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Abstract. End-Member Mixing Analysis (EMMA) is a method of interpreting stream water chemistry variations, and is widely

used for chemical hydrograph separation. It is based on the assumption that the stream water is a mixture of varying contribu-

tions from relatively time-invariant source solutions (end-members). These end-members are typically identified by collecting

additional measurements of candidate
:::::::
potential

:
end-members from within the watershed, and comparing these to the obser-

vations. This technical note introduces a complementary, data-driven method: Convex-Hull End-Member Mixing Analysis5

(CHEMMA), to infer the end-member compositions and their associated uncertainties from the stream water observations

alone. The method involves two steps. The first step uses Convex-Hull Non-negative Matrix Factorization (CH-NMF) to infer

possible end-member compositions by searching for a simplex that optimally encloses the stream water observations. The sec-

ond step uses Constrained K-means Clustering (COP-KMEANS) to classify the results from repeated applications of CH-NMF

to analyze the uncertainty associated with the algorithm. In an example application using the 1986 to 1988 Panola Mountain10

Research Watershed dataset, CHEMMA is able to robustly reproduce the three field-measured end-members found in previous

research using only the stream water chemical observations. It also suggests the existence of a fourth end-member. In this

technical note, we have estimated uncertainties arising from the algorithm itself, but further work is needed to determine the

effect of sampling error and other uncertainties on the capabilities of this approach.

1
:::::::::::
Introduction15

End-Member Mixing Analysis (EMMA) has been used to interpret observed stream water chemical concentration profile vari-

ability in terms of time-varying contributions from end-member "sources", each supplying water with a constant concentration

profile. This method has been applied in many different hydro-climatic and geology settings (e.g., Bernal et al., 2006; Hooper

et al., 1990; Li et al., 2019; Liu et al., 2008, 2017; Lv et al., 2018; Jung et al., 2009; Neill et al., 2011). EMMA has also been

used to distinguishing sources of dissolved organic matter in natural streams (Hur et al., 2006; Yang and Hur, 2014), specific20

conductance (Kronholm and Capel, 2015), and other combinations of stream water attributes that can be assumed to have

conservative mixing (Barthold et al., 2011).
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EMMA assumes that the chemical solute composition of stream water should
:::
can be explained by the conservative mixing

of a finite set of temporally invariant end-members (Hooper et al., 1990). These end-members, therefore, are the most extreme25

points that define a range within which all stream water observations are included. End-members are identified by collecting

samples of candidate source-water from within the watershed (i.e. in addition to the ’mixture’ samples collected in the stream).

Inasmuch as the end-members are identified by candidate sampling, they depend upon
:::
the hypotheses that 1) identified

::::::
stream

::::
water

:::::::
consists

:::
of

:::
the

::::::::
identified

:
end-members supply stream water ; and 2) identified end-member set is ’complete’ in some

sense
::
all

::::::::::::
end-members

::::
were

::::::::
identified

::::::::
correctly.30

Christophersen and Hooper (1992) suggested that â[u]nambiguous identification of the source solution compositions from

the mixture alone is impossibleâ. In a strict sense this is likely true, since the underlying assumption (streamflow as a conser-

vative mixture of invariant sources) is unlikely to be adhered to in a real watershed. However, recent advances in statistical

learning methods suggest there may be some utility in attempting to identify (perhaps not free of ambiguity) potential source35

solution composition from the observed mixture alone (without additional candidate source-water samples). Here we propose

a method(which we will refer to as CHEMMA)as an attempt to push this concept forward.
:
,
::::::::::
Convex-Hull

:::::::::::
End-Member

:::::::
Mixing

:::::::
Analysis

:::::::::::
(CHEMMA),

::::
that

:::
can

::
in
::::
fact

:::::::
identify

:::::
source

:::::::
solution

::::::::::::
compositions

::::
from

:::
the

:::::::
mixture

:::::
alone.

:::
We

::::
will

::::
also

::::::
present

:::
an

::::::
analysis

:::
of

:::
the

:::::::::
’ambiguity’

::::
(i.e.

::::::::::
uncertainty)

::
in

:::
the

::::::::
identified

::::::::::::
end-members.

40

:
It
::
is

:::::
worth

::::::::::::
distinguishing

:::::::::
CHEMMA

::::
from

::::::::
previous

::::::::::
applications

::
of

::::::::
statistical

:::::::
learning

:::::::
methods

:::::
(such

::
as

::::::::
maximum

:::::::::
likelihood

:::::::::
estimation,

::::::::
Bayesian

::::::::
inference,

::::
and

:::::::
Markov

:::::
Chain

::::::
Monte

:::::
Carlo,

::::::::
MCMC)

::
to

:::::::::::
end-member

::::::
mixing

:::::::
analysis.

:
Genereux (1998)

::::::::
presented

:
a
:::::
linear

::::::::
estimator

:::
for

:::::::::::
uncertainties

::
in

:::::::::::
end-member

::::::::::::
concentration

:::
and

::::::
mixing

::::::
ratios.

:
Carrera et al. (2004)

:::::::
achieved

::::::::
something

::::::
similar

:::::
using

:
a
:::::::::
maximum

::::::::
likelihood

:::::::
method.

:::
By

:::::::::
combining

::::::::
likelihood

::::::::
methods,

::::::::
Bayesian

:::::::::
inferences,

::
or

::::::::::
probabilistic

:::::
linear

::::::
models

::::
with

:::::::
MCMC

:::::::::
algorithm,

:
Barbeta and Peñuelas (2017); Beria et al. (2020); Delsman et al. (2013); Popp et al.45

(2019)
::::
were

:::
able

::
to

:::::::
acquire

:::::::::::
time-evolving

:::::::::
uncertainty

::::::::::
estimation.

:::::
These

:::::::::::
contributions

::::
focus

:::
on

:::::::::
quantifying

::::::::::
uncertainty

:::::::
resulting

::::
from

:::
the

:::
use

::
of

::::::::::::
field-sampled

::::::::
candidate

::::::::::::
end-members.

::
In

:::::::
contrast,

::::::::::
CHEMMA

::::
aims

::
to

::::
infer

:::
the

::::::::::::
end-members

:::::::::
themselves.

Stream water concentrations of different conservative solutes are naturally correlated. EMMA utilizes the
::::
uses

:
Principal

Component Analysis (PCA) method to convert the naturally correlated stream water concentrations into a set of linearly50

uncorrelated variables (Christophersen and Hooper, 1992). Each new variable, which is called Principal Component (PC),

is a linear combination of the observed stream water attributes. For a set of n variables, PCA first requires standardized

observations (Xobs) by subtracting the mean and dividing by the standard deviation. Then it calculates a projection matrix

Pobs (rows of which are eigenvectors of the correlation matrix), which transforms from observation space to PC space, by

decomposing correlation matrix of Xobs. The transformed columns of Yobs (representing the n observations in the PC space)55

are uncorrelated, and each of which accounts for a portion of total variance (Christophersen and Hooper, 1992):

Yobs =Xobs P
T
obs. (1)
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Standardized end-member candidates Xem can be projected into the PC space by the same projection matrix Pobs, and be

converted in the transformed space as Yem (Christophersen and Hooper, 1992):

Yem =Xem PT
obs. (2)60

To find the parsimonious subset of appropriate end-members, EMMA then takes the information provided by PCA to de-

termine the approximate dimensionality of the stream water mixture and to screen end-members (Hooper, 2003). In the PC

space, appropriate end-member candidates (Yem) are selected by choosing ones that tightly bound the transformed observa-

tions (Yobs) (Christophersen and Hooper, 1992; Hooper et al., 1990; Hooper, 2003). However, the number of retained PCs is

usually determined using a heuristic, such as using the number of PCs that explain at least 1
n proportion of the total variance,65

because of the need to capture the variance (Hooper, 2003). After thus subjectively determining the number of PCs, Christo-

phersen and Hooper (1992) mathematically proved that one end-member more than the number of PCs is required to describe

the rank of the stream water observation.

