
We are grateful for the detailed and careful review of our work by the three referees and 
the Editor Prof. . The following lists the responses to these comments and suggestions. 
The resubmitted manuscript has been corrected and improved accordingly. 

Comments by Prof. Qiang Zhang 

SC1: Water is one of the critical resources to sustain the rapid socioeconomic 
development. Vegetation cover is high and most of them is evergreen subtropical 
species, which means there could be substantial water consumption by plants 
throughout the year given the favourable climate. Water and ecological management 
faces increasing challenges because of the rapid population growth, high urbanization 
and industrialization, etc. Therefore, this is a timely study to investigate the intensive 
changes and interactions between vegetation and water. The most interesting part of 
this study, to me, is the identification of the ‘hotspot’ of changes and determination of 
water-limiting-vegetation even in this rainfall-abundant region. The m/s is well 
structured, the wordings are fine, and method/analysis are appropriate. In my view, this 
study is meaningful and worth publishing. Having said these, I do still have a few 
concerns listed below for the authors to address: 

Thank you for the encouraging comments. The concerns are addressed below. 

SC1: 1. I find the summary of the water-plant relationships in Line 61-69 is quite 
interesting. Vegetation consumes water and causes reduction in water resources on the 
one hand, and water availability will restrict vegetation establishment and growth on 
the other. Indeed, plant-water relations are examined mostly in arid and semi-arid 
regions for the purpose of water and ecological conservation. Are there such studies in 
humid and semi-humid regions investigating the controlling factors – energy vs. water 
- of vegetation growth? It is important and is the authors responsibility to ensure a 
thorough literature review on this subject. 

AC: The possibility of different vegetation-water relationships under contrast climate 
conditions is the motivation of this study. 

Most such studies focus on the drylands because of the likely more severe water scarcity 
and ecological problems, while the plants and water/energy relationships are left less 
clear in the subtropical wet/humid areas where precipitation and radiation are both 
abundant. Although there have been studies in humid areas investigating environmental 
controls on plant water use such as those in the last paragraph of Introduction and 
Discussion 4.3, they focused on plot/stand scale mainly, or a national scale, and rarely 
discussed the relationships under contrasting dryness conditions. 

SC1: 2. A brief paragraph should be added before Line 74 for an introduction of 
relevant studies that have been carried out in the Pearl River Basin. Without this, it is a 
bit out of blue to see the next paragraph suddenly mentioning something in this basin.  

AC: Thanks for the suggestion. A short paragraph has been added, please refer to Line 



78-89 in the revised version, and the Study area section 2.1 has been edited accordingly. 

SC1: 3. Regarding the data: I see a comparison between GLDAS precipitation and the 
ground truth data over a number of pixels given in Fig. 11. GRACE data from different 
processing centers are also compared. No comparisons/discussions are given for ETp 
and other variables. Can you find some studies in this basin or a basin with similar 
vegetation cover and climate that use GPP from MODIS? If there is any, it’d provide 
more confidence in the results of this study.  

AC: Data uncertainty is always a big concern especially when remote sensing and 
modelling results are involved. In this submission, we have obtained ETp and GPP from 
more common sources and provided more comparisons to discuss the data uncertainty. 
The comparisons are given in a supplementary document and referenced in the main 
text. Please refer to Section 2.2 Data sources and pre-processing, and section 4.1 
Uncertainties in the datasets and results. 

SC1: 4. The current m/s is a complete story by overlooking the water-vegetation 
relationships in the entire basin in space and time. It is good to locate the hotspots of 
changes and interactions because these areas would usually be the ‘focus’ of land/water 
management and for risk control, etc. I recommend the authors to take a further step to 
investigate the reasons behind the changes and interactions right in these hotspot areas.  

AC: Thanks for the comment and suggestion. The main purpose of this study is to 
examine the relationships between vegetation parameters and hydroclimates, especially 
under contrasting atmospheric dryness conditions. Through the analysis, we found the 
areas of croplands where vegetation parameters and hydroclimates changed greater than 
other areas, and presumed that the relationship in these areas is possibly related to 
agricultural activities like irrigation and planting structure change, etc. We screen this 
hotspot area out in another work to investigate in depth what drives the intensive 
changes of vegetation index and productivity in these areas. For that we are still 
collecting agricultural data including planting structure, crop yield, cropland area, 
irrigation and fertilization areas, etc. They are not incorporated into this study. 

SC1: 5. Paragraph ends with Line 279: This is a good argument that vegetation relies 
on water because of the lags of vegetation parameters after water input & storage 
dynamic change. However, there seems a lack of support to the opposite standing, i.e. 
vegetation growth does not result in excessive water reduction. So this part of 
discussion needs a further expansion.  

AC: From the phase shift between water (P & TWS) and vegetation growth at the 
monthly scale, we concluded that water limits vegetation growth in this region because 
the latter varies following the change in the former. The opposite possibility, i.e. 
vegetation water uptake leading to storage reduction cannot be detected at the 
investigated time scale but might be more evident at a shorter time scale like sub-daily 
in Kirchner et al., (2020) and Shen et al., (2015), who found decline in groundwater 
level/soil water content with increase in sap flow rates. Statement has been given in the 



relevant location in the text (Line 354-357). 

Kirchner, J., Godsey, S., Osterhuber, R., McConnell, J. and Penna, D.: The pulse of a 
montane ecosystem: coupled daily cycles in solar flux, snowmelt, transpiration, 
groundwater, and streamflow at Sagehen and Independence Creeks, Sierra Nevada, 
USA, Hydrol. Earth Syst. Sci. Discuss., 1–46, doi:10.5194/hess-2020-77, 2020. 

Shen, Q., Gao, G., Fu, B. and Lü, Y.: Sap flow and water use sources of shelter-belt 
trees in an arid inland river basin of Northwest China, Ecohydrology, 8(8), 1446–1458, 
doi:10.1002/eco.1593, 2015. 

 SC1: 6. Fig. 2-5, 7: the spatial distributions of these variables/trends are shown for all 
pixels. How would it be like if only the ones with p<0.05 are shown?  

AC: Trends of some variables are not statistically significant. We have marked the 
pixels with significant trends for NDVI and GPP in Fig. 4-5. The correlation coefficient 
with p<0.05 is also marked in Fig. 7. 

Anonymous Referee #1: 

RC1: The manuscript evaluates regional scale plant-water relations in the Pearl River 
Basin. The authors find a strong inter-annual correspondence between NDVI and 
GRACE derived TWS, suggesting water limitation in an area where rainfall is generally 
higher than the potential evapotranspiration. This is an interesting result, but the 
underlying mechanism remains unclear. The introduction touched on a few important 
topics such as water limitation and plant water use, but the scientific 
hypothesis/questions are not clearly defined. “Quantifying the plant-water relations at 
different temporal scales under different dryness conditions” is a good starting point, 
but the specific questions to address need to be defined. 

The choice of vegetation data needs justification. NDVI is known to saturate in the 
forest ecosystem. MODIS GPP poorly represents soil moisture limitation on 
productivity which is directly relevant to the main theme of this study. There are many 
other vegetation metrics available that are not or less affected by these issues (e.g., SIF 
and EVI). LAI has also been used in a similar domain (Tong et al., 2018). I suggest the 
authors adopt these other datasets in the analysis. 

The strong inter-annual correspondence between NDVI and TWS is interesting, given 
how humid this area is. It would be of interest to see if this correspondence changes 
across different biomes (e.g. crops vs. forests) or regions with different levels of aridity, 
which may be done at mascon resolution. On the other hand, the monthly-scale 
correlation analysis needs clarification. Is the trend and seasonality removed from the 
monthly time series? 

The discussion session lacks a clear focus and sometimes reads like a literature review 
(e.g. Line 280-294). The discussion should be centered on clearly defined research 



questions and based directly on the results of this study. 

AC: We thank you for kindly pointing out the weaknesses for us to further improve the 
manuscript quality.  

In the Introduction, we reviewed studies of plant-water relationships using both field 
observations and remote sensing across different spatial scales and summarized some 
general findings of such studies. Further, we stressed that these findings are mostly 
based on studies in the arid and semi-arid regions, while studies in radiation-sufficient 
humid and semi-humid regions are still limited. We have restated the specified research 
objectives and discussed the possible underlying mechanisms (which is still limited 
based on the analysis) for the relationships from the perspective of energy & water 
availability in this environment compared to the dry environment. The mechanisms can 
be obtained with such comparisons but can hardly be verified using the applied data in 
this study. 

