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Abstract 9 

The accuracy of two-dimensional urban flood models (2D models) is improved when high-resolution Digital 10 

Elevation Models (DEMs) is used, but the entailed high spatial discretisation results in excessive 11 

computational expenses, thus prohibiting the use of 2D models in real-time forecasting at a large scale. This 12 

paper presents a sub-model approach to tailoring high-resolution 2D model grids according to specified targets, 13 

and thus such tailor-made sub-model yields fast processing without significant loss of accuracy. Among the 14 

numerous sinks detected from full-basin high-resolution DEMs, the computationally important ones are 15 

determined using a proposed Volume Ratio Sink Screening method. Also, the drainage basin is discretised into 16 

a collection of sub-impact zones according to those sinks’ spatial configuration. When adding full-basin 17 

distributed static rainfall, the drainage basin’s flow conditions are modelled as a “1D static flow” by using a 18 

fast-inundation spreading algorithm. Next, sub-impact zones relevant to the targets’ local inundation process 19 
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can be identified by tracing the 1D flow continuity, and thus suggest the critical computational cells from the 20 

high-resolution model grids on the basis of the spatial intersection. In MIKE FLOOD’s 2D simulations, those 21 

screened cells configure the reduced computational domains as well as the optimised boundary conditions, 22 

which ultimately enables the fast 2D prediction in the tailor-made sub-model. To validate the method, model 23 

experiments were designed to test the impact of the reduced computational domains and the optimised 24 

boundary conditions separately. Further, the general applicability and the robustness of the sub-model 25 

approach were evaluated by targeting at four focus areas representing different catchment terrain morphologies 26 

as well as different rainfall return periods of 1-100 years. The sub-model approach resulted in a 45-553 times 27 

faster processing with a 99% reduction in the number of computational cells for all four cases; the predicted 28 

flood extents, depths and flow velocities showed only marginal discrepancies with Root Mean Square 29 

Errors (RMSE) below 1.5 cm. As such, this approach reduces the 2D models’ computing expenses 30 

significantly, thus paving the way for large-scale high-resolution 2D real-time forecasting.  31 

Keywords: Targets-specified modelling, tailored grids, sub-model generation, large-scale high-resolution 32 

flood modelling, real-time forecasting.  33 
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1. Introduction 34 

Urban floods pose escalating threats to human settlements in times of continued urbanisation and climate 35 

change (Bernstein et al., 2008). In order to mitigate the flood risks and the related consequences, a flood 36 

forecasting system that complies with two criteria: i) accurate spatial and temporal flood predictions and ii) 37 

sufficient lead time between rainfall predictions and flood predictions, is considered as a prerequisite to provide 38 

precise early warnings for decision makers. Therefore, with the purpose of identifying an accurate and timely 39 

urban flood model to configure such a system, we review two types of models: i) 2D hydrodynamic models 40 

(Section 1.1) and ii) 1D static models (Section 1.2). After summarising the strengths and potentials for the two 41 

models, the scientific innovation of the proposed approach is outlined by identifying a 1D/2D complementary 42 

solution that adapts a 1D static model to tailor a 2D model grids based on specified targets, thus achieving fast 43 

and accurate predictions in large-scale high-resolution 2D urban flood modelling (Section 1.3).   44 

1.1 2D hydrodynamic models (2D models) 45 

By enabling more realistic 2D dynamic flows across regular grids, 2D models are advocated as a preferential 46 

approach to other alternatives for urban flood simulations (Maksimović et al., 2009; Mark et al., 2004; Mark 47 

and Parkinson, 2005; Schmitt et al., 2004; Leandro et al., 2009). However, 2D models tend to be 48 

computationally expensive. When numerical solvers (implicit/explicit solvers) are executed in a high spatial 49 

discretisation based on a fine grid, to stabilise the models, the optimum time steps must be decreased 50 

accordingly, which boost processing time considerably. Although applying a coarse grid is considered a 51 

straightforward way to reduce computing time, it turns out that the extra details inherent in high-resolution 52 

DEMs can benefit simulation accuracy substantially (Fewtrell et al., 2008; Yu and Lane, 2006a). Particularly 53 

when micro-topography dominates the direction of flood propagation, grid coarsening may smear critical 54 

elevation information resulting in imprecise inundation distributions (Fewtrell et al., 2011; Jensen et al., 2010). 55 

Recently, the occurrence of decimetric DEMs allows for the inclusion of more detailed micro-topographies in 56 

urban flood models, which initiates a new high-resolution simulation era. However, due to the prohibitive 57 

processing time, high-resolution applications have been limited to small scale modelling only (Fewtrell et al., 58 

2011; Sampson et al., 2012). For the same reason, the use of high-resolution grids in real-time forecasts 59 
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(nowcasting) is impractical. Consequently, applying high-resolution DEMs to large-scale modelling and real-60 

time forecasts remains a challenge. 61 

To improve the 2D models’ computational efficiency, four speed-up approaches may be employed: i) 62 

parallelization technology taking advantage of Graphics Processing Units (GPUs), multi-core Central 63 

Processing Units (MCs), remotely distributed computers and cloud computing such as JFLOW-GPU (Lamb 64 

et al., 2009), OpenMP (Neal et al., 2009), MPI libraries (Neal et al., 2010), FloodMap-Paraller model (Yu, 65 

2010) and CityCAT (Glenis et al., 2013); ii) a simplified hydrodynamic model approach that solves simplified 66 

governing equations, whereby reasonable flood extents and depths can be yielded quickly although the 67 

momentum conservation is less emphasized, e.g. inertial LISFLOOD-FP (Bates et al., 2010) and Quasi 2D 68 

(Kuiry et al., 2010); iii) a coarse-grid approach, where computational time is reduced by increasing the grid 69 

size (Yu and Lane, 2006a); to compensate for loss of accuracy due to smearing of details, especially around 70 

buildings, various improvements have been introduced, including sub-grid treatment (Chen et al., 2012a; Yu 71 

and Lane, 2006b; Yu and Lane, 2011), the multi-cell approach (Hénonin et al., 2015), the multi-layered 72 

approach (Chen et al., 2012b) and the porosity parameter (Bruwier et al., 2017; Guinot and Soares‐Frazão, 73 

2006; McMillan and Brasington, 2007; Sanders et al., 2008); and iv) the Cellular Automata (CA) approach, 74 

where a universal transition rule is coded for spatial discretization in the simulation, thus achieving a reduced-75 

complexity procedure in 2D models (Dottori and Todini, 2010; Dottori and Todini, 2011; Ghimire et al., 2013; 76 

Guidolin et al., 2016). Whereas these technologies may reduce computational costs to some extent, new fast-77 

approaching remote sensing technologies delivering enhanced data accuracy in tremendous volumes are even 78 

more difficult for them to handle (Bates et al., 1997; Barnea and Filin, 2008; Cobby et al., 2003; Fewtrell et 79 

al., 2011; Leitão, 2016; Lichti et al., 2008; Marks and Bates, 2000; Mason et al., 2003; Mason et al., 2007; 80 

Meesuk et al., 2015; Sampson et al., 2012; Schubert et al., 2008; Tokarczyk et al., 2015). Especially, the use 81 

of a high-resolution modelling grid is the precondition to explicitly include all detailed spatial representations 82 

of datasets into 2D simulations. Thus, the computational efficiency of 2D models remains a challenge in the 83 

high-resolution data context.  84 
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1.2 1D static models (fast-inundation spreading models) 85 

Although 2D hydrodynamic models still dominate, increasing attention is paid towards fast-inundation 86 

spreading models due to their fast computing speed. Noteworthy examples include RFIM (Krupka et al., 2007; 87 

Liu and Pender, 2010, Jamali et al., 2018), RFSM (Bernini and Franchini, 2013; Gouldby et al., 2008; Lhomme 88 

et al., 2008), ISIS-FAST (Shaad, 2009), FCDC (Zhang et al., 2014), GUFIM (Chen et al., 2009), SCALGO 89 