There are limitations to this approach, that can result in spurious or incomplete source identification (Delsman et al., 2013;70

Hooper, 2003; Valder et al., 2012; Yang and Hur, 2014). Specifically, 1) the composition of a source cannot be determined

unless candidate end-member measurements are obtained that are representative of it; 2) determining the number of significant

PC is subjective; 3) EMMA is not able to deal with non-conservative mixing if non-linear structure are not provided to replace

the current simplex structure (Christophersen and Hooper, 1992); 4) uncertainties introduced by spatial and temporal variabil-

ity in end-member concentrations cause extra difficulties (Delsman et al., 2013).75

Here we focus on the first of these issues. In spite of EMMA’s wide application (Ali et al., 2010; Bernal et al., 2006; Burns

et al., 2001; Delsman et al., 2013; Hooper and Christophersen, 1992; James and Roulet, 2006; Jung et al., 2009; Li et al.,

2019; Lv et al., 2018; Neal et al., 1992; Neill et al., 2011; Valder et al., 2012), there is not a method to characterize missing

or unmeasured end-members . In this technical note, we focus on improving the identification of
:::::
purely

::::::
based

::
on

::::::
stream

:::::
water80

:::::::::::
observations. Popp et al. (2019)

::::
came

:::::
close,

::::::::::
introducing

:
a
:::::::
residual

:
end-member

:::
that

:::::::::
represents

::::::::
collective

:::::::
behavior

:::
of

::
all

:::::
other

:::::::::
unobserved

::::::::::::
end-members,

::::::
though

::
it

:::
still

:::::::
requires

:::::
some

:::::::
a-priori

:::::::::
knowledge

::
of

::::::::::
âobservedâ

:::::::::::
end-members

::
to

::::::
initiate

::
a
::::::::
Bayesian

::::::
mixing

::::::
model.

::
In

:::::::
contrast,

::::::::::
CHEMMA

::::::
allows

::
for

::::::::::::
identification

::
of

:::
the

:::::
entire

::::
suite

::
of

:::::::::::
end-member compositionsand ,

::::
and

::::
their

associated uncertainties. The

:::
The

::::::::::
CHEMMA

:
method depends on the idea

:
(inherited from EMMA

:
)
:
that the end-members are located near the most85

extreme points of streamwater samples that bound the observations in "mixing" space.
:::
Note

::::
that

:::
this

:::::
does

:::
not

:::::
imply

::::
that

:::
the

:::::::::::
concentration

::
of

::::
any

::::::::
particular

::::::
solute

::
is

:::::::
extreme

::
in

::
an

:::::::::::
end-member

::
–
::::
only

::::
that

:::
the

:::::
linear

:::::::::::
combination

::
of

::::::::::::
concentrations

:::
in

::::::::
PC-space

:
is
::::::::

extremal
::
at

:::
the

:::::::::::
end-member.

:
This suggests that we might be able to interrogate the observational data projected

in the end-member space to find such extremal points as
:::::
locate

::::
such

:::::::
extremal

:
end-members(,

:
even if no individual samples

fully represent that end-member). We propose a new EMMA approach .
::::
The

::::::::
approach

::
we

::::::::
propose,

:::::::::
CHEMMA, Convex-Hull90

End-Member Mixing Analysis (CHEMMA), which is a data-driven method that characterizes the
::
to

::::::
exploit

::::
this

:::::::::
possibility
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:::
and

::::::::::
characterize

:
end-members ’ chemical composition, as well as an intrinsic uncertainty component associated with the

end-member. The ability
:::
the

:::::::::
associated

::::::::::
uncertainty.

:::
The

::::::::::
capabilities of the method to infer end-members is

::
are

:
demonstrated

by an application to the 1986 to 1988 Panola Mountain Research Watershed dataset published in Hooper and Christophersen

(1992).
:::
We

::::
will

::::::
further

::::::
explore

:::
the

:::::::::
robustness

::
of

:::
the

::::::
method

:::::
using

::::::::
synthetic

:::::::
datasets

::::::::
generated

::::
with

:::::
three

::::::::::::
end-members.95

2 Methodology

Convex-Hull End-Member Mixing Analysis (CHEMMA) applies a matrix factorization method, Convex-Hull Non-negative

Matrix Factorization (CH-NMF), along with a classification method, Constrained K-means Clustering (COP-KMEANS), to

find end-member compositions under EMMA assumptions. The CH-NMF method provides a numerical iterative algorithm

to search for end-member compositions that optimally enclose the stream water observations in the PC space. The CH-NMF100

algorithm is run many times because each iteration of the search can result in highly non-unique optima. We apply the COP-

KMEANS method to classify the CH-NMF numerical outputs into clusters. The centroid of each cluster is assumed to represent

our best estimate of an end-member.

2.1 Adaption of CH-NMF to the EMMA problem

The concepts of "convex combination" and "convex hull" connect CH-NMF with the idea of end-member mixing. A convex105

combination is equivalent to a weighted sum. It is a linear combination of vectors where the weight associated with each vector

varies between zero to one, and the weights sum to one. If we construct a simplex, which means a highly dimensional polytope,

with some distinct vectors at its vertices, this simplex is a convex hull that encloses points within the hull to be a convex com-

bination of the vertices. Similarly, if we conservatively mixed distinct end-members, the stream water chemical concentration

observations can be a weighted sum of end-members with their contributions. The ideas of "convex combination" and "convex110

hull" are mathematically identical to end-member mixing.

The CH-NMF method describes a general methodology of finding the most extreme points (end-members) that form a sim-

plex with k vertices around the n-dimensional observation data cloud by searching for convex hull that enclose the data when

projected into a linear lower dimensional projection subspaces (Thurau et al., 2011). First, the observations are standardized115

(zero mean and unit variance), the PC vectors are calculated, and the top k PCs are retained as with EMMA. The CHEMMA

algorithm does not entirely avoid this subjective choice of the number of end-members retained, and so does not resolve this

criticism of EMMA. Next, the standardized data are projected into the 2D subspace spanned by two of the PCs. Qualified

points forming a convex hull around the projected data are marked. This is repeated for every pair of PCs. Finally, we interpo-

late between convex-hull vertices in each subspace to find the vertices of a simplex in a k-dimensional subspace. This simplex120
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forms a convex-hull such that all the data points can be optimally approximated as convex linear combinations of them. The

algorithm is summarized as follows:

Algorithm 1: CH-NMF algorithm (Thurau et al., 2011) adapted to the end-member identification problem given m

stream water observations of n solutes
Result: ith end-member composition xn×1

emi , and its contribution hm×1
i , i= 1,2, ...,k

1. Subtract the mean (µ1:n) and dividing by standard deviation (σ1:n) for each solute to obtain standardized observation

matrix Xm×n
obs

2. Compute d eigenvectors (PCs) e1, ..., ed, where d= rank(XobsX
T
obs)≤ n

3. Project Xobs onto each of the
(
d
2

)
2D-subspaces spanned by pairs of PCs (similar form as Eqn. 1 & 2)

4. Mark the k convex hull vertices for each projection plane and stored in matrix Sn×p, p is the maximum number of

points needed to make a convex hull in one projection plane.

5. Define end-member matrix Xn×k
em = [xem1,xem2, ...,xemk] and let Xem = SI,

minimize ‖S−SIp×kJk×p‖2F , s.t.
∑

i ij = 1, iij ∈ [0,1], and
∑

i jj = 1, jij ∈ [0,1]

6. Minimize ‖Xobs−Hm×kXT
em‖2F , s.t.

∑
j hi = 1,hij ∈ [0,1]

With given standardized m stream water samples with n measured attributes Xm×n
obs and desired k end-members (Step 1,

Figure 1 a), CH-NMF decomposes the correlation matrix of the observations to obtain at most d PCs (d is the maximum125

number of linearly uncorrelated variables), which is the same linear orthogonal projection as Principal Component Analysis

(PCA) method (Step 2). Instead of immediate dimension reduction as EMMA, CH-NMF examines the distribution of Xobs in

all of the subspaces spanned by PC pairs (Step 3, Figure 1 b, light blue points) and marks the most extreme points (Figure 1

b, red crosses) that construct the convex hull (Figure 1 b, red lines) to store in S (Step 4). Then, a subset of S, SI=Xem, is

found as a convex combination of S (Step 5, Figure 1 c, square vertices of the simplex) that minimizes the Frobenius norm130

‖·‖2F (the entry-wise Euclidean norm of the matrix). Finally, the contribution H is found by finding the convex combination of

end-members that reproduces the data with minimal error (again using the Frobenius norm) (Step 6).

Step 5 is the essential step of the CH-NMF theory, and it is a modification of Convex Nonnegative Matrix Factorization

(C-NMF) by adding a convexity constraint on J, which means each component contributes between zero and one with sum of135

all to be one (Ding et al., 2008; Thurau et al., 2011). In the original setting of C-NMF, the I and J are naturally sparse if the

vertex search is in PC subspaces (Ding et al., 2008). Adding the convexity constraint on J makes J an interpolation between

each columns of SI (i.e. each end-member composition xem), however, the sparse nature of I remains (Thurau et al., 2011).