We were aware that applying different datasets (for both hydroclimate and vegetation) 
could lead to a possibly different result, therefore, we gave the reasons of our data 
choice in 2.2 Data sources and pre-processing and 4.1 Uncertainties in the datasets 
and results. Choice of vegetation data was based on literature review, that we found 
GIMMS NDVI3g is among the most popular datasets for analysis of vegetation 
phenology and its relationship with hydroclimate change, especially for studies in a 
relatively large river basin as it covers a moderately long time period (since 1980s). 
Using GIMMS NDVI3g may allow the comparison of this study with many other 
studies in the region. Considering most of the forests consist of evergreen trees, and 
forest cover (~65%) nearly remains constant from the early 21st century, the NDVI trend 
is highly likely induced primarily by other land cover types especially croplands (~18%) 
and grassland (~9%). From these points of view, we think NDVI is fit for the purpose 
of this study. Using other vegetation indices like EVI and SIF may result in slightly 
different values of the trends but the overall changing direction (+/-) may be consistent. 
As to GPP data, we have added data from VPM and PML in addition to MOD17 
products and the comparisons among them are given in section 4.1 and the 
supplementary document. We found the overall results (spatial distribution, trends and 
relationships with hydroclimate data) changed little compared to the results based solely 
on MODIS GPP. 

We have also improved the discussion with an emphasis on data uncertainty, hotspots 
for changes and possible reasons, as well as the interactions in dry and wet conditions. 

RC1: Detailed comments: 

Lines 72-73. This statement needs clarification. Is it to question if water limitation 
prevails in the humid ecosystems in the long term? 

AC: This sentence has been rephrased as ‘While majority of such studies were carried 
out in semi-arid regions because of the urgent need to find an equilibrium threshold 



between ecological restoration and available water resources in these water-limited 
areas, it is still largely unclear whether the restriction of water resources or available 
energy on vegetation growth prevails in the humid or semi-humid areas with both 
abundant rainfall and radiation’ 

RC1: Line 105. I think it is better to define the TWS anomaly using the entire analyzed 
period as a baseline (by removing the mean calculated over the entire period), unless 
there are specific reasons to believe that the 2004-2009 period better represents a 
“normal” condition. 

AC: We did not define the baseline period for GRACE data. Actually, GRACE satellite 
data are released by three processing centres as TWS anomaly, which is the actual 
(ungiven) TWS value in each month minus the monthly mean from the period of 2004 
to 2009. There is a good reason to question the representativeness of this period as 
‘normal’ condition, but with all data relative to the same baseline period, we believe 
the results will not be affected.  

RC1: Lines 129-132. The mean annual TWSA depends on the choice of the reference 
period. The trend analysis is a better way to illustrate wetting/drying information. Are 
all the trends significant in Fig 2d? 

AC: Refer to the above respones. In addition, the linear trend will not change after 
subtracting a value from a data series, even if the minuend differs. So the trend analysis 
is not affected by the baseline period.  

The spatial TWSA trends are mostly insignificant, just like its temporal trends. The 
trend will change with the study period though, for example, if we focus on the period 
of 04/2003-03/2015, then the linear trend will be 6.99 mm yr-1, with a p value of 0.006. 
This is mentioned in the Discussion 4.1 starting with Line 293.  

RC1: Fig 2e. Please clarify how the basin average and the associated errors 
(measurement and leakage) are calculated. This should be included in the Method 
session. 

AC: Thanks for the suggestion. We have added information in the 1st paragraph of 
subsession 2.2 Data sources and pre-processing and second paragraph in 2.3 Data 
analysis as suggested.  

RC1: Line 145. What is the trend in space? Note that here the trend in time does not 
have an error bar. 

AC: We have rephrased this sentence as ‘… with an overall positive trend spatially 
(0.002±0.009) and temporally (0.005±0.025), …’.  

RC1: Figs 3-5. Please change the color scheme to improve the readability of the figures. 
For example, a sequential colormap is ideal for the aridity index. For the anomaly and 
trends, it is better to use a diverging colormap with a symmetric scale. 



AC: Thank you for the suggestion. We have changed the color scheme accordingly to 
improve the figure readability. Please refer to the updated figures. 

RC1: Line 153. Please label the significant trends in the map. 

AC: The NDVI, GPP trend maps have been reproduced with pixels of p<0.05 marked 
with crosses. So has the figure for correlation coefficients of annual data. 

RC1: Lines 159-161. This reads like discussion, not actual results. 

AC: We have carefully checked the results and moved the discussion-like contents to 
Discussion. 

RC1: Lines 169-170. Needs other proxies for plant productivity to confirm this. 
MODIS GPP directly accounts for the limitation from VPD but not from soil moisture 
supply. 

AC: Thank you for the suggestion. Indeed, MODIS GPP alongside many other GPP 
products does not account for moisture constraint but rather atmospheric controls 
including temperature, VPD and radiation. In our study area, rainfall and water storage 
is high in the growing seasons (conventinally defined as April to October) and slightly 
lower in the nongrowing seasons. In this case, the moisture restriction on GPP might 
be small. In addition, we compare GPP from three sources (MODIS, VPM and PML) 
in the supplementary figures, and we used the mean GPP values of the three products 
in the this submission. Session 2.2 regarding data sources and session 4.1 regarding 
data uncertainty are extended to incorporate this content. 

RC1: Fig 7. Please either label the areas with significant correlations or mask the 
insignificant ones. Trends can inflate the correlation results. Have you de-trended the 
time series? 

AC: Linear trends are removed before the correlation analysis. This information has 
been added in the Method session (Line 159). Thanks. Fig. 7 has been updated with 
crosses marking the significant correlation coefficients. 

RC1: Line 182. It is unclear how the monthly scale regression is calculated. Note that 
to quantify water limitation, the seasonality should be removed from the monthly time 
series. 

AC: Information has been added in the Method session (Line 159). Data were detrended 
before calculating the correlation coefficients. 

RC1: Lines 189-190. It is unclear what this means. How are the water restriction and 
water consumption quantified and compared? In fact, quantifying the amount and 
timing of plant water consumption (e.g. ET in wet and dry years) might be helpful to 
understand why there is an apparent water restriction in such a humid area. 



AC: This sentense has been rephrased (Line 233-235). We assume that vegetation 
growth is constrained by water resources if dynamics of NDVI/GPP falls behind 
dynamics of P/TWSA (Line 164-167). The degree of constraints of dryness and water 
on vegetation is implied by the corelation coefficient in Fig. 6-7 and Fig. 10. 

RC1: Line 196. How is the span of the growing season defined in this area? 

AC: Growing season months have been given at their first appearance in section 3.3 
(Line 241 & 246). Because it can vary from year to year for each type of vegetation 
cover, we use the conventional definition in this study, i.e. from April to October. 
Precise quantification of growing season length can be done with vegetation index time 
series but won’t be necessary for this study. 

RC1: Lines 212-220. This should go to the Data and Method session. 

AC: We have provided comparisons of P, ETp, GPP from multiple sources in the 
section 2.2, and extened the discussion of data uncertainty in section 4.1.  

RC1: Line 230. The uncertainty of the trend needs to be evaluated. 

AC: The uncertainty of the temporal and spatial trend analysis throughout the text and 
figures has been defined. Please refer to the updated submission. 

RC1: Lines 232-241. This should go to the Data and Method session. The authors 
present examples where MODIS GPP shows consistency with other vegetation data, 
but in thisstudy, the analysis based on the two datasets (MODIS GPP and NDVI) shows 
different plant-water relations. It is unclear if the difference is physical (e.g. due to the 
different responses of vegetation state and vegetation productivity) or caused by data 
accuracy issues. In this case, other vegetation metrics are needed to justify the results. 

AC: In this submission, we used multiple datasets to reevaluate the relationships 
between vegetation and hydroclimate, and found that using the ensemble means of 
multiple datasets did not lead to significant difference in the results compared to the 
last submission. In addition, we noticed that GPP algorithms for MODIS, VPM and 
PML are all formulated with atmospheric variabels like temperature, VPD and radiation. 
It is found there exists time lags between these atmospheric conditions and NDVI, 
therefore, the NDVI and GPP should not synchronized in temporal dynamics, which 
would result in different response characteristics. This has been added in Discussion 
4.3 (Line 334-339). 

RC1: Line 257. Note that this is an active area for ecological restoration, including the 
Grain to Green project (Tong et al., 2018). Reference: Tong, X., Brandt, M., Yue, Y., 
Horion, S., Wang, K., Keersmaecker, W. De, : : : Fensholt, R. (2018). 1. Nature 
Sustainability, 1(1), 44–50. https://doi.org/10.1038/s41893-017-0004-x 

AC: Noted and incorporated into disucssoin (Line 314-316). In their Fig. 3, Tong et al. 
mapped the convervation efforts in their study area most of which show low-moderate 



levels. They also show increasing trends of LAI in the region where croplands dominate 
(lower right part of their study area, with low-moderate conversation level). This 
indirectly supports our finding that the vegetation growth in this cultivated area has 
been enhanced. 

RC1: Lines 272-275. This point seems important but is not fully developed. Are there 
results in this study showing enhanced or perhaps near-normal productivity under drier 
than normal condition? 

AC: We have rephrased this part (Line 340-343).The possible underlying mechanisms 
for higher GPP in dry conditions than wet conditions are also given in the follow-on 
test (Line 345-348).  