(Arge et al., 2010), USISM (Zhang and Pan, 2014) and Arc-Malstrøm (Balstrøm and Crawford, 2018). A 90 

conception of “hydrostatic condition” (Bernini and Franchini, 2013), also known as the “flat water assumption” 91 

(Zerger et al., 2002) is commonly embedded as the underlying algorithm in these models. With mass 92 

conservation as the only governing law and disregarding temporal evolution, the fast-inundation spreading 93 

models present a filling/spilling process within the predefined flow patterns thus resulting in predictions 94 

rapidly. Here, we name the process “1D static flow” in this research. These models are divided into two types 95 

(Zhang and Pan, 2014): one is used for point-source triggered floodings like dam breaching and riverbank 96 

overflow (RFIM, RFSM, ISIS-FAST, FCDC); the other (non-point source models) is more directly relevant 97 

to stormwater-inundations in urban areas (GUFIM, USISM, Arc-Malstrøm). By using 1D static flows instead 98 

of 2D dynamic flows the fast inundation spreading models gain computational efficiency substantially, and 99 

thus a fast-processing speed is obtained particularly when dealing with large-scale high-resolution DEMs. 100 

However, there are two notable drawbacks: first of all, due to their intrinsic neglect of time evolution, they 101 

cannot reproduce flow dynamics (i.e. hydrographs), and peaks may be miss-captured in such static simulations. 102 

Secondly, they do not account for the conservation of momentum and, therefore, cannot provide flow 103 

velocities, which is essential to flood risk assessments.  104 

1.3 Hypothesis and research objectives 105 

The simplified urban flood models can be designed to perform specific modelling tasks by deliberately 106 

ignoring the representation processes deemed incidental to the defined modelling purpose (Hunter et al., 2007). 107 

If we adapt a 1D static model to exclude 2D model grids that are irrelevant to specified targets (i.e. specified 108 

buildings and specified precipitations), then 2D dynamic flows would avoid the prohibitive processing time 109 
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when dealing with large-scale high-resolution DEMs, while compensating for the drawbacks of 1D static flows 110 

used, which results in cost-efficient tailor-made sub-models. 111 

This paper presents a sub-model approach to reducing 2D models’ computing time in case of large-scale high-112 

resolution urban flood modelling. The reduction is done by two phases (I/II) distinguished by multiple scales 113 

(i.e. basin/local catchment), see Fig. 1: i) aiming at identifying reduced domains, the 1D static model (Arc-114 

Malstrøm) is adapted to trace the relevant sub-impact zones based on specified target objects and specified 115 

precipitations; ii) aiming at the highest precise flow predictions, the full 2D dynamic model (MIKE FLOOD) 116 

is used based on the reduced domain intersected with sub-impact zones. To investigate the influence of the 117 

domain reductions, the MIKE FLOOD predictions based on the sub-model domain is benchmarked against the 118 

one of the full domain, and further compared to the one defined from municipality borders. Meanwhile, to 119 

investigate the validity of the suggested boundary conditions, the discrepancies of optimal boundary condition 120 

is compared to the ones of uniform closed-/open-boundary conditions. Finally, to prove general applicability 121 

and robustness, performances of four sub-models are benchmarked and compared using different terrain 122 

morphologies as well as different rainfall return periods. 123 

2. Methodology 124 

The program of the sub-model approach is adapted from the prototype of Arc-Malstrøm and consists of five 125 

modules (Modules I-V, as illustrated in Fig. 1), where Module II is essentially following the Arc-Malstrøm 126 

and Modules I, III-V is added for the sub-model tailoring purpose. The general procedure is programmed and 127 

wrapped up with ArcGIS’ Python interface (ArcPy). To address the distinctions between Arc-Malstrøm and 128 

the sub-model approach, further comparisons and associated tests are inclosed as Supplementary Document 129 

S1, S2 and S3. 130 
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  131 
Fig. 1. Illustration of the suggested method. In the central column, shaded boxes represent major modules; light grey boxes are required 132 
input data; dashed-line boxes are intermediate data between different modules and the final outputs. Phase I and Phase II (left side) 133 
represent the two major phases, where an appropriate level of modelling complexities (hydrological/inundation process) is addressed 134 
at each modelling scale (basin/local catchment scale) to achieve a holistic computational efficiency in multiple-scale simulations. The 135 
right side represents the GIS processing environment that shifts from raster (computationally expensive) to vector processing 136 
(computationally cheap) for the sake of the general computational expense reduction. 137 

2.1 Volume ratio sink screening (Module I) 138 

When creating an urban surface runoff network, the numbers and spatial configuration of sinks are critical 139 

factors concerning network delineations (stream links) and discretisation of the drainage basin. To avoid 140 

spurious network components due to an increasing number of sinks detected from high-resolution DEMs (i.e. 141 

0.4 m/1.6 m), a Volume Ratio Sink Screening method (VRSS) is proposed as presented in Fig. 2a. This module 142 

screens for computationally important sinks to generate relevant networks (Section 2.2) and adequate volumes 143 

involved in subsequent computations (Section 2.3).  144 
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 145 
Fig. 2. (a) The Volume Ratio Sink Screening method; (b) The link-based fast-inundation spreading algorithm; (c) The sub-impact zones 146 
screening method, where the dark grey shaded boxes represent major steps and light grey boxes are input data. Note: Vrunoff  – Runoff 147 
Volume, HRVratio – Hydrological Retention Volume ratio, VLAggr. – Aggregated Volume Loss, VLratio – Volume Loss ratio, Csink, Aggr. – 148 
Aggregated Sink Capacity, Vspilled – Spilled Volume, Vremaining – Remaining Volume, Vreceived – Received Volume. 149 

In general, sinks are classified into two categories: actual sinks and artefacts (Lindsay and Creed, 2006). To 150 

preserve the actual sinks only, the DEM’s vertical accuracy is used, whereby artefact sinks shallower than or 151 

equal to this threshold value are removed. Other sink artefacts, such as detected inside enclosed building blocks 152 

or on rooftops, are deleted (see Fig. 3a). Nevertheless, the inclusion of all actual sinks as computational nodes 153 

may lead to massive computational costs while improving minor modelling accuracy for network-based 154 

computations (i.e. 1D static/dynamic modelling). To further differentiate “important” from “unimportant” 155 

sinks in light of the computational efficiency, the Hydrological Retention Volume Ratio ( ratioHRV ) is defined 156 

as the ratio between a sink’s capacity (volume) and the runoff volume generated from its associated 157 

contributing catchment, which reflects the sink’s runoff retention performance (strong/poor) relative to rainfall 158 

amounts, see Eq. (1) and (2). So, if we consider the spill-over as a transition moment when a sink uses up all 159 

retention capacities and generates runoff only, then “unimportant” sinks that make quicker spill-over during a 160 

rain event should be modelled as part of catchments rather than having retention capacities. To substitute those 161 

catchments from screened “unimportant” sinks, “important” sinks should initiate another round of catchment 162 

delineation (drainage basin discretisation) resulting in “dissolved catchments”, see Fig. 3b. 163 
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where VLAggr. is the aggregated volume losses; Vi is the volume loss from the identified “unimportant” sink i,  183 

and n is the number of sinks located within the dissolved catchment (see Fig. 3b).   184 

 185 
Fig. 3. (a) Artefact sinks on roofs and within enclosed buildings (left), and after removal (right); (b) Sink screening process where 186 
unimportant sinks (light blue, left) are removed and important sinks (dark blue, left) are selected to delineate one dissolved catchment 187 
(right). Besides, volumes from unimportant sinks (removed, right) are summarized as the VLAggr, to be added to the capacity of the 188 
important sink (dark blue, right) downstream. Finally, the important sink with Csink, Aggr. (dark blue, right) is generated. Note: pour 189 
points (red) denote the starting points of concentrated flow from sheet-flow (orange area) to channel-flow (blue line); the gradually 190 
darker blue colour (right) represents the enlarged capacity due to the volume aggregation. 191 

The suggested VRSS method offers several advantages over other alternatives (Maksimović et al. 2009, 192 

