (again using the Frobenius norm) (Step 6).

100

Step 5 is the essential step of the CH-NMF theory, and it is a modification of Convex Nonnegative Matrix Factorization

(C-NMF) by adding a convexity constraint on J (Ding et al., 2008; Thurau et al., 2011). In the original setting of C-NMF, the

I and J are naturally sparse if the vertex search is in PC subspaces (Ding et al., 2008). Adding the convexity constraint on J

makes J an interpolation between each columns of SI (i.e. each end-member composition xem), however, the sparse nature of

I remains (Thurau et al., 2011).105
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We could interpret the objective function of Step 5 (minimize ‖S−SIp×kJk×p‖2F ) in three steps. First , the sparsity of I

results in the end-member composition Xem close to a subset of the extreme observations (S) projected in the PC subspace.

Second, J makes other extreme observations in S to be expressed as a convex combination (interpolation) of Xem. Third,

minimizing the Frobenius distance between S and XemJ guarantees end-member compositions Xem will be convex hull ver-110

tices because all other extreme points can be written as convex combinations of vertices, but not vice versa. As a consequence,

a well-supported set of convex hull vertices tightly bound the observations and are as unique as possible, which satisfies the

original EMMA assumption of finite set of distinct end-members. The sparse nature of I helps prevent overfitting because noise

will tend to be concentrated on superfluous vertices without degrading identification of the others. The noisy end-members can

be identified in the classification step given in the next section.115

The constraint requiring that the end-members be a convex combination of the extreme observations implies that CH-NMF

may not accurately identify end-members that are not a large fraction of any observation in the dataset. As the synthetic

example shown in Figure 1 illustrates, the simplex formed by joining the CH-NMF end-members lies inside the shell formed

by connecting the extreme points (red crosses in Figure 1c). If no samples are anywhere close to being ’pure’ representatives120

of an end-member, the apparent end-member identified by CH-NMF may lie closer to the data centroid than the true end-

member. Methods to relax the constraint on Step 5 and better identify end-members distant from the data in mixing space will

be investigated in future work.

2.2 Quantify the intrinsic uncertainty using COP-KMEANS

Each run of CH-NMF may yield different end-member estimates. This is because the complex structure of the high-dimensional125

streamwater data result in a rough objective function surface (Step 5). CH-NMF runs with different initial search locations may

fall into different local minima.

Depending on the structure of the data cloud, each run’s end-members may be nearly identical (if the end-member is well-

characterized) or one or more may vary widely. Poor identification of extreme points may result from a lack of sufficient130

well-defined "vertices" in the data cloud. This may occur if more end-members are sought than the data can support. It may

also occur if an end-member is variable in time. Instead of a vertex, the time-varying end-member forms an edge in the data

space. Alternatively, the observations may not sample the true mixing space sufficiently to identify an end-member in the space

as a convex-hull vertex, perhaps because it never represents more than a small fraction of variance.

135

Even in the absence of these issues, the variability and uncertainty of the stream concentration observations will contribute

to uncertainty in end-member identification. The variation in the CH-NMF-identified end-members can be assessed by run-

ning the CH-NMF analysis a large number of times, and then using a clustering algorithm to extract the centroid and spread

of areas consistently identified as an end-member. We use the COP-KMEANS variant of the K-means clustering algorithm,

which allows us to require that end-members predicted from the same CH-NMF run must not be placed in the same cluster140
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(Wagstaff et al., 2001). This is achieved by assigning a "cannot-link" constraint between every pair of candidate end-members

generated by the same CH-NMF run. Apart from the "cannot-link" constraints, COP-KMEANS works identically to normal

k-means clustering (Wagstaff et al., 2001). For each cluster identified by COP-KMEANS, we can qualitatively examine the

spatial distribution of the associated end-members, and quantitatively calculate the centroid and variance of the cluster.

145

As the number of end-members increases, the centroid and variance within the cluster may increase or decrease, which

provides another way to decide the number of needed end-members for a given observation set. In this technical note, we

consider a new cluster to be well-identified as a proper end-member if two conditions are both satisfied: 1) the spread of

previously identified clusters remains similar or decreases, and 2) the cluster itself has a reasonable variance.

