
Referee #2 

When I read the manuscript on the first time, I was thrilled, as this is something I have been 
waiting for many years to come out. If we could determine the chemical composition of end-
members using streamflow chemistry alone, end-member mixing analysis would be 
significantly improved and revived. After I read it for a couple of times, I found the 
fundamental idea is still intriguing, but the assumptions the main method, namely CHEMMA, 
is based on may be flawed and cause significant uncertainties on the modeling results. A 
conceptual set-up of why and how this modeling would work could be strengthened. 
Readability could be improved as well, particularly in regard to some mathematical details and 
their connection/implication with/in the hydrologic questions being investigated. Remember 
that most of readers who are interested in this study are hydrologists not mathematicians. 

Thank you for recognizing the value of our work and providing suggestions on 
improving the quality of this manuscript. We will improve the readability in 
methodology section to strengthen the conceptual set-up. 

Major Comments: 

The main approach is to use Convex-Hull Non-negative Matrix Factorization (CH-NMF) to 
infer possible end-member compositions by searching for a simplex that optimally encloses 
the stream water observations. The assumption for this is, based on authors, that end-members 
are located near the most extreme points that bound the observations in "mixing" space. From 
this assumption, it is clear that a simplex is basically determined by the data structure of 
observations, in other words, the shape of the sample cloud. What if one or more extreme 
points are missing in our observations? This could happen if samples are collected sparsely or 
only on certain hydrologic conditions/seasons that do not contain extreme samples (samples 
with extreme concentrations for at least one solute). The number of samples could also change 
how samples are distributed. With the same data set, can similar results (with reasonable 
uncertainties) be obtained from subsets of samples with varying number of samples that are 
randomly selected? 

Thank you for your insightful comment. This is indeed a drawback, and we have 
mentioned briefly in the manuscript that CHEMMA can only identify end-members that 
are well-sampled in the data. We will expand on this point in the revised manuscript by 
highlighting this issue in both abstract and introduction. We acknowledge that some of 
the fundamental assumptions could limit the CHEMMA application. Improvements that 
overcome these limitations are left in future work. 

There is a lack of conceptual setup where this study came from and where it goes in relation to 
existing tools in EMMA, particularly the diagnostic tools of mixing models (DTMM; Hooper, 
WRR, 2003). In one study, Christopherson and Hooper (WRR, 1992) specifically concluded 
that “Unambiguous identification of the source solution compositions from the mixture alone 
is impossible; thus, it is necessary that potential source solutions be derived from independent 
measurements.” I do not mean this conclusion cannot be challenged, but the rationale must be 
stated clearly and explicitly, possibly using a conceptual set-up. Also, what is its relation with 
DTMM? Will the current study be supplemental or a substitute to DTMM in regard to the 
number of end-members? Can DTMM actually help to enhance CHEMMA and how? 

The study used data collected in late 1980s. That is okay but what I am concerned is about the 
conservativity of all six solutes. How can we be convinced if all six solutes are conservative? 
If any of those is not conservative, the results of CHEMMA would be different. In my opinion, 
this is where DTMM may be able to help. Also, isn’t it interesting to compare the number of 
end-members acquired using CHEMMA to DTMM? 



We appreciate your suggestion on improving the understanding of practicing 
CHEMMA. We agree that the conceptual set-up is not clearly stated in the paper. In the 
revision, we will modify the last paragraph of the introduction (l55 – l65). We have added 
a sentence in l65 to clarify the conceptual setup: 

“Christophersen and Hooper (1992) suggested that “[u]nambiguous identification of the 
source solution compositions from the mixture alone is impossible”. In a strict sense this is 
likely true, since the underlying assumption (streamflow as a conservative mixture of 
invariant sources) is unlikely to be adhered to in a real watershed. However, we believe 
there may be utility in developing tools that can seek some insights (perhaps not free of 
ambiguity) into the potential source solution composition from the observed mixture. We 
propose CHEMMA as an attempt to push this boundary and to see how far we can get.” 

As we said to Referee #1’s comment, we have added a paragraph after l200, and 
discussed DTMM in point 4: 

“For most hydrologists, end-member analysis is used to identify the water sources, 
and toward that purpose CHEMMA may be useful in the following ways: 1. CHEMMA may 
be used to reduce subjectivity when selecting from field-measured end-member candidates 
by comparing them to CHEMMA end-members; 2. CHEMMA may identify end-members 
that have not been sampled in the field, which may serve as a check for missing sources; 3. 
CHEMMA end-member compositions may help hydrologists ask better questions and 
provide guidance for field sampling by suggesting source characteristics; 4. CHEMMA can 
be used in conjunction with the Diagnostic Tool of Mixing Models (DTMM, developed by 
Hooper (2003)). DTMM is used to assess the tracer conservation, and mixture rank. 
CHEMMA can be enhanced by using DTMM analysis to select conserved tracers for 
analysis. The robustness of CHEMMA end-members also serve as a check for DTMM-
determined rank of mixture.” 

Minor Comments: 

L18: Before the first reference, add “e.g.,”. Many classical references on EMMA were not 
actually cited. 

Thank you for this suggestion. We have added “e.g.”, and also added two new references 
mentioned in your comment (Liu et al., 2008 and 2017) as applications of EMMA under 
different climatic settings. 