Anonymous Referee #2: 

RC2: General comments: 1. The Pearl River Basin is in relatively humid region. Beside 
water, other factors may also influence the vegetation growth. It is suggested to show 
the landcover change in the studied period and analyze the relationship between 
vegetation growth and temperature or egergy to identify the vegetation-water relation 
more clearly. 

AC: Thank you for the suggestion. It is a good one and in fact we thought about this 
analysis, because it is realized that the controling factors of vegetation growth can be 
divided into two groups – the demand (including radiation, vapor pressure deficit, and 
temperature, etc) and the supply groups (soil moisture, groundwater, and water storage, 
etc).  

The supply group factor was represented by precipitation and total water storage here, 
and the demand effect was integrated in potential evaporation and embedded in the 
aridity index. In this sense, we discussed both the hydroclimate and water impacts on 
vegetation. We made the argument more clearly at the end of Methods section (Line 
173-176). 

RC2: 2. Lag effect between vegetation growth and water availability are analyzed at 
monthly scale. In my opinion, it is necessary to show how P, TWS, NDVI and GPP for 
the 12 months in a year for better discussion about the lag effect. 

AC: We agree that a climatological monthly mean of these variables would help much 
with the lag effect analysis. We also gave this calculation and analysis in Fig. 9, and 
results in Fig. 10 were based on the climatological means which we failed to mention 
in the relevant text. Please refer to Line 248-249 in the revised version. 

RC2: 3. I understand when using remote sensing products, uncertainty issue is always 
a concern need to be addressed. However, this is not the scientific target of this paper. 
To keep the readers’ attention to the key scientific question trying to answer, it is 
suggested to remove the “uncertainties in the datasets and results” section and describe 



how you quantify the uncertainty of remote sensing data in the Methodology section. 

AC: Thanks for the suggestion. Indeed, when using remote sensing for hydrologic 
studies, the data uncertainty/accuracy is often concerned. Considering that the other 
reviewer also mentioned this, we still kept this subsection in the revised manuscript and 
expand it for a detailed justification. A few supplementary figures are also provided for 
comparisons of different remote sensing products. Relevant text in Data and methods 
and Discussion has been improved. 

RC2: Specific comments: Line 77: Please give more information about the importance 
of Pearl River Basin and it’s connection with research progress described in the 
previous paragraph. 

AC: This issue is also suggested by another reviewer. A short paragraph has been added, 
please refer to Line 78-89 in the revised manuscript, and the Study area section in 2.1 
has been edited accordingly as well. 

RC2: Line 120: It is suggested to decide the assumption being made behind the lag 
effect analysis 

AC: We have changed the sentence ‘Furthermore, a lag effect analysis …’ to 
‘Furthermore, to investigate the causal role of vegetation growth to water availability 
changes (or vice versa), we carried out lag effect analysis between vegetation 
parameters and hydroclimate variables. That is, we assume that vegetation growth is 
constrained by water resources if dynamics of NDVI/GPP falls behind dynamics of 
P/TWSA.’ (Line 160-163) 

RC2: Line 195: The basin is in subtropical region. So please confirm whether October 
to March is non-growing seasons. 

AC: Growing season months have been given at its first appearance (Line 241 & 246). 
Because it can vary from year to year for each type of vegetation cover, we use the 
conventional definition in this study, i.e. from April to October. Precise quantification 
of growing season length can be done with vegetation index time series but won’t be 
necessary for this study. 

RC2: Line 252-253: A landcover change analysis for the study period may make the 
explanation here more persuasive. 

AC: Please refer to the response to General comment point 1, and response to the 4th 
comment by Prof. Zhang. In addition, we think the possible changes in planting 
structure would also alter the trend of greenness and productivity in these agricultural 
areas (added discussion in Line 345-348). 

RC2: Line 254: I’m a little bit confused about “water storage increase in this hotspot 
region has resulted in the intensification of agricultural activities”. More explanation is 
needed. 



AC: We have rephrased this sentence as ‘The changes of TWS, NDVI and GPP jointly 
imply that the water storage increase in this hotspot region, which was likely induced 
by increased precipitation, coincides with the intensification of agricultural activities 
and boosted the food production since the early 2000s..’ A study by Tong et al., (2018) 
was used to partly support our finding here. 

RC2: Figure 9: It is hard to read as many elements are overlapped together. Please find 
a clearer way to describe the information contained in this figure. 

AC: We have separated Fig. 9a in 2 subplots, and adjusted the colors and transparency 
of the bands to show them as clearly as possible. Please refer to the revised figure. 
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Abstract. Vegetation interact closely with water resources. Conventional field studies of plant-water relations at the field 

scale are fundamental for understanding the mechanisms of how plants alter and adapt to environmental changes, while 10 

large-scale studies can be more practical for regional land use and water management towards mitigating climate change 

impacts. In this study, we investigated the changes in total water storage (TWS), aridity index (AI) and vegetation greenness, 

productivity and their interactions in the Pearl River Basin since 2002. Results show an overall increase of TWS especially 

in the middle reaches where vegetation greenness and productivity also increased. This region dominated by croplands was 

identified as the hotspot for changes and interactions between water and vegetation in the basin. Vegetation was more 15 

strongly affected by TWS than precipitation (P) at both the annual and monthly scales. Further examination showed that the 

influence of TWS on vegetation in dry years was stronger than wet years, while the impact of P was stronger in wet years 

than dry years; moreover, vegetation greenness responded faster and productivity slower to atmospheric dryness changes in 

dry years than wet years. The lag effects resulted in nonlinearity between water and vegetation. This study implies that 

vegetation in the basin uses rainwater prior to water storage until it the soil gets dry, and the degree of water restriction on 20 

vegetation was higher than that of water consumption by vegetation even in this rain-abundant region. 

1 Introduction 

Vegetation covers 70% of the land surface, playing a vital role in water, carbon and energy exchanges between land and 

atmosphere (Yang et al., 2016). As climate change has been more and more evident since the industrial age (Marvel et al., 

2019; Sippel et al., 2020) which resultings in numerous ecohydrological problems such as droughts, flooding, tree mortality, 25 

etc., managing land use especially through vegetation covermanipulations has been considerably practiced in many 

catchment planning projects (Adhami et al., 2019; Stewardson et al., 2017). The theoretical basis for vegetation-involved 

catchment management is the plant-water relations across multiple scales, for example, that vegetation can intercept 

precipitation by the canopy which helps with the flood control (Soulsby et al., 2017; Wheater and Evans, 2009); they uptake 

soil water or groundwater and transpire it through leaves to increase moisture in the air; and the plant roots create 30 

macropores for water flow paths in soils to aid rapid recharge to soil water stores (Ghestem et al., 2011). In addition, 
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vegetation assimilates carbon dioxide (CO2) through photosynthesis to accumulate biomass productionproduce food and 

energy materials and reduce greenhouse gas concentration (Notaro et al., 2007; Yosef et al., 2018). In turn, atmospheric and 

hydrologic conditions can affect vegetation growth by altering vegetation the physiological characteristics such as the 

openness of stomatal aperture (Reyer et al., 2013; Sala et al., 2010). Therefore, investigation of plant-water relations is of 35 

great importance in maintaining terrestrial hydrological regimes and mediating carbon cycle and energy balance in the Earth 

systems. 

Conventional studies of plant-water relations are often carried out at the leaf and canopy level based on extensive field 

measurements. There are a rich pool of literatures that examine the plant responses such as stomatal opening/closure to stress 

from both atmospheric conditions and water supply (Martin-StPaul et al., 2017; Whitehead, 1998). It may be true that all 40 

ecosystems are to some degree controlled by water, but the mechanisms vary greatly (Asbjornsen et al., 2011), Ffor instance, 

plant water use responded sensitively to rainfall pulses and amounts in dry semi-arid areas (Huang and Zhang, 2015; Plaut et 

al., 2013), whilst the light exposure (i.e. radiationenergy) between frequent low-intensity rainfall events seemed more 

important to stimulate transpiration than rainfall amountitself in the humid low-energy boreal regions forest (Wang et al., 

2017). It is well recognized that plant-water interactions will affect soil moisture dynamics, and the Ssoil water especially the 45 

root-zone moisture in turn plays a key role in regulating plant growth. The relationship is commonly characterized as linear 

increase of plant water use with increasing moisture within a certain range, above which plant water use maintains its 

potential rate and will be limited mainly by energy (Novák et al., 2005). Noticeably, some studies observed a parabolic 

relationship between plant water use and soil moisture (Zhao and Liu, 2010) or.  groundwater level (Liu et al., 2014a). 