Balstrøm and Crawford, 2018). First, instead of conventional screening criteria (i.e. depth and volume) which 193 

reflects a geometric distinction between “small” and “big”, sinks’ runoff retention performance (poor/strong) 194 

is assessed to determine sinks’ computational importance in network-based computations. Second, unlike 195 

absolute screening criteria, introducing the relative variable Vrunoff computed from the distributed total rainfall 196 

raster allows an adaptive sink screening criterion to be scaled with the spatially varying magnitude of 197 

precipitation, thus adding an effect of rainfall heterogeneity to the sink screening process. Third, sinks’ pour 198 

points can denote a starting point of concentrated runoff, thus distinguishing runoff transition processes from 199 

sheet-flow to channel-flow, see Fig. 3(b). With an adaptive threshold value to differentiate these two flow 200 

conditions, a more precise hydraulic representation of catchment processes in 1D hydrodynamic models can 201 

be obtained. Fourth and finally, the volumes from screened sinks are not neglected. Instead, a criterion is 202 

applied to control the volume loss independent from the screening process of sink numbers. This can minimize 203 

the accumulated effect of volume losses throughout a basin-wise hierarchical network. 204 

 205 
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2.2 Urban surface runoff network generation (Module II) 206 

To assemble the urban surface runoff network (Fig. 4), we used the GIS-based method developed by Balstrøm 207 

and Crawford (2018), including four hydro-objects: blue spots (sinks), their sub-impact zones (catchments), 208 

their pour points, and stream links. “Blue spots” referring to all surface depressions (Hansson, 2010) are 209 

generated by subtracting the original DEM from the filled DEM. “Sub-impact zones” describes the blue spots’ 210 

catchments identified by the ArcGIS’ Watershed tool, where the discretization of the drainage basin is obtained 211 

by the flow direction raster derived from the “8N approach” (Baker and Cai, 1992; Greenlee, 1987; Jenson 212 

and Domingue, 1988). Pour points denote the overflow positions along the blue spots’ rims, and their locations 213 

are determined by searching for the highest flow accumulation cell value within each blue spot region as well 214 

as the lowest elevation cell value along the rim. “Stream links” describes the topological connectivity between 215 

blue spots, i.e. flow paths, and are delineated based on ArcGIS’ Cost Path tool. Notably, the flow direction and 216 

flow accumulation raster required by ArcGIS tools in this section are derived on the basis of the filled DEM. 217 

Accordingly, the different drainage basin discretisation and network delineations are identified in relation to 218 

the rainfall’s spatial variation based on VRSS (the comparison test regarding network generations between the 219 

sub-model approach and Arc-Malstrøm are provided in Supplementary Document S2). 220 

 221 
Fig. 4. The Greve basin’s urban surface runoff network, where blue polygons represent blue spots (sinks) and blue lines represent 222 
stream links (flow paths). (Map data: © 2017 Google, Digital Globe) 223 

2.3 Link-based fast-inundation spreading (Module III) 224 

In order to quickly estimate flood volumes across the basin-wise network, we developed a link-based fast-225 

inundation spreading algorithm (Fig. 2b). First it should be noted that, as seen from Eq. (2), rainfall-runoff 226 

conversion on catchments is assumed as 100%. Given a specific modelling purpose – identifying simple 227 
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Boolean flow conditions (spill-over/non-spill-over), the spatially-varying magnitude of rainfalls and the 228 

complexity of terrains are considered as dominant factors affecting overland flow in case of large-scale 229 

inundation. Therefore, detailed hydrological losses (i.e. evaporation and infiltration) and the presence of 230 

underground drainage systems are deliberately disregarded to obtain the minimum computational efforts 231 

exclusively accounting for  the minimum necessary representation process. 232 

The suggested algorithm uses stream links as computational objects. Therefore, all computational information 233 

related to sink features (points), i.e. Csink, Aggr, Vrunoff, Vreceived, Vspilled and Vremaining, is joined onto their intersected 234 

stream links (edges). This allows for the subsequent fast-inundation calculation to be exclusively based on one 235 

stream link feature class' attribute table (see Fig. 5b). The Shreve stream order (Shreve, 1966) is used to 236 

determine the correct computational order of stream links and the convergence order of excess flows. By 237 

governing the conservation of mass balance within each stream link, flood volumes are computed according 238 

to two flow conditions: 239 

If 
.,    > received runoff sin gk A grV V C+                                                                                             (Flow condition I) 240 

  , .     –  Aggrspilled runoff received sinkV V V C= +                                                 (5) 241 

 .,  remaining si Ak grn gCV =                                                                   (6) 242 

Else 
.,     received runoff si A rnk ggV V C+                                                                                (Flow condition II) 243 

  0spilledV =                                                                        (7) 244 

     receiveremaining runoffdV VV = +                                                      (8) 245 

where Vspilled represents excess volumes once the spill-over level is reached and Vremaining is the actual volume 246 

retained locally, and Vreceived represents the converged flow volumes received from upstream connecting links. 247 

Csink, Aggr. is obtained from Section 2.1. After enabling this algorithm, a stream link feature class incorporating 248 
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geometric features and their associated attribute table is produced (Fig. 5a and b). Notably, in addition to the 249 

computed results of Vspilled and Vremaining, topological connectivity identifying the next downstream stream link 250 

is also self-established in the same table (upstream & downstream sink ID, see Fig. 5b), which is now ready 251 

for the upstream tracing operation as illustrated in Fig. 5c and explained further in Section 2.4. 252 

 253 
Fig. 5 (a) The geometric features of the stream link feature class, where points represent sinks with IDs (A–I), and edges representing 254 
their assigned stream links (S1–S8); the gradually darker blue colour symbolized the increase in Shreve stream order (I–V), which 255 
determines the computing sequence of stream links; (b) The stream link feature class' attribute table where the computational 256 
information is constructed by joining two points onto one stream link based on their spatial intersection (i.e. points A and C are the 257 
endpoints of edge S1). Blue rows mark the stream links with spill-overs, as determined from their associated geometric features shown 258 
to the right; (c) Sub-impact zones screening process, illustrated for target sink I. Black arrows represent tracing directions when 259 
searching for connected upstream stream links and the number of stream link features involved (S8 – S6 – S3 – S1 and S8 – S6 – S4) 260 
intuitively reflecting tracing distances. Dark orange areas symbolized identified sub-impact zones to be included while light orange 261 
areas symbolized eliminated sub-impact zones identified as irrelevant to target objects (Sink I). 262 

Whereas a fast-inundation computation was presented by Balstrøm and Crawford (2018) previously, the 263 

essential difference of these two algorithms comes at the different approaches configuring the data structures 264 

for computations. Arc-Malstrøm’s data structure is built on ArcGIS’ geometric networks (Esri, 2019). The 265 

computational information (i.e. Csink, Aggr, Vreceived, Vrunoff, Vspilled and Vremaining) is coded in the point (junction) 266 

class’s attribute table, and the topological connectivity (e.g. points-to-points) are identified in a separate table 267 

(i.e. geometric network’s relation class) during the set-up of ArcGIS’s geometric network. Thus, this data 268 

structure formulates a point-based fast-inundation routing, where the mass conservation is computed 269 

exclusively based on the point class objects and the computing order is referred by the points-to-points 270 

relationship in the geometric network’s relation class. In contrast, this new algorithm self-establishes the data 271 

structure that configures computational information as well as the self-identified topological connectivity into 272 

the stream link feature class’ attribute table thus facilitating efficient data storage and retrieval from one source. 273 

More importantly, unlike Arc-Malstrøm’s accessing the geometric network’s internal function and class 274 
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objects via the ArcObjects SDK, this new algorithm is programmed based on ArcGIS’ Python interface 275 