We could interpret the objective function of Step 5 (minimize ‖S−SIp×kJk×p‖2F ) in three steps. First , the sparsity of I140

results in the end-member composition Xem close to a subset of the extreme observations (S) projected in the PC subspace.
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Second, J makes other extreme observations in S to be expressed as a convex combination (interpolation) of Xem. Third,

minimizing the Frobenius distance between S and XemJ guarantees end-member compositions Xem will be convex hull ver-

tices because all other extreme points can be written as convex combinations of vertices, but not vice versa. As a consequence,

a well-supported set of convex hull vertices tightly bound the observations and are as unique as possible, which satisfies the145

original EMMA assumption of finite set of distinct end-members. The sparse nature of I helps prevent overfitting because noise

will tend to be concentrated on superfluous vertices without degrading identification of the others. The noisy end-members can

be identified in the classification step given in the next section.

The constraint requiring that the end-members be a convex combination of the extreme observations implies that CH-NMF150

may not accurately identify end-members that are not a large fraction of any observation in the dataset. As the synthetic

example shown in Figure 1 illustrates, the simplex formed by joining the CH-NMF end-members lies inside the shell formed

by connecting the extreme points (red crosses in Figure 1c). If no samples are anywhere close to being ’pure’ representatives

of an end-member, the apparent end-member identified by CH-NMF may lie closer to the data centroid than the true end-

member. Methods to relax the constraint on Step 5 and better identify end-members distant from the data in mixing space will155

be investigated in future work.

2.2 Quantify the intrinsic uncertainty using COP-KMEANS

Each run of CH-NMF may yield different end-member estimates. This is because the complex structure of the high-dimensional

stream water data result in a rough objective function surface (Step 5). CH-NMF runs with different initial search locations

may fall into different local minima.160

Depending on the structure of the data cloud, each run’s end-members may be nearly identical (if the end-member is well-

characterized) or one or more may vary widely. Poor identification of extreme points may result from a lack of sufficient

well-defined "vertices" in the data cloud. This may occur if more end-members are sought than the data can support. It may

also occur if an end-member is variable in time. Instead of a vertex, the time-varying end-member forms an edge in the data165

space. Alternatively, the observations may not sample the true mixing space sufficiently to identify an end-member in the space

as a convex-hull vertex, perhaps because it never represents more than a small fraction of variance.

Even in the absence of these issues, the variability and uncertainty of the stream concentration observations will contribute

to uncertainty in end-member identification. The variation in the CH-NMF-identified end-members can be assessed by run-170

ning the CH-NMF a nalysis a large number of times, and then using a clustering algorithm to extract the centroid and spread

of areas consistently identified as an end-member. We use the COP-KMEANS variant of the K-means clustering algorithm,

which allows us to require that end-members predicted from the same CH-NMF run must not be placed in the same cluster

(Wagstaff et al., 2001). This is achieved by assigning a "cannot-link" constraint between every pair of candidate end-members

generated by the same CH-NMF run. Apart from the "cannot-link" constraints, COP-KMEANS works identically to normal175
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k-means clustering (Wagstaff et al., 2001). For each cluster identified by COP-KMEANS, we can qualitatively examine the

spatial distribution of the associated end-members, and quantitatively calculate the centroid and variance of the cluster.

As the number of end-members increases, the centroid and variance within the cluster may increase or decrease, which

provides another way to decide the number of needed end-members for a given observation set. In this technical note
::::
paper,180

we consider a new cluster to be well-identified as a proper end-member if two conditions are both satisfied: 1) the spread of

previously identified clusters remains similar or decreases, and 2) the cluster itself has a reasonable variance.

2.3 Example Python implementation

An example Python implementation of CHEMMA including the application to Panola Mountain data presented in the next

section are available in a Jupyter Notebook on GitHub (https://github.com/Estherrrrrxu/CHEMMA). The CH-NMF section185

uses a Python package, pymf.chnmf, detailed in Thurau et al. (2011). The COP-KMEANS section uses a Python package,

COP-Kmeans presented in Babaki (2017).

3 An application of CHEMMA
::::::::::
Application

::
to

:::
the

::::::
Panola

:::::::::
Research

::::::::::
Watershed

::::::
dataset

We applied CHEMMA to a test dataset of 905 samples of six solutes (alkalinity, sulfate, sodium, magnesium, calcium, and

dissolved silica) collected from the stream in the Panola Mountain research catchment, Georgia, U.S. and described in Hooper190

et al. (1990). The six solutes were specifically selected to meet EMMA’s assumption that their concentrations vary signifi-

cantly across the watershed (Hooper et al., 1990). Hooper et al. (1990) found that the stream chemistry could be interpreted as

a mixture of hillslope, groundwater, and organic soil
::::::
horizon

:::::::
(organic)

:
end-members, which are identified by sampling within

the watershed. Here we ask 1) does CHEMMA recover the same three end-members as Hooper et al. (1990) identified in

field-sampling? and 2) does the data support the existence of additional end-members?195

We ran CHEMMA for three, four, and five end-member cases (k = 3,4,5) because two and three PCs account for 94% and

97% of the total variance, respectively . In order to capture the intrinsic uncertainty associated with the identified clusters, we

calculated the mean and standard deviation (st.dev) for each case based on 100 CH-NMF runs (Table 1). CHEMMA was able

to recover the three field-measured end-members reported by Hooper et al. (1990) (Figure 2, three blue stars). The mean of the200

three CHEMMA identified clusters (Figure 3 and Table 1) are very similar to the median concentration of the field-measured

end-members (Table 2). The median concentration of the hillslope field sample (Table 2) has much lower alkalinity concen-

tration compared with the mean concentration of the CHEMMA identified Green cluster (Figure 3 and Table 1), however, it is

still within the cluster spread given in Table 1.

205

A fourth end-member could be robustly identified (Figure 2, four red stars) that explained more of the data variability.

Hooper (2003) also suggested the existence of a fourth end-member. This end-member appeared to be a mixture of hillslope

7
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and groundwater in some ways but had relatively high alkalinity and silica concentration compared to those end-members

(Figure 2 brown and navy axes). The fourth end-member captures variations along the third PC axis (Figure 3 d), which are

not apparent in the 2D view (Figure 3 b).210

The spread of all end-member clusters (generated by 100 runs of CH-NMF) was small when four were sought, but a fifth

could not be clearly identified. As the number of end-members was increased from three (Figure 3 a) to four (Figure 3 b), the

new cluster (cyan Cluster 4) was dense, while the other three clusters (green, blue, and red) remained at similar locations to

those clusters identified in the three end-member case. Adding the fourth end-member reduced the spread of the previously215

identified three clusters in the PC subspace (Figure 3 a and b and Table 1) suggesting they could now be identified with

less uncertainty. However, the inclusion of the fifth end-members (Figure 3 c) not only did not further tighten the previously

identified clusters, but the fifth cluster was poorly defined (black Cluster 5). Except the cyan cluster has generally decreased

within cluster variation, the standard deviations of other clusters increase for both three and four end-member cases (Table 1).

4 Discussion and conclusions220

3.1 Application results

The results in Figure
:
2
:
suggest that identification of end members from the mixture alone may not be as "impossible" as

Hooper and Christophersen (1992) assumed. CHEMMA is able to reproduce the three end-members that were identified in

Hooper et al. (1990) as well as a fourth end-member that explains more variation in the data.

225

This is not to say that the estimates provided by CHEMMA are "unambiguous", or even a complete set of contributing

sources. For example, sources that never supply the the plurality of water may not be identified by CHEMMA, since they never

produce a ’vertex’-like structure in the data cloud. Further work is needed to determine the limits on end-member identification

for a given dataset.

230

Indeed, the

3.2
::::::::::::

Dimensionality
::::
and

:::::::
DTMM

:::
The

:
dispersed cluster distributions in Figure 3c suggests that a fifth end-member may be spurious, and

:
.
:::
We

::::::
cannot

::::
rule

:::
out

::
the

:::::::::
possibility

::::
that

::
it
:
reflects only the noisy edges of the sample space, and so cannot be supported by the data. However,

we have not here identified
::::::
Indeed,

::::::::::
CHEMMA

::::
does

:::
not

:::::
come

::::::::
equipped

::::
with an objective criteria for determining whether an235

end-member is supported
:::
how

:::::
many

::::::::::::
end-members

:::
can

::
be

:::::::::
supported

::
by

:::
the

::::
data. There are many mathematical methods, such

as factor analysis and diffusion map spectral gaps, that could be used in parallel with CHEMMA to estimate data dimensions

. In addition, we could (Ashley and Lloyd, 1978; Coifman et al., 2008)
:
.
:
It
::::

may
:::

be
:::::::
possible

::
to

:
use k-fold cross validation of

8



CHEMMA itself to try to determine the best number of end-members.
:::::::
However

:::::::::
CHEMMA

::::
can

::
be

::::
used

::
in

::::::::::
conjunction

::::
with

:::
the

:::::::
approach

:::::::
already

::::::::
developed

:::
for

:::::::
EMMA

::
to

::::::
assess

:::::::::::::
dimensionality:

:::
the

:::::::::
Diagnostic

::::
Tool

::
of

:::::::
Mixing

::::::
Models

::::::::
(DTMM)

:::::::::
presented240

::
in Hooper (2003)

:
).
:::::::
DTMM

:::::::
suggests

::::::::
choosing

:::
the

::::::::
smallest

:::::::
possible

::::::
number

:::
of

:::::::::::
end-members

::::
that

:::::
gives

:::::::
residuals

::::::::::
resembling

::::::
random

:::::
noise.