The site-specific (in terms of species, soil and climate)field studies are fundamental for deep understanding of the 50 

mechanisms of how plants alter and adapt to environmental changes (Massmann et al., 2018; Petr et al., 2015; Sussmilch and 

McAdam, 2017). However, it is difficult to draw universal conclusions about plant-water relations extrapolative to a large 

landscape comprised of multiple vegetation types and with different structures from site-specific analysis (Aranda et al., 

2012; Wang et al., 2008). This phenomenon is depicted as the longstanding “scale issue” in ecohydrology (Anderson et al., 

2003; Jarvis and Mcnaughton, 1986)., whichThis would weaken the applicability of observation-based research outcomes on 55 

during the implementation of vegetation-related ecological projects at a large scale such as the Grain for Green and Three-

North Shelterbelt Project in China to assess the long-term impacts and feedback between climate, vegetation and hydrology 

(Liang et al., 2015). Practically, Aassessing and mitigating climate change impacts such as floods and droughts require 

effective integrated efforts at a catchment or regional scale (Fowler et al., 2019; Ma et al., 2015), therefore. From this 

perspective, it is necessary to investigate the plant-water relations at a larger scale beyond the field sites. From this 60 

perspective,  

Rremote sensing (RS) products can be very useful because theprovide abundant information on of land surface they contain 

hydrology and vegetation characteristics and can be beneficial in overlooking the plant-water relations from a large area and 

over a long period. Over the past several decades, various RS data have been applied in many fields such as water budget 
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assessment and hydrological components estimation (Pham-Duc et al., 2019; Wang et al., 2014a), vegetation phenological 65 

variationy and the climate change impacts (Güsewell et al., 2017; Hwang et al., 2018), ecosystem services and its linkages 

with climate and land use (Xiao et al., 2019), etc. The advantage of RS analysis in terms of the spatial and temporal 

coverageis that it can identify the interplay between water and vegetation over a long period and under a wide spatial 

coverage, and it is promising prominent in assisting the land and water management by pinpointing the hotspots areas for 

where the vegetation and hydroclimatese changes and interactions are more sensitive. 70 

Among the studies of plant-water relations lies Aan interesting and meaningful argument exists in the studies of plant-water 

relations. On the one hand, vegetation need water to survive and thus are directly influenced by water availability. For 

instance, the most severe ecologicasysteml degradation being faced by many inland river basins is closely related to reduced 

water availability ; (Yu and Wang, 2012). oOn the other hand, vegetation are effective conduits to return water from soils to 

the atmosphere through transpiration and interception loss, and thus can cause big water security concerns if the water 75 

carrying capacity for vegetation is exceeded (Xia and Shao, 2008). The most severe ecological degradation being faced by 

many inland river basins is closely related to water availability (Yu and Wang, 2012). Meanwhile,It is found that in most 

cases an increase in forest cover will reduce water yield and soil water storage (Brown et al., 2005; Schwärzel et al., 2020) 

because of an increase in evapotranspiration, though the magnitudes are subject to scale, species and catchment size 

(Blaschke et al., 2008; Wang et al., 2008). Numerous studies prove that many dryland ecosystems are sourcing soil water 80 

recharged by precipitation or groundwater, therefore, plant water usegrowth depends varies largely onwith rainfall pulses or 

groundwater level in such ecosystems especially in the drylands (Eamus and Froend, 2006; Xu et al., 2016; Yang et al., 

2014). It is worth mentioning thatWhile majority of such studies were carried out in semi-arid regions because of the urgent 

need to find an equilibrium threshold between ecological restoration and available water resources in these water-limited 

areas,. However, in the humid or semi-humid areas with abundant rainfall, it is still largely unclear whether the restriction of 85 

water resources or available energy on vegetation growth or the consumption of water by vegetation prevails in the humid or 

semi-humid areas with both abundant rainfall and radiationin the long term, because. Tthe mechanisms of hydroclimate 

controls on vegetation can be different between arid and humid environments (Asbjornsen et al., 2011; Sohoulande Djebou 

et al., 2015). 

In this study, we investigate the plant-water relationships in the Pearl River basin (PRB), the largest river basin in subtropical 90 

humid South China, which supports ~120 million populations. Water is one of the most important strategic resources in the 

basin, especially in one of its sub-basins - the East River basin. The East River basin provides water for the densely 

populated and highly economically developed delta region including Shenzhen and Hong Kong, and the water exploitation 

rate has nearly reached 38%, which increases the difficulty in water allocation and management among different 

administrative regions and water use sectors. Vegetation of both natural and cultivated covers vast areas of the Pearl River 95 

basin (>92%). With around half of the total annual precipitation leaving the basin as evapotranspiration (Gao, 2010), 
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consumption of water by plants through transpiration is non-negligible and may pose threats to other water cycle 

components like streamflow which is the major water resource in most of the basin.  

Despite previous studies examining the changes in hydrologic compartments, climate change and vegetation greenness and 

investigating the roles of climate and droughts (represented primarily by temperature and precipitation) in the PRB and its 100 

sub-basins (Lin et al., 2017; Niu et al., 2018; Wu et al., 2019; Zhang et al., 2013), there are few insightful studies quantifying 

how hydroclimate and vegetation greenness and productivity alongside greenness interact with water resources at different 

time scalesfrom the  short to long terms and under contrast atmospheric dryness conditions in the subtropical Pearl River 

Basin in China over the recent 2 decades. Such investigation Results of this study can be informative for the basin-wide land 

and water use planning under a rapid changing environment. Thus, this study is the first attempt to reveal the plant-water 105 

relations at a large spatial scale in thebasin. Specifically, the objectives of this study include (1) characterizing the 

spatiotemporal patterns of hydroclimate and vegetation changes in the last 13 yearsdecade or so,, and identifying the 

hotspots for these changes and the possible driving forces; and (2) quantifying the plant-water relations at different temporal 

scales and under different contrasting dryness conditions to determine whether the restrictions of water on plant growth, or 

the opposite, prevail in this humid basin; and (3) examining the interactive role of water availability and vegetation growth. 110 

Results of this study can be informative for the basin-wide land and water use planning under a changing environment. 

2 Data and Methods 

2.1 Study area 

The Pearl River (in the range of 102–116°E, 21–27°N) ranks the second largest in China in terms of streamflow with a 

drainage area of ~450,000 km2 (Fig. 1), supporting the socioeconomic development of one of the most prosperous bay areas 115 

of China. The climate of the Pearl River Basin (PRB) is characterized as subtropical, mainly influenced by the eastern Asian 

monsoon and typhoons. The long-term mean annual temperature across the basin is 14–22℃, and mean annual precipitation 

is 1200–2200 mm (Chen et al., 2010), decreasing from southeast to northwest and primarily falls as rain and concentrates in 

April-September. The elevation is as high as ~2900 m in the west upland and decreases dramatically to the delta in the 

southeast, creating a maximum gradient of ~3000 m. 120 

The dominant vegetation is forest of evergreen forestspecies (~65.3%), followed by cropland (~18.1%) distributed mainly in 

the middle of the basin along a northeast-southwest transect, where happens to be in the transitional areas of high-to-low 

elevations in Guangxi province. Grassland (~9.3%) is the third largest land cover type mostly located in the west upland. 

Due to the downstream location, flat terrain, and rapid population growth and economic development, the Pearl River Delta 

tends to be more and more vulnerable under natural hazards such as flood and storm surge in wet seasons and saltwater 125 

intrusion in dry seasons (Liu et al., 2019). In the recent 2 decades, droughts were found to occur frequently in the basin and 

affected water allocation to different municipal areas and industries (Deng et al., 2018; Xu et al., 2019). 
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2.2 Data sources, and pre-processing and analysis 

To assess the plant-water relations at a large spatial scale, we obtained hydroclimate and vegetation data from different 

sources (Table 1). Total water storage (TWS) change is inferred by the mass change detected by GRACE satellites (Tapley 130 

et al., 2004). GRACE data can be accessed from the Jet Propulsion Laboratory (JPL), the Center for Space Research (CSR), 

and the German Research Centre for Geosciences. Previous studies have shown that the ensemble mean of different products 

is effective in reducing the noise in the gravity field solutions (Long et al., 2017; Sakumura et al., 2014). Therefore, we 

calculated the mean values of monthly TWS anomaly (TWSA) data from the JPL and CSR that are based on the ‘mascons’ 

solution (release 6) at a resolution of 0.5° and monthly. Monthly TWSA is the result of subtracting the average TWS over 135 

the period of 01/2004-12/2009 from each monthly TWS value. In addition, GRACEJPL data uncertainties are given by these 

processing centres as the measurement and leakage errors for GRACEJPL (Swenson and Wahr, 2006; Wiese et al., 2016). In 

this study, when showing the basin-average monthly/annual TWSA dynamics, we used the standard deviation to define the 

uncertainty range for the entire basin.  

Precipitation (P) and potential evapotranspiration (ETp) data were obtained from Global Land Data Assimilation System 140 

(GLDAS) ; (Rodell et al., 2004) and the national standard meteorological stations distributed across the basin from the China 

Meteorological Administration (CMA). Comparison of P from GLDAS and stations is given in the supplementary document 

Fig. S1, which shows that aridity index (AI) was then calculated as the ratio of ETp to P to represent the dryness condition. 