(ArcPy) only, which facilitates the automation and wrap-up of all modules in a consistent programming 276 

environment.  277 

2.4 Sub-impact zones screening (Module IV) 278 

With the aim of identifying the relevant sub-impact zones, a screening algorithm is programmed to perform 279 

upstream tracing tasks based on the stream link feature class (Section 2.3). As suggested by Fig. 2c, when 280 

introducing the target objects among urban infrastructures (i.e. buildings, parks and roads) as input variables, 281 

the intersecting stream link features are first selected (i.e. S8 as it intersects with Sink I) representing local 282 

inundations as well as their associated inflow paths. Here, although spill-overs - due to the possible high-283 

momentum flows - may impact all the neighbourhood flow conditions, their significant volumes would follow 284 

the preferential paths indicated by stream links, thus affecting the downstream flow conditions primarily. 285 

Meanwhile, a sink could receive multiple inflows. To fully expose multiple inflow paths, the procedure 286 

continuously matches all the stream links by indexing the current upstream sink ID until all the upstream 287 

stream links being identical downstream sink ID were included (Fig. 5b). More importantly, in order to reflect 288 

the actual flow continuity beyond flow paths (simply indicating flow directions), flood volumes along the 289 

stream links are taken into account by conserving the mass balance during the whole tracing procedure. Here, 290 

based on Vspilled, we introduce a Boolean flow condition property (spill-over/non-spill-over, see Fig. 5b) as a 291 

search termination criterion. So, stream links associated with non-spilled-over sinks (i.e. tracing-brake 292 

features) are excluded from the search list, which results in optimal stream links (i.e. S8-S6-S3-S1 or S8-S6-293 

S4, see Fig. 5c). In case of heavy rainfall, the tracing distance would increase with more involved stream links 294 

due to the more densified spilling configurations and vice versa (Fig. 6). This thereby avoids a substantial risk 295 

of tracing all connected flow paths basin-wise, such as Arc-Malstrøm’s upstream tracing function and ArcGIS’ 296 

Watershed tool. Finally, since these identified stream links represent all main flows related to specified 297 

inundation modelling, their intersected sub-impact zones would suggest suitable modelling areas (domains) 298 

covering relevant runoff generations (sheet-flow) as well as flood propagations (channel-flow). 299 
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 300 
Fig. 6. Search procedure along stream links at various uniform rainfall scenarios, where the optimal tracing distance (red arrow) is 301 
determined from the continuity of overland flow based on spill-over and non-spill-over properties. Note: The number of raindrops 302 
(blue) represents the rainfall's magnitude and No spill-over refers to the termination criterion to stop further upstream tracing. In case 303 
of distributed rainfall, various optimal tracing distance in relation to target objects should be determined.  304 

2.5 Tailor-made sub-model generation (Module V) 305 

Urban flow is usually characterised by numerous transitions of supercritical flows and numerical shocks 306 

(Hunter et al., 2008). Full 2D models are considered as best candidates to expose the complicated flow 307 

dynamics. Thus, MIKE FLOOD's rectangular cell solver, which solves alternating direction implicit schemes 308 

on inertia wave equations (ADI), is used in this module to obtain dynamic 2D flow predictions (DHI Water & 309 

Environment, 2017). More importantly, by accounting for identified sub-impact zones, critical computational 310 

grid-cells (dark orange cells) intersecting them are extracted from the high-resolution DEM’s grid. Thus, a 311 

reduced modelling grid extent is identified simultaneously, resulting in efficient computational costs for MIKE 312 

FLOOD’s 2D simulations, see Fig. 7a. Besides, the suggested 1D flow patterns (blue edges) define that runoffs 313 

generated within the identified sub-impact zones must exit at downstream terminal pour points (i.e. Sink I’s 314 

pour point), only. To be consistent with these described 1D flow conditions, the irrelevant grid-cells (light 315 

orange cells) within the reduced modelling grid extent should be assigned the Nodata value to prevent outwards 316 

2D flow leakages along the upstream edges. 2D weirs should be established by pulling up the terminal pour 317 
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point’s surrounding elevation values (marked ↓ in Fig. 7b) to the spilling level, while sufficient retention 318 

volumes > Vspilled should be accommodated to the downstream side of the 2D weirs by decreasing the associated 319 

grid-cell elevations (marked × in Fig. 7b). For the grid-cells intersecting the internal subtracted areas or 320 

buildings, their elevation values should be substituted by a specified value (e.g. 100) to be excluded from the 321 

final 2D flow computations. Based on the reduced domain (dark orange cells) and the optimised boundary 322 

conditions (the red outline) determined above, additional complexities (e.g. hydrological losses, distributed 323 

roughness surface values, impervious surface types and hydraulic behaviours concerning rooftops) may be 324 

involved subsequently at the local catchment scale. Thus, this GIS-based method ultimately produces tailor-325 

made sub-models providing fast 2D flow predictions. 326 

 327 
Fig. 7 (a) The intersection between sub-impact zones and the high-resolution DEM’s grids; (b) The computational domain 328 
determination for MIKE FLOOD’s 2D simulation, where dark orange grid-cells represents critical computational cells configuring the 329 
reduced computational domain, the blue frame represents the reduced rectangular modelling grid extent and the red frame represents 330 
the reduced computational domain and the optimised boundary conditions. The red grid-cell represents the location of terminal pour 331 
points, and the grid-cells marked ↓ configure the 2D weir having the spilling elevation level. Furthermore, the grid-cells marked × 332 
configure retention volumes based on decreased elevations. 333 

2.6 Model experiments 334 

The sub-model approach suggests two outcomes: i) reduced computational domains and ii) optimised 335 

boundary conditions. To clarify the individual effect, their validities were investigated separately as two-folds: 336 

On one hand, the suggested domains can lead to fast 2D predictions in MIKE FLOOD. Yet, their prediction 337 

accuracy may be affected as well. To quantify the influence of domain reductions, tests using consistent 338 

boundary conditions were conducted to validate this method against benchmark results, and the other domain 339 

reduction approach (Municipality domain approach, Section 2.6.1) was used for comparison purposes. On the 340 
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other hand, optimised boundary conditions may lead to prediction discrepancies along the boundary areas. To 341 

evaluate the influence of the various boundary conditions adopted, tests using the consistent domain were 342 

conducted to compare benchmarking discrepancies in different boundary conditions. Furthermore, as 343 

according to Leitão et al. (2009) different types of terrain morphology may impact overland flow patterns 344 

significantly, tests (Section 2.6.3) were carried out on different catchments (within the Greve basin described 345 

in Section 3.1) under different associated regional rainfalls (Section 3.2) to validate the general applicability 346 

and the robustness of the sub-model approach. 347 

2.6.1 Domain reduction tests (sub-model approach vs. municipality domain approach) 348 

We identified the full-basin domain approach, where the entire drainage basin area has flow directions pointing 349 

towards the outlet (i.e. ArcGIS’ Basin/Watershed tool). Further, this approach converts the whole area into the 350 

full 2D domain in the MIKE FLOOD (Fig. 10a). As we enable 2D dynamic flows at the full-basin domain, 351 

this approach reproduced the most accurate flow dynamics thus taken as the benchmark solution. Yet, without 352 

having any specified targets, this approach reflects general modelling targets. In contrast, taking the buildings 353 

within focus area A as the specific target objects (Map A, Fig. 8), we identified two different reduced domains 354 

following two approaches: i) the sub-model approach, where the sub-model domain (Fig. 10b) was delineated 355 

as the suggested approach; ii) the municipality domain approach, where a reduced domain was delineated 356 

simply based on municipality borders including all target objects (Fig. 10c).  357 

In order to ensure the consistent starting point for comparisons, the same inputs – i.e. DEMs Section 3.2 and 358 