::::
Any

::::::::
structure

::
in

:::
the

:::::::
residuals

:::::::
suggests

::
a
:::
lack

:::
of

::
fit

::
in

:::
the

::::::
model,

:::::
which

:::::
could

::
be

::::::
caused

:::
by

::::::
(among

:::::
other

::::::
things)

::::::
outliers

:::
and

::::::::::::::
nonconservative

::::::::
structures

::
of

:::
the

:::::::
dataset.

::
To

:::::
carry

:::
the

::::
idea

:::
of

:::::::
DTMM

::::
rank

::::::::::::
determination

:::::::
further,

:::
we

:::::::::
performed

:
a
::::::::

five-fold
:::::
cross

:::::::::
validation

:::::::
analysis

:::
on

::::
PCA

:::
fit245

:::::::
residuals

:::
on

::::::
Panola

::::
data

::::
with

:::::::
varying

:::::::::::::
dimensionality

::::::
(Figure

:::
4).

::::
The

:::::
mean

::::::
square

:::::
errors

::
of
::::::::

residuals
:::::::
(Figure

::
4

::
a))

:::::::
exhibit

::
the

:::::::
greatest

::::::::
decrease

:::::
while

:::::::::
increasing

:::::::::
dimension

:::::
from

::::
one

::
to

::::
two,

::::::
which

::::::::
suggests

::::
three

::::::::::::
end-members

:::::
might

:::::::::
constitute

::
a

:::::::::::
parsimonious

:::
set.

:::::::::
However,

:::
the

:::::
small

:::::::::
normality

::::
test

::::::
p-value

:::
in

::::::
Figure

::
4

::
b)

::::::
shows

::::
that

::::::::
residuals

::
of
:::::::

sulfate,
:::::::::::

magnesium,

:::
and

:::::::
calcium

::::::
solutes

::::
still

::::::::
maintain

:::::
some

::::::::
structures

::
in

::
a
::::
two

::::::::::
dimensional

::::::
mixing

::::::
space.

::::::::
Residual

::::::::
structures

::::::
persist

:::::
until

:::
the

::::::::
dimension

:::::
goes

::::::
beyond

:::
five

:::::::
(Figure

:
4
::::
b)).

::::
Thus

:::::
even

::::
with

:::::::
DTMM,

:::
the

:::::
’true’

::::
rank

::
of

:::
the

::::::
dataset

:::::::
remains

:::::::::
uncertain.

::::::::
However,250

::::::
DTMM

:::::::
analysis

::
at
:::::
least

:::::::
provides

::
an

::::::::::
established

::::::
method

:::
to

::::::
identify

:::::::::
conserved

::::::
solutes

::::
and

::
to

::::::::
determine

:::
the

::::::::::
appropriate

:::::
rank.

:::
The

:::::::::
robustness

::
of

::::::::::
CHEMMA

:::::::::::
end-members

:::::
could

::::
also

::::
serve

:::
as

:
a
:::::
check

:::
for

::::::::::::::::
DTMM-determined

::::
rank

:::
of

:::::::
mixture.

3.3 Uncertainties
::::::::::
Uncertainty

:::::::
analysis

Because CHEMMA extracts end-members from the observations, the accuracy of the end-member’s composition is influenced255

by the
:
a

:::::
range

::
of

:::::::
sources

::
of

:::::::::
variability

:::
and

:::::::::::
uncertainty,

::::::::
including noise from sample chemical analysis error, how well the

collected samples represent the full range of sources in the catchment,
:::
how

:::::
many

::::::::::::
end-members

:::
we

:::::::
assume

::::
there

::::
are

:::
(as

::::::::
discussed

::::::
above),

::::::::::
uniqueness

::
of

::::
the

::::::::
CH-NMF

::::
and

::::::::::::::
COP-KMEANS

::::::::
analyses,

:::
and

::::
how

:::::
valid

:::
are

::::
the

::::::::::
assumptions

::::
that

::::
end

:::::::
members

:::
are

::::::::::::::::::
conservatively-mixed and how valid the assumption of conservatively-mixing time-invariantend-members is. The

:
.260

:::
The

:::::
latter

::
of

::::
these

:::::::
sources

::
of

:::::::::
uncertainty

:::::::
perhaps

::::::
presents

:::
the

:::::::
greatest

::::::::
challenge,

:::::
since

::::::
failure

:
to
::::::::
conform

::
to

::::
these

::::::::::
assumptions

:::::::::
undermines

:::
the

:::::::
validity

::
of

:::
the

:::::::
method.

:::
For

::::::::
example,

:::
the captured variations in PC 3 shown in Figure 3d may result from tem-

poral variations of the end-member composition. The less concentrated Cluster 3 in Figure 3b may result from relatively rare

contributions from that end-member.
::
In

:::
the

::::
case

::
of

::::::
Panola

:::::::
dataset,

:::
the

::::::::::
uncertainties

:::::
result

:::::
from

:::
the

::::::::
algorithm

:::::::::
instability

::::
(due

::
to

:::
the

::::::
unclear

::::
data

::::::::
structure)

::
is
::::::

much
:::::
larger

::::
than

:::
the

::::::::::
uncertainty

::::
from

:::
the

::::::::
sampling

::::
bias

::
as

::::::
shown

::
in
::::::

Figure
:::

7. Fortunately,265

CHEMMA itself may provide a tool for exploring some of these sources of uncertainty
:
be

::
a
:::::
basis

::
for

:::::::::
exploring

:::
the

:::::
effects

:::
of

::::::::::::
time-variability. For example, by partitioning the dataset into time periods (or hydrologic state, etc), the

:::::::
apparent

:
temporal

variability of end-members could be explored.The temporal

::::::::
Sampling

:::::::::
uncertainty

::
is
::
a
::::
more

::::::::
tractable

:::::
issue

::
for

::::
the

::::::
present

:::::::
analysis.

::::
We

:::
can

:::::::
estimate

:::
the

::::::::::
magnitude

::
of

:::
this

:::::
error

:::::
using270

:::::::::::
bootstrapping

::::::::::
(resampling

::::
with

:::::::::::
replacement) (Efron and Tibshirani, 1994).

:::
We

:::::::::
generated

::::
1000

:::::::::::
bootstrapped

:::
sets

::
of

:::
the

:::::::
original

:::::
Panola

:::::
data,

:::
and

:::
ran

::::::::::
CHEMMA

::
on

::::
each

::
of

:::::
them.

::::
The

:::::::::::
end-members

::::::::
identified

::
in

:::::
these

::::::::::
bootstrapped

:::::::
datasets

:::::::
showed

::::::::
relatively

9



::::
little

:::::
scatter

:::::::::
(compared

:::
to

::
the

::::::
overall

::::::::
variance

::
of

:::
the

::::::
stream

:::::
water

::::::::::::
concentrations

::::::
(Figure

:::
5),

:::::::::
suggesting

:::
that

::::
they

:::::
were

::::::
robust.

::::
Even

:::
the

::::::
organic

:
end-memberdominance may further deepen our understanding

:
,
:::::
which

:::::::::
dominates

:
a
::::::
limited

:::::::
number of stream

water characterization.
::::::
samples

:::::::
(Figure

::
2,

:::
the

:::
few

::::
grey

::::::
points

:::::::
towards

:::
the

::::::
organic

:::::::::::
end-member)

:::::
could

::::
still

::
be

:::::::::
identified

::::
with275

::::::::::
considerably

:::::
small

:::::::
variance

:::::::::
compared

::::
with

:::::::
original

:::::
solute

:::::::
variation

:::
(as

::::::
shown

::
in

::::::
Figure

:::
5).

::::::::
However,

:::
this

::::::::::::::::
poorly-represented

::::::::::
end-member

:::::
shows

:::::
many

:::::
more

::::::
outliers

:::::::::::
(end-member

:::::::::::
compositions

:::::::::::
substantially

:::::::
different

::::
from

:::
the

::::
best

::::::::
estimate)

:::
than

:::
the

:::::
other

:::
two.

::::::
Figure

::
5
::::
also

::::::::::::
re-emphasizes

::::
that

::::::::::
CHEMMA

::::::::
identifies

:::::::::::
end-members

::::
that

::::::
exhibit

::::::::::
collectively

:::::::
unusual

:::::::::::
combinations

:::
of

::::::::::::
concentrations

::::
(i.e.,

:::::::::
vertex-like

::::::::
structures

::
in

:::
the

::::::
overall

::::
data

::::::
cloud).