GLDAS uses meteorological forcing data merged from multiple sources including ground and satellite observations, and 

GLDAS precipitation proves to be highly consistent with observations in China . Here we also compared the GLDAS P with 145 

the measured P in the pixels where stations are available (Fig. 11). Ooverall, P from GLDAS agreed well with observations 

with R2 ranging from 0.69 to 0.89 (±0.05) spatially, while on average the monthly P from GLDAS slightly underestimated 

observations by ~10% over all valid pixels (R2=0.98). The comparison provides some confidence in applying the gridded 

GLDAS productsP for long-term and spatial hydrological trend analysis in this basin, though discrepancies exist in the 

absolute values. Potential evapotranspiration (ETp) was obtained from the GLDAS, and MODIS and PML, and comparisons 150 

among them are given in Fig. S2-3, which show that xxxboth products show ETp has been increasing over the 13 years, 

although GLDAS gave generally higher ETp than MODIS. GLDAS shows that ETp increase was largest over the croplands 

in the middle-south of the basin. Spatially, the correlation coefficient between these two ETp datasets ranges from 0.26 to 

0.87 at the monthly scale and -0.11 to 0.76 at the annual scale. Temporally, the average ETp from GLDAS is 1579±1023.7 

and 1504±11.54 mm yr-1, and the coefficient of determination (R2) between ETp from the two sources is 0.58 and 0.51 at the 155 

monthly and annual scale, respectively.  

Total water storage (TWS) change is inferred by the mass change detected by GRACE satellites . GRACE data can be 

accessed from the Jet Propulsion Laboratory (JPL), the Center for Space Research (CSR), and the German Research Centre 

for Geosciences. Previous studies have shown that the ensemble mean of different products is effective in reducing the noise 

in the gravity field solutions . Here we used total water storage anomaly (TWSA) data from the JPL and CSR with ‘mascons’ 160 
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solution (release 6) at a resolution of 0.5° and monthly. Cubic spline interpolation was applied to estimate the missing 

monthly data for the GRACEJPL and GRACECSR products during 04/2002–03/2015 that cover 13 hydrological years.To 

reduce the effect of errors embedded in each individual product, we calculated the average ETp from the threetwo sources 

for later analysis. Aridity index (AI) was then calculated as the ratio of ETp to P to represent the atmospheric dryness 

condition. 165 

Vegetation data in this study include Normalized Difference Vegetation Index (NDVI) and Gross Primary Production (GPP) 

representing surface greenness and productivity, respectively. NDVI was obtained from the GIMMS project at a 15-day and 

1/12° resolution during 04/2002–03/2015 and resampled to 0.5° using the nearest neighbour method, and then averaged to 

monthly to match the spatiotemporal resolution of GRACE and GLDAS data. GIMMS NDVI is among the most popular 

vegetation index datasets for analysis of vegetation phenology and its relationship with hydroclimate change (Cong et al., 170 

2013; Jeong et al., 2011), especially for studies in a relatively large river basin as it covers a moderately long time period 

(since 1980s). Monthly GPP was obtained from the Numerical Terradynamic Simulation Group in the University of 

Montana (Running et al., 2004) and rescaled to 0.5°. We also obtained GPP data from VPM (Zhang et al., 2017b) and PML-

v2 (Zhang et al., 2019). Comparisons of these GPP datasets are given in Fig. S4-5, which shows that spatially the GPP 

values from MODIS and VPM are more comparable thand PML which provides higher values. The annual trends inferred by 175 

the three products vary across the basin, mostly within the range of -25 to 25 gCm2 yr-1. Correlation coefficients between 

each two GPP datasets are high at both the monthly and annual scales, especially over the areas where croplands 

predominate. However, without extensive gridded ground observations in the basin to validate these datasets, it is hard to 

conclude which one is most accurate. With the assumption that the ensemble mean values from multiple datasets can 

effectively reduce data uncertainty lying in an individual dataset, we used the mean GPP from the three sources for further 180 

analysis.  

Information of data sources, resolution and time span for all variables related to this study is listed in Table 1. To compare 

with GRACE data, anomalies of P, AI, NDVI, and GPP data were calculated by subtracting the means over the same 

baseline period of GRACE data (i.e. 01/2004–12/2009). All variables were obtained from 04/2002 to 03/2015 covering 13 

hydrological years. Cubic spline interpolation was applied to fill the missing monthly data for the GRACE, MOD16/17 and 185 

PML. 

2.3 Data analysis 

To investigate the changes in hydroclimate and vegetation, we carried out trend analysis using the Mann-Kendall (MK) test 

method both in space and in time. The MK test does not require normality of time series and is less sensitive to outliers and 

missing values (Pal and Al-Tabbaa, 2009). This non-parametric test method has been used in many studies to detect 190 

changing hydrological regimes (Déry and Wood, 2005; Zhang et al., 2009). Interplay between hydroclimate and vegetation 

was quantified by linear regression; the Pearson correlation coefficient (r) and coefficient of determination (R2) were taken 
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as a measure for assessment of the linkages between different variables. Data series were detrended by removing the linear 

trends before analysing their relationships at both the monthly and annual scales. Furthermore, to investigate the causal role 

of vegetation growth to water availability changes (or vice versa), we carried out lag effect analysis between vegetation 195 

parameters and hydroclimate variablesa lag effect analysis was carried out to determine the temporal dependency between 

variables where the linear relationship was not obvious. That is, we assume that vegetation growth is constrained by water 

resources if dynamics of NDVI/GPP falls behind dynamics of P/TWSA. 

Since the interactions between hydroclimate and vegetation can be different under dry and wet conditions, we hereby 

selected dry and wet years according to the annual anomalies dynamics of TWS, NDVI, GPP and AI under the criteria that 200 

dry conditions correspond to low negative anomaly values of TWS, and NDVI and GPP in addition to high positive anomaly 

of AI. Then the relationships between hydroclimate dynamics and vegetation greenness and productivity were specifically 

analysed in these dry and wet years. Uncertainties of the data used were estimated by the standard error of each variable at 

the monthly and annual scales. It is worth mentioning that vegetation growth is usually controlled by two groups of factors, 

i.e. the demand (e.g., radiation, vapor pressure deficit, and temperature, etc) and the supply (e.g., soil moisture, groundwater, 205 

and water storage, etc). The supply control was represented by P and TWS here, and the demand effect was integrated in 

ETp and embedded in the aridity index. In this sense, we have the impacts of both groups accounted for on vegetation 

growth. 

3 Results 

3.1 Changes in water storage and dryness 210 

Comparison of the GRACE data from JPL and CSR shows that mean annual TWSA from GRACEJPL was overall greater 

than that from GRACECSR (Fig. 2a-b). Both products showed clear zonal characteristics similar to the average of the two (Fig. 

2c) that TWSA was generally higher in the middle-to-east areas than the rest of the basin especially the west upland, which 

infers a generally wetting condition in comparison to the baseline period. The trends of annual TWSA (Fig. 2d) showed that 

over the 13 hydrological years the TWS in most of the basin has increased at a rate below 10 mm yr-1 with 46% of the total 215 

area in the range of 5.0–10.0 mm yr-1. Areas with low changing rate were mainly located in the west upland where the 

predominant land cover is grassland with underlying karst limestones. Like the distribution of TWSA, water storage increase 

rate was also higher in the middle-to-east areas, where overlap partly with croplands, than the rest of the basin. 

Temporally, the basin has been getting wetter in general from 2002 (Fig. 2e). The TWSA has increased over the 13 years 

(not statistically significant) by 6.8±2.6 mm yr-1 inferred by GARCEJPL and 4.6±1.0 mm yr-1 by GRACECSR, with an average 220 

of 5.9±1.4 mm yr-1. In the following sections, only the mean TWSA from GRACEJPL and GRACECSR was used for analysis. 

Noticeably, there were three shifts in the drying and wetting tendencies over the study period, i.e. the shift from drying 
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between 2002 and 2005 to wetting between 2005 and 2008, followed by the shift back to drying between 2008 and 2011, and 

finally the shift to wetting after 2011.  

Fig. 3 shows the aridity index (AI) characterizing the spatial and temporal patterns of dryness. Majority of the basin has a 225 

semi-humid climate (AI=1.0~1.5); the west upland was clearly drier than the rest of the basin which is associated with 

precipitation patterns in this basin. Although dryness condition has not changed significantly over the 13 years with an 

overall positive trend in spacespatially (0.002±0.009) and time temporally (0.005±0.025), it has some interesting 

characteristics such as the wetting tendencies primarily located in the southern cropland areas, and the alternate periodical 

wetting and drying episodes temporally also existed like TWSA. Areas with low TWS change rates generally coincided with 230 

drying climate represented by aridity index. 