2.3 Example Python implementation150

An example Python implementation of CHEMMA including the application to Panola Mountain data presented in the next

section are available in a Jupyter Notebook on GitHub (https://github.com/Estherrrrrxu/CHEMMA). The CH-NMF section

uses a Python package, pymf.chnmf, detailed in Thurau et al. (2011). The COP-KMEANS section uses a Python package,

COP-Kmeans presented in Babaki (2017).

3 An application of CHEMMA155

We applied CHEMMA to a test dataset of 905 samples of six solutes (alkalinity, sulfate, sodium, magnesium, calcium, and

dissolved silica) collected from the stream in the Panola Mountain research catchment, Georgia, U.S. and described in Hooper

et al. (1990). The six solutes were specifically selected to meet EMMA’s assumption that their concentrations vary significantly

across the watershed (Hooper et al., 1990). Hooper et al. (1990) found that the stream chemistry could be interpreted as a mix-

ture of hillslope, groundwater, and organic soil end-members, which are identified by sampling within the watershed. Here we160

ask 1) does CHEMMA recover the same three end-members as Hooper et al. (1990) identified in field-sampling? and 2) does

the data support the existence of additional end-members?

We ran CHEMMA for three, four, and five end-member cases (k = 3,4,5) because two and three PCs account for 94% and

97% of the total variance, respectively . In order to capture the intrinsic uncertainty associated with the identified clusters, we165

calculated the mean and standard deviation (st.dev) for each case based on 100 CH-NMF runs (Table 1). CHEMMA was able

to recover the three field-measured end-members reported by Hooper et al. (1990) (Figure 2, three blue stars). The mean of the

three CHEMMA identified clusters (Figure 3 and Table 1) are very similar to the median concentration of the field-measured

end-members (Table 2). The median concentration of the hillslope field sample (Table 2) has much lower alkalinity concen-

tration compared with the mean concentration of the CHEMMA identified Green cluster (Figure 3 and Table 1), however, it is170

still within the cluster spread given in Table 1.
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A fourth end-member could be robustly identified (Figure 2, four red stars) that explained more of the data variability. This

end-member apperared to be a mixture of hillslope and groundwater in some ways but had relatively high alkalinity and silica

concentration compared to those end-members (Figure 2 brown and navy axes). The fourth end-member captures variations175

along the third PC axis (Figure 3 d), which are not apparent in the 2D view (Figure 3 b).

The spread of all end-member clusters (generated by 100 runs of CH-NMF) was small when four were sought, but a fifth

could not be clearly identified. As the number of end-members was increased from three (Figure 3 a) to four (Figure 3 b), the

new cluster (cyan Cluster 4) was dense, while the other three clusters (green, blue, and red) remained at similar locations to180

those clusters identified in the three end-member case. Adding the fourth end-member reduced the spread of the previously

identified three clusters in the PC subspace (Figure 3 a and b and Table 1) suggesting they could now be identified with

less uncertainty. However, the inclusion of the fifth end-members (Figure 3 c) not only did not further tighten the previously

identified clusters, but the fifth cluster was poorly defined (black Cluster 5). Except the cyan cluster has generally decreased

within cluster variation, the standard deviations of other clusters increase for both three and four end-member cases (Table 1).185

4 Discussion and conclusions

As the application results show, CHEMMA is able to reproduce the three end-members that were verified in the previous study

as well as a fourth end-member that explains more variation in the data (Hooper et al., 1990). The dispersed cluster distribu-

tions in Figure 3 c suggests that the fifth end-member may be finding the noisy edges of the sample space, and so cannot be

supported by the data. However, we have not here identified an objective criteria for determining whether an end-member is190

supported.

Because CHEMMA extracts end-members from the observations, the accuracy of the end-member’s composition is influ-

enced by the noise from sample chemical analysis error, how well the collected samples represent the full range of sources in

the catchment, and how valid the assumption of conservatively-mixing time-invariant end-members is. The captured variations195

in PC 3 shown in Figure 3 d may result from temporal variations of the end-member composition. The less concentrated Cluster

3 in Figure 3 b may result from relatively rare contributions from that end-member. Fortunately, CHEMMA itself provides a

tool for exploring some of these sources of uncertainty. By partitioning the dataset into time periods (or hydrologic state, etc),

the temporal variability of end-members could be explored.