Rainfall Section 3.3 – were used for the three approaches. Yet, due to the different domains determined from 359 

the different approaches, the two inputs for the sub-model approach and the municipality domain approach 360 

were tailored by having a mask operation (i.e. ArcGIS’ Extract by Mask tool) based on their suggested domain, 361 

respectively. Finally, the predictions of the sub-model approach and the municipality domain approach were 362 

both validated against the benchmark solution within the same extents of the masks, and discrepancies of the 363 

two approaches were further compared regarding flood extents, flood depths internal points' hydrographs and 364 

computational efficiencies. In this test, to exclude the influence of the inconsistent boundary conditions, 365 
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uniform closed-boundary conditions were adopted for all three approaches (the test based on uniform open-366 

boundary conditions are provided in Supplementary Document S4).  367 

2.6.2 Boundary condition comparison tests (optimised boundary conditions vs. uniform closed-368 

boundary conditions vs. uniform open-boundary conditions) 369 

We identified the optimised boundary conditions as suggested by the sub-model approach. With the same sub-370 

model domain, the simulations based on uniform closed-boundary conditions and the uniform open-boundary 371 

conditions were carried out for comparison purposes. Like Section 2.6.1, the same rainfall input was used for 372 

the three approaches. All these results were validated against the benchmark solution within the same extent 373 

of the sub-model domain respectively, and their discrepancies were compared regarding flood extents and 374 

flood depths. Finally, the internal points that illustrated significant discrepancies in hydrographs (Section 2.6.1) 375 

were investigated further. 376 

2.6.3 General applicability tests (Sub-model A vs. B vs. C vs. D) 377 

We selected four focus areas (Map A, B, C and D, Fig. 8) representing various typical topographies from the 378 

three regions described in Section 3.1, and buildings (orange polygons in Map A, B, C and D) were in turn 379 

listed as specified target objects. Four sub-models and their predictions were generated by targeting different 380 

flooded objects as well as their associated rainfalls representing return periods of 1-100 years (detailed rainfall 381 

inputs were provided in Supplementary Document S5). Likewise, the benchmark solution was used to validate 382 

their discrepancies within the same extents of the four sub-models’ domains. To pursue the most accurate sub-383 

model predictions, their identified optimised boundary conditions were adopted in this test.  384 

3. Case-studies 385 

3.1 Study site 386 

The study area is “the Greve basin” located on Zealand, Denmark, approximately 30 km SW of Copenhagen, 387 

that includes both rural and urban areas. The study basin’s extent of 73.8 km2 was determined from a Danish 388 

nationwide hydrologic conditioned elevation model (DHyM) using ArcGIS’ Basin tool. With reference to Fig. 389 

8, the eastern urbanised region's terrain (dark orange) is low-lying and flat (Avg. elevation of 3.81 m with St. 390 
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dev. of 1.85 m), the central region (light orange) is slightly undulating (Avg. elevation of 14.74 m with St. dev. 391 

of 5.44 m) while the westernmost region (yellow to green) is the highest-lying with the steepest gradients 392 

within the basin (Avg. elevation of 37.4 m with St. dev. of 8.84 m). Thus, the basin’s topography demonstrates 393 

complications regarding the spatial variation of terrains. In addition, a receptor waterbody (blue polygon, Fig. 394 

8) representing sea level elevation is located towards east/southeast acting as the basin's outlet collecting all 395 

runoffs. 396 

 397 

  398 
Fig. 8. Case study area: Basin divisions for Zealand and location of the Greve basin (upper left); the hydrologically conditioned 399 
elevation model (1.6 m resolution) covering the Greve basin (upper right). Map A, B, C, and D show four selected focus areas and 400 
their target objects (buildings) that were hit by the extreme rainfall event on July 2nd, 2011. Areas marked with a red X represent 401 
locations where water depths and velocity hydrographs are extracted (L-shaped in the northeast, F-shaped in the south). 402 

 403 
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3.2 Input DEMs and pre-processing enhancements 404 

The generation of the urban surface runoff network (Section 2.2) benefits from the quality of the DEM 405 

regarding grid size, data accuracy (horizontal/vertical), DEM generation technologies and data sources 406 

(Adeyemo et al., 2008; Leitão et al., 2009; Leitão, 2016). To avoid massive computational expenses while 407 

incorporating sufficient precision to reflect micro-topographies such as road curbs, the DHyM with a resolution 408 

of 1.6 m and a vertical accuracy of 0.05 m was selected (Data Supply and Efficiency Board, 2013). However, 409 

since this DHyM excludes roof elevations and contains ground elevations only, an urban surface runoff 410 

network analysis based exclusively on a DHyM may lead to miss-reflections of localised floods and an 411 

underestimation of total sink volumes (Jensen et al., 2010; Leitão et al., 2009). If instead, a Digital Surface 412 

Model (DSM) is used, this may include noises from, for example, tree canopies and parked cars. Sensitive to 413 

these issues, building elevations from a DSM was fused with the DHyM, thus obtaining a “combined” DEM 414 

as input to the sub-model approach. 415 

3.3 Rainfall 416 

An extreme precipitation event on July 2nd, 2011 was selected. Due to the large extent of the Greve basin, we 417 

used data from five available rain gauges to cover the basin-wise rainfall heterogeneities (see Fig. 9). The 418 

Thiessen polygon approach was applied to distribute precipitation data from these rain gauges onto their 419 

nearest neighbourhoods (Fig. 9), simulating the pattern of the progressively decreasing rainfall from the eastern 420 

coastline towards western inland. According to the time-series of I5805 (shown as hyetographs in Fig. 9), the 421 

overall simulation time of 172 minutes was used for MIKE FLOOD, where the simulation continued for 97 422 

minutes after the main peak, allowing for the sufficient time for flood peaks to flow through the landscape. 423 
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 424 
Fig. 9. Spatial rainfall distribution based on Thiessen polygons and corresponding time-series rain gauge data. (shaded areas of rain 425 
gauge data represent the accumulated rainfall when the unimportant sinks start spilling over in five areas) 426 

3.4 Modelling parameters 427 

The HRVratio parameter was set to 15%, considering that the corresponding accumulated rainfall (i.e. 14.8 mm 428 

= 15% × 98.6 mm, gauge I5805) is relatively small compared to the total. Next, a VLratio of 5% was applied to 429 

decide upon the final removal of VLAggr. For the MIKE FLOOD computations, default parameters were used 430 

for the 2D engine (DHI Water & Environment, 2017). A uniform surface friction value (Manning Roughness 431 

Coefficient, M = 32) was assumed, and a dry surface was defined as the initial condition. In case of the 432 

insignificant influence of evaporation and infiltration and drainage systems during the rainfall event, the 100% 433 
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rainfall-runoff conversion was assumed, and drainage systems were excluded for MIKE FLOOD’s 2D flow 434 

computations. 435 

 436 
Fig. 10. 2D flow domains determined by three approaches and their associated predictions based on MIKE FLOOD: (a) The full-basin 437 
domain determined from the full-basin high-resolution DEM. Notably, since the downstream receptor water body is involved as one 438 
part of the computation domains to collect the basin runoffs, the predictions on land areas can be considered as benchmark results, 439 
whereas the uniform closed boundary was adopted; (b) The sub-model domain, where the sub-model approach delineates the reduced 440 
domain accounting for the basin-wise 1D static flows; (c) The municipality domain determined from municipality borders. The red 441 
frame represents the extent of 2D model grids, the dotted frame defines the external modelling boundary, and the transparent spaces 442 
in-between two frames define the Nodata grid-cells. The grid-cells with the value of 100 define the excluded internal domain (i.e. 443 
buildings and non-spilling sub-impact zones) in MIKE FLOOD. Note: The figure on the right side of Fig. 10a shows benchmark results 444 
zoomed in the same extent as the other approaches for easy comparisons. 445 

4. Results 446 

4.1 Domain reduction tests 447 

4.1.1 Maximum depth flood extent 448 

MIKE FLOOD’s 2D prediction results produced from the three different domains are presented in Fig. 10a, b 449 

and c, where a 10 cm flood depth was adopted as the threshold defining critical flood depths. To demonstrate 450 
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the discrepancies of maximum depth flood extents, binary analyses (dry/wet) from the status of the flooded 451 

cells were conducted (Fig. 11a and b). The predicted inundation extents were in good agreement in most areas, 452 

while overestimations occurred along the downstream edge as expected from using the closed boundary. In 453 

contrast to the municipality domain approach, the sub-model approach returned fewer overestimations that 454 

tended to occur near terminal pour points only.  455 

The critical depth threshold value may affect the flood extent significantly. To fully expose the flood extent 456 

discrepancies of the two approaches, their results were further compared using different threshold values, 457 

adopting the F2 statistic (Werner et al., 2005) as a performance indicator. In Table 1, high goodness of fit above 458 