:::::
While

:::::
many

:::::
solute

::::::::::::
concentrations

::
of

::::::::::
CHEMMA

::::::::
predicted

:::::::::::
end-members

:::
are

:::::::
located

:::::::
towards

:::::::
extremal

::::::
values

::
of

::::
the

:::::::::::
observations,

::::
they

::::
need

::::
not

::
be

:::
all

::::::::::
individually

::::::::
extremes

:::::
(e.g.

:::
the280

:::::
sulfate

::::::::::::
concentration

::
of

::::::::::
end-member

::
3,
::::::::::::
corresponding

::
to
:::
the

::::::::
hillslope

:::::::::::
end-member,

::::::
Figure

:
5
:::::
upper

::::::
middle

::::::
plot).â

Besides the uncertainties introduced by temporal variations of the
::
To

:::
see

::::
how

:::::::
robustly

:::
the

:::::::::::
end-members

:::::
could

:::
be

::::::::
identified

::::
with

:
a
::::::
smaller

:::::::
number

::
of

::::::::::
observations

:::
we

:::
ran

:::::::::
CHEMMA

::
on

:::::::::::
bootstrapped

::::::
subsets

::
of

:::
the

:::::::
original

::::
data.

:::::
These

::::::
subsets

::::::::::
represented

::::
from

:::
5%

::
to

:::::
100%

:::
of

:::::::
original

:::
data

::::
size

:::::
(905),

::::
and

::::
each

:::::::::
subsetting

:::::::::
experiment

::::
was

:::::::
repeated

:::::
1000

:::::
times.

:::::::
Results

:::
are

::::::
shown

::
in

:::::
Figure

::
6.
::::
For

:::
this

:::::::::
particular

::::::
dataset,

:::
the

::::::::::
uncertainty

::
is

:::::::::
substantial

:::::
when

:::::
fewer

::::
than

:::::
40%

:::::
(362)

::
of

:::
the

:::::::
original

::::
data

:::
are

:::::
used,285

::::::::
decreases

::::::
greatly

::::
from

::::
40%

:::::
(362)

::
to

::::
60%

:::::
(543).

::::::
Further

::::::::::::
improvements

::
in

::::::
robust

:::::::::::
identification

::::
with

::::
more

:::::::
samples

:::
are

::::::
mainly

::
in

::
the

::::
less

::::::::::::::
well-constrained

::::::
organic

:
end-member composition, the total uncertainties may also be decomposed into uncertainties

associated with stability of the end-members, stream water sampling error, CHEMMA algorithm stability (quantified in the

given example application),
::::::
(Figure

::
6).

:

::
In

:::::::
addition,

:::
the

:::::::
overall

::::::
number

:::
of

:::::::
samples

::::
may

::::::
matter

:::
less

::::
than

:::
the

:::::::
number

::
of

::::::::
samples

:::
that

:::
are

:::::
either

::::::::::
dominated

::
by

::::
one290

:::::::::::
end-member,

::
or

::
in

:::::
which

::
an

:::::::::::
end-member

::
is

:::::::
entirely

::::::
absent.

::::
Four

::
of

:::
the

::::::
varying

::::::
effects

::
of

::::::::
sampling

::::::::::
uncertainty

::
on

::::::::::
CHEMMA

::
are

:::::::::
illustrated

::
in

::::::
Figure

::
6:

::
1.
::::::
Some

::::::::::
end-member

::::::::::
constitutes,

::::
such

::
as
:::::

SO4 ::
in

:::
the

::::::::::
groundwater

:::::::::::
end-member

::::::::::::
(End-member

:::
2),

:::
and

:::::::::
Alkalinity,

:::
Na,

::::
and

::
Si

::
in

:::
the

:::::::
hillslope

:::::::::::
end-member

::::::::::::
(End-member

:::
3),

::
are

::::
well

:::::::::
identified

::::::::
regardless

::
of

:::::::
whether

::
5%

::::
(45)

::
or

:::
100%

::::
(905)

:::
of

:::
the

::::
total

:::::::
available

::::::
sample

::::
size

::
is

:::::
used;

::
2.

:::
For

:::
the

::::::::::::::
well-represented

::::::::::
groundwater

::::
and

:::::::
hillslope

::::::::::::
end-members,

:::
the

:::::::::
uncertainty

::::::
bounds

:::
do

:::
not

:::
vary

:::
as

::::::::::
dramatically

::::
with

::::::
sample

:::
size

:::
as

:::
they

:::
do

:::
for

::
the

:::::::
organic

:::::::::::
end-member,

:::::
which

::
is

:::
less

:::::::::
frequently295

::::::::
important;

::
3.
:::::
Even

:::::
using

:::
the

:::
full

:::::::
dataset,

::::
some

:::
of

::
the

:::::::::::
end-member

::::::::::
constituents

:::
are

:::
not

::::
very

::::::::::::::
well-constrained

:::::
(e.g.,

::::
SO4 ::

of
:::
the

::::::
organic

::::::::::::::::::::::
end-member/End-member

:
1
:::
has

::
a

:::::
larger

:::::::
variance

::::
than

:::
the

:::::::::::::
well-constrained

::::::::::::
end-members

::::
with

::::::
sample

::::
size

::
as

:::::
small

::
as

:::
45;

::
4.

:::::::
Clusters

::
of

::::::
outliers

:::
(or

::::::::::::
multi-modality

::
in

:::
the

:::::::::::
bootstrapped

:::::::::
replicates)

::::
may

::::::
suggest

::::::::::::::::
poorly-constrained

::::::::::::
end-members.

:::
For

:::::::
example,

:::::
SO4,

:::
Mg,

::::
and

::
Ca

::
in
::::::::
hillslope

:::::::::::::::::::::
end-member/End-member

::
3

::::::::
identified

::::
with

::::::
sample

::::
sizes

:::
45 and structural uncertainties

::
90

::::::
exhibit

::::::
clusters

:::
of

::::::
outliers

::
in

::::
their

::::
tails.

:::::
These

:::::::
clusters

:::
are

:::::
within

:::
the

:::::
range

::::::::
identified

::::
with

::::::::::
end-member

::
1
:::::
using

:::::
larger

::::::
sample300

::::
sizes.

3.4
:

A
::::::::
synthetic

::::::::::
exploration

:::
on

::::::
model

:::::::::
robustness

:::
We

:::
also

::::::::
examined

:::::::::::
uncertainties

::::::
arising

::::
from

:::::::
potential

:::::::::::::
non-uniqueness

::
of

:::
the

::::::::
CH-NMF

::::
and

:::::::::::::
COP-KMEANS

::::::::
analyses.

:::::::::
Intuitively,

::
we

::::
can

:::::
expect

:::::
these

::
to

::
be

:::::::
greatest

::::
when

:::
the

::::::
dataset

:::::
lacks

:::
the

:::::::::
vertex-like

::::::::
structures

:::
that

:::
the

::::::::
algorithm

:::::
seeks

::
to

:::::::
identify.

::
In

::::::
Figure305

::
7,

::
the

::::::::::
’algorithm’

:::::::
standard

::::::::
deviation

:::::::
denotes

::
the

:::::::::
variability

:::::::
amongst

::::
100

::::::::
CH-NMF

::::
runs

::
(in

::::
one

:::::::::
CHEMMA

:::::
run),

:::
and

:::
the

:::::
’data’

10



:::::::
standard

::::::::
deviation

::::::::
represents

:::
the

:::::::::
variability

:::::::
amongst

::::
100

:::::::::::
bootstrapped

:::::::::
CHEMMA

:::::
runs.

:::
The

:::::::::
variability

:::::::
induced

::
by

:::::::::
instability

::
of

::::
these

:::::::::
algorithms

::
is
:::::
small

:::::::::
compared

::
to

:::
the

::::::
overall

:::::::::
variability

::
of

:::
the

::::::
dataset,

:::
but

::
is
:::::
much

::::::
greater

::::
than

::::
that

:::::::::
introduced

:::
by

:::
the

:::::::
sampling

::::::
alone.

::
To

:::::::
explore

::::
this

::::::
source

::
of

::::::::::
uncertainty

:::::::
further,

:::
we

::::::
created

::
a
::::::::
relatively

::::::
simple

::::::::
synthetic

:::::::
dataset

::
of

::::::::::::
’observations’

:::
of

::::
two310

:::::::::::::::::
Gaussian-distributed

::::::::::
independent

:::::::
variables

:::
(X

:::
and

::
Y)

::::
that

:::
can

::
be

::::::::::
represented

::
as

::::::::::
conservative

::::::::
mixtures

::
of

::::
three

:::::
’true’

::::::::::::
end-members.