200

Future work refining and applying this method may focus on 1) applying quantitative methods to optimize the model com-

plexity, such as the Akaike Information Criterion (AIC), or Bayesian Information Criterion (BIC, or Schwarz criterion); 2)

relaxing the constraints on the CH-NMF algorithm (Algorithm 1, Step 5) so that extreme points in S also lie inside the simplex,

allowing the method to better characterize end-members that are never a large fraction of any observations; and 3) exploring
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the data requirements and uncertainty of the method, including better understanding the relationship between the stability of205

COP-KMEANS clusters, the temporal variability of end-members, and the number of samples.

Code and data availability. Both the example code and data are available in a Jupyter Notebook on GitHub https://github.com/Estherrrrrxu/

CHEMMA (Xu Fei, 2020).
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Figure 1. Illustration of the CH-NMF algorithm. a) The standardized observations (dark blue) and its projection (light blue) on the obser-

vational space. b) The projected observations (dark blue) and its projection (light blue) on PC subspaces. The red crosses are the marked

extreme points (S) that form a convex-hull (the red polygons) in each PC subspaces. c) Find the convex-hull (the black simplex) and its

associated vertices (the k vectors xemi) in the PC space, such that the verticies are convex combinations of the extreme points S, and the

distance between the simplex and S is minimized.
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Figure 2. CHEMMA prediction (cluster centroids) for three end-member (blue squares) and four end-member (red squares) cases plotted

in the PC2 vs. PC1 subspace. The colored lines that connect those predicted end-members indicate the convex hull formed by those end-

members. The observations (grey dots) inside of the convex-hull can be explained as linear combinations of the end-members. The colored

lines in the center of the plot are the projected original solute axes in this PC subspace.
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Figure 3. 100 random initialized CH-NMF runs result for three (a), four (b and d), and five (c) end-member cases. a - c are in the 2D PC2

vs. PC1 subspaces. d is in the 3D PC3 vs. PC2 vs. PC1 subspace.
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Cluster
Alkalinity SO4 Na Mg Ca Si

Mean St.dev Mean St.dev Mean St.dev Mean St.dev Mean St.dev Mean St.dev

Red 35.05 27.02 216.75 30.72 48.14 20.28 92.48 7.92 192.37 22.36 90.88 53.51

Blue 348.04 12.16 14.11 2.82 214.87 21.88 90.35 4.64 151.26 9.93 405.86 23.55

Green 33.43 32.27 77.45 12.60 44.70 20.01 32.03 5.84 47.14 10.75 100.34 55.85

Red 32.86 12.33 219.71 17.57 46.66 9.91 93.50 2.44 193.92 15.11 87.25 28.64

Blue 345.01 23.29 15.71 14.91 211.26 26.22 92.02 5.88 157.14 11.86 385.44 50.57

Green 26.80 31.28 85.15 23.04 38.65 13.11 32.83 10.59 54.00 25.65 78.26 28.29

Cyan 207.96 92.01 38.45 40.07 141.51 46.76 61.89 18.02 91.57 42.03 342.13 122.07

Red 38.88 49.76 211.17 41.12 49.60 27.28 91.13 11.34 189.23 29.04 92.71 59.09

Blue 344.76 21.77 15.88 14.39 211.90 30.95 92.44 5.63 158.67 12.07 390.34 40.03

Green 29.62 33.35 85.37 13.38 42.52 17.68 33.40 6.83 52.32 16.99 84.20 29.38

Cyan 171.83 77.99 40.85 33.32 123.60 44.11 54.77 15.08 75.69 29.17 329.06 138.29

Black 253.45 107.65 44.10 47.45 161.55 58.00 75.81 17.47 125.51 38.38 278.05 123.41

Table 1. The mean and standard deviation (st.dev) of each end-member cluster based on 100 random initialized CH-NMF runs. All values

are in micromoles per liter. The cluster color indications correspond to Figure 3 a to c.
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Field individual samples Alkalinity SO4 Na Mg Ca Si

Organic 37 214 23 78 151 60

Groundwater 370 7 169 97 162 422

Hillslope 9 89 46 22 32 90

Table 2. The median concentration of individual field measured end-members from Hooper and Christophersen (1992). All units are in

micromoles per liter.
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