0.86 was observed in both approaches for either a depth threshold of 0.01 m or 0.05 m. However, following 459 

progressive increases of the threshold value, the sub-model approach showed a robust performance on flood 460 

extent predictions with F2 values > 0.91, while the F2 value for the municipality domain approach started to 461 

drop sharply at the value of 0.15 m, indicating significant errors. 462 

Table 1 463 

F2 values for the sub-model approach vs. the municipality domain approach.  464 

Depth threshold (m) 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

Sub-model approach F2 0.970 0.956 0.941 0.928 0.923 0.917 0.913 0.914 0.911 

Municipality domain approach F2 0.913 0.861 0.808 0.765 0.734 0.689 0.603 0.504 0.323 
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  465 
Fig. 11. Benchmarking discrepancies in Max. depth flood extents: (a) Sub-model approach’s categorised map, (b) Municipality domain 466 
approach’s categorised maps. Benchmarking discrepancies in Max. flood depths: (c) Sub-model approach’s depth difference map, (d) 467 
Municipality domain approach’s depth difference map, (e) Sub-model approach’s histogram of Max. depth difference, (f) Municipality 468 
domain approach’s histogram of Max. depth difference.   469 
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4.1.2 Maximum flood depth 470 

Fig. 11c and d show the spatial distribution of the maximum flood depth differences (subtracting benchmark 471 

results from the sub-model domain’s predictions and the municipality domain’s predictions). Discrepancies of 472 

 0.05 m were seen in majority areas of the sub-model domains. Interesting, most underestimations of  ̶  0.05 473 

m were found to the upstream side of the sub-impact zones for the sub-model approach. This may be explained 474 

by the “8N approach” adopted when determining flow directions, where runoff is forced into one direction of 475 

eight adjacent cells. Thus, based on this “confined flow” algorithm, each sub-impact zone delineated was 476 

considered as the minimum contributing area only. If we refer to the flow direction along the steepest gradient 477 

as the major runoff (being fully harvested) and other directions as minor runoff, then the minor runoff, 478 

especially along defined upstream boundaries, may be miss-captured. Nevertheless, discrepancies of < 0.05 479 

m, compared to the vertical accuracy of the DEMs used, is considered insignificant. Close to the downstream 480 

boundary of the municipality domain, regional overestimations were observed in maximum flood depths. 481 

Because the closed boundary pulled up the spilling level limitlessly, the maximum differences > 1 m may be 482 

considered as problematic deviations from the benchmark. Notably, those red pixels indicating the highest 483 

flow accumulations suggest shifted terminal pour point positions as opposed to the sub-model approach. 484 

Apparently, for these positions, the sub-model approach produced significantly fewer over-predictions for the 485 

downstream boundary than did the municipality domain approach.     486 

The histograms of maximum depth differences are displayed in Fig. 11e and f. A higher frequency of over-487 

predictions occurred for the municipality domain approach’s histogram, while a near-symmetric distribution 488 

of over- and under-predictions, approximately similar to the normal error distribution, was identified for the 489 

sub-model approach. The statistics for the maximum flood depth difference for both approaches were 490 

summarised in Table 2. Root Mean Square Errors (RMSE) of 0.02 m for the sub-model approach in the overall 491 

domain were below the vertical accuracy of the DEM. Also, to validate prediction discrepancies adjacent to 492 

targeted buildings, a targeting section was delineated by creating a buffer (3.2 m, the width of two grid cells) 493 

around them. In targeting sections, marginal discrepancies were observed both in benchmarking comparisons 494 

https://doi.org/10.5194/hess-2020-243
Preprint. Discussion started: 30 July 2020
c© Author(s) 2020. CC BY 4.0 License.



 

26 

 

and in comparisons of the two approaches. This is possibly due to the location of the buildings that is far away 495 

from impact areas caused by the backwater effect. 496 

Table 2 497 

Statistics of flood maximum depth difference for the sub-model approach vs. the municipality domain approach. 498 

 
Overall domain Targeting section 

Minimum 

(m) 

Maximum 

(m) 

Mean 

(m) 

RMSE 

(m) 

Minimum 

(m) 

Maximum 

(m) 

Mean 

(m) 

RMSE 

(m) 

Sub-model approach  -0.37 0.68 0.00 0.02 -0.22 0.36 0.00 0.02 

Municipality domain approach  -0.23 1.02 0.02 0.08 -0.23 0.43 0.01 0.02 

 499 

4.1.3 Internal points depths and velocity hydrographs 500 

To clarify discrepancies in spatial-temporal flow developments, hydrographs including water depths and flow 501 

velocity in u- and v-directions were extracted for the three approaches (Fig. 12a and b). Two runoff patterns 502 

each containing 6 points were selected as a simplified representation of runoff dynamics in the focus area A 503 

(see Fig. 8, Map A), referred to as an L- and F-shaped flow pattern. In the L-shaped flow pattern, the selected 504 

positions are characterised by either conveyance flooding or ponding flooding (Allitt et al., 2009). Hence, 505 

points 1, 3 and 5 identify areas where surface depressions result in permanent ponding, whereas convergent 506 

and high-velocity flows occur near points 2, 4 and 6. The F-shaped flow pattern is primarily characterised by 507 

localised ponding flooding. Point 7 denotes the concentration of flows that collects runoffs from its north-508 

westerly regions. This concentrated flow proceeds towards the southeast and intrudes into depression zones at 509 

point 8. Yet, at this point, two branch currents split from the origin, where one flows over point 9 and terminates 510 

at point 10 as permanent ponding, while the other branch hits point 11 and further flows towards point 12 511 

presenting ponding flooding in the southernmost corner.  512 

Fig. 12a shows hydrographs for points 1–6 in terms of depths, u- and v-velocities for the L-shaped flow pattern. 513 

For points 1–5, good agreements with the benchmark regarding depths hydrograph's rising and falling limbs 514 

were obtained when using the sub-model approach. For points 1 and 2, in contrast to the municipality domain 515 

approach, average higher depth values accompanied by higher flow velocities for the sub-model approach were 516 

observed. Most likely, this happens because the extended regions restored the flooding propagation channel 517 
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allowing more water outside the targeted region to enter, which is consistent with findings by Yu and Coulthard 518 

(2015). Additionally, whereas over-predictions occurred at the downstream ponding area of point 6, this error 519 

of < ~ 0.05 m was considered insignificant. Apparently, u- and v-velocity hydrographs derived from the sub-520 

model approach mostly replicated the predictions in the benchmark at points 1–5. Yet, an entirely different 521 

flow direction was identified at point 6 compared to the benchmark, whereas minor differences of < 0.02 ms-1 522 

were found. As the consequence of the closed boundary, its hydraulic behaviour alters the actual runoff 523 

patterns, i.e. spilling to downstream, into a permanent ponding condition, and further inverse the flow direction 524 

due to the corresponding backwater effect.   525 

Fig. 12b presents hydrographs of points 7–12 in terms of depths, u- and v-velocity for the F-shaped flow 526 

pattern. For points 7–9, overall goodness of fit with the benchmark was seen for the two approaches, suggesting 527 

marginal discrepancies of depths < ~ 0.05 m and velocities < ~ 0.03 ms-1. In contrast, greater discrepancies of 528 

~ 0.32 ms-1 were identified for the u-velocity of point 10. Here, a southeast-directional flux was found for the 529 

municipality domain approach, while a permanent ponding suggested by near-zero flow velocities was seen 530 

for the sub-model approach. For points 11–12, depth overestimations of ~ 0.05m were shown in the sub-model 531 

approach for the sake of the closed boundary. Although the municipality domain approach presents similar 532 

results to the benchmark, it is worthwhile noticing that an opposite flow direction was found for the u-velocity. 533 