3.2 Changes in vegetation greenness and productivity 

Spatial NDVI distributions (Fig. 4) were highly related to vegetation cover types that the high NDVI values coincided with 

forest covers and low values corresponded to impervious surfaces, grasslands and croplands. It clearly reflects the impacts of 

urbanization on surface greenness particularly near the basin outlets in the southeast. Over the 13 years NDVI has not shown 235 

significant changes across the basin, since the majority (~70.3%) had a MK test p>0.05 at the pixel scale. The areas with 

significant changes were concentrated in the central south of the basin where croplands are predominant. This infers, 

showindicating an possible intensification of crop farming activities over these areas.  

Temporally, NDVI has an overall insignificant increase trend over the 13 years at an annual rate of 0.004±0.003 (p=0.56) 

with interannual fluctuations. However, iIt is noticeable that the periodical shifts in the NDVI trends were almost identical to 240 

TWSA in Fig. 2e. This reflects a tight bound between the vegetation greenness and water availability in this rain-abundant 

region at the annual scale. Interestingly, in 2004 when water storage continued to decrease following the previous years, 

NDVI did not show a continuity of decreasing but increased instead, implying a vegetation resilience and recovery after 

previous dry period. The recovery coincided with a slight decrease in aridity index, hence, vegetation did not respond solely 

to water availability but also to atmospheric demand. 245 

In addition to NDVI, vegetation parameter GPP was also analysed for the basin (Fig. 5). It is not surprising to observe that 

GPP was highly responsive to NDVI such that areas with low NDVI also had low GPP (e.g., the central agricultural region 

and upland grassland). GPP anomaly also showed positive high values in the central south areas dominated by croplands 

coincident with NDVI anomaly, indicating an increased agricultural production induced by intensified agricultural activities 

in this region. It should be noted that most of the trends were not statistically significant only in 33.6%a limited number of 250 

all pixels, many of which are located in the cropland areas. Over the entire basin, annual GPP showed almost the same 

periodical decreasing and increasing trends as NDVI and TWSA, except that the third turning point occurred in 2010 rather 

than 2011. Linear regression gave a coefficient of determination R2=0.59 (p=0.002) between annual TWSA and NDVI, 
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higher than that between TWSA and GPP (R2=0.23, p=0.099), which may imply a more direct and stronger impact 

dependence of vegetation greenness than productivity on water stress storage at an annual scale. 255 

3.3 Interactions between hydroclimate and vegetation 

Combining Fig. 2-5, we found that climate condition, water storage and vegetation dynamics are tightly interlinked. 

Coefficient of determination between anomalies of these variables (Fig. 6) show that variation of annual NDVI can be 

explained by TWS by 58.6% (p=0.002), followed by P (36.5%, p=0.029) and AI (10.8%, p=0.272). Influence of these three 

variables on GPP followed the same order (R2=0.23, 0.06, 0.02) but not statistically significant (p>0.05). In addition, GPP 260 

was positively associated with NDVI (R2=0.35, p=0.033), and P and TWS were negatively correlated with dryness (p<0.05). 

Spatially, precipitation, water storage and dryness affected vegetation in a similar way compared to temporal characteristics, 

i.e. the influence of TWS was relatively stronger than P and AI. The hotspots of the interactions were found in the middle-

south areas, and dryness more negatively affected greenness than productivity in these areas (Fig. 7). These analyses indicate 

that aAtmospheric stress and water stress imposed more direct and stronger impact on vegetation greenness than productivity 265 

on a yearly basis, and water constraint on vegetation was stronger than that of dryness.  

At the monthly scale, however, the linear responses of GPP to P and TWS were stronger than the linear responses of NDVI 

to P and TWS (Fig. 8a-b). The response of both NDVI and GPP to P was more nonlinear than to TWS, and the sensitivity of 

NDVI and GPP to TWS was stronger than to P indicated by the regression slopes, implying a stronger link between water 

storage and vegetation growth. Meanwhile, increase in dryness resulted in nonlinear decreases in NDVI and GPP (Fig. 8c). 270 

The relationships show that although precipitation is the main water input to the terrestrial hydrological cycle, it is how much 

water is stored in the soils that determines vegetation greenness and biomass production at a shorter time scale than annual. 

Nonlinear plant-water relationships can be explained by the lag effect that monthly changes of NDVI and GPP fell behind 

the changes of P and TWS to varying degrees (Fig. 9). In other words, the decline of water resources results in reduction in 

vegetation greenness and productivity, not the opposite. This means that the water restrictionimpacts of water availability on 275 

vegetation growth outweighed the water consumption byimpacts of vegetation growth on water resources depletion. 

Vegetation response to hydroclimate changes is expected to differ in dry and wet years. Here, we assumed that the annual 

anomalies of TWS<0, NDVI<0 and AI>0 corresponded to dry conditions, and hence defined 2003, 2005, 2007, 2009 and 

2011 as dry years and 2002, 2006, 2008, 2010, 2012-2014 as relatively wet years. There was evidence of drought 

occurrences in these dry years (Lin et al., 2017; Wang et al., 2014b). It can be seen that the dry and wet years were mainly 280 

differentiated by the rainfall data in summer months July and August affecting water storage and dryness. The range of long-

term mean monthly NDVI and GPP was 34.0% and 8.414.6% higher greater on average in dry years than wet years, mainly 

attributable to the difference in the non-growing seasons from October November to March (Fig. 9c-d). Both the minimum 

and maximum NDVI were lower in dry years than in wet years, particularly, the minimum NDVI in dry years was 81.1% 

lower than that in the wet years, compared to 12.6% lower for the maximum. Difference of GPP was not largesimilar 285 
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betweenin dry and wet years, with 14.39.8% and 6.9% lower and 14.9% higher in dry years for minimum and maximum 

values, respectively. This implies firstly that vegetation greenness is more sensitive to any changes in hydroclimate than 

productivity, and secondly that. Moreover, GPP in growing seasons (i.e. October to April in general definition) in dry years 

was relatively higher than that in wet years reflecting a positive effect of water stress on biomass accumulation. 

Fig. 10 gives the R2 from linear regression between the monthly climatological means of different variables considering 290 

phase shift for lag analysis over all the years, dry and wet years, respectively. It shows NDVI varied strongest with P, TWSA 

and AI in the previous 3, 1 and 3 months, respectively when considering all data during 2002-2014. In comparison, a shorter 

lag time of GPP to P, TWSA, and AI was detected (21, 0, 1 month, respectively). Comparison of the lag time in dry and wet 

years shows that the influence of P on vegetation was more prominent in wet years than in dry years, while TWS influence 

was greater in dry years than wet years. Moreover, NDVI responded faster to dryness change in dry years (2 months) than 295 

wet years (3 months), and GPP responded slower to dryness change in dry years (1 month) than wet years (0 month). This 

may indicate that drying to some degree can stimulate biomass production. In addition, GPP varied synchronously with TWS 

showing a high dependency on water storage despite the dryness conditions. 

4 Discussion 

4.1 Uncertainties in the datasets and results 300 

Data availability is one of the greatest obstacles for large-scale and long-term ecohydrological studies. Remote sensing 

products are thus useful to characterize ecohydrological changes in a large sparsely monitored basin. In this study, we used 

remote sensing and assimilated data of water storage, vegetation status and precipitation to assess their relationships. 

Precipitation is one of the commonly monitored meteorological variables,  

usually with relatively long time series and wide spatial coverage. We compared P data from GLDAS and meteorological 305 

stations in Fig. S1. It shows that the two datasets agree well both spatially and temporally. The spatial coefficients of 

determination (R2) range from 0.7 to 0.9 in pixels where stations are available, and the temporal R2 is 0.98 with a close-to-

one regression slope. The comparison indicates that the gridded GLDAS precipitation data can be used to analyse the 

dynamics and relationships of hydroclimate and vegetation parameters. Potential evapotranspiration (ETp) is used to 

calculated aridity index, therefore, we also obtained and compared ETp in Fig. S2-3, which shows that spatially the 310 

correlation coefficient between monthly and annual ETp lies mostly in 0.6~1.0 and 0.4~1.0, showing relatively good 

agreement; and temporally ETp are close to each other at the monthly scale while the uncertainty enlarges at the annual scale. 

In lack of ground truth data, and with the assumption that ensemble means can reduce the errors in each individual product, 

we calculated the average ETp from the two sources for analysis. 