::
As

::::::
Figure

:
8
::::::

shows,
::
X
::::
and

::
Y

:::
are

::::::
chosen

::
to

:::::
center

:::
on

:::
the

::::::::::
conservative

:::::::
mixing

:::::::
triangle’s

::::::::
incenter.

:::
The

::::::::
variance

::
of

:::
the

::::::::
Gaussian

::::::::::
distributions

::::
used

:::
to

:::::::
generate

:::::
these

::::
data

::::::::
increases

:::::
from

::::
case

::
1

::
to

::
6

::
in

::::::
Figure

::
8.

:::
All

:::::::
marked

::::::::::
’estimated’

::::::::::::
end-members

:::
are

::::::
outputs

::::
from

::::
100

::::::::
CH-NMF

::::
runs,

::::::
which

::::::::
represents

:::
the

:::::::::::
end-member

::::::::
variation

:::::
during

::::
one

:::::::::
CHEMMA

:::
run

:::::::
(Figure

::
8).

:

::
As

::::::::
expected,

:::::
when

:::
the

::::::::::
observations

:::::
have

:
a
:::
low

:::::::
variance

:::::::::
compared

::
to

:::
the

:::::
spread

::
of
:::
the

::::::::::::
end-members

:::::::::
CHEMMA

::::
does

::
a

::::
poor315

:::
job

::
at

:::::::::
identifying

:::
the

::::::::::::
end-members.

::
In

:::
the

::::
case

::::
with

:::
the

:::::::
tightest

::::::
cluster,

::::
case

::
1,
:::

the
:::::::::

estimated
:::::::::::
end-members

:::
are

:::::::
actually

::::
less

::::::
variable

::::
than

:::
in

:::
the

:::
less

::::::
tightly

::::::::
clustered

::::
case

::
2.

::::
This

:::::::
suggests

::::
that

::::::::
variations

:::::::
between

:::::::::::
applications

::
of

::::::::
CH-NMF

:::
are

::::::::
sensitive

::
to

:::
the

::::::::::::
particularities

::
of

::
a

:::::::
dataset’s

:::::::
extremal

:::::::::::
observations.

:

:::::::
Between

::::
case

::
3

:::
and

::::
case

::
4

:::
the

:::::::
stability

::
of

:::
the

:::::::::::
end-members

::::::::
identified

:::
by

::::::::
CH-NMF

::::::::
becomes

:::::
much

:::::
better,

:::::
even

::::::
though

:::
the

:::::::::
distribution

::
of

:::::::::::
observations

::
in

::::
case

::
4
::::
seem

:::
to

::::
have

::::
been

::::::
barely

::::::::::
constrained

::
by

:::
the

::::::
mixing

::::::
space.

:::::
There

::
is
::::::::
sufficient

::::::::
structure320

::
for

::::
the

::::::::
algorithm

::
to

:::::::
anchor

::::
three

::::::
unique

::::::::::::
end-members

:::::::
(Figure

:
8
::::

and
::::::
Figure

:::
9).

::::::::
However,

::::
the

::::::::
estimated

::::::::::::
end-members

:::
are

:::::
biased

::::::
toward

:::
the

:::::::
centroid

:::
of

:::
the

::::::
dataset,

::::
and

::
do

::::
not

::::::::::
characterize

:::
the

:::::::::::
end-members

::::::::::
accurately.

::
As

::::
the

::::::::::
observations

:::
fill

:::::
more

::
of

:::
the

::::::::::
conservative

::::::
mixing

:::::
space

::::::
within

:::
the

:::::::
triangle (i.e. choice of the number of

:::
the

::::::
convex

:::::
hull),

::::::::::::::::::
CHEMMA-identified end-

members k)
::
are

:::::
closer

::
to
:::
the

::::
true

:::::::::::
end-members. A full analysis of these errors and their interaction will be addressed in future

work.325

3.5 Potential applications

For most hydrologists,
::::::
Figure

:
9
:::::::
confirms

::::
and

:::::::
expands

:::
the

::::::::::
observations

::::
from

::::::
Figure

:
8
::::
and

:::::
Figure

::
7
:::
that

:::
the

:::::
major

::::::::::
uncertainty

::
of

:::::::::
CHEMMA

::::::::
predicted

:::::::::::
end-members

::::::
comes

::::
from

::::::::
sampling

:::::
errors

:::::
when

::::::
dataset

:::
has

::::::::
sufficient

::::::::
structure.

:::
For

:::
the

:::::::
synthetic

:::::::
dataset,

::
the

::::::::::
algorithmic

::::::::::
uncertainty

::::::::
becomes

::::::::::
insignificant

:::::
when

:::::::
percent end-member analysis is used

:::::
limited

::
(a
::::::::

measure
::
of

:::::::
relative

:::::::::
importance

::
of

:::::::::::
end-member

:::::::::
constraints,

:::::
given

:::
by

:::
the

::::::
fraction

::
of
:::::::::::::::::
randomly-generated

:::::::
samples

:::
that

:::::
were

::::::::
discarded

:::::::
because

::::
they330

:::
fell

::::::
outside

:::
the

:::::::
mixing)

:
is
:::::::
greater

:::
than

::::
0.91%

:::::
(Figure

::
9,
::::::
which

::::::::::
corresponds

::
to

::::
Case

::
4 to identify the water sources, and toward

that purpose CHEMMA may be useful
:
6

::
in

::::::
Figure

:::
8).

:::
The

::::::::::
CHEMMA

:::::::::
algorithm

::::::
appears

:::
to

:::::
detect

::::::::
structure

:::::
more

:::::::
robustly

::::
when

:::
the

::::::
dataset

::::::::
includes

::::::
samples

:::::::::
containing

::::
very

:::::
small

:::::::::::
contributions

:::
for

:::::
some

::
of

:::
the

:::::
time.

::::::::
However,

:
a
::::::::::
consistently

::::
very

::::
low

::::::::::
contribution

::::::::::
end-member

::::
will

:::
not

::
be

:::::::::
effectively

:::::::
detected

:::::::
because

::
it
::::
does

:::
not

:::::
affect

:::
the

:::::
shape

::
of

:::
the

::::
data

:::::
cloud

::::::::
boundary

:

4
::::::::::
Conclusion335

::::
Here

:::
we

::::
have

::::::::
advanced

:
a
::::::
method

::
of

:::::::::::
end-member

::::::
mixing

:::::::
analysis

:::
that

:::::::::
challenges Christophersen and Hooper (1992)

:
’s
::::::::
assertion

:::
that

::::::
source

::::::
solution

::::::::::::
compositions

:::::
cannot

:::
be

::::::::::::
unambiguously

::::::::::
determined

::::
from

:::
the

::::::
mixture

::::::
alone.

:::
The

:::::::::
traditional

::::::
EMMA

:::::::
method

::::::
requires

::::::::
potential

:::::::::::
end-member

:::::
source

::::::
waters

::
to

::
be

::::::::
sampled

::
in

:::
the

::::
field

:::
and

::::::::
compared

::
to
:::
the

:::::
data.
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:::
The

:::::::
method

::::::::
presented,

:::::::
Convex

::::
Hull

:::
End

:::::::
Member

:::::::
Mixing

::::::::
Analysis,

::
or

:::::::::
CHEMMA,

::::
uses

::
a

::::::::::
combination

::
of

::::::::::::::::
recently-developed

::::::::
statistical

:::::::
learning

:::::::::
techniques

::
to

::::
infer

:::::::::
streamflow

::::::::::::
end-members

::::
from

:::
the

::::::
stream

:::::
water

:::::
solute

:::::::::::
concentration

::::
data

::::::::
structure.

::::
The340

:::::::::::
end-members

:::
are

::::::::
estimated

::
by

::::::
fitting

:
a
:::::::
simplex

::::::::::::
(k-dimensional

:::::::::::
polyhedron)

::
to

::
the

::::
data

:::::
cloud

:::
and

::::::::::
identifying

:::
the

:::
end

::::::::
members

::::
with

::
the

:::::::
vertices

::
of

:::
the

:::::::
simplex.

::::
The

::::::
method

::::
was

:::::
tested

::
by

::::::::
applying

:
it
::
to
:::
the

::::::
Panola

::::::
dataset

::
of

:
Hooper et al. (1990).

::::::::::
CHEMMA

:::
was

::::
able

::
to

:::::::::
accurately

:::::::::
reproduce

:::
the

:::::::::::
field-sampled

:::::::::::
end-members

:::::::::
identified

::
in

:::
the

:::::::
original

:::::
study

:::::
solely

::::
from

:::
the

:::::::::::
streamwater

:::::::
samples.