At this point, the sub-model approach reproduces a more precise flow pattern compared to the municipality 534 

domain approach. Notably, for points 6, 10 and 12, whereas an agreement was found for depth hydrographs of 535 

three approaches, substantial divergences in flow directions were identified, which illustrates higher sensitivity 536 

in u- and v-velocities towards the alternation of the flow patterns. Hence, instead of flow depths, we consider 537 

that u- and v-velocities are more sensitive indicator implying whether the desired flow patterns are reproduced 538 

precisely. 539 
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 540 
Fig.12. Flood depth, u- and v-velocity hydrographs for points 1-12: (a) The L-shaped flow pattern; (b) The F-shaped flow pattern. 541 

4.1.4 Computational efficiencies 542 

The sub-model approach was executed in ArcGIS Desktop ver. 10.6. Table 3 shows the computational time 543 

tested on a laptop computer (Intel®Core™ i7-5600 CPU @ 2.60GHZ, 8GB of RAM). Based on GIS 544 

processing environments, phase I (see Fig. 1) is grouped into raster (Module I and II) and vector processing 545 

modules (Module III and IV), and their operational independency are maintained in the general workflow. 546 

That means, although the costly computational time (e.g. 2,321 seconds) is required for the raster processing, 547 

once accomplished, the sub-impact zone tracing tasks could be processed quickly and repetitively in the vector 548 
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processing environment, thus ensuring the fast generation of various sub-models when different target objects 549 

were specified. 550 

By applying the sub-model approach, 99% of the computational cells were excluded from the full-basin 551 

domain for numeric computations of 2D flows, thus resulting in a factor 80 reduction with respect to elapsed 552 

time (calculated from Table 3). Although the municipality domain approach also harvested time reductions, 553 

prediction accuracy along the boundary areas was problematic due to the violation of the actual flow pattern 554 

(Section 4.1.1, 4.1.2 and 4.1.3).  555 

Table 3 556 

Comparison of computational efficiency when using different domain approaches. 557 

 
Full-basin domain 

approach 
Sub-model approach 

Municipality domain 

approach 

Input DEM’s grid extent 

(Columns × Rows) 
10202 × 5263 10202 × 5263 10202 × 5263 

Tailored grid extent 

(Columns × Rows) 
× 903 × 967 701 × 612 

Total No. of computational cells (wet) 27,124,785 263,278 148,258 

Pre-processing time (s) 

(Phase I) 

Raster 

processing 
× 2,321 × 

Vector 

processing 
× 111 × 

MIKE FLOOD 

simulation time 

(Phase II) 

Elapsed time (s) 482,412 6,090 2,903 

CPU time (s) 1,141,666 24,330 11,585 

Time step (s) 0.2 0.2 0.2 

 558 

4.2 Boundary condition comparison tests 559 

Fig. 13 shows the benchmarking discrepancies in terms of flood extents, flood depths and points' hydrographs 560 

when using different boundary conditions based on the same sub-model domain. In comparisons with three 561 

boundary conditions, the optimised boundary condition suggested by the sub-model approach presents the 562 

minimal predictions discrepancies of < ~0.5 m from the benchmark solution, particularly at the terminal pour 563 

point position. This is because the adopted 2D weir restores the actual flow pattern and thus allows the spill-564 

over to take place at a constant elevation level. Further, other than the depth hydrographs, a goodness of fit 565 

against the benchmark solution was identified in u- and v-velocities when using the optimised boundary 566 

condition (Fig. 13g). As this stand, we conclude that the suggested algorithm resolves the overestimations in 567 

Section 4.1 properly and yields the highest accuracy in flow dynamics along the boundary areas. Yet, when 568 
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the uniform open-boundary condition was used, significant underestimations in maximum flood extents and 569 

flood depths were seen along the edges of the sub-model domain, where unrealistic 2D flow leakages were 570 

identified due to the lowered spilling level. As such, we consider the open-boundary condition inappropriate 571 

since the 2D flows derived is inconsistent to the predefined 1D runoff conditions. 572 
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 573 
Fig.13 Benchmarking discrepancies using different boundary condition strategies: (a) The optimised boundary condition’s flood 574 
extent categorised map, (b) The uniform closed-boundary condition’s flood extent categorised map, (c) The uniform open-boundary 575 
condition’s flood depth difference map, (d) The optimised boundary condition’s flood depth difference map, (e) The uniform closed-576 
boundary condition’s flood depth difference map, (f) The uniform open-boundary condition’s flood depth difference map; (g) Flood 577 
depth, u- and v-velocity hydrographs for points 6, 10 and 12 using the different boundary conditions. 578 
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4.3 General applicability tests 579 

Fig. 14 shows the outputs of four different sub-models (Sub-model A, B, C and D) in terms of 1D flow 580 

conditions, identified computational domains and corresponding MIKE FLOOD’s 2D predictions. In 581 

accordance with Section 2.4, longer return period rainfalls resulted in longer maximum tracing distances. 582 

However, in response to the 50-year return period rainfall, Sub-model B identified the longest tracing distance 583 

of 2,535 m as well as the highest maximum spill-over volumes of 43,945 m3. The reason for this exception is 584 

due to its special catchment topographies, where only one flood propagation channel was identified discharging 585 

the substantial runoffs accumulated from the largest catchment area of 1,676,207 m2. Conversely, as the result 586 

of substantial tracing-brake features identified during shorter return period rainfalls, scattered independent 587 

areas suggesting localised flooding phenomenon were found in the southern part of Sub-model C and the 588 

northern part of Sub-model D. As for 2D flow prediction accuracy, high goodness of fit with the benchmark 589 

was observed for all four sub-models. Notably, RMSE values suggested marginal discrepancies < 0.05 m 590 

compared to benchmark results. This is because the optimised boundary conditions achieve more precise peak 591 

level predictions in downstream regions as opposed to the uniform closed-boundary conditions (maps showing 592 

the detailed benchmarking discrepancies for the four sub-model predictions are provided in Supplementary 593 

Document S5). For computing time comparisons, similar vector processing time was observed for the sub-594 

impact zones screening procedure when targeting the different number of buildings. Compared to the 595 

benchmark, significant time reduction factors of 45-553 were yielded for the four sub-models. Yet, due to the 596 

difference in the generation of reduced domains (e.g. modelling grid extent and total No. of computational 597 

cells), time-savings for each sub-model differ from one case to another, demonstrating the case dependency 598 

(targets-specified) of this approach. In general, the sub-model approach provides robust performance when 599 

processing onto different terrain morphologies as well as different rainfall return periods. Thus, it is a feasible 600 

approach to reducing the computing time for 2D models. 601 
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 602 
Fig. 14. Four sub-models’ 1D flow conditions, identified computational domains and their correspondent MIKE FLOOD predictions 603 
based on various types of terrain morphologies and rainfall return periods in 1-100 years: (a) Sub-model A, (b) Sub-model B, (c) Sub-604 
model C and (d) Sub-model D. The optimised boundary conditions suggested by the sub-model approach are used for four sub-model 605 
simulations, where 2D outlets are established at the terminal pour points position that allows for water spilling at the pour point level. 606 
The detailed inputs, outputs, prediction validation and computational time information for each sub-model are provided in the table. 607 
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5 Discussion 608 

The presented method can tailor 2D grids based on various specified targets, which results in cost-efficient 609 

tailor-made sub-models. The strengths, weaknesses and associated potentials are discussed as follows:  610 

Firstly, as suggested by the domain reduction tests, the criteria determining critical cells may affect 2D flow 611 

patterns substantially. Here, the sub-model approach identifies critical cells that indicate main flow paths 612 

(channel-flows) and corresponding catchment areas (sheet-flows) explicitly, whilst multiple terminal pour 613 

points are sufficiently detected and accommodated with suitable hydraulic alternatives (i.e. 2D weirs). At this 614 

point, the domains ensure accurate 2D replications of actual flow patterns. Yet, when using the criteria based 615 

on municipality borders, this domain - due to the exclusion of the critical inflow path cell (upstream) and the 616 

inclusion of irrelevant catchment cells (downstream) – may result in flood underestimations, as well as shifted 617 

positions for the terminal pour points. In this sense, the inundation simulation has failed to reproduce the actual 618 

flow pattern in the first place, such that the subsequent 2D predictions are questionable. For the same reason, 619 

the reduced domains based on other criteria, i.e. cutting off elevation cells greater than a certain threshold or 620 

making a buffer at a certain spatial distance, may be problematic. Thus, we conclude that, without perceiving 621 

the surface runoff network from a broad basin perspective, the determined domains most likely alter the actual 622 

flow pattern to various extents. As opposed to other criteria exclusively based on flow directions (i.e. ArcGIS’ 623 