GPP data from MODIS have been extensively used in literature to facilitate studies of vegetation in response to climate and 315 

hydrology. For example, A et al. (2017) discussed the relationship between TWS, soil moisture and GPP in response to 
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drought in 2011 in Texas, USA, and found that vegetation dependency on TWS weakened in the shrub-dominated west and 

strengthened in the grassland and forest area. Liu et al. (2014b) compared five GPP datasets against observations at six sites 

across China and concluded that MODIS GPP was more reliable over grassland, cropland and mixed forestland than the 

other datasets. These land cover types happen to be the predominant ones in the Pearl River Basin, which assures some 320 

degree of confidence in GPP analysis using MODIS product in this study. Zhang et al. (2017b) and Yuan et al. (2015) also 

compared various GPP datasets globally and regionally, and inconsistencies existed in these comparisons that could stem 

from the way each algorithm parameterizing atmospheric and water stress and difference in the vegetation index data (Yuan 

et al., 2015). From the supplementary Fig. S1-S24-5 for comparison of three GPP datasets, we found spatially the GPP 

values from MODIS and VPM are more comparable than PML which provides higher values. The annual trends inferred by 325 

the three products vary across the basin, mostly within the range of -25 to 25 gCm2 yr-1. Correlation coefficients between 

each two GPP datasets are high at both the monthly and annual scales. It is worth mentioning that the algorithms for MODIS, 

VPM and PML only account for atmospheric restrictions (including vapor pressure deficit, temperature, and radiation) but 

none accountst for soil water availability (Pei et al., 2020), in which case the GPP could be overestimated. However, without 

extensive gridded ground observations in the basin to validate these datasets, it is hard to conclude which one is most 330 

accurateGPP from MODIS is comparable to that from PML, while they both are higher than the other product. These three 

datasets spatiotemporally agree well with R2>0.90 between each two. The comparisons show the confidence in terms of 

consistency in their temporal trends. Despite the dispute of data accuracy, MODIS GPP seems more frequently used due to 

its moderate spatiotemporal resolution and data coverage. Nonetheless, without ground truth data for validation and 

application in such a large catchment, these remote sensing products are promising and useful. 335 

Regarding the water storage change, the distribution and magnitude in the middle and lower reaches of the basin was similar 

to the results in Luo et al. (2016), but the increasing trends of TWS were detected in the upland opposite to their study. This 

could be attributable to firstly that they used 1° GRACE data (release-5) during 2003-11/2014 and we used 0.5°data (release-

6) during 04/2002-03/2015, and secondly the way the annual values were calculated: we used the hydrological year (i.e. 

April to March of next year) instead of the calendar year. In addition to this study and Luo et al. (2016), Zhao et al. (2011) 340 

found an overall significant increase of 9.2 mm yr-1 in TWS using 1° GRACE data during 02/2003-02/2009; Mo et al. (2016) 

detected also a significant increase of TWS by 5.5 mm yr-1 using 1° GRACE data during 2003-2013; Long et al. (2017) used 

the 0.5° GRACE data (release-6) for TWS analysis and found a significant increase trend of 6.3 mm yr-1 during 04/2002-

03/2015. It is thus important to consider the data source, spatial resolution and temporal coverage (due to interannual 

variability) when detecting the TWS trends for comparison. Nonetheless, it can be concluded that TWS in the PRB has been 345 

steadily increasing from the early 2000s at a rate of ~6 mm yr-1. 

GPP data from MODIS have been extensively used in literature to facilitate studies of vegetation in response to climate and 

hydrology. For example, A et al. (2017) discussed the relationship between TWS, soil moisture and GPP in response to 

drought in 2011 in Texas, USA, and found that vegetation dependency on TWS weakened in the shrub-dominated west and 
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strengthened in the grassland and forest area. Liu et al. (2014b) compared five GPP datasets against observations at six sites 350 

across China and concluded that MODIS GPP was more reliable over grassland, cropland and mixed forestland than the 

other datasets. These land cover types happen to be the predominant ones in the Pearl River Basin, which assures some 

degree of confidence in GPP analysis using MODIS product in this study. Zhang et al. (2017b) and Yuan et al. (2015) also 

compared various GPP datasets globally and regionally, and inconsistencies existed in these comparisons that could stem 

from the way each algorithm parameterizing atmospheric and water stress and difference in the vegetation index data (Yuan 355 

et al., 2015). From the supplementary Fig. S1-S2 for comparison of three GPP datasets, we found GPP from MODIS is 

comparable to that from PML, while they both are higher than the other product. These three datasets spatiotemporally agree 

well with R2>0.90 between each two. The comparisons show the confidence in terms of consistency in their temporal trends. 

Despite the dispute of data accuracy, MODIS GPP seems more frequently used due to its moderate spatiotemporal resolution 

and data coverage. Nonetheless, without ground truth data for validation and application in such a large catchment, these 360 

remote sensing products are promising and useful. 

Inspired by the studies of TWS change using GRACE satellite data with different processing algorithms (Long et al., 2017; 

Sakumura et al., 2014), it may be more accurate and informative by using the average values from as many available datasets 

for the targeted ecohydrological variables as possible, i.e. the ensemble means, than using a single dataset. This is worth 

further investigation which could enhance the studies in many ungauged basins for critical hydrological assessments given 365 

the increasing availability of remotely sensed and assimilated datasets. 

4.2 Hotspot for hydroclimate and vegetation changes 

NDVI and GPP shared the same spatial patterns and high GPP corresponded to high NDVI in the forested areas. Low values 

existed in the west upland with grass cover and the central south areas of croplands. Over the 13 hydrologic years NDVI and 

GPP showed have increased insignificant changes by 0.004 (unitless, p=0.563) and 8.57 gCm2 yr-1 (p=0.038), respectively, 370 

with large interannual variabilities. Unlike the north China where vegetation cover is deeply affected and largely recovered 

through decades of ecological restoration projects (Chen et al., 2019; Feng et al., 2005), vegetation cover especially the 

forest cover which occupies most of the PRB almost remained constant from early 2000s at least in Guangdong province 

located in the east of the basin (Chen et al., 2015). Even so, wWe identified the areas with significant increase in NDVI and 

GPP in the central south region of the basin where croplands dominate. Therefore, considering that the precipitation 375 

gradually decreases from southeast coastal area toward northwest outback of the basin, The changes of TWS, NDVI and 

GPP jointly imply that the water storage increase in this hotspot region, which was likely induced by increased precipitation, 

has resulted incoincides with the intensification of agricultural activities and boosted the food production since the early 

2000s. Tong et al., (2018) showed that leaf area index has increased in these cropland-dominated areas where have 

undergone low to moderate conservation efforts through ecological engineering. Their results support our finding indirectly 380 

that the agricultural activities in this cultivated area have been enhanced. It should be mentioned that the changes in planting 

structure in these agricultural areas could also result in enhanced greenness and improved productivity compared to the 
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traditional cultivated crops, but this cannot be quantified without detailed crop data throughout the years. Nonetheless, Iit is 

for the first time in studies to reveal such phenomenon and can be meaningful for the food-water nexus studies in this region, 

and indicative for a possible shift expansion of China’s main food production from the north to the south in the context of 385 

water and energy richness in the south and shortages in the north (Kuang et al., 2015). 

4.3 Causal roles of water and dryness in vegetation changes 

The overall TWS increase is promising for the managers and users of water resources in the PRB, however, the strong 

correlation with precipitation seasonality restrained the available water in the relatively dry periods. In fact, previous studies 

have reported the contribution and restriction of P to TWS. For instance, Chen et al. (2017) revealed the liability of P to 390 

TWS (r=0.78) in the PRB. Mo et al. (2016) found TWS more strongly explained (60%) by annual P in river basins in south 

China than in north China. In this sense, storage shortage in dry periods subject to seasonal reduction of precipitation would 

hamper vegetation growth. Analysis in this study shows that NDVI was highly correlated with TWS and P at the annual 

scale (Fig. 7), consistent with previous studies in the PRB and other areas (Guan et al., 2015; Zhaos et al., 2016; Zhu et al., 

2018). Whilst at the monthly scale NDVI was still strongly influenced by TWS but not so strongly by P, in comparison to the 395 

strong response of monthly GPP to both P and TWS. The weakened linear influence of P on NDVI at the monthly scale, 

found also by others such as Bai et al. (2019) and A et al. (2017), can be explained by the lag effect that NDVI lagged by 3 

and 1 months after P and TWS, respectively. In comparison, the lag time between GPP, P and TWS was 2 and 1 month 

shorter than NDVI versus P and TWS (Fig. 10a). The differences in  NDVI and GPP response to hydroclimate variables may 

lie in the way these two parameters are calculated, especially that GPP is calculated based on atmospheric variables like 400 

temperature, vapor pressure deficit and photosynthetically active radiation (Pei et al., 2020). Because of the asynchrony in 

the atmospheric variables and NDVI (Piao et al., 2006), the GPP and NDVI would also have some inconsistency in time. 

This would further indicate that it should be given more caution when choosing parameter (NDVI or GPP) to better 

representflect vegetation growing status, which is lack in literature for discussion. 

In addition, comparison of the plant-water relations in dry and wet years showed a slower response of GPP to aridity index in 405 

dry years than wet years (Fig. 10b-c). Wilcoxon rank sum test shows that the areal mean NDVI and GPP in dry years are not 

significantly different from those in wet years (p=0.12 and 0.76) (Fig. 9c-d). In fact, GPP was higher in the growing seasons  

in dry years than wet years, and NDVI was lower in non-growing seasons of dry years than wet years. Together, these 

comparisons may imply that a certain degree of drying can stimulate biomass accumulation. This phenomenon is also 

revealed by other studies (Zhang and Zhang, 2019). The underlying mechanisms could be similar to the principle of 410 

regulated irrigation in agricultureal practice to increase water use efficiency under a certain degree of water stress (Chai et al., 

2016), or that the atmospheric conditions are more favourable for photosynthesis during dry years than wet years (Restrepo-

Coupe et al., 2013; Zhang and Zhang, 2019), given that the soil water or groundwater storage is not depleted severely in 

these dry years. This dryness effect on ecosystem productivity cannot be detected in the annual scale assessment (Brookshire 

and Weaver, 2015; Yao et al., 2020). These results indicate firstly that pre-growing season hydroclimate conditions play a 415 
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key role in the follow-on vegetation growth and production (Wang et al., 2019), and secondly that water limits vegetation 

even in this subtropical radiation- and rain-abundant region instead of water shortage resulted from vegetation establishment. 