:::
Two

:::::::
sources

::
of

:::::::::
uncertainty

::
in

:::
the

::::::::
chemical

:::::
profile

::
of

:::
the

::::::::
identified

:::::::::::
end-members

:::::
were

::::::::
evaluated.

::::::::::
Algorithmic

::::
error

:::::::::
(variations345

:::::::
between

::::::::::
applications

::
of
::::

the
:::::::::
CHEMMA

::::::::::
algorithm)

:::
was

:::::::::
estimated

:::
by

:::::::::
re-running

:::
the

::::::::
algorithm

::::::::
multiple

:::::
times

:::
on

:::
the

:::::
same

::::::
dataset.

:::::::
Sample

::::
error

::::
was

::::::::
estimated

::
by

::::::::::::
bootstrapping

:::
the

:::::::
original

::::::
dataset

:::
and

:::::::::
re-running

:::
the

::::::::::
CHEMMA

:::::::
analysis

::::
1000

::::::
times.

:::
The

::::::
results

:::::::::::
demonstrated

::::
that

::
the

::::::::::::
end-members

::
in

:::
the

::::::
Panola

::::::
dataset

::::
were

::::::::
identified

::::
with

::::::::
relatively

::::
little

:::::::
variance

:::::::::
compared

::
to

::
the

::::::
overall

::::::::
variance

::
of

:::
the

::::
data.

:::::
More

::
of

:::
the

::::
error

::::
was

:::
due

::
to
::::::::::
algorithmic

:::::
error

::::
than

:::::::
sampling

:::::
error.

:

::::::::::
Subsampling

:::
of

:::
the

::::::
Panola

::::::
dataset

:::::::::::
demonstrated

::::
the

::::::::
sensitivity

:::
of

:::
the

:::::::::
CHEMMA

:::::::
method

::
to

:::
the

:::::::
number

::
of

::::::::
samples.

::::
The350

:::::
results

:::::::::
suggested

:::
that

::::::::
estimates

:::
of

:::
the

:::::::::::
end-members

::::
may

:::
be

::::::
biased

:::::
when

:::
too

:::
few

:::::::
samples

:::
are

:::::::::
available,

::::::::
especially

:::::
when

:::
an

::::::::::
end-member

::
is

:::
the

:::::
major

:::::::::
component

:::
of

::::
only

:
a
:::::
small

:::::::::
proportion

::
of

:::
the

::::::
sample

:::
set

:::
(as

::
is

:::
the

::::
case

::::
with

:::
the

::::::
organic

:::::::::::
end-member

::
in

:::
the

::::::
Panola

:::::::
dataset).

::::::
Some

::::::::::
end-member

:::::::::::
constituents

::::
were

:::::::
reliably

:::::::::
identified

::::
with

::
as

::::
few

::
as

:::
45

:::::::
samples

::::
(e.g

::::
SO4:::

in
:::
the

::::::::::
groundwater

:::::::::::
end-member,

:::
and

:::::::::
Alkalinity,

:::
Na,

::::
and

::
Si

::
in

:::
the

:::::::
hillslope

::::::::::::
end-member),

::::
while

::::::
others

::::::
needed

::::
more

::::
than

::::
500

:::::::
samples

::
to

::
be

::::::::
identified

::::
with

::::::
similar

:::::::::
robustness

::::
(e.g.

:::
all

:::
the

:::::::::
consituents

::
of

:::
the

:::::::
organic

:::::::::::
end-member).

:
355

:
A
::::::::
synthetic

::::::
dataset

::::
was

::::
used

::
to

:::::::
examine

::::
how

::::::::::
uncertainty

::
in

:::
the

::::::::::
end-member

:::::::::::
identification

::::
was

::::::
related

::
to

:::
the

::::
data

::::::::
structure.

::::
This

::::::
showed

::::
that

::::::::::
algorithmic

::::::::::
uncertainty

:::::
could

:::
be

:::::
large

:::::
when

:::
the

:::::::
fringes

::
of

:::
the

::::
data

::::::
cloud

::::
were

:::::::
largely

:::
due

:::
to

:::::::
random

::::::::
variability

:::::
rather

:::::
than

:::
due

::
to

:::
the

::::::::::
constraints

:::::::
imposed

:::
by

:::
the

::::::
mixing

::
of

::::::::::::
end-members.

::::
This

::::::::::
uncertainty

:::::::
dropped

:::::::::::
dramatically

::::
once

:::
the

:::::::::
boundaries

::
of

:::
the

::::
data

:::::
cloud

::::::::
contacted

:::
the

:::::::::
boundaries

::
of

:::
the

::::::
mixing

:::::
space.

::
In

:::::
other

::::::
words,

:::
the

:::::::::
algorithmic

::::::::::
uncertainty

:::
was

:::::::::
essentially

:::::::::
eliminated

::
if
::
at
:::::

least
:
a
::::
few

:::::::
samples

::::::::
contained

:::::
zero

:::::::::::
contributions

::::
from

::
at
:::::

least
:::
one

::::
end

:::::::
member.

::::::::
Notably,

::
it360

:::
was

:::
not

::::::::
necessary

:::
for

:::::
some

::::::::
minimum

:::::::
number

::
of

:::::::
samples

::
to

:::::::
contain

:::::::
majority

:::::::::::
contributions

::::
from

:::::
each

:::::::::::
end-member.

::::::::
However,

:::::::
estimates

:::
of

:::
the

::::::::::
end-member

:::::::::::
composition

::::
were

::::::
biased

::::::
toward

:::
the

::::
data

:::::
cloud

:::::::
centroid

:::::
unless

::::
such

::::::::
extremal

:::::::
samples

::::
(i.e.

::::
ones

:::
that

::::
were

::::::
almost

:::::::
entirely

::::::::
composed

:::
of

:::
one

:::::::::::
end-member)

:::::
were

::::::
present

::
in

:::
the

::::::
dataset.

:

:::::::::
CHEMMA

::::::
makes

:
it
:::::::
possible

:::
to

:::::::::
investigate

::::::
stream

:::::::
chemical

:::::::::
dynamics

::
in

:::::
terms

::
of

:::::::::::
end-members

:::::
even

::::
when

:::
the

:::::::
samples

:::
of

::::::::
candidate

:::::
source

::::::
waters

:::
are

:::
not

::::::::
available.

::::::::
However,

::::
even

::::::
where

::::
such

:::::::
samples

:::
are

:::::::
available

:::
(or

:::::
could

::
be

::::::::
collected

::
in

:::
the

::::::
future)365

:::::::::
CHEMMA

::::
may

:::
be

:
a
::::::
useful

::::
tool

::
to

:::::::
augment

::::
the

::::::::
traditional

::::::::
approach

:
in the following ways: 1. CHEMMA may be used to

reduce
:
a)
::::::::
reducing subjectivity when selecting from field-measured end-member candidates by comparing them to CHEMMA

:::::::::::::::::
CHEMMA-identified

:
end-members; 2. CHEMMA may identify end-members that have not been sampled in the field, which

may serve
:
b)
:::::::

serving
:
as a check for missing sources ; 3. CHEMMA

::
on

:::::::
missing

::::::
sources

:::
by

::::::::::::
characterizing

:::::::::::
end-members

::::
that

::
are

::::
not

::::::::::
represented

::
in

::::
field

::::::::
samples;

::::
and

::
c)

:::::::
helping

:::::
target

::::::::
candidate

:
end-member compositions may help hydrologists ask370

better questions and provide guidance for field sampling by suggesting source characteristics; 4. CHEMMA can be used in

conjunction with the Diagnostic Tool of Mixing Models (DTMM , developed
:
.
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:
It
::::::

should
:::

be
:::::
noted

::::
that

::::::::::
CHEMMA

:::::
itself

::::
does

::::
not

::::::::
establish

:
a
::::::::::

systematic
::::
way

::
to

:::::::::
determine

:::
the

::::::::::
appropriate

:::::::
number

:::
of

:::::::::::
end-members

::
k

::
to

::::::
search

:::
for.

::::
This

::::::
choice

:::::
must

::
be

:::::
made

::::::::::::
independently.

:::::::::
However,

:
it
::

is
::::::::::

compatible
::::
with

:::
the

:::::::
DTMM

:::::::
method

::::::::
presented by Hooper (2003) ). DTMM is used to assess the tracer conservation, and mixture rank.CHEMMA can be enhanced375

by using DTMM analysis to select conserved tracers for analysis. The robustness of CHEMMA end-members also serve as a

check for DTMM-determined rank of mixture.
:::
that

:::
has

:::::
been

::::
used

::
to

:::::
make

:::
this

:::::::::
judgement

::
in

:::
the

::::
past.

4.1 Future work

Future work refining and applying this method may380

:::::
There

:::
are

:
a
::::
wide

:::::
range

::
of

::::
ways

::::
this

::::::
method

:::
can

:::
be

::::::::
improved.