Basin/Watershed tool or Arc-Malstrøm’s tracing functions), the sub-model approach further includes new 624 

criteria of the mass balance by enabling the 1D static flow routing, thus facilitating more valid domain 625 

reductions for the large-scale case area. However, these two approaches may result in identical domains in 626 

case that catastrophic events pose basin-wise spilling configurations. Here, a GIS-based automated tool that 627 

determines an optimal 1D/2D hybrid surface modelling strategy by replacing secondary important 2D surface 628 

components (grids) with 1D surface hydraulic alternatives is considered as a future solution to reduce the 629 

computational time even further (Allitt et al., 2009). 630 

Secondly, the sub-model approach yields substantial time-savings by eliminating the domain irrelevant to 631 

specific targets. To pursue the desired computational efficiency, modellers may sharpen their focus by 632 
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prioritising a few critical ones, as a limited number of target objects may result in more valid domain 633 

reductions, i.e. more time-savings. In contrast to the full-domain approach that implies general modelling 634 

targets, this targets-specified strategy may fail to provide the flood information outside the focus areas. Yet, 635 

based on distinct targets, the sub-model approach decomposes a large-scale model into many independent 636 

small sub-models (e.g. Sub-model A, B, C and D), and their computational independency would allow for 637 

parallel processing of multiple sub-models in a computer cluster environment without further accounting for 638 

flow interactions across their domain boundaries, thus reducing the computing time significantly. As another 639 

alternative solution, modellers may also adopt coarse-girds approach to fast complementing the predictions 640 

results other than the prioritised domains, and the final large-scale flood results fused from two parallel 641 

simulations (i.e. fine/coarse grids) should provide sufficient information whilst maintaining a marginal 642 

increase in overall computing time. Furthermore, due to the automation of the GIS-based procedure, the sub-643 

model approach integrated with a real-time weather radar system may increase the possibility of applying 2D 644 

models into real-time forecasting applications in future. In this case, unlike a ‘one for all’ forecasting approach 645 

where predictive results of all possible future scenarios are provided based on one calibrated model, the sub-646 

model approach would enable a more feasible forecasting solution in the adaption of real-world dynamics by 647 

reducing the scenario uncertainties through a real-time sub-model generation process. 648 

Finally, the sub-model approach deploys a multiple-scale simulation strategy to obtain final predictions 649 

stepwise. From excluding different incidental representation processes according to the modelling purposes 650 

(i.e. aims i/ii, Section 1.3) specified for the two phases separately, sub-model approach uses different routings 651 

(i.e. 1D static/ 2D dynamic flows) with different complexities (i.e. hydrological/inundation process) at multiple 652 

scales (i.e. local catchment/ basin). Thus, the overall procedure achieves holistic computational efficiency 653 

compared to a single-time as-realistic-as-possible simulation for the large-scale inundation event. Further, 654 

without having additional efforts for code modifications in numeric engines, the implementation of the sub-655 

model approach on other full 2D models should be straightforward. As most existing full 2D models perform 656 

similar peak water level predictions with marginal discrepancies in dense urban areas (Néelz and Pender, 657 

2010), it is anticipated that the obtained validation results (Section 4.1.1, 4.1.2) proven based on MIKE 658 
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FLOOD should fit for other full 2D engines – at least for the peak water levels. Yet, due to the various ways 659 

of coding velocity in full 2D models, the validation results for velocity hydrographs represent for MIKE 660 

FLOOD only. In addition, this approach is initially designed for dealing with flood inundation process 661 

dominated by overland flows. However, when rainfall amounts are low, the enhanced influence of the 662 

underground drainage system may affect the overland flow continuity, thus affecting domain reductions. For 663 

the sake of this limitation, adding a drainage component to represent the drainage system comprehensively 664 

could be an interesting future development, and further investigations on the significance of drainage systems 665 

regarding 1D flow continuity should be addressed. In addition, the sinks’ spill-overs in the current sub-model 666 

approach are simplified as “static” and single direction spilling. Therefore, incorporating a dynamic 1D routing 667 

(dynamic wave/kinematic wave) and a multiple-direction-spilling component would add more accuracy to 668 

flow pattern representations, thus ensuring more precise domain reductions. However, the trade-off between 669 

the modelling complexity, the computing time and the enhanced accuracy should be addressed and ultimately 670 

balanced based on the specified modelling purpose. 671 

6. Conclusion 672 

This paper presents a targets-specified grids-tailored sub-model approach to reducing the computing time for 673 

large-scale high-resolution 2D urban flood modelling. By utilising the enabled 1D static flows to trace sub-674 

impact zones relevant to specific target objects, critical computational cells, that configure reduced 675 

computation domains as well as optimised boundary conditions, are extracted from a full-basin DEM’s high-676 

resolution grids for MIKE FLOOD simulations. The outcome is tailor-made sub-models that require less 677 

computational efforts while avoiding significant losses in the prediction accuracy. The proposed method was 678 

tested for a basin area, the impacts of domain reductions and optimised boundary conditions on MIKE FLOOD 679 

were validated, and the general applicability and robustness of the suggested method were tested by targeting 680 

four focus areas accounting for different rainfalls as well as different terrain morphologies. The main findings 681 

are outlined as follow: 682 

•      The proposed sub-model approach performs 45-553 times faster processing in MIKE FLOOD by 683 

reducing 99% computational cells deemed to be irrelevant according to specified targets, i.e. specific 684 
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buildings and specified precipitations; Domain reduction tests reveal minor discrepancies against the 685 

benchmark (i.e. full-basin domain) concerning peak water levels when using the sub-model approach, 686 

and the general error deviations are within marginal level of < 0.05 m. The internal point hydrographs 687 

indicate general consistent spatial-temporal variations in water depths and flow velocities. Due to the 688 

violation of the actual flow pattern, differences were found in u- and v-velocities. However, the 689 

boundary condition comparison test reveals that the optimised boundary conditions resolve these 690 

potential errors properly. As suggested by the general applicability test, the performance of the sub-691 

model approach is robust when dealing with different terrain morphologies as well as different rainfall 692 

return periods, whilst their RMSE are maintained at the marginal level of < 1.5 cm. 693 

•      Domains configured by critical cells impact the final 2D predictions substantially. The sub-model 694 

approach incorporates relevant flow patterns explicitly by tracing 1D static routing and accommodates 695 

commensurate hydraulic alternatives (i.e. 2D weirs) at terminal pour point positions, thus ensuring 696 

precise representations of actual flow patterns in configured 2D domain compared to other approaches. 697 

As opposed to the full-domain approach that implies general modelling targets, the sub-model 698 

approach provides no flood information outside the focus areas. However, the independency in-699 

between various sub-models is a substantial advantage to parallel process many small sub-models in 700 

computer cluster environments without further considering information interactions across domain 701 

boundaries. Alternatively, modellers are recommended to use coarse grids to complement flood 702 

predictions beyond the prioritised domains. We see the two options as feasible solutions to improve 703 

computing time even further.  704 

•      With a multiple-scale simulation strategy, the sub-model approach decomposes a computationally 705 

expensive large-scale simulation process into two phases by emphasizing appropriate modelling 706 

complexities at multiple scales, which results in a holistic modelling efficiency. Besides, without 707 

reprogramming existing codes in numeric engines, the implementation of the sub-model approach on 708 

other full 2D models is straightforward. Furthermore, with the automation of the GIS-based procedure, 709 
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the sub-model approach is considered as a promising solution to the realisation of the 2D real-time 710 

forecasting system when integrated with a real-time weather radar system.  711 
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