It cannot be detected at the time scales investigated in this study that vegetation consumes excessive water through 

transpiration that results in obvious reduction in water storage. However, the causal role of vegetation in water decline has 

been reported at mostly a shorter time scale like daily and sub-daily, such as the studies in a poplar stand in Northwest China 420 

by Shen et al., (2015) and a pine-dominated catchment in Sierra Nevada, USA by Kirchner et al., (2020), who demonstrated 

that sap flow by trees led to decline in groundwater level. 

Anomalies of TWS, aridity index and NDVI together well defined the occurrences of drought in the basin that are identical 

to other studies using P, TWS alone or other drought indices (Wang et al., 2014b; Zhang et al., 2018). The drying episodes 

confined the vegetation greenness and production (Lin et al., 2017). Liu et al. (2014a) reported that China’s national total 425 

annual net ecosystem productivity exhibited declines during 2000-2011, mainly due to the reduction in GPP caused by 

extensive drought. Although drought is generally associated with declines in vegetation greenness and productivity due to 

water and heat stresses (Eamus et al., 2013), the magnitude of vegetation reduction, determined by ecosystem sensitivity to 

drought, can vary dramatically across plant communities and thus show different spatial patterns relative to different 

vegetation types. While Zhang et al. (2017a) detected insensitivity of vegetation to droughts in humid south China including 430 

the lower reach of PRB, this study observed that NDVI experienced a recovery in 2004 after drought in the previous year, 

which may be a result of irrigation during drought in the agricultural regions since forests are more resilient to droughts 

(DeSoto et al., 2020; Fang and Zhang, 2019). Future climate projections predict increases in temperature and insignificant 

changes in precipitation in the basin which would trigger more heatwave induced flash droughts (Li et al., 2020). This would 

likely enhance the atmospheric controls on vegetation development. To mitigate the impacts on both water resources and 435 

ecosystems, proper plans should be made such as conversion of the low resilient ecosystems to forests (Fang and Zhang, 

2019) and improvement of biodiversity in ecosystems (Isbell et al., 2015; Oliver et al., 2015), in addition to engineering 

regulations like reservoir operations (Lin et al., 2017). 

5 Conclusions 

Plant-water relations over the Pearl River Basin were examined using remote sensing products during the hydrological years 440 

of 2002-2014. Results show that water storage has increased across the entire basin at an average rate of 5.9 mm yr-1. 

Vegetation greenness and productivity has also shown some changes with significant increases concentrated in the cultivated 

lands. Spatial characterization reveals that the central south areas of the basin dominated by croplands are the hotspots for 

the changes of and interactions between hydroclimate and vegetation. This implies an increase in food production induced by 

intensification of agricultural activities in these areas. Lag effect analysis at the monthly scale reflects that even in this rain-445 

abundant subtropical basin the water restriction on vegetation precedes the water consumption by vegetation. Furthermore, 

comparison of the plant-water relations in dry and wet years showed a stronger influence of precipitation and a weaker 
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influence of water storage on vegetation in wet years than dry years. A slower response of vegetation productivity to aridity 

index in dry years than wet years was identified which may indicate a stimulating role of a certain degree of dryingness on 

vegetation production. Therefore, essentially the vegetation growth in this subtropical humid region is more strongly 450 

controlled by atmospheric demand factors than water supply factors. This study reveals the changes and interplay between 

plant and water using readily available remote sensing and assimilated data, and has implications for proper measures 

regarding land use alterations to mitigating frequent drought impacts on water resources and ecosystems under a warming 

climate. 
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Table 1. Information of data used in this study 

 Product Resolution Time span Data link 

P 

GLDAS-

Noah (v2.1) 

0.25°×0.25°, 

Monthly 

04/2002– 

03/2015  
https://disc.gsfc.nasa.gov 

CMA 
Station-based, 

monthly 

04/2002–

03/2015 
http://data.cma.cn/data 

ETp 

GLDAS-

Noah (v2.1) 

0.25°×0.25°, 

Monthly 

04/2002– 

03/2015  
https://disc.gsfc.nasa.gov 

MOD16A2 
0.05°×0.05°, 

Monthly 

04/2002– 

12/2014 

http://files.ntsg.umt.edu/data/NTS

G_Products/MOD16/ 

TWSA 
GRACE 

(RL06) 

0.5°×0.5°, 

Monthly 

04/2002– 

03/2015 

http://grace.jpl.nasa.gov; 

www2.csr.utexas.edu/grace/RL06_

mascons.html 

NDVI 
GIMMS3g 

(v1) 

0.083°×0.083°, 

15–day 

04/2002– 

03/2015 

https://ecocast.arc.nasa.gov/data/p

ub/gimms/3g.v1 

GPP 

MOD17A2 
0.05°×0.05°, 

Monthly 

04/2002– 

12/2014 

www.ntsg.umt.edu/project/modis/

mod17.php 

VPM 0.05°, monthly 
04/2002–

03/2015 

https://figshare.com/articles/Month

ly_GPP_at_0_05_degree/5048113 

PML-v2 0.05°, 8-day 
07/2002–

03/2015 
https://github.com/kongdd/PML 
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Figure 1. (a) The Pearl River Basin and the related provinces on the map of the China, (b) Digital elevation map (m.a.s.l, 

1000 m resolution), and (c) Land cover types (30 m resolution). 
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 730 

Figure 2. Spatial distribution of TWSA in the basin inferred by (a) GRACEJPL, (b) GRACECSR, (c) the mean of GRACEJPL 

and GRACECSR, (d) the linear trends of the mean annual TWSA, and (e) mean annual TWSA over the entire basin. Shaded 

areas in (e) show the standard error of each series. Dashed green lines indicate statistically insignificant trends (R2=0.68, 0.82, 

0.58 and 0.83, respectively). 
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Figure 3. (a) Spatial distribution of the mean annual aridity index across the basin during hydrological years 2002-2014, (b) 

annual trend of aridity index, and (c) mean annual aridity index over the basin. Red lines show the periodical trends. Dashed 

red line indicates statistically insignificant trend. The coefficient of determination is 0.71, 0.47 and 0.61, respectively. 
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Figure 4. Spatial distribution of (a) mean annual NDVI, (b) linear trend of annual NDVI with crosses indicating significant 

trends; and (c) spatially averaged annual NDVI anomaly, during 2002-2014. Red lines show the annual trends in different 

periods. Dashed red lines show statistically insignificant trends (p>0.05). Coefficient of determination is 0.47, 0.94, 0.81 and 745 

0.90 for the four periods. Ellipse in (b) marks the areas where croplands predominate. 
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Figure 5. Spatial distribution of (a) mean annual GPP, (b) linear trend of annual GPP; and (c) spatially averaged annual GPP 750 

anomaly, during 2002-2014. Red lines show the annual trends in different periods. Dashed red lines show statistically 

insignificant trends. The coefficient of determination is 0.65, 0.99, 0.99 and 0.90 for the four periods. Ellipse in (b) marks the 

areas where croplands predominate. 
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 755 

Figure 6. Coefficient of determination (R2) from linear regressions between the anomalies of P, TWS, AI, NDVI and GPP at 

the annual scale. Asterisk indicates p<0.05. 
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Figure 7. Pearson correlation coefficient between annual anomalies of (a1-a2) precipitation, NDVI and GPP; (b1-b2) total 760 

water storage, NDVI and GPP; and (c1-c2) aridity index, NDVI and GPP. Ellipse marks the areas where croplands 

predominate. 
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Figure 8. Scatter plot of monthly anomalies of precipitation (P), total water storage (TWS), aridity index (AI), NDVI and 765 

GPP. 
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Figure 9. (a-b) Monthly variations of anomalies of precipitation (P), total water storage (TWS), aridity index (AI, scaled for 

a better view), and NDVI, gross primary production (GPP) in all years; (c) monthly means of dry hydrological years and (d) 770 

monthly means of wet hydrological years during 2002-2014. Plots c and d share the same units and legends with plots a and 

b. Shaded areas show the standard errors of each variable. 
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Figure 10. Coefficient of determination between monthly anomalies of precipitation (P), total water storage (TWS), aridity 775 

index (AI) and NDVI and GPP in (a) all years, (b) the dry years, and (c) the wet years after shifting different number of 

months. 
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