::::::
Future

::::
work

:::::
might

:
focus on 1) applying quantitative methods to

eliminate the subjective choice of k, such as the Akaike Information Criterion (AIC), or Bayesian Information Criterion (BIC,

or Schwarz criterion); 2) relaxing the constraints on the CH-NMF algorithm (
:::
e.g.

::::::
forcing

:
Algorithm 1, Step 5

::
to

::::::::
construct

:
a
::::::::
"perfect"

::::::
convex

::::
hull) so that extreme points in S also lie inside the simplex, allowing the method to better characterize

end-members that are never a large fraction of any observations; and 3)
:::::
further

:
exploring the data requirements and uncertainty385

of the method, including better understanding the relationship between the stability of COP-KMEANS clusters, the temporal

variability of end-members, and the number of samples; 4) using individual
:::::::::::::
pre-conditioning

::
a
:::::::
bayesian

::::::::::
CHEMMA

::::
with

:::::
priors

:::::
based

::
on

:
field end-member measurementsto inform CHEMMA.

Code and data availability. Both the example code and data are available in a Jupyter Notebook on GitHub https://github.com/Estherrrrrxu/

CHEMMA (Xu Fei, 2020).390
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Figure 1. Illustration of the CH-NMF algorithm. a) The standardized observations (dark blue) and its projection (light blue) on the obser-

vational space. b) The projected observations (dark blue) and its projection (light blue) on PC subspaces. The red crosses are the marked

extreme points (S) that form a convex-hull (the red polygons) in each PC subspaces. c) Find the convex-hull (the black simplex) and its

associated vertices (the k vectors xemi) in the PC space, such that the verticies are convex combinations of the extreme points S, and the

distance between the simplex and S is minimized.
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Figure 2. CHEMMA prediction (cluster centroids) for three end-member (blue squares) and four end-member (red squares) cases plotted

in the PC2 vs. PC1 subspace. The colored lines that connect those predicted end-members indicate the convex hull formed by those end-

members. The observations (grey dots) inside of the convex-hull can be explained as linear combinations of the end-members. The colored

lines in the center of the plot are the projected original solute axes in this PC subspace.
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Figure 3. 100 random initialized CH-NMF runs result for three (a), four (b and d), and five (c) end-member cases. a - c are in the 2D PC2

vs. PC1 subspaces. d is in the 3D PC3 vs. PC2 vs. PC1 subspace.
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Figure 4.
:::::::
Averaged

:::::
scalar

:::::::
measures

:::
on

:::::::
residuals

:::::
based

:::
on

:::::::
five-fold

::::
cross

:::::::::
validation.

::
a):

:::::
Mean

::::::
square

::::
error

::::::
(MSE)

::
of

::::::::
residuals.

:::
b):

::::::::::
Shapiro-Wilk

:::
test

:::::
p-value

::
of
::::::::
residuals.
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Figure 5.
:::::::::
Uncertainties

:::
of

::::::::
CHEMMA

::::::::
predicted

::::::::::
end-members

::::::::
compared

::::
with

:::
the

::::
total

:::::
solute

::::::::
variances.

::::
Each

:::::::::
CHEMMA

::::::::::
end-member

::::::::::
(end-member

:
1
::
to

::
3)

:
is
:::::::

matched
::::
with

:
a
::::
field

:::::::
measured

::::::::::
end-member.

:::
The

:::
six

::::::
subplots

::::::::
represents

::
six

:::::::
observed

:::::
solute

:::::
space.
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Figure 6.
::::::::
CHEMMA

:::::::::::
end-members

:::::::
predicted

::::
with

::::::
varying

:::::
sample

:::
size

:::::::
grouped

::
by

:::::::::::
corresponding

::::
three

::::
field

:::::::
measured

:::::::::::
end-members.

::::
Each

:::::
sample

:::
size

:::
box

::
is
:::::
drawn

::::
from

::::
1000

:::::::
bootstrap

::::::
samples

::::
with

:::
the

:::
size

::
of

:::
the

::::::
number

::
of

:::::
sample

::::
used.
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Figure 7.
::::::::
Normalized

:::::::::
uncertainty

::
of

:::::::
predicted

::::::::::
end-members

:::::
where

:::
the

:::::::::
uncertainty

::::::
sources

:::
are

::::
from

:::::::
algorithm

:::
and

::::
data

:::::
groups

:::::
using

:::
the

:::::
Panola

::::
data.

::::::::
Algorithm

::
and

::::
data

::
are

:::
two

::::::
groups

:::
used

:::::::
bootstrap

:::::::
method.

::::::::
Normalized

::::::::::
uncertainties

:::
are

:::::::
estimated

::
by

::::::
dividing

:::::::
standard

:::::::
deviation

:
of
::::::::::

bootstrapped
::::::
dataset

:::
over

:::
the

::::::
standard

::::::::
deviation

::
of

:::::::::
streamwater

:::::
solute

:::::::::::
measurements.
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Figure 8.
:::::::
Synthetic

::::::
random

::::::
mixture

::::
(blue

:::::
dots)

:::::::
generated

:::
by

::::
three

::::
fixed

::::
true

::::::::::
end-members

:::::
(grey

:::::
stars).

::::
From

::::
case

::
1

::
to

::
6,

::
the

:::::::
mixture

::::::
occupies

::::
more

::
of
:::
the

::::::
convex

:::::
mixing

:::::
space.
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Figure 9.
::::::
Standard

:::::::
deviation

:::
of

:::::::
predicted

::::::::::
end-members

::::
with

::::::
sources

::::::::
separated

:::
into

::::::::
algorithm

:::
and

::::
data

:::::
groups

:::::
using

::
the

::::::::
synthetic

::::
data.

:::::
X-axis

::::::
percent

:::::::::
end-member

::::::
limited

:::::
values

:::
are

:::::::::::
corresponding

::
to

:::::::
synthetic

::::
case

::::::
number

::
in

:::::
Figure

::
8.
:::::::

‘Percent
::::::::::
end-member

::::::
limited’

::
is

:::
the

::::::::
proportion

::
of

::::::::::::::
randomly-generated

:::::::
samples

:::
that

:::
fell

:::::
outside

::
of

:::
the

:::::::
triangular

::::::::
constraint

::
of

::
the

:::::::::::
end-members,

:::
and

::::
were

::::::::
discarded.

:
In
::::

each
::::
case

::::::
samples

::::
were

:::::::
generated

::::
until

::::
1000

:::
fell

:::::
within

:::
the

:::::::
triangular

::::::::
constraint.
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Cluster
Alkalinity SO4 Na Mg Ca Si

Mean St.dev Mean St.dev Mean St.dev Mean St.dev Mean St.dev Mean St.dev

Red 35.05 27.02 216.75 30.72 48.14 20.28 92.48 7.92 192.37 22.36 90.88 53.51

Blue 348.04 12.16 14.11 2.82 214.87 21.88 90.35 4.64 151.26 9.93 405.86 23.55

Green 33.43 32.27 77.45 12.60 44.70 20.01 32.03 5.84 47.14 10.75 100.34 55.85

Red 32.86 12.33 219.71 17.57 46.66 9.91 93.50 2.44 193.92 15.11 87.25 28.64

Blue 345.01 23.29 15.71 14.91 211.26 26.22 92.02 5.88 157.14 11.86 385.44 50.57

Green 26.80 31.28 85.15 23.04 38.65 13.11 32.83 10.59 54.00 25.65 78.26 28.29

Cyan 207.96 92.01 38.45 40.07 141.51 46.76 61.89 18.02 91.57 42.03 342.13 122.07

Red 38.88 49.76 211.17 41.12 49.60 27.28 91.13 11.34 189.23 29.04 92.71 59.09

Blue 344.76 21.77 15.88 14.39 211.90 30.95 92.44 5.63 158.67 12.07 390.34 40.03

Green 29.62 33.35 85.37 13.38 42.52 17.68 33.40 6.83 52.32 16.99 84.20 29.38

Cyan 171.83 77.99 40.85 33.32 123.60 44.11 54.77 15.08 75.69 29.17 329.06 138.29

Black 253.45 107.65 44.10 47.45 161.55 58.00 75.81 17.47 125.51 38.38 278.05 123.41

Table 1. The mean and standard deviation (st.dev) of each end-member cluster based on 100 random initialized CH-NMF runs. All values

are in micromoles per liter. The cluster color indications correspond to Figure 3 a to c.

26



Field individual samples Alkalinity SO4 Na Mg Ca Si

Organic 37 214 23 78 151 60

Groundwater 370 7 169 97 162 422

Hillslope 9 89 46 22 32 90

Table 2. The median concentration of individual field measured end-members from Hooper and Christophersen (1992). All units are in

micromoles per liter.
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