L24: This statement should refer to conservative solutes. 

Thank you for bringing up this confusion. We added a word “solute” between 
“chemical composition” to clarify that the sentence is talking about solute conservation. 

L30: “Streamwater concentration are naturally correlated.” It is true if you refer to 
conservative solutes; otherwise it is an ill statement. Use two words “stream water” instead of 
one word “streamwater”. Also, use plural for “concentration”. 

Thank you for your suggestion. We changed “streamwater” to “stream water” for this 
manuscript. We also adopted Referee #1’s suggestion and changed this sentence to: 

“Stream water concentrations of different conservative solutes tend to be correlated.” 

L28: The second one is no longer a hypothesis or assumption because of the diagnostic tools 
of mixing models by Hooper (2003); See Liu et al. (WRR, 2008) for a demonstration and how 



this was addressed. 

L45: True traditionally but not after DTMM is developed. See Liu et al. (WRR, 2008, 2017) as 
examples. 

L51-52: Not true with DTMM. 

L52-53: True but DTMM can help identify conservative solutes so that users can use only 
conservative ones. I mention this because I think your study is also based on mixing of 
conservative solutes. This should be stated/defined earlier in your text. 

L186-206: Need to indicate where this modeling will lead to and how it may work together 
with DTMM. 

We would like to response to these five comments collectively. Thank you for your 
recommendation about DTMM and related application papers.  We agree that DTMM 
workflow is a good complement to both EMMA and CHEMMA. And we added a 
paragraph to clarify how DTMM and CHEMMA can potentially work together. Please 
refer to the response to the last major comment above for more details. 

L33-35: Multiple issues here. (1) Is Pobs actually eigenvectors? If so, use a parenthesis to 
annotate so; otherwise explain what it is and how to calculate it. (2) Get rid of the redundant 
“the”. (3) My understanding is that once a standardized data set is used, a correlation matrix is 
decomposed rather than covariance matrix. Check if this is correct. 

Thank you for carefully checking the mathematical details. The rows of Pobs are the 
eigenvectors of the correlation/covariance matrix Xobs. We have added a parenthesis 
segment: (rows of which are eigenvectors of the correlation matrix), and we have deleted 
the redundant “the” appearing later. Because Xobs is standardized observation, the 
correlation matrix and the covariance matrix are essential the same. Performing 
eigendecomposition on both matrices yields the same results. We have adopted your 
comment to change the covariance matrix to correlation matrix to make it clear. 

L36: If P are indeed eigenvectors, cite Christopherson and Hooper (1992) for the equation. 

Thank you. P are eigenvectors. We have cited Christophersen and Hooper (1992). 

Result 2: Eigenvectors and PCs are different. PCs are calculated based on eigenvectors and 
observed concentrations. 

Thank you. We adopted a terminology in this manuscript consistent with usage in 
applied mathematics literature, such as Jolliffe (2002). In our understanding, 
eigenvectors are derived from the correlation matrix of the observed concentrations by 
performing eigendecomposition (as used for this manuscript) or singular value 
decomposition. Resulting eigenvectors are orthogonal bases as known as Principal 
Components (PCs) (Jolliffe, 2002). Loadings are the coefficient calculated based on 
eigenvectors (PCs) and observed concentrations (Jolliffe, 2002), and are referred as 
contributions (of end-members) in this manuscript. 

L93: I still think it is correlation matrix not covariance matrix. Also, what you mean here is 
eigenvectors not PCs. 

Thank you. As we responded before, in the revised manuscript we have changed 
covariance matrix to correlation matrix for clarity. We used eigenvectors and PCs 



interchangeably according to our reference of PCA terminology (Jolliffe, 2002). 

Result 3: Is it specified anywhere how to project mathematically? 

Thank you for finding this confusing part. Projecting a matrix A to another space 
through a projection matrix PT to get projected matrix B is defined as B = APT, just as 
Equation 1 and 2 show. We added a parenthesis fragment: (similar form as Eqn. 1 & 2). 

Result 4: Will the dimension of S differs from one projection plane to another? 

Thank you for noticing this technical detail. Yes. S records all boundary points in each 
projection plane and the number of recorded points at each plane can be different. 

Result 5: Is X expression actually [[xem1], [xem2], . . ., [xemk]], as each xemi has a 
dimension of n by 1? 

Thank you for noticing the dimension consistency. Yes, xemi has dimension of n by 1. We 
have checked the consistency of dimensions in Algorithm 1 a couple of time before 
submitted the manuscript. 

L125: I think “equifinality” is part of your talking here. Why not citing “equifinality” directly? 
It is a common term that hydrologists are very familiar with. 

Thank you for your comment. The concept here is slightly different from equifinality. 
This paragraph particularly talked about limitation of an optimization problem on 
minimizing the objective function in Step/Result 5. 

 

 

 

Thank you for pointing out style problems. We have adopted the following comments. 

L31: Need at least one reference (e.g., Christopherson and Hooper, 1992). 

L41-42: Cite Hooper (WRR, 2003). 

L60: Need to specify “extreme points”. I think you refer to “extreme points of stream water 
samples”. 

L64: I think you mean “end-members’ composition”. 

L94: Spell out PCA as it appears for the first time. 

L102: Specify the constraints, each between 0 and 1 with sum of all to be 1